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Abstract

In the 1960s, Atiyah and Singer gave a vast generalisation of a series of results connecting Topology with
Analysis. The Atiyah-Singer theorem generalises the classical Gauss-Bonnet theorem, Chern-Weil theory
and the Riemann-Roch theorem. It gives a formula for the calculation of the analytic index of an elliptic
(pseudo)differential operator using characteristic classes.

This dissertation presents the recent proof of the Atiyah-Singer theorem using Lie groupoids and K-theory.
This proof arises from the observation that the analytic index depends only from the class of the principal
symbol in K-theory. Starting from this, Alain Connes used a deformation groupoid and its associated extension
of C* algebras to describe the relation of the elliptic operator with its principal symbol. The connecting map
in K-theory is the analytic index.

Claire Debord showed that the topological index can also be expressed in K-theory using deformation
groupoids and the Thom isomorphism. The proof of the equality of the two indices is a Poincare duality type
theorem, expressed through Kasparov’s KK-theory.

In this framework, the calculation of the index can be possible by the pairing of K-theory with cyclic
cohomology. Partial results in this direction have been given by Pflaum-Posthuma-Tang.
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Introduction

The overall purpose of this dissertation is to serve as a gentle introduction to index theory from the viewpoint
of Noncommutative Geometry.

We discuss a vast generalization of the classical Atiyah-Singer index theorem, for families of elliptic pseu-
dodifferential operators along a dynamical system, allowing the presence of singularities. Instances of this
type of (hard!) Analysis are elliptic problems on statified manifolds, on families of manifolds, along an almost
regular foliation, along orbits of a Lie group action, along the symplectic foliation of a Poisson manifold, and
many other singular situations.

Lie groupoids provide a unified framework for the treatment of all cases as such, in the sense that they
desingularize them. On the other hand, the structure of a groupoid lies at the core of pseudodifferential
calculus, in fact at the core of Fourier Analysis per se (just think of the convolution formula). Moreover,
Connes’ tangent groupoid plays a fundamental role in the formulation of the correct K-theoretic proof of the
classical Atiyah-Singer index theorem. This formulation is “correct” in the sense that it can be generalised to
all the above situations. Indeed, Claire Debord showed exactly this in her habilitation thesis, which we follow
here.

Once we prove the Atiyah-Singer index theorem in this very general context, the issue of calculation arises
naturally. To this end, we discuss partial results in this direction, by Pflaum, Posthuma and Tang, involving
the pairing of K-theory with cyclic cohomology.

We should point out that an open problem is to generalise the Atiyah-Singer index theorem to arbitrary
singular foliations. One difficulty with this is that the groupoids arising in this case are no longer smooth.
Nevertheless, the left-hand side of the Atiyah-Singer formula (analytic index) has already been formulated. For
the right-hand side though, one first needs to develop characteristic classes along a singular foliation. Until the
submission of this dissertation, no classes as such have been developed.

Overview of classical index theory

The fundamental problem is the following: Consider an elliptic pseudodifferential operator D on a compact
manifold M . It acts as a bounded operator between Sobolev spaces. A consequence of the existence of a
parametrix and Atkinson’s theorem is that its kernel and cokernel have finite dimension. We desire to calculate
its Fredholm index, namely the integer number Ind(D) = dim(kerD) − dim(cokerD). This number carries
information about the dimension of the space of solutions of differential equations expressed by D and the asso-
ciated constraints. Moreover, it is well known that the spectrum of certain elliptic (pseudo)differential operators
on a manifold M contains topological information for M . For example, Weyl showed that the dimension and
volume of a manifold are determined by the eigenvalues of the Laplacian. The Fredholm index is the key tool
we use to calculate the spectrum. For our exposition, it is very important to note that Fredholm operators have
the following fundamental properties:

1. The Fredholm index is homotopy invariant.

2. The Fredholm index is a morphism of abelian groups.

3. The Fredholm index is invariant by compact perturbations.

Moreover, Hörmander made the following observation:

4. The Fredholm index depends only on the principal symbol σ(D) ∈ C0(T
∗M). In other words, the principal

symbol determines the operator up to compact operators.

The implication of these properties is profound: The first property suggests that Fredholm index has topological
nature. Hence it should be possible to realise it as an element of an appropriate cohomology theory. As it
happens, K-theory is the correct cohomology theory which accomodates both the principal symbol and the
Fredholm index. To see this, first note that, an apropriate change of the norm of the Sobolev spaces makes
every positive order pseudodifferential operator a zero order operator. Now Hörmander’s observation can be
phrased as an exact sequence of C∗-algebras defined by the principal symbol map principal symbol map:

0→ K(L2(M))→ Ψ(M)
σ−→ C0(T

∗M)→ 0

where Ψ(M) is the closure of zero-order pseudodifferential operators in the multiplier algebra of the compact
operators K(L2(M)). In K-theory, exact sequences as such, amount to decompositions of a topological space
which are necessary in ordinary cohomology theories for the purpose of applying the Meyer-Vietoris sequence.
Thanks to Bott periodicity in K-theory the long exact sequence associated with any exact sequence of C∗-
algebras has only 6 terms. The boundary map associated with the above exact sequence gives rise to the
“analytic index map”

indan : K0(T
∗M)→ K0(K(L2(M)))
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Noting that K0(K(L2(M))) = Z, we find that the analytic index map indan sends the class [σ(D)] of the
principal symbol to the Fredholm index of D.

The celebrated theorem of Atiyah and Singer calculates the analytic index using topological invariants of
the underlying manifold. In particular, Atiyah and Singer gave the following formula:

indan(D) =

∫
T∗M

ch(σ(D))Td(M)

This formula connects Analysis with Topology and is the culmination of the theory of characteristic classes and
Chern-Weil theory. It generalises simultaneously the classical Gauss-Bonnet theorem as well as the Hirzenbruch-
Riemann-Roch theorem. It has numerous implications in various fields of mathematics, such as representation
theory, number theory, spectral theory, etc.

Remarkably, the proof of the Atiyah-Singer theorem is given entirely in the realm of K-theory. The ingre-
dients of the “topological index” appearing in its right-hand side arise from:

• The Chern character map ch : K(M)→ Hev(M,Q)

• The Todd class, which arises as the failure for a diagram involving the Chern character to commute.

As for the equality of the analytic and the topological index, it is proven by means of Kasparov’s KK-theory,
in particular the associated Kasparov product. Alternatively, the equality can be seen as the “wrong-way
functoriality” property, which is the appropriate version of Poincare duality in K-theory.

An alternative viewpoint of the Atiyah-Singer formula is by the pairing of K-theory with (periodic) cyclic
cohomology, by means of a trace map. We will use both the “K-theoretic” and the “cyclic” viewpoints here.

The use of Lie groupoids in classical index theory

Lie groupoids are geometric realizations of internal and external symmetries. Their simplest form, Lie groups,
appear naturally in Fourier Analysis - this is evident already in the convolution formula. Let us see how they
arise in pseudodifferential calculus and index theory.

In fact, the simplest Lie groupoid has already been used in the above context. This is just the pair groupoid
M ×M (over M). Namely, vieweing a pair (y, x) ∈M ×M as an arrow with source x and range y, we have an
obvious multiplication (z, y)(y, x) = (z, x), inversion (y, x)−1 = (x, y) and unit inclusion given by the diagonal
map M →M ×M . This structure is fundamental, as the following observations show:

1. Pseudodifferential operators are completely determined by their Schwarz kernels. Such a kernel is a
distribution on M ×M which is smooth away from the diagonal.

2. The groupoid multiplication and inversion appears in the Schwarz kernel formulas for the product and
adjoint of pseudodifferential operators respectively.

3. Likewise for the associated asymptotic expansions.

Motivated by the stationary phase method (see Guillemin and Sternberg), Alain Connes realised that the
analytic index is strongly related with a deformation. Namely, if we consider the family of pseudodifferential
operators {tD}t∈R on M × R, then the limit as t→ 0 turns out to be the principal symbol σ(D).

The correct formulation of this observation is in terms of a deformation groupoid, known as “Connes’ tangent
groupoid”. This is the groupoid which deforms the pair groupoid M ×M to its infinitesinal counterpart, the
tangent bundle TM , viewed as a Lie groupoid (over M), with addition along the fibers. Specifically, using a
tubular neighbourhood map, we put a topology on the space

TM = (TM × {0}) ∪ (M ×M × R∗)

which makes it a Lie groupoid over M × R.
Now it is easy to extract the analytic index map from this groupoid. Restricting to [0, 1], and bearing in

mind that the C∗-algebra of the pair groupoid is the compact operators K(L2(M)), we obtain the short exact
sequence

0→ K(L2(M))⊗ C0((0, 1])→ C∗(TM)
ev0−→ C0(T

∗M)→ 0

The algebra C0((0, 1]) is contractible (and nuclear), whence passing to K-theory, the map ev0 is invertible.
Composing with evaluation at t = 1 we obtain a map

[ev1] ◦ [ev0]−1 : K(T ∗(M))→ K(K(L2)(M))

It turns out that this is exactly the analytic index map indan. Even more remarkably, the topological index
map can also be formulated in terms of deformation groupoids, similar to Connes’ tangent groupoid. This was
clarified by C. Debord in her habilitation thesis.
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Overview of this dissertation

As we mentioned in the beginning, our goal is to display how the above results can be generalised to dynamical
systems, possibly with singularities. It turns out that Lie groupoids provide the correct framework in which
this can be achieved.

That is because Lie groupoids desingularize dynamical systems as such. Here are a few instances of this:

• Let π : N → M be a submersion and assume that we are interested in the involutive distribution ker dπ
of N . That is to say, we want to study families of pseudodifferential operators along the fibers of π. The
fibered product N ×π N is a Lie subgroupoid of the pair groupoid N × N . Applying the target map to
the source-fiber at n ∈ N we recover the fiber π−1(π(n)).

• For an example presenting singularities, consider an arbitrary action of a Lie group G on a manifold M .
We are interested in the dynamical system formulated by the infinitesimal generators of the action, which
are vector fields tangent to the orbits of this action. The cartesian product G×M carries the structure of
a Lie groupoid over M , with source the projection map and target the action map. Given any x ∈M , the
source-fiber s−1(x) is diffeomorphic to the Lie group G, whence it has constant dimension. By applying
the tartget map, we obtain the orbit at x.

Whence, the term “desingularization” means that, although the manifoldM may be partitioned to submanifolds
with varying dimension, the Lie groupoid G allows us to replace them with the source-fibers, which have constant
dimension. This way, every time we are interested in an index problem along the given dynamical system on
M , we can lift it to an index problem along the source-fibers of G, which is much better behaved dynamical
system.

We will show that pseudodifferential calculus can be defined on a Lie groupoid G. To this end, the associated
Lie theory is crucial: Every Lie groupoid G has a Lie algebroid AG. A pseudodifferential operator on G should
be thought of as a family of pseudodifferential operators along the source-fibers. Its symbol is a function on
A∗G. Moreover, all the apparatus we discussed above can be generalised to groupoids:

1. A C∗-algebra can be attached to G. Its elements are families of pseudodifferential operators along the
source-fibers, with negative order. In other words, we have an exact sequence

0→ C∗(G)→ Ψ(G) σ−→ C0(A
∗G)→ 0

2. A deformation groupoid
TG = (AG × {0}) ∪ (G × R∗)

3. The analytic index map
[ev1] ◦ [ev0]−1 : K(A∗(G))→ K(C∗(G))

4. Certain deformation groupoids, which make sense of the topological index map.

With these ingredients in hand, as well as the notion of Morita equivalence, we will discuss how Claire Debord
was able to generalise the proof of the Atiyah-Singer index theorem in the context of Lie groupoids. There we
will perform several explicit KK theory calculations.

Last, notice that our index map takes values in the K-theory of the groupoid C∗-algebra. This K-theory
may be much harder to compute than the K-theory of compact operators. So, in this case, we really need
to discuss pairing with cyclic cohomology. The difficulty with this is that there is no trace map for groupoid
C∗-algebras. Instead of this, in the end we will discuss some partial results by Pflaum, Posthuma and Tang.
The second part of this thesis can be summarized as follows ,it is possible to calculate the index of operators
using traces.Here we introduce the purely algebraic theory of cyclic homology and cohomology which serves
as generalized traces. Indeed cyclic cocycles are the higher dimensional generalization of traces. Then the
chern charachter is introduced and we show that the index pairing between K homology and K theory can be
calculated by passing to cyclic homology and cohomology and taking their natural pairing.A proof for the index
theorem for Rn using deformation of pseudodifferential operators but cyclic cocycles instead is presented.
Lastly we present connes moscovici localized index theorem .The naturall setting for the ideas here is cyclic
cohomology and groupoids. To generalize the localized index for groupoids one needs a trace ,towards research
we give the construction of this trace using a form of transversal density and prove it is actually a trace.
The selection of topics will give the reader the basic ideas needed for future developments.Here we won’t be
discussing the topic of deformation quantization (or quantization) in general and algebraic index theorems also
we won’t be discussing equivariant KK theory and connections to the novikov conjecture because the inclusion
of these topics would make the present thesis more extensive than intended. As stated earlier the purpose here
is to present the flow of ideas and so I will not go into unnecessary detail.
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A large part of this thesis is textbook material conveniently gathered in one place.For example I dedicate a
section to Brown Douglas Fillmore theory which is a motivation for K homology and KK theory stemming from
operator theory. A few things that the reader is not going to find in other places are the following , I give a
complete and detailed proof of the equality of the analytic and fredholm indices which ,I make a few remarks
and fill in a few details in the proof of the atiyah singer index theorem presented here. , In the end I give a
proof that the trace for groupoids from [38] is indeed a trace.

7



Contents

1 10
1.1 Pseudodifferential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Pseudodifferential operators on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Composition ,adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Action on functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 Wavefront set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.6 Definition on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.7 Principal symbol, parametrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.8 Fredholm operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.9 Conormal distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.10 The pseudodifferential extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.11 Pseudodifferential operators on groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 K theory,K homology,KK theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.1 Topological K theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Topological K theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.3 K theory with compact supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.4 K theory for C∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.5 K homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Spectral triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.1 The index pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Brown Douglas Fillmore theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Fredholm modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4 KK theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.1 Hilbert modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.2 The KK-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.3 The Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.5 Groupoids ,algebroids, C∗ algebras of groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6 Lie groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6.1 Lie algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.2 Lie groupoid cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.7 Groupoid C* algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.8 Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.8.1 Strong morita equivalence of C∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.8.2 Morita equivalence of Lie groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.8.3 G ∼morita H ⇒ C∗(G) ∼morita C

∗(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.9 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.10 Tangent groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.10.1 C∗(TM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.10.2 Asymptotic pseudodifferential calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.10.3 Comparison of analytic indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.11 DNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.11.1 Deformation to normal cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.12 Proof of atiyah singer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.12.1 Groupoids used in the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.12.2 Topological index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.13 Equality with atiyah singer topological index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.13.1 The thom element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8



1.13.2 The inverse thom element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.13.3 T and Tinv are inverse to each other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.13.4 Finishing the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2 62
2.1 Hochschild homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Morita invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2 Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2 Cyclic homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1 The bicomplex B(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.2 Cyclic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3 Chern characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.1 Chern character on K0(A),K1(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.2 The JLO cocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.3 The chern charachter of a fredholm module . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.4 Deformation and cyclic cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Connes Moscovici localized index theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.1 Alexander Spanier cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.2 Localized indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4.3 Localized index for groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9



Chapter 1

1.1 Pseudodifferential operators

Pseudodifferential operators are a generalization of differential operators. They can be defined on smooth
manifolds , so a pseudodifferential operator is an operator.

P : C∞(M)→ C∞(M)

More generally they act on smooth sections of vector bundles and we also consider their action on sobolev
spaces. Pseudodifferential operators have a distributional schwarz kernel that is smooth outside the diagonal in
other words they are pseudolocal and this is one of the properties we can define them on manifolds in the first
place.(we only care what the operator does in a neighborhood of a point). Their most important feature is the
principal symbol which is a function on the cotangent bundle the principal symbol has an order and it roughly
tells how much they reduce the differentiability of a function.

The composition and adjoints of pseudodifferential operator are still pseudodifferential and the corresponding
principal symbols are given by compostion and adjoint respectively. Therefore pseudodifferential operators are
roughly a quantization of the cotangent bundle and they form a filtered ∗ algebra (under the order m of the
symbol-operator). This algebra is denoted by Ψ∞(M) =

⋃
Ψm(M).

An important property of pseudodifferential operators is ellipticity ,when the principal symbol in which case it
is shown that they have a parametrix ,a two sided inverse modulo compact operators , and many interesting
properties follow.Notably elliptic operators have finite dimensional kernel and cokernel and therefore a well
defined index.

1.1.1 Pseudodifferential operators on Rn

A pseudodifferential operator on Rn is given via the fourier transform.

Pf(x) =

∫
p(x, ξ)ei⟨x,ξ⟩f̂(ξ)dξ =

∫
p(x, ξ)ei⟨x−y,ξ⟩f(y)dydξ

p(x, ξ) is by definition the symbol of the operator(The measure we use throughout this section is normalized by
(2π)n/2). Denote by Sm the class of symbols a(x, ξ) ∈ C∞(Rn ×Rn)

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)

m−|β|

and by S−∞ the intersection of all Sm i.e. rapidly decaying symbols.
The kernel of a pseudodifferntial operator is the distribution on Rn × Rn given by

K(x, y) =

∫
p(x, ξ)ei⟨x−y,ξ⟩dξ

For (x, y) outside the diagonal this is an oscillatory integral that gives a smooth function so a pseudodifferential
operator is only interesting on the diagonal and uninteresting as a propagator.For example think about differ-
ential operators.
We will also denote the pseudodifferential operator associated to a symbol p as Opp

1.1.2 Asymptotic expansion

A symbol has an asymptotic expansion a ∼
∑∞
j=0 aj if aj ∈ Smj if mj → −∞ and a −

∑k
j=0 aj ∈ Smk+1 .

Converely any such sequence of symbols is the asymptotic expansion to a symbol in Sm0 which is unique modulo
S−∞ This can be achieved if we define a(x, ξ) =

∑
(1−χ(ϵjξ))aj(x, ξ) for a cutoff function and sufficiently fast
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decaying ϵj . If the aj in the expansion are homogeneous of degree mj :aj(x, tξ) = tmjaj(x, ξ) for |t|, |ξ| ≥ 1 then
we refer to a polyhomogeneous or classical symbol . If a pseudodifferential operator has a symbol in Sm then
we refer to it as an order m pseudodifferential operator. The principal symbol of an order m pseudodifferential
operator (with symbol p(x, ξ) ) is refered to the class of p in Sm/Sm−1.This is refered to a symbol map.
We mention a simple device that will be of use to us later for recovering the principal symbol of an operator .

σP (x, ξ) = e−i⟨x,ξ⟩P (x,D)(ei⟨y,ξ⟩)

represents the principal symbol.(the integrals involved are defined as oscillatory)

1.1.3 Composition ,adjoint

composition

The composition of pseudodifferential operators P1, P2 with symbols a1 ∈ Sm1 , a2 ∈ Sm2 is a pseudodifferential
operator with a symbol a = a1 ⋄ a2 in Sm1+m2 and has asymptotic expansion :

a(x, ξ) ∼
∑ 1

α!
∂αξ a1(x, ξ)∂

α
x a2(x, ξ)

It is explicitly given by:

a(x, ξ) =

∫∫
e−i⟨x−y,ξ−η⟩a1(x, η)a2(y, ξ)dydη

where the expression is understood as an oscillatory integral.This formula can be shown to have the asymptotic
expansion above by standard methods (stationary phase,taylor expansion around (x, ξ))
This formula is suggested by the following calculations ,(assume that the symbols a1, a2 are compactly supported
with respect to x.This is the case we are usuallly going to use.) Note that

Opa2(u)
∧(η) =

∫
â2(η − ξ, ξ)û(ξ)dλ(ξ)

(we mean fourier transform with respect to x ,â2 is rapidly decaying with respect to η − ξ.).Therefore:

Opa1 ◦Opa2(u)(x) =

∫
a1(x, η)e

i⟨x,η⟩ Opa2(u)
∧(η)dη

=

∫
a1(x, η)e

i⟨x,η⟩
(∫

â2(η − ξ, ξ)û(ξ)dλ(ξ)
)
dη

=

∫ (∫
a1(x, η)â2(η − ξ, ξ)ei⟨x,η−ξ⟩dη

)
ei⟨x,ξ⟩û(ξ)dξ

=

∫ (∫∫
e−i⟨x−y,ξ−η⟩a1(x, η)a2(y, ξ)dydη

)
ei⟨x,ξ⟩û(ξ)dξ

Notably the principal symbol of the commutator [a(x,D), b(x,D)] is given by a(x, ξ), b(x, ξ) (the poisson bracket
for the cotangent bundle of Rn).

adjoint

The adjoint operator (with respect to the usual sesquilinear inner product) of an operator with symbol in Sm

is also a pseudodifferential operator with symbol in Sm with asymptotic expansion:

a†(x, ξ) ∼
∑ 1

α!
∂αx ∂

α
ξ ā(x, ξ)

and is explicitly given by

a†(x, ξ) =

∫∫
e−i⟨x−y,ξ−η⟩ā(y, η)dydη

Again one obtains the asymptotic expansion from the above oscillatory integral by standard methods.
The above formula is justified by the following:
We should have that

⟨Opa(u), v⟩ = ⟨u,Opa†(v)⟩ = ⟨Opa†(v), u⟩

11



But

⟨Opa(u), v⟩ =
∫

Opa(u)(x)v(x)dx =

∫ ∫
a(x, ξ)ei⟨x,ξ⟩û(ξ)v(x)dxdξ

Fourier transform with respect to x gives that:

⟨Opa(u), v⟩ =
∫
â(η − ξ, ξ)û(ξ)v̂(η)dξdη

Similarly we get (with ξ, η interchanged) that:

⟨Opa†(v), u⟩ =
∫
â†(ξ − η, η)û(ξ)v̂(η)dξdη

It follows that
â†(ξ − η, η) = â(η − ξ, ξ) = â(ξ − η, ξ)

After a substitution :(η, ξ) 7→ (ξ, ξ + η) we get:

â†(η, ξ) = â(η, ξ + η)

From which we obtain:

a†(x, ξ) =

∫
ei⟨x,η⟩â†(η, ξ)dη =

∫
ei⟨x,η⟩â(η, ξ + η)dη =

∫∫
e−i⟨x−y,ξ−η⟩ā(y, η)dydη

We usually consider pseudodifferential operators acting between hermitian vector bundles ,In that case in the
adjoint formula replace a by the adjoint operator a∗ . The composition formula gives another way to prove
that the kernel is smooth outside the diagonal. for ϕ, ψ ∈ C∞

c (M) with suppϕ ∩ suppψ = 0 ϕPψ has zero
asymptotic expansion.

1.1.4 Action on functions

We mention the following facts about the action of pseudodifferential operators on functions spaces.(The fol-
lowing applies to manifolds) The proofs can be found in any book about pseudodifferential operators.A pseu-
dodifferential operator P in Sm.

• maps schwartz functions to schwarz functions.

• extends to a bounded linear operator between sobolev spaces P : Hs → Hs−m (this is what we meant by
reducing differentiability)

We also get that a pseudodifferential operator with a symbol in S−∞ always outputs smooth functions.This is
an obvious consequence of the sobolev lemma:
(Sobolev lemma):The intersection of all sobolev spaces Hs consists the smooth functions:⋂

Hs = C∞

We shall refer to such operators as regularising operators denoted R.Regularizing operators are also compact
(when viewed as maps between any two sobolev spaces )

1.1.5 Wavefront set

Being pseudolocal a pseudodifferential operator preserves the singularities of a distribution.
On Rn The singular support of a distribution u (singsupp(u))is the complement of the set of points close to
which u is a C∞ function. The wavefront set WF (u) also indicates the directions at which a distribution is
singular. The precise definition is: for u ∈ D′(Rn).

WF (u) = {(x, ξ)|ξ ∈ Σx(u)

Where Σx(u) is the set of singular directions at x ,the complement of the set of directions ξ for which there

exists a bump function ϕ(x) = 1 such that ϕ̂u(ξ′) < cN (1 + |ξ′|)−N for ξ′ in a cone around ξ. It is easy to see
that WF (fu) ⊂WF (u) for any smooth f .
singsupp(u) is easily seen to be the set of x for which Σx is nonemtpy (at these points is easy to prove by a
compactness argument that there is ϕ such that ϕu has rapidly decaying fourier transform ,thus is smooth).
Using this and the fact that the kernel of a pseudodifferential operator has singular support on the diagonal,
we immediately get that singsupp(Pu) ⊂ singsupp(u) (a more precise result is the propagation of singularities
theorem). We are going to generalize these notions on manifolds in the next section ,the symbol is going to be
a function on the cotangent bundle and the wavefront set a subset thereof,
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1.1.6 Definition on manifolds

Since pseudodifferential operators are truly local objects they can be defined on manifolds,we give the de-
tails.First we verify coordinate invariance. If k;X1 → X2 is a diffeomorphism between bounded domains in
euclidean space and a(x,D) : C∞(X1)→ C∞(X1) is a pseudodifferential operator then the pushforward oper-
ator k∗a(x,D) : C∞(X2)→ C∞(X2) given by

k∗a(−, D)g(x) = a(−, D)g ◦ k(k−1(x))

C∞(X1) C∞(X1)

C∞(X2) C∞(X2)

a(x,D)

(k−1)∗k∗

k∗a(x,D)

is also a pseudodifferential operator in Sm. Assuming that it indeed is a pseudodifferential operator we recover
the symbol using the device mention before which suggests that the symbol k∗a should be given by.

k∗a(x, ξ) = e−i⟨x,ξ⟩[a(−, D)ei⟨k(x),ξ⟩]k−1(x)

We are going to elaborate on this ,the pushforward symbol given above indeed gives the pushforward oper-
ator:(assume that a(−, D) is actually given by ϕ1a(−, D)ϕ2 where we mean multiplication by ϕ compactly
supported functions in X1 which are 1 around a point of interest ,this is okay because we only need to see local
behaviour and this is the sort of operators we need consider with when we define pseudodifferential operators
on manifolds.
The pushforward operator acting on a schwarz function g ∈ C∞(X2) gives:

ϕ1(k
−1(x))

∫
a(k−1(x), ξ)ei⟨k

−1(x),ξ⟩ϕ̂2g ◦ k(ξ)dξ

Whereas the pseudodifferential operator associated to the pushforward symbol is given by:∫
ei⟨x,ξ⟩k∗a(x, ξ)ĝ(ξ)dξ =

∫
ei⟨x,ξ⟩

(
e−i⟨x,ξ⟩ϕ1(k

−1(x))

∫
a(k−1(x), η)ei⟨k

−1(x),η⟩
(∫

e−i⟨z,η⟩ϕ2(z)e
i⟨k(z),ξ⟩dz

)
dη

)
ĝ(ξ)dξ =

ϕ1(k
−1(x))

∫
a(k−1(x), η)ei⟨k

−1(x),η⟩
(∫

e−i⟨z,η⟩
(
ϕ2(z)

∫
ei⟨k(z),ξ⟩ĝ(ξ)dξ

)
dz

)
dη =

ϕ1(k
−1(x))

∫
a(k−1(x), η)ei⟨k

−1(x),η⟩
(∫

e−i⟨z,η⟩ (ϕ2(z)g(k(z))) dz

)
dη

This is exactly the same as before. It remains to prove that the pushforward symbol belongs to Sm ,one way to
prove this is is found in hormander using the stationary phase method.It is equivalent to prove that k∗a(k(x), ξ)
belongs to Sm Note that

k∗a(k(x), ξ) = ϕ1(x)e
−i⟨k(x),ξ⟩

∫
a(x, η)ei⟨x,η⟩

(∫
e−i⟨z,η⟩ϕ2(z)e

i⟨k(z),ξ⟩dz

)
dη =

Inspect the term Φ(ξ, η) =
∫
e−i⟨z,η⟩+i⟨k(z),ξ⟩ϕ2(z)dz :

the differential of the phase is DkT (z)ξ − η ,if ∥Dk(z)∥, ∥(Dk(z))−1)∥ ≤ C in the support of ϕ then if |η|
|ξ| is

either larger than say 2C or smaller than 1
2C then Φ(ξ, η) is dominated by arbitrarily large negative powers of

(1 + |ξ|+ |η|) ,we break the integral into two parts using a bump function β(x) that is 1 when 1
2C ≤ |x| ≤ 2C

and equal to zero if |x| is outside the interval [ 1
4C , 4C]

we have that

I =

∫
a(x, η)ei⟨x,η⟩

(∫
e−i⟨z,η⟩ϕ2(z)e

i⟨k(z),ξ⟩dz

)
dη = I1 + I2 =∫

a(x, ξ)ei⟨x,ξ⟩Φ(ξ, η)(1− β( η
|ξ|

))dη + (I1)∫
a(x, ξ)ei⟨x,ξ⟩Φ(ξ, η)β(

η

|ξ|
)dη = ωn

∫
eiω(⟨x−z,η⟩+⟨k(z),ξ/ω⟩)a(x, ωη)β(η)ϕ2(z)dzdη (I2)
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Where ω = |ξ|. I1 is rapidly decaying with respect to |ξ| and I2 can be estimated by the stationary phase
method (we are applying it to the integral over R2n) ,the critical point is (z, η) = (x,DkT (x)ξ/ω) and the
approximation yields (notice that ωn is going to disappear and β(DkT (x)ξ/ω) = 1, ϕ2(x) = 1)

ei⟨k(x),ξ⟩a(x,DkT (x)ξ) + o(1)

as ω → ∞. It turns out that using an asymptotic expansion of the stationary phase approximation given in
[hormander] ,for quadratic phase functions it reads∫

Rn

eiλ⟨Q(x−x0),x−x0⟩/2a(x)dx. =

(
1

λ

)n/2
ei

π
4 sgnQ

|detQ|1/2
∑

0≤j≤N

λ−j

j!

(〈
Q−1D,D

〉
2i

)j
(a(x))| x=x0

+O

λ−n
2 −N−1

∑
|α|≤n+2N+3

sup
x∈Rn

|∂αa (x− x0;λ)|
⟨x⟩n+4N+5−|α|

 .

(using morse lemma we can get an expansion of this sort with general phase functions with nondegenerate
critical points) The pushforward has an asymptotic expansion:

k∗a(k(x), η) ∼
∑ 1

α!
∂αξ a(x,Dk

T (x)η)[∂αy e
i⟨k(y)−k(x)−Dk(x)(y−x),η⟩|y=x]

Observe that this is a valid asymptotic expansion because the term in square brackets is a polynomial in
η of degree ≤ |α|/2 and the terms of the series are in Sm−|a|/2. The principal symbol is represented by
a(k−1(x), DkT (k−1(x))η) which suggests that the symbol should be viewed as a function on the cotagent bun-
dle . The previous discussion leads to defining pseudodifferential operators on manifolds as operators whose
restriction to coordinate charts are pseudodifferential operators and they also have a well defined principal sym-
bol as a function on the cotagent bundle that transforms canonically. Concretely a pseudodifferential operator
of order M on a smooth manifold M is an operator P : C∞(M) → C∞(M) that in any coordinate chart and
compactly supported functions ϕ1, ϕ2 inside that chart ϕ1Pϕ2 is a pseudodifferential operator of order m on
flat space.The above discussion shows that this is independent of the chart used. A quantization procedure
for defining pseudodifferential operators with a given principal symbol is to take a quadratic partition of unity
ϕj subordinate to a coordinate cover of M and then take P =

∑
ϕjPjϕj ,where ϕjPjϕj are locally defined

pseudodifferential operators according the symbol. This is easily seen to be a pseudodifferential operator on M .
Observe that by this procedure we can get pseudodifferential operators whose kernels are supported in arbitrary
small neighborhoods of the diagonal.
They can also be defined as operators between vector bundles P : C∞(M ;E)→ C∞(M ;F ) where now in each
trivializing chart are given by a matrix of pseudodiffs.
We mention that a similar reasoning shows that the wavefront set is also invariant under diffeomorphisms and
therefore is an invariantly defined subset of the cosphere bundle ST ∗X it is invariant under the action of pseu-
dodifferential operators .
We sometimes prefer to define pseudodifferential operators acting on the bundle of half densities so that we
don’t have to introduce a measure on M to define adjoints.
More generally we consider pseudodifferential operators acting between vector bundles tensored with half densi-
ties P : C∞(E⊗Ω1/2)→ C∞(F ⊗Ω1/2).Furthermore ,if we use half densities we get a well defined subprincipal
symbol ,see [hormander].

1.1.7 Principal symbol, parametrix

We saw in the last section that the symbol is well defined modulo Sm−1 on the cotangent bundle.Therefore for any
pseudodifferential operator on a compact manifold we have a well defined principal symbol in Sm(M)/Sm−1(M),
In case vector bundles E,F are involved the symbol is a section of Hom(π∗E, π∗F ) where π : T ∗M →M is the
projection, the space of order m such symbols is denoted by Sm(M ;E,F ))

ellipticity

Ellipticity for pseudodifferential operators means that the symbol σ(x, ξ) is ”uniformly” injective when ξ →∞.
A pseudodifferential operator P = Opσ of degree m is called elliptic if it can be defined by a symbol σ ∈
Sm(M,E,F ) such that

|σ(x, ξ) · u| ⩾ c|ξ|m|u|, ∀(x, ξ) ∈ T ⋆M , ∀u ∈ Ex
for |ξ| large enough, the estimation being uniform for x ∈ M .(Note that ellipticity of an operator implies
ellipticity of the adjoint) If E and F have the same rank, the ellipticity condition implies that σ(x, ξ) is
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invertible for ξ large. By taking a suitable C∞ truncating function θ(ξ) ⩾ 0 equal to 0 for |ξ| ⩽ R large and to
1 for |ξ| ⩾ 2R, one sees that the function σ′(x, ξ) = θ(ξ)σ(x, ξ)−1 defines a symbol in the space Sm(M ;F,E).
Also, since

1− σ′(x, ξ)σ(x, ξ) = 1− θ(ξ) ∈ D (Rm) ⊂ S (Rm) ,

this difference is a regularizing operator.From the composition formula we have Id−Opσ′ ◦Opσ = Opρ, where

ρ ∈ S−1(M ;E,E), and thus ρ⋄j ∈ S−j(M ;E,E). Choose a symbol τ equivalent to the asymptotic expansion
Id +ρ+ ρ⋄2+ · · ·+ ρ⋄j + · · · . Then Opτ is an inverse of Opσ′ ◦Opσ = Id−Opρ modulo R. It is then clear that
one obtains an inverse Opτ⋄σ′ of Opσ modulo R.similarly we can get a left inverse and then it is easy to show
that the two inverses coincide modulo R ,obtaining a parametrix : Immediate consequence of the existence of
parametrix are the following :

• (hypoellipticity)If Pϕ is smooth then ϕ is smooth.

• (Garding inequality) If Pu ∈ Hs then u ∈ Hs+m and ∥u∥Hs+m ≤ Cs (∥Pu∥Hs + ∥u∥L2
)

• (Fredholmness) Elliptic operators have finite dimensional kernel and cokernel

1.1.8 Fredholm operators

Let’s review a few facts about fredholm operators .An operator T : H1 → H2 is fredholm if it has finite ker-
nel and cokernel(their class is denoted by F(H1,H2).The index function ind : F(H1,H2) → Z is defined as
ind(T ) = dim(kerT ) − dim(kerT ∗) In the previous section we showed that an elliptic operator is invertible
modulo regulatizing operators that are compact (if we fix sobolev spaces). An invertible operator T modulo
compacts is fredholm (T ∗ is also invertible modulo compacts.)
This is the content of Atkinson theorem which also implies that the converse holds:

Atkinson theorem

If T ∈ F (H1, H2), then there exists an S ∈ B (H2, H1) such that ST−Id ∈ K (H1, H1) and TS−Id ∈ K (H2, H2).
Conversely, if T ∈ B (H1, H2) such that ST - Id and TS S′ - Id are compact operators for some S, S′ ∈ B (H2, H1),
then T ∈ F (H1, H2).

Proof.suppose that K = Id−ST ∈ K (H1, H1). Let x ∈ KerT , and B a bounded neighbourhood of x in
KerT . Then K(B) = B is relatively compact. Therefore KerT is a locally compact topological vector space,
and hence KerT is finite dimensional. Next, consider Id −TS′ ∈ K (H2, H2). Then Id − S′∗T ∗ is a compact
operator, and proceeding as before we get KerT ∗ = T (H1)

⊥ is finite dimensional.
Conversely suppose T is Fredholm. Then, since dimKerT and CodimT (H1) are finite, we can find closed
subspaces V and W such that H1 = KerT ⊕ V , and H2 = T (H1) ⊕ W . Then T maps V bijectively onto
T (H1), and so T | V is a topological isomorphism, by the open mapping theorem. We extend (T | V )−1 :
T (H1) −→ H1 to an operator S : H2 −→ H1 by taking S | W = 0. Then Id −ST is the projection of H1

onto Ker T along V , and Id− TS is the projection of H2 onto W along T (H1). Since Ker T and W are finite
dimensional, Id −ST and Id - TS are finite rank operators, and hence compact operators.
For operators on a single hilbert space the statement is.
A bounded operator T ∈ B(H) is Fredholm if and only if its image in the Calkin algebra is invertible.
Immediate consequences are:

• F(H) is an open subset of B(H)

• If T ∈ F(H) and K is compact then T + K ∈ F(H)

Moreover the index is locally constant and constant under compact perturbation:

Additivity of the index

We can deduce from Atkinson theorem that if T ∈ F (H1, H2) and S ∈ F (H2, H3) then ST ∈ F (H1, H3).
Moreover it holds that: ind(ST ) = ind(S) + ind(T ).
A quick proof follows from the kernel-cokernel exact sequence for the following diagram with exact rows:
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0 H1 H1 ⊕H2 H2 0

0 H2 H3 ⊕H2 H3 0

Id⊕T

T

(T,− Id)

ST⊕Id S

S⊕Id (Id,−S)

Homotopy invariance of the index

It is in general true that the index gives a bijective map from the connected components of the fredholm oper-
ators to the integers.

ind : π0(F(H))
∼=−→ Z

First let us show that it is locally constant:
The index function ind : F (H1, H2) −→ Z is locally constant, and therefore it is continuous, and homotopy
invariant.

Proof. Let T ∈ F (H1, H2). Since Ker T and Coker T are finite dimensional, Ker T and T (H1) admit
orthogonal complements V and W so that H1 = KerT ⊕ V and H2 = T (H1) ⊕W . Let α : V −→ H1 be
the inclusion, and β : H2 −→ T (H1) be the orthogonal projection onto T (H1) along W . Then α and β are
Fredholm, and ind α = −dim Ker T and ind β = dim Coker T . Then βTα is a Fredholm operator, and

ind βTα = ind α+ ind T + ind β = 0.

Also βTα is an isomorphism in B (V, T (H1) . Therefore βT
′α is an isomorphism if T ′ is sufficiently close to

T , and then
ind βT ′α = ind α+ ind T ′ + ind β = 0,

or ind T ′ = indT . This means that the index function is continuous, and homotopy invariant.

Since multiplication by a fredholm operator of fixed index permutes connected components of F(H) (it does
so modulo K but addition of compacts lands in the same connected component) and there exist shift operators
with any given index to prove the first statement it suffices to prove that the set of fredholm operators of zero
index F(H)0 is connected. For T ∈ F0 choose an isomorphism

ϕ : KerT → (ImT )⊥

(vector spaces of the same finite dimension!) and set

Φ :=

{
ϕ on KerT

0 on (KerT )⊥

By construction, we have T +Φ ∈ GL(H) which is connected and T + tΦ ∈ F for t ∈ [0, 1].

Index and trace class operators

If for the inverse modulo compacts S of T ∈ F (H1, H2) we actually have that I−ST and I−TS are trace class
and selfadjoint then: Index(T ) = Tr(I − ST ) − Tr(I − TS). Actually we shall prove something more general
that: If I − ST ,TS − I are in some schatten class (which implies they are compact) so (ST − I)n, (TS − I)n
are trace class for some large n then.

Index(T ) = Tr(I − ST )n − Tr(I − TS)n

Proof: 1 is an isolated point in

K = {1} ∪ Spectrum(I − TS) ∪ Spectrum(I − ST).

(recall the essential spectrum)
Let γ be the boundary of a small closed disk D with center 1 such that D ∩K = {1}. Set

e =
I

2πi

∫
γ

dλ

λI − (I − ST )
, f =

I

2πi

∫
γ

dλ

λI − (I − TS)
.

From holomorphic functional calculus we have e = e2, f = f2.
E1 = Range of e, F1 = Range of f are finite dimensional, and admit respectively E2 = Ker e,F2 = Ker f as
supplements in H. For any λ ∈ C\K one has,
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(λI − (I − ST ))−1S = S(λI − (I − TS))−1 ⇒ eS = Sf

(λI − (I − TS))−1T = T (λI − (I − ST ))−1 ⇒ fT = Te

Thus,
T (E1) ⊂ F1, T (E2) ⊂ F2, S (F1) ⊂ E1, S (F2) ⊂ E2.

Let Tj , Sj be the restrictions of T, S : T : Ej → Fj , j = 1, 2 and S : Fj → Ej , j = 1, 2. By construction the
restrictions of ST to E2 and of TS to F2 are invertible operators, and hence:

1. IndexT = dimE1 − dimF1

2. Trace (IE2
− S2T2)

n
= Trace (IF2

− T2S2)
n

(proof: T2 is a linear isomorphism ,T2(IE2 − S2T2)
nT−1

2 = (IF2 − T2S2)
n)

The spectrum of IE1
− S1T1 and of IF1

− T1S1 contains only 1, thus:

Trace (IE1 − S1T1)
n − Trace (IF1 − T1S1)

n
= dimE1 − dimF1

The result follows.

1.1.9 Conormal distributions

The distribution kernel of a pseudodifferential operator is given by K(x, y) =
∫
ei⟨x−y,ξ⟩a(x, ξ)dξ This suggests

we look at distributions of the form u(x) =
∫
ei⟨x

′,ξ⟩a(x′′, ξ)dξ where x = (x′, x′′), x′ ∈ Rn−k, x′′ ∈ Rk Interest-

ingly a distribution of the form u(x) =
∫
ei⟨x

′,ξ⟩a(x, ξ)dξ with a ∈ Sm(Rn ×Rk) can be converted to the above
form . u(x) is a smooth function outside x′ = 0 ,distributions of this sort are said to be conormal distributions
for the submanifold x′ = 0 The fourier transform û ∈ L2

loc and for a function h on Rn−k that vanishes in a
neighborhood of zero we have that R−k−2m

∫
|û|2h(ξ/R) ≤ C which means that u belongs to the besov space

H( −m− k/2).
This property is preserved under certain differentiations of u. Dj′′u(x) =

∫
ei⟨x

′,ξ⟩Dj′′a(x
′′, ξ)dξ x′iD

′
j =∫

ei⟨x
′,ξ⟩(x′iDj′ − Dξiξj)a(x

′′, ξ)dξ So X1X2...XNu ∈ H( −m − k/2) for any vector fields that are tangent to
the plane x′ = 0. The converse is also true any such u can be expressed in the above form. The definition
of conormal distributions on a submanifolds follows the last sentence. They possess a well defined principal
symbol on the normal bundle which is the half density a(x′′, ξ)|dx′′|1/2|dξ|1/2 . Conormal distributions can be
defined by an obvious modification the above expression on vector bundles (x’ should be on the fiber , x′′ on
the base and ξ on the dual fiber) and with the aid of tubular neighborhoods written down in this way on any
submanifold.

1.1.10 The pseudodifferential extension

Read first the part about K theory. Pseudodifferential operators of order 0 can be extended to bounded operators
on L2(M). On classical pseudodifferential operators of order ≤ 0 the principal symbol map σ0 defines thanks
to homogeneity a function on the cosphere bundle S∗M . Negative order operators are compact .
Below is given a device for obtaining the principal symbol map for ≤ 0 operators.
Suppose on an open set around 0 in Rn we wan’t to determine σ0(P )(0, η) for |η| = 1:
Let ϕ(x) be a real bump function around zero of L2 norm 1. Let fN denote the function

fN (y) = Nn/2ϕ(Ny)ei⟨y,N
2η⟩

that has L2 norm 1 and it’s fourier transform is given by:

f̂N = N−n/2ϕ̂(
ξ

N
−Nη)

Standard calculations show that fN is weakly convergent to 0 in L2.
Using this the principal symbol is recovered as :
Proposition :

lim
N→∞

⟨fN , PfN ⟩ = σ0(P )(0, η)

Proof :P is locally given by Pf =
∫
p(x, ξ)ei⟨x,ξ⟩f̂(ξ). σ0(P )(η) is just limt→∞ p(0, tη) .

⟨fN , PfN ⟩ =
∫
ϕ(Nx)e−i⟨x,N

2η⟩p(x, ξ)ei⟨x,ξ⟩ϕ̂(
ξ

N
−Nη)dξdx =
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∫
ϕ(x)p(

x

N
,Nξ +N2η)ei⟨x,ξ⟩ϕ̂(ξ)dξdx =∫

ϕ(x)(p(
x

N
,N(ξ +Nη))− p( x

N
,N2η))ei⟨x,ξ⟩ϕ̂(ξ)dξdx+

∫
ϕ(x)2p(

x

N
,N2η)dx

The proposition should by now be clear.

By the construction of the principal symbol map it follows that σ0 extends to Ψ∗(M) the norm closure of
Ψ0(M) in B(L2(M)),as a (norm bounded by 1) ∗ homomorphism σ0 : Ψ∗(M) → C(S∗M),note that Ψ∗(M)
contains all compact operators. Since fN is weakly convergent to 0 it is clear that σ0 takes the compact oper-
ators to 0. Conversely if P ∈ Ψ∗(M) and σ0(P ) = 0 then P should be compact. This follows at once because
(1) one can construct as before a quantization map C(S∗M) → Ψ0(M) that is a section of σ0 (it’s not a ∗−
homomorphism! ) this shows that σ0 is surjective and (2) one then get’s that P is the norm limit of a sequence
of ≤ 0 pseudodifferential operators whose principal symbol vanishes and are negative order and compact. Alter-
natively one can use an argument of the form that P maps a dense span,weakly convergent sequence in L2(M)
to a strongly convergent sequence.
Therefore we get the pseudodifferential extension short exact sequence:

0→ K(L2(M))→ Ψ∗(M)→ C(S∗M)→ 0

For future reference note that K(L2(M)) is identified with C∗(M ×M) (the pair groupoid).
One can use this short exact sequence to get the index map:(the reader should read first the section about C∗

algebraic K theory.)
We have a six term exact sequence:

Z ∼= K0(K(L2(M))) K0(Ψ
∗(M)) K0(C(S

∗M))

K1(C(S
∗M)) K1(Ψ

∗(M)) K1(K(L2(M))) = 0

ind

The indicated index map is the same as the atiyah singer index map.
Proof:[10]
Since K1 (K) = K1(C) = 0, one of the two connecting maps is trivial. The general algebraic definition of
the connecting map in K-theory leads to the following recipe for constructing the analytic index of an elliptic

symbol a ∈ Psy0(M ;E,F )−1. The symbol ã =

(
0 −a−1

a 0

)
defines, after embedding E in a trivial bundle,

an element of GL0
N (C∞ (S∗M) ) (where the superscript 0 indicates the connected component of identity) for

N sufficiently large. It can, therefore, be lifted to GL0
N

(
Ψ0(M)

)
. For example, if one chooses A ∈ Ψ0(M ;E,F )

with σpr(A) = a and B ∈ Ψ0(M ;F,E) with σpr(B) = a−1, then S0 = I − BA ∈ Ψ−1(M ;E) and
S1 = I −AB ∈ Ψ−1(M ;F ), hence

L =

(
S0 −B − S0B
A S1

)
=

(
I −B
0 I

)(
I 0
A I

)(
I −B
0 I

)
∈ Ψ0(M ;E ⊕ F )

defines such a lift. By definition,
∂([a]) = [P ]− [e],

where P and e are idempotents defined as follows:

P = L

(
IE 0
0 0

)
L−1, e =

(
0 0
0 IF

)
.

The definition of ∂([a]) can be shown to be independent of the lift L. In particular, one may improve, at no
extra cost, the choice of the parametrix B such that S0 and S1 are smoothing operators. Then

R = P − e =
(

S2
0 S0 (I + S0)B

S1A −S2
1

)
∈ Ψ−∞(M ;E ⊕ F )

and one has
TrR = TrS2

0 − TrS2
1 = IndexA,
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1.1.11 Pseudodifferential operators on groupoids

Read first the section on groupoids.The following is taken from [35] Often it is interesting to consider not just
pseudodifferential operators acting on a single manifold but families of pseudodifferential operators parametrized
by another manifold or , on the fibers of a fibre bundle or more generally along the leaves of a foliation. These
considerations are relevant to the family atiyah singer index theorem, and families of operators are used in the
atiyah-bott proof of bott periodicity.
One can use pseudodifferential operators on covering spaces (that are invariant under deck transformations) to
define pseudodifferential operators on the base space.
We present here a construction of which these are special cases.We need the following

Pseudodifferential operators along the leaves of a regular foliation

These are operators P : C∞(M)→ C∞(M) such that for local trivializing charts of the foliation U ⊂M → X×T
(X are coordinates on the leaves and T are transversal). The operator ϕPψ takes the form :∫

X

a(x, t, ξ)ei⟨x−y,ξ⟩g(y, t)dydξ

and the symbol a(x, t, ξ) ∈ C∞(X×T × (Rk)∗).The order is defined along the leaves.We shall also refer to these
as differentiable families.
Suppose the groupoids we use are equiped with right haar systems.
Pseudodifferential operators on grouoids are differentiable families of classical pseudodifferential operators on
C∞(Gx) that are equivariant under the natural maps Rγ : C∞(Gs(γ)) → C∞(Gr(γ)).Furthemore one can take
a vector bundle on the base space and consider families of pseudodifferential operators on the pullbacks by the
range map that are invariant under right multiplication. This works as follows:
Right translation is:

Ug : C∞
(
Gs(g), r∗(E)

)
→ C∞

(
Gr(g), r∗(E)

)
(Ugf) (g

′) = f (g′g) ∈ (r∗E)g′ = Er(g′) = Er(g′g)

Pseudodifferential operators of order m on a groupoid G (the set of which is denoted Ψm(G)) are differentiable
families of pseudodifferential operators on the fibers of the source map that are invariant under the action of
the groupoid.
This means we have a family Px : C∞(Gx)→ C∞(Gx) such that Pr(g)Ug = UgPs(g)
If we are not given a haar system it is more convenient to define pseudodifferential operators on density bun-
dles. We use the bundles Ω1/2(ker ds) note that there is a naturall pullback map Ug : C∞(Gs(g),Ω

1/2) →
C∞(Gr(g),Ω

1/2) we mean pseudodifferential operators that commute with this action of G. We also consider

operators on densities valued in a vector bundle . Px : C∞(Gx,Ω
1/2 ⊗ r∗(E))→ C∞(Gx,Ω

1/2 ⊗ r∗(E))
It is easy to see that composition and adjoints of pseudodifferential operators on groupoids are still invariant
therefore they form a filtered (by order m) ∗-algebra denoted Ψ∞(G) =

⋃
Ψm(G) ,(if we use coefficient bundles

we denote it by Ψ∞(G,E).)
The symbols of such operators should intuitively be functions on the algebroid dual given that the ”symbols”
of Pr(g) and Ps(g) as functions on T ∗Gr(g) and T ∗Gs(g) are related by R∗

g : T ∗Gs(g) → T ∗Gr(g) (pushforwards
of forms) so they are determined by their values on A∗ =

⋃
T ∗
x (Gx) by ps(g)(ξg) = pA∗(R∗

g(ξg))
On the one hand we have a quantization map Φ : C∞(A∗)→ Ψ(G)
To describe this as well as the inverse (symbol map) we need an exponential map θ : A→ G that maps a neigh-
borhood V0 of the zero section of A to a section of the zero section of M in G. We get this as a generalization of
the classical exponential map on manifolds with connection by introducing an invariant family of connections
on Gx .Since TGx ∼= r∗A we can use pullback connections (by r) of a connection on A.Note that θ sends Ax to
Gx
Given θ (also choose a cutoff function β that is one on the unit space M) we define the quantization map by

p ∈ Sm(A∗)→ Ps(γ1)f(γ1) =

∫
ξ∈A∗

r(γ1)

∫
γ∈Gs(γ1)

p(r(γ1), ξ)e
−i⟨θ−1(γγ−1

1 ),ξ⟩β(γγ−1
1 )f(γ)dγdξ

This is easily seen to be G− invariant. Conversely define the symbol map σ∇,β : Ψm(G) → Smcl (A
∗) using a

generalization of the symbol map used on Rn : Let for ξ ∈ A∗
x : eξ ∈ C∞

c (Gx) be the function supported around

the unit x eξ(γ) = β(γ)ei⟨θ
−1(γ),ξ⟩. The symbol map is defined as

σ∇,β(P )(ξ) = (Peξ)(x)

The principal symbol thus defined turns out to be independent of the connection and the cutoff function
used.Moreover the quantization map descends to a map Φ : Smcl (A

∗)/Sm−1
cl (A∗) → Ψm(G)/Ψm−1(G) that is
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independent of the connection and cutoff function used and is inverse to the symbol map. These can be gener-
alized in the presence of coefficient bundles.The symbol in this case is given as a section of Smcl (A

∗, π∗(End(E).
For details see [NWX].
For any x ∈ G(0), T ∗Gx is a symplectic manifold, so T ∗

s G= ∪x∈G(0) T ∗Gx is a regular Poisson manifold with the
leafwise symplectic structures. Now the Poisson structure on A∗ can be considered as being induced from that
on T ∗

s G. More precisely, let R∗ : T ∗
s G → A∗ be the natural projection induced by the right translation, used to

define a map R∗ : C∞ (A∗(G))→ C∞ (T ∗
d G). We then have that the map R is a Poisson map.

The poisson structure on A∗ is given by

{f, g} = 0, {f, X̂} = −ρ(X) · f, {X̂, Ŷ } = −{[̂X,Y ]}, with f, g ∈ C∞(M), and X,Y ∈ Γ∞(M,A), viewed
as functions X̂, Ŷ on A∗.
It holds that for the homogeneous parts of the principal symbols of order m and m′ operators P, P ′ that

σm+m′−1([P, P
′]) = {σm(P ), σm′(P ′)}

The pseudodifferential extension for groupoids

Pseudodifferential operators on groupoids can also be viewed as multipliers of the dense ∗ subalgebra Cc(G,Ω1/2)
of C∗(G) consisting of smooth sections of the bundle Ω1/2(ker(ds)⊕ ker(dt)) Pseudodifferential operators of or-
der ≤ 0 are multipliers of C∗(G) moreover negative order operators are actually elements of C∗(G).

The first statement means that if P is a pseudodifferential operator with compact support in G and of order
≤ 0, then there exists a constant c such that, for all f ∈ C∞

c (G), we have ∥P ∗ f∥ ≤ c∥f∥ and ∥f ∗ P∥ ≤ c∥f∥
(this is true for both the maximal and the reduced C∗-norm of G ).

Proof. To establish this statement, first assume that P is of order < −p where p = dimG − dimM is
the dimension of the algebroid. Note that if a is a symbol of order < −p, then Pa is a continuous function.
Therefore P is a continuous function with compact support on G, and thus an element of C∗(G). If P is
of order < −p/2, then ∥P ∗ f∥2 = ∥f∗ ∗ P ∗ ∗ P ∗ f∥ (and ∥f ∗ P∥2 = ∥f ∗ P ∗ P ∗ ∗ f∗∥ ) and as P ∗ ∗ P is
of order < −p, it is in C∗(G) and thus ∥P ∗ f∥2 ≤ ∥P ∗ ∗ P∥ ∥f∥2. It follows that P is a multiplier, and as

P ∗ ∗ P ∈ C∗(G) we find P ∈ C∗(G). If P is of negative order, (P ∗P )
2k ∈ C∗(G) for some k ∈ N, and by

induction in k, P ∈ C∗(G). Let P be a pseudodifferential operator of order 0 . Note first that every smooth
function q ∈ C∞

c (M) is a pseudodifferential operator of order 0 with principal symbol σq : (x, ξ) 7→ q(x) - and
of course a bounded multiplier: we have (q ∗ f)(γ) = q(r(γ))f(γ) and (f ∗ q)(γ) = f(γ)q(s(γ)) Let q ∈ Cc(M)
which is equal to 1 on the support of σP − i.e. the projection onM of the closure of {(x, ξ);σq(x, ξ) ̸= 0} (which
is assumed to be compact in the space of half lines of the bundle A ∗ ). Let c ∈ R+with c > σP (x, ξ) for all

(x, ξ). Put b(x, ξ) = q(x)
√
c2 + 1− |σq(x, ξ)|2, and let Q be a pseudodifferential operator with principal symbol

b. Then P ∗P + Q∗Q which has symbol
(
1 + c2

)
|q|2 is of the form

(
1 + c2

)
|q|2 + R where R is of negative

order and therefore P ∗P +Q∗Q is bounded. For all f ∈ Cc(G), ∥Pf∥2 = ∥f∗P ∗Pf∥ ≤ ∥f∗P ∗Pf + f∗Q∗Qf∥ ≤
∥P ∗P +Q∗Q∥ ∥f∥2, and thus f 7→ Pf is bounded. In the same way f 7→ fP is bounded.
The symbol map sends pseudodifferntial operators of order ≤ 0 to functions on the cosphere bundle SA∗ (by
the rule) σ0(P )(ξ) = limt→∞ σP (tξ) and it extends to a map

σ0 : Ψ∗(G)→ C(SA∗)

on the closure of ≤ 0 order operators in the multiplier algebra. Whose kernel is C∗(G) so we have a short exact
sequence ,the generalization of the pseudodifferential extension on manifolds.

0→ C∗(G)→ Ψ∗(G)
σ−→ C0 (SA

∗)→ 0

Exactness is proved in exactly the same way as in the manifold case and it also gives an analytical index map
K1(C0(SA

∗))→ K0(C
∗(G))

1.2 K theory,K homology,KK theory

1.2.1 Topological K theory

Topological K theory is a generalized cohomology theory.It assigns to every compact space the grothendieck
ring con- structed out of isomorphism classes of vector bundles over X under direct sum and tensor product.
Every element of K(X) can be represented as a formal difference of 2 vector bundles: [E] − [F ].It is a very
basic fact that to any vector bundle one can add another to make it trivial. From this it is easy to see that
any element in K(X) can be represented by [E] − [CnX ] and that [E] = [F ] if the vector bundles are stably
isomorphic E ⊕ CNX ∼= F ⊕ CNX where CNX represents a trivial vector bundle.
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Classifying space

Recall that the infinite grassmanian Grn of n-dimensional subspaces of C∞ classifies n dimensional vector bun-
dles.
Using the equivalence of categories of principal U(n) bundles and complex vector bundles (that have a her-
mitian structre) we can also use BU(n) as classifying space moreover a map X → BU(n) corresponds to the
pullback bundle over X of the universal n-dimensional vector bundle over BU(n). The stable unitary group
U = limU(n) is the limit of the sequence of inclusions U(n) → U(n + 1) .It therefore holds that BU classifies
stable isomorphism classes of vector bundles over X ,therefore by the above remarks (that any element in K(X)
can be represented by [E] − [CnX ]) BU × Z is a classifying space for K(X): [X,BU × Z] ∼= K(X)(The second
factor Z should represent the image of K(X) → K(·).From the atiyah janich theorem we also get that F(H)
the space of fredholm operators on a separable hilbert space is also a classifying space for K theory.

X → K(X) is a contravariant functor if we use the pullback of vector bundles (if f : X → Y is a map
f∗ : K(Y )→ K(X) sends the class of a vector bundle over Y to the class of the pullback bundle f∗E over X).
The induced map remains the same under homotopy.To see this a vector bundle E over X × [0, 1] can be trivi-
alised in the over the t direction. To see this choose a partition of unity ϕ1, ..., ϕN on X such that ϕi ≤ ϵ and
subordinate to a cover Ui such that E is trivial on sets of the form Ui × [a, a+ ϵ] and then gradually trivialise
E in the t direction over {(x, t)|t ≤ ϕ1(x) + ...+ ϕi(x)}.

K theory for C∗ algebras (which we are going to discuss shortly) is motivated by topological K theory
The relation is quite clear from the fundamental

serre swan theorem: the category of vector bundles over X is the same as the category of projective modules
over C(X)).
To a vector bundle one can add another vector bundle such that the sum is trivial.Therefore a vector bundle
gives rise to it’s module of sections which is a projective C(X) module.Conversely given a projective module P
one get’s a vector bundle whose fiber over x is P/IxP where Ix is the ideal of functions that vanish at x. One
uses projectivity (P ⊕P ′ is free) to show that if s1, s2, .., sk give a basis of P/IxP they are linearly independent
in a neighborhood of x and give also a basis.

( dim(P/IxP ),dim(P ′/IxP
′) are lower semicontinuous and thus also upper semicontinuous ) .

If E ⊕ E′ ∼= X × Cn is trivial then E can be given by the family of projections parametrized by X from Cn to
the summand Ex.
Projections over C(X) and projective modules over C(X) represent the same thing ,the K theory of the C∗

algebra C(X). The basic results of K topological K theory, can be reformulated in C∗ algebraic K theory.

1.2.2 Topological K theory

We need to review a few facts about topological K theory. If (X, ·) is a pointed space the reduced K theory
K̃(X) is the kernel of the map K(X) → K(·) (explicitly formal differences of vector bundles over X whose
ranks in the connected component of X are equal).For a locally compact space X define K(X) = K̃(X+) (the
one point compactification ,if X were compact then this just gives unreduced K theory.)Reduced K theory is
functorial in the category of pointed spaces. The relative K theory for a compact pair K(x,A) is the subring
of K(X) of elements that are trivial on A (for example K(X, ·) = K̃(X)). It is straightforward to prove (using
tietze extension and partitions of unity) that if a vector bundle is trivial on A then it is the pullback of a vector
bundle on the quotient X → X/A.
We can state that K(X,A) = K̃(X/A).
If (X,A, ·) is a pointed pair then this just says that K̃(X/A)→ K̃(X)→ K̃(A) is exact Alternatively we could
use mapping cones and define K(X,A) = K̃(X ∪i CA) since we can just collapse contractible subspaces given
the above exact sequence.

long exact sequence

From the classical puppe coexact sequence in algebraic topology one get’s by the above remarks the long exact
sequence in (reduced) K theory. Recall also that there is a classifying space for K theory.

...→ K̃(Σ(X/A))→ K̃(ΣX)→ K̃(ΣA)→ K̃(X/A)→ K̃(X)→ K̃(A)

K̃(ΣiX) = K̃(Si ∧X) is also denoted as K̃−i(X) The graded K groups.

operations in K theory

Using the long exact sequence one shows that for A → X retractions (ΣA → ΣX is also a retraction and the
retraction give splitting morphisms in K theory) there is a splitting of the K-theory group of X as a direct sum
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of the K-theory of A and the relative K-theory of the quotient space X/A :

K(X) ≃ K(A)⊕K(X,A)

and in the pointed case a splitting of the reduced K-theory groups

K̃(X) ≃ K̃(A)⊕K(X,A).

Using this one finds that the reduced K theory of the joint of 2 pointed spaces is:

K̃(X ∨ Y ) ≃ K̃(X)⊕ K̃(Y )

(X → X ∨ Y and Y → X ∨ Y are retracts and X ∨ Y/X ∼= Y )
external product
Let X and Y be topological spaces. Then the external tensor product of topological vector bundles E → X
and F → Y :
pr∗1E ⊗ pr∗2F → X × Y

induces on K-groups an external product

⊠ : K(X)⊕K(Y )→ K(X × Y )

We want to see that this restricts to an operation on reduced K-theory.We have that
Let (X,x0) (Y, y0) be two pointed compact Hausdorff spaces with X ∧Y their smash product. Then there is an
isomorphism of reduced K-theory groups

K̃(X × Y ) ≃ K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

Proof. Be definition, the smash product is the quotient topological space of the product topological space
by the wedge sum:

X ∧ Y = (X × Y )/(X ∨ Y )

Hence the long exact sequence takes the form

K̃(Σ(X × Y ))
Σi∗−−→ K̃((ΣX) ∨ (ΣY ))→ K̃(X ∧ Y )→ K̃(X × Y )

i∗−→ K̃(X ∨ Y ).

By the above the two terms involving reduced topological K-theory of joint sum are direct sums of the
reduced K-theory of the wedge summands:

K̃(Σ(X × Y ))
Σi∗−−→ K̃(ΣX)⊕ K̃(ΣY )→ K̃(X ∧ Y )→ K̃(X × Y )

i∗−→ K̃(X)⊕ K̃(Y ).

Now observe that , the morphisms i∗ and Σi∗ are split epimorphisms, with section given by ”external direct
sum”

K̃(X)⊕ K̃(Y ) → K̃(X × Y )
(EX , EY ) 7→ p∗X (EX) + p∗Y (EY )

.

Thus we get split short exact sequence

0→ K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X)⊕ K̃(Y )→ 0

Because the external product between elements in reduced K theory vanishes by definition on X×y0 and x0×Y
we get that it restricts to an external product ⊠ : K̃(X) ⊕ K̃(Y ) → K̃(X ∧ Y ). Note that external products
are natural with respect to functorial homomorphisms . Pulling back the externel product K(X) ×K(X) →
K(X ×X)

∆∗

−−→ K(X) by the diagongal we get the internal product and the ring structure of K(X).
Using the external product of reduced K theory,we can get an internal (graded) product of graded K groups

K̃−i(X)× K̃−j(X)→ K̃−i−j(X)

As K̃(Si ∧X)× K̃(Sj ∧X)→ K̃(Si ∧X ∧ Sj ∧ Y ) = K̃(Si+j ∧X ∧X)
∆∗

−−→ (Si+j ∧X)
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bott periodicity

For S2 the Euclidean 2 -sphere, write
h ∈ K

(
S2
)

for the complex topological K-theory class of the basic complex line bundle on the 2-sphere( which has the
clutching function on the meridian S1 z → multiplication byz.

β := h− 1 ∈ K̃
(
S2
)
= K(C).

This is known as the Bott element external product with which gives the bott periodicity isomorphism
K̃(X)→ K̃(S2 ∧X)
Iterating the bott periodicity external product we get that if X is a space K(X)→ K(X×V ) (where V ) is rep-

resented by external product by the element λV ∈ K(V ) represented by the complex ...→
∧i

V
v−→
∧i+1

V → ...
A special case of this is that K̃(S2) ∼= Z. We can also determine the ring structure of K̃(S2) if we note that
(h− 1)2 = h2 +1− 2h = 0 since h2 +1 and 2h can be easily shown to have homotopic clutching functions.From
bott periodicity we have that K̃−i−2(X) ∼= K̃−i(X) Therefore i(mod 2) determines K̃−i(X) and we denote
K̃0, K̃1 the even and odd ones respectively.Using that the bott map is natural with respect to functorial homo-
morphisms ,the long exact sequence in K theory becomes periodic and is really a six term exact sequence:

K̃0(X,A) K̃0(X) K̃0(A)

K̃1(A) K̃1(X) K̃1(X,A)

equivariant K theory

Similarly equivariant K theory is defined in the presence of a group action on a space . with G vector bun-
dles.(meaning there is an action of G on the vector bundle it’self of the form Ex → Egx is linear.The basic
results of K theory pass over to equivariant K theory,(write later).
We also have external products , pullback by G maps and equivariant bott periodicity as we shall see. Equiv-
ariant K theory is related to standard K theory if the action is free in which case we have: KG(X) ∼= K(X/G)
It is easy to see that if V is a complex representation space of G then λV also naturally defines an element in
KG(V ) (use equivariant K theory with compact supports,λV is the bott element)
We have the equivariant bott periodicity that external product with λV induces an isomorphism KG(X) →
KG(X × V )
The proof is an equivariant version of the construction of the inverse map with families of dolbeaut opera-
tors.(see atiyah bott)
From the above we deduce the thom isomorphism theorem: Let E → X be a hermitian vector bundle and P
the principal U(n) bundle of orthonormal frames. Then E is the associated bundle P ×Cn/G. Then under the
isomorphisms KU(n)(P ) = K(X) ,KU(n)(P × Cn) = K(E) it is easy to see that the bott periodicity isomor-
phisms corresponds to external product with the element in K(E) represented by the complex

...→
∧i

E
e−→
∧i+1

E → ...
hence we get the thom isomorphism K(X)→ K(E)

1.2.3 K theory with compact supports

There is another definition of K theory (and equivariant K theory) using complexes of vector bundles .This
goes as follows :we take homotopy complexes of vector bundles that are exact outside a compact set and factor
out complexes that are everywhere exact. This is the form of K theory used in index theorems that it is the
same as the K theory we defined before can be found in [Lawson Michelson]

1.2.4 K theory for C∗ algebras

K0

The K theory group of a C∗ algebra is constructed out of projections under direct sum and stable equivalence.We
immediately give the relevant definitions. By equivalence of projections we shall refer to:
Denote the set of projections in Mn(A) as Pn(A). and denote P∞(A) =

⋃
Pn(A).

If p, q ∈ Pn(A) .

• p ∼ q if there exists v in A with p = v∗v and q = vv∗ (Murrayvon Neumann equivalence),
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• p ∼u q if there exists a unitary element u in U(Ã) with q = upu∗ (unitary equivalence).

• p ∼h q if there exists a homotopy of projections pt such that p0 = p, p1 = q

We are going to show that these three notions of equivalence are essentially equivalent :
Proposition Let p, q be projections in a C∗-algebra A.

1. If p ∼ q, then
(
p 0
0 0

)
∼u
(
q 0
0 0

)
in M2(A).

2. If p ∼u q, then
(
p 0
0 0

)
∼h
(
q 0
0 0

)
in M2(A).

3. If p ∼h q, then p ∼u q.

4. If p ∼u q, then p ∼ q

Similarly to topological K theory K0(A) for unital A. is defined as the grothendieck group (ring ) made
out of equivalence classes of projections under direct sum (it is an abelian group). The zero projection in any
matrix ring over A should represent the zero element.
so we have the standard picture of K0(A):
(The standard picture of K0 - the unital case). Let A be a unital C∗-algebra. Then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)}
= {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N} .

Moreover,

1. [p⊕ q]0 = [p]0 + [q]0 for all projections p, q in P∞(A)

2. [0A]0 = 0, where 0A is the zero projection in A.

3. if p, q are mutually orthogonal projections in Pn(A), then [p+ q]0 = [p]0 + [q]0

4. for all p, q in P∞(A), [p]0 = [q]0 if and only if p, q are stably equivalent ,this means that we can add another
projection r and possibly add 0 projections such that p⊕ r ∼ q ⊕ r, this is denoted p ∼s q.

K0 is turned into a functor on the category of C∗ algebras and ∗ homomorphisms in an obvious way.Given
proposition 1.2.1 it’s immediate to see thatK0 is homotopy invariant.It is easy to see that the rank of projections
gives an isomorphism K0(C) ∼= Z ,in other cases the computation of K0 is not that straightforward.
To prove the proposition let’s review a few lemmas that are of much use when one deals with C∗ algebraic K
theory:

1. If p, q are projections in a C∗-algebra A and ∥p− q∥ < 1, then p ∼h q.

2. If ∥p− q∥ < 1/2 then p ∼u q

3. If a is a self-adjoint element in A with δ =
∥∥a− a2∥∥ < 1/4, then there is a projection p in A with

∥a− p∥ ⩽ 2δ.

4. Let p, q be projections in A. If there exists an element x in A with ∥x∗x− p∥ < 1/2 and ∥xx∗ − q∥ < 1/2,
then p ∼ q.

(1) is a direct consequence of the following lemma:
Let p be a projection in a C∗-algebra A, and let a be a selfadjoint element in A. Put δ = ∥p− a∥. Then

sp(a) ⊆ [−δ, δ] ∪ [1− δ, 1 + δ]

(1) given this use continuous functional calculus to deform the path tp+ (1− t)q into a path of projections(the
lemma itself is an easy exercise).
For Item (2) consider the polar decomposition of the invertible element pq + (1− p)(1− q) = z = |z|u it holds
that p = uqu∗

Items (3),(4) follow from functional calculus arguments.
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Proof of proposition:
For Item (1) of proposition 1.2.1 (p = v∗v and q = vv∗). Use the unitary wu in M2(A) where

u =

(
v 1− q

1− p v∗

)
, w =

(
q 1− q

1− q q

)
Item (2) follows from an easy rotation argument.
Item (3) is a direct consequence of lemma (2) above and
Item (4) is trivial (take v = qu∗)

To define K0 for nonunital C∗ algebras consider the unitization Ã one has the ∗ homomorphism s : Ã→ C that
sends λ1 + a to λ. K0(A) is defined as the kernel of K0(s) : K0(Ã) → K0(C) = Z. This is entirely analogous
to the definition of topological K theory of non compact spaces . Note that for algebras that are already unital
this construction gives the same as the initial definition of K0

One get’s similar results as above in the non-unital case and K0 is turned in an obvious way into a homotopy
invariant functor.Some manipulations allow the following description of K0(A):
(The standard picture of K0(A) ). One has for each C∗-algebra A that

K0(A) =
{
[p]0 − [s(p)]0 : p ∈ P∝(Ã)

}
.

Moreover, the following hold. (i) For each pair of projections p, q in P∞(Ã), the following conditions are
equivalent:
(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0,

(b) there exist natural numbers k and l such that p⊕ 1k ∼0 q ⊕ 1l in P∞(Ã)
(c) there exist scalar projections r1 and r2 such that p⊕ r1 ∼0 q ⊕ r2.
(ii) If p in P∞(Ã) satisfies [p]0 − [s(p)]0 = 0, then there is a natural number m with p⊕ 1m ∼ s(p)⊕ 1m.
(iii) If φ : A→ B is a ∗-homomorphism, then

K0(φ) ([p]0 − [s(p)]0) = [φ̃(p)]0 − [s(φ̃(p))]0

for each p in P∞(Ã).
Note also that if A1, A2 are unital C∗ algebras then the tensor product gives a
If A1, A2 are unital C∗ algebras then the tensor product of projections gives an external product map
K0(A1)×K0(A2)→ K0(A1 ⊗A2).

stability,continuity

Now it is a trivial matter to see that taking matrix algebras one get’s the same K0 groups moreover the inclusion
in the upper left corner A→Mn(A) induces an isomorphism K0(A) ∼= K0(Mn(A)) Now we are going to discuss
continouity properties of K0. our purpose is to be able to compute the K theory of the compact operators on
a separable hilbert space ,we are going to show that K0(K) ∼= Z.
Let An −−→

µn

A be an inductive limit of a sequence of C∗ algebras An −−→
ϕn

An+1 −−−→
ϕn+1

....(Inductive limits of C∗

algebras of this sort always exist ,the limit is constructed as A =
∏∞
n=1An/

∑∞
n=1An ,if all An = C then this

is just ↕∞/c0)
By universal properties we get a morphism lim(K0(An)) → K0(A).Where lim(K0(An)) denotes the inductive
limit in the category of abelian groups. The result is that this is an isomorphism. For example if we take the
inductive limit C→M2(C)→ ...→Mn(C)→ ...K we get that K0(K) = Z. A similar result holds if we replace
C with an arbitrary C∗ algebra A then we get K0(A) ∼= K0(KA).
The proof of this proceeds as follows ,first consider the unitizations Ãn use a combinations of lemmas 1234
above to prove that lim(K0(An))→ K0(A) is surjective (each [p] ∈ K0(Ã) is the image of some K0(µn) ) use a
similar argument to show injectivity.
Before we end this section let’s review the relatiion of this sort ofK theory for C∗ algebras with the ring theoretic
counterpart constructed out of projective modules or equivalently idempotent elements over A (denoted I∞(A))
The equivalence relation used in the context of idempotents is:≈0 on I∞(A) . Suppose that e belongs to In(A)
and f to Im(A). Then e ≈0 f if e = ab and f = ba for some elements a inMn,m(A) and b inMm,n(A). Addition
is direct sum.
The resulting K theories are equivalent because of the following :
(i) for every idempotent element e in A, there is a projection p in A with e ≈0 p.:
(ii) For projections p and q in A, show that p ∼0 q if and only if p ≈0 q. the reader is refered to [rordam]
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K1

Now we are going to define anotherK theory group which we are going to build out of unitaries ,the development
is similar to the previous section so we just state the relevant results.
Let A be a unital C∗-algebra, and let as usual U(A) denote its group of unitary elements. Set

Un(A) = U (Mn(A)) , U∞(A) =

∞⋃
n=1

Un(A)

Define a relation ∼1 on U∞(A) as follows. For u in Un(A) and v in Um(A), write u ∼1 v if there exists a natural
number k ⩾ max{m,n} such that
u⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A), where 1r is the unit in Mr(A) (and with the convention that w ⊕ 10 = w for
all w in U∞(A)).
(The K1-group). For each C

∗-algebra A define

K1(A) = U∞(Ã)/ ∼1 .

Let [u]1 in K1(A) denote the equivalence class containing u in U∞(Ã). Define a binary operation + on

K1(A) by [u]1 + [v]1 = [u⊕ v]1, where u, v belong to U∞(Ã).
The following hold:

• [u⊕ v]1 = [u]1 + [v]1

• [1]1 = 0

• if u, v belong to Un(Ã), then [uv]1 = [vu]1 = [u]1 + [v]1 (proof by rotation argument)

• for u, v in U∞(Ã), [u]1 = [v]1 if and only if u ∼1 v

• u∗ is an additive inverse ,this follows from (3), therefore K1 is an abelian group

For example. K1(C) = K1 (Mn(C)) = 0 As U(n) is connected. . More generally, K1(B(H)) = 0 for each
Hilbert space H.(you may use borel functional calculus).Kuiper theorem moreover states that GL(H) is con-
tractible.
Remarks: One doesn’t need to take a unitization if A is already unital and even if it is used the resulting
groups would be the same . Since U(A) is a deformation retract of GL(A) (through polar decomposition)
K1(A) can be defined with invertible elements instead.One has similarly to the case of projections the lemma
If u, v are unitary elements in A with ∥u− v∥ < 2, then u ∼h v. (this follows from functional calculus )
The stability and continouity properties of K0 also hold for K1 the proofs follow the same pattern. For example
this let’s us state that with K being the algebra of all compact operators on a separable Hilbert space, we have
K1(K) = 0.

The six term exact sequence

Given an extension of C∗ algebras similarly to topological K theory there is a six term exact sequence of K0,K1

groups. So let 0 → I → A → A/I|to0 be an exact sequence of C∗ algebras. Then there is a natural six term
exact sequence:

K0(I) K0(A) K0(A/I)

K1(A/I) K1(A) K1(I)

δ0δ1

δ1 is the index map and δ0 is the exponential map,the rest are functiorial homomorphisms.The exactness of this
sequence at K0(A) and K1(A) is due to the fact that K0,K1 are half exact functors.

The index map

δ1 is called the index map because it is exactly the index map in the case of the calkin algebra extension and it
gives the index of fredholm operators. The image of K1(A)→ K1(A/I) is equal to the kernel of the index map
δ1.Thus K1(A)→ K1(A/I) may or may not be surjective and the index map therefore gives an obstruction to
lifting unitaries over surjections.In the case of the calkin extension an essentially unitary operator (viewed as
an element in the calkin algebra ) with nonzero index,cannot be lifted to a unitary in B(H) because the latter
has index 0, this is a topic we are going to discuss later in more detail.
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K0(SA) is isomorphic to K1(A)

SA denotes the suspension C∗ algebra of continuous loops f : S1 → A such that f(1) = 0 (or equivalently
f : [0, 1]→ A such that f(0) = f(1) = 0. This follows at once from the short exact sequence 0→ SA→ CA→
A → 0 and the fact that the cone CA (f : [0, 1] → A with f(0) = 0) is contractible ) the index map gives
the isomorphism.We define also higher K groups via Kn(A) = K0(S

nA) and it is shown that any short exact
sequence of C∗-algebras gives rise to a long exact sequence of K-groups.
Description of the index map:

let u in Un(Ã/I) be given.

(i) There exist a unitary v in U2n(Ã) and a projection p in P2n(Ĩ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, φ̃(p) = v

(
1n 0
0 0

)
v∗, s(p) =

(
1n 0
0 0

)
.

(ii) If v and p are as in (i), and if w in U2n(Ã) and q in P2n(Ĩ) satisfy

ψ̃(w) =

(
u 0
0 u∗

)
, φ̃(q) = w

(
1n 0
0 0

)
w∗

then s(q) = diag (1n, 0n) and p ∼u q in P2n(Ĩ).
(First standard picture of the index map). Let

0 −→ I
φ−→ A

ψ−→ A/I −→ 0

be a short exact sequence of C∗-algebras. Let n be a natural number, and suppose that u in Un(Ã/I), v in

U2n(Ã), and p in P2n(Ĩ) satisfy

φ̃(p) = v

(
1n 0
0 0

)
v∗, ψ̃(v) =

(
u 0
0 u∗

)
.

Then δ1 ([u]1) = [p]0 − [s(p)]0.

The isomorphism θA : K1(A)→ K0(SA) has the following concrete description. Let u in Un(Ã) with s(u) = 1n

be given. Let v in C
(
[0, 1],U2n(Ã)

)
be such that v(0) = 12n, v(1) = diag (u, u∗), and s(v(t)) = 12n for every t

in [0, 1]. Put

p = v

(
1n 0
0 0

)
v∗.

Then p is a projection in P2n(S̃A), s(p) = diag (1n, 0n), and

θA ([u]1) = [p]0 − [s(p)]0.

Using the isomorphism K0(SA) ∼= K1(A),one can describe the six term exact sequence in terms of mapping
cones construction resulting into a more algebraic topological description of the index map,This works as follows:
The mapping cone C(A,A/J) of the surjective ∗-homomorphism π : A→ A/J is the algebra consisting of pairs
(a, f), where a ∈ A, f : [0, 1]→ A/J is continuous, f(0) = 0, and f(1) = π(a).

For example, the mapping cone of the identity map A → A is isomorphic to the cone C(A) defined above.
The mapping cone C(A,A/J) is a C∗-algebra under the natural pointwise operations. Its K-theory is described
by another excision result:
The ∗-homomorphism J→ C(A,A/J) given by a 7→ (a, 0) induces an isomorphism from K0( J) to K0(C(A,A/J)).
Notice that the suspension and mapping cone constructions are related by the short exact sequence

0 −→ S(A/J) −→ C(A,A/J) −→ A −→ 0

where the first ∗-homomorphism is given by f 7→ (0, f). This ∗-homomorphism induces a map

K1(A/J) = K0( S(A/J)) −→ K0(C(A,A/J)) = K0( J)

which is exactly the index map.
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Bott periodicity

First we consider a unital C∗-algebra A. For every natural number n and every projection p in Pn(A), define
the projection loop fp : T→ Un(A) by

fp(z) = zp+ (1n − p) , z ∈ T

This is the bott map ,it can be shown to coincide with the generator of K2(C) = K0(C0(R2)) (Bott periodicity).
The Bott map described above βA : K0(A)→ K1(SA) is an isomorphism for every C∗-algebra A.
For every C∗-algebra A and every integer n ⩾ 0,

Kn+2(A) ∼= Kn(A).

1.2.5 K homology

We are going first to present the geometric intuition behind K homology.The first step towards this direction is
understnanding atiyah ell.

Atiyah ell

The reader should go first to the section about pseudodifferential operators before reading this section.
Atiyah ell(X) arises when trying to abstract the properties of pseudodifferential operators on the compact
manifoldX. (in particular of order 0) An elliptic pseudodifferential operator (of order zero,acting between vector
bundles E,F ) gives rise to a Fredholm operator between Hilbert spaces (some L2 spaces P : L2(E)→ L2(F )).
There is however more structure in the elliptic operator which has been ignored on passing to the Hilbert space.
To reinstate this further structure we must make use of the fact that our Hilbert spaces are not just abstract
vector spaces but are in fact function spaces. Thus they not only admit multiplication by complex scalars but
also by continuous functions on X Of course P does not commute with multiplication by f but the commutator
Pf − fP turns out to be a compact operator.(approximate f by smooth functions)
We have now arrived at a property of pseudo-differential operators which can be abstracted out and applied to
general topological spaces. Thus let X be any compact Hausdorff space and let H1, H2 be two Hilbert spaces
equiped with representations of C(X). A bounded linear operator

P : H1 → H2

will be called an operator on X if for any f ∈ C(X) the commutator Pf − fP is a compact operator. P will
be called an elliptic operator on X if, in addition, it is a Fredholm operator. There is then another operator Q
on X such that QP − I and PQ− I are both compact (where I denotes the identity operator). The set of all
elliptic operators on X will be denoted by Ell(X).
If X is a point then Ell(point) is given by fredholm operators and the index gives a map: Ell(point)→ Z.
Consider next the dependence of Ell(X) on X. If f : X → Y is a continuous map of compact spaces, we get
a homomorphism of rings f∗ : C(Y ) → C(X). If H1, H2 are Hilbert space modules for C(X) they can then
be viewed, using f∗, as C(Y ) representations. In this way an elliptic operator on P : H1 → H2 on X can be
viewed as an elliptic operator on Y , thus f induces

f∗ : Ell(X)→ Ell(Y ),

so that elliptic operators depend covariantly on the underlying space.
In particular, if Y is a point,

Ell(X)→ Ell (point) → Z

is given by P 7→ index P .
The main construction we need is one which defines a ”cap-product” between Ell(X) andK0(X). More precisely,
given P ∈ Ell(X) and a vector bundle V on X we shall define a new element P ∩ V ∈ Ell(X). For fixed P and
variable V the map V 7→ index (P ∩ V ) will then extend by linearity to a homomorphism

K0(X)→ Z.

In this way (varying P ) we will obtain a map

Ell(X)→ HomZ

(
K0(X),Z

)
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Given a (hermitian) vector bundle V over X we define the hilbert spaces HVj of sections of V as follows.Roughly
these should be Γ(V )⊗C(X) Hj .Represent V by a projection T1 over C(X) (as in the previous section) By the
representations T can be viewed as a projection acting on Hn1 and Hn2 . Define PV by TPnT : THn1 → THn2
.Then it is easy to see that PV commutes modulo compacts with the action of C(X) and QV = TQnT is a
parametrix for PV .
Thus we get an element PV of Ell(X) .This is independent of the projection used in an appropriate sense which
is the subject of later sections.Certainly though Index(PV ) depends only on V and it extends to a homomor-
phism K0(X)→ Z. Remark: if P is given by an elliptic pseudodifferential operator of order zero acting between
vector bundles E → F and H1 = L2(E) , H2 = L2(F )
Then PV can be seen as an ellitpic operator acting between PV : E ⊗ V → F ⊗ V with principal symbol given
by σP ⊗ IdV : E ⊗ V → F ⊗ V .
PV can equivalently be constructed by defining locally where the vector bundle V is trivial and patching to-
gether using parititions of unity.
This construction can be extended to positive order operators and the principal symbol still is going to be given
by σPV = σP ⊗ IdV .Specifying this symbol (and since we will be mainly interested in Index(PV ) )can be taken
as the definition. In the level of symbols this is a product of (graded) K-theory classes.we will be seeing this
many times from now on.

Atiyah janich theorem

In this section we will prove a theorem that will let us generalize our previous constructions .This and the
atiyah-bott proof of bott periodicity is where KK theory manifests it’self.
In the section about fredholm operators we proved that Index : [point,H] → Z is a bijection ,we intend to
generalize this.
Index bundles:
Suppose that X is a compact space and that T : X → F (H) is a continuous map, so that Tx is a family of
Fredholm operators depending continuously on the parameter x ∈ X. If dimKerTx is independent of x the
family of vector spaces KerTx forms a vector bundle KerT over X and similarly for KerT ∗. We can then define
the index of the family by

index T = [KerT ]− [KerT ∗] ∈ K(X)

If dimKerTx is not independent of X
Then to construct the index we need the following:
Proposition: Let X be a compact space, and T : X −→ F(H) be a continuous map ( T is called a continuous
family of Fredholm operators on X ). Then (i) there exists a closed subspace V ⊂ H of finite codimension such
that for any x ∈ X,

V ∩KerTx = {0}.

(ii) the family vector spaces ∪x∈XH/Tx(V ) (topologized as a quotient space of X ×H) is a vector bundle over
X. The vector bundle is denoted by H/T (V ).

Proof. For each x ∈ X, take Vx = (KerTx)
⊥
. Then Tx maps Vx isomorphically onto Tx(H). There is a

neighbourhood Ux of Tx in B such that for each S ∈ Ux, Vx ∩ KerS = {0}. Let Ux ⊂ X be the inverse
image under T of the open set Ux ∩ F(H). If y ∈ Ux, then Vx ∩ KerTy = {0}. Using the compactness of
X, choose a finite covering Ux1 , Ux2 , · · · , Uxk

of X. Then V = ∩kj=1Vxj satisfies (i). To get (ii) one can de-
duce that ∪yH/Ty(V ) is locally trivial when y varies in a neighbourhood of x, and so it is a vector bundle over X.

The index of a continuous family T : X −→ F is defined by

ind T = [H/V ]− [H/T (V )] ∈ K(X),

where H/V denotes the trivial bundle X × (H/V ). The virtual bundle [H/V ] − [H/T (V )] defining ind T is
called the index bundle. Thus we get the family index map.It is easy to show that it is independent of the
subspace V used.
At the level of maps X → F(H) we have naturality:If f : X ′ → X is continuous then f∗( ind T ) = ind (T ◦ f)

Moreover If we have a homotopy of maps St : X → F(H) this defines an index bundle over X × [0, 1] and
we immediately get homotopy invariance.
In short Index gives a natural transformation between the contravariant functors: X → [X,F(H)] and X →
K(X).
[x,F(H)] can be shown to have the structure of an abelian group under pointwise composition of fredholm
operators, the constant identity valued function as 0 element and pointwise adjoint as an inverse.
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The above naturall transformation can be shown to be a homomorphism of abelian groups.
The theorem of Atiyah janich states that

[X,F(H)] Index−−−→ K(X)

is an isomorphism. For the proof see [amiyah mukherjee]

Atiyah bott

Bott periodicity can be proved using the above ideas. First given an elliptic operator on X one gets a map
K(X)→ Z as before. We generalize this , assume we are given a family of elliptic operators over X parametrized
by a another space Y . This is equivalently given by an operator P acting between vector bundles over X × Y
that is elliptic on every X × {y}.
As shown in the previous section this family has an index ind(P ) ∈ K(Y ). For vector bundles over X × Y
V → ind(PV ) gives a map K(X × Y )

indP−−−→ K(Y ).
If a vector bundle is trivial in the X direction (namely) it is a pullback bundle pr∗2(W ) on Y then it is easy to
see that indP (pr

∗
2(W )) = ind(P ) ·W ∈ K(Y ).

Moreover it is easy to see that we have a naturall (with respect to Y) transformation K(Y ) module homomor-
phism .

indP : K(X × Y )→ K(Y )

(It is here that the product in KK is starting to manifest itself.)
Starting from this bott periodicity can be proved as follows.
Identify the sphere S2 with the complex projective line CP 1 and consider the dolbeaut operator ∂ from functions
to forms of type (0, 1).
It is shown that ind∂(β) = 1 where β is the bott elemen.
Using ind∂ we get a left inverse to bott periodicity as follows:

K̃(S2 ∧X)→ K̃(S2 ×X)
ind∂−−−→ K̃(X)

(Use naturallity for the map · → X to see that the above is a well defined sequence of maps.It is in general true
that indP descends to a natural K̃(Y ) module map K̃(X ∧ Y )→ K̃(Y ) )
That this defines a left inverse to the bott map follows from the K(X) module property of ind∂ .
Consider the naturallity square:

K̃(S2 ∧ (S2 ∧X)) K̃(S2 ∧X)

K̃(S2 ∧X) K̃(X)

ind∂

ind∂

Use this ,the K(S2∧X) module property of ind∂ .multiplication with the pullback of the bott element pr∗1(β) ∈
and the map S2∧S2∧X → S2∧S2∧X that interchanges the factors (and is homotopic to the identity.) To get
that (bott) ◦ ind∂ = ind∂ ◦(bott) coincide as maps on K(S2 ∧X) and conclude that ind∂ is also a right inverse
to the bott map.
This proof can be compared to the classical proof that one analyzes the clutching function along S1 ∧X, the
reader is refered to [atiyah bott].
The thom isomorphism is proved using the higher dimensional case (iteration) of this bott isomorphism in U(n)
equivariant K theory over a U(n) principal bundle over X,(write later)

1.3 Spectral triples

When one is doing index theory he encounters a very specific structure which essentially gives a representa-
tive of a K-homology class as atiyah ell does, we are going to straight give the definition and then some examples.

Definition: A spectral triple (A,H, D) consists of a hilbert space H = H+ ⊕ H− represented on by a
C∗ algebra A together with a (possibly unbounded) densely defined self adjoint operator D such that [D, a] is
bounded, and D has a compact resolvent. If the hilbert space H = H+⊕H− is graded together with a grading
operator γ such that D is odd (Dγ + γD = 0) and A is represented as even operators (γa = aγ) then the
spectral triple is graded ,otherwise it is ungraded.
Examples include
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• The hodge de rham triple (C∞(M), L2(
∧
(T ∗M)), d+ d∗) and the grading is mod 2 the degree of forms.

• The signature operator triple is the same as above except that the grading operator is given by ip(p−1)+1⋆
on forms of degree p.

• The dirac operator on a spinor bundle

• Basically any first order pseudodifferential operator on sections of a graded vector bundle (which is odd
with respect to the grading) and multiplication by functions gives a spectral triple.

• Here is a non commutative example: The noncommutative torus.
Consider the universal C∗−algebra generated by 2 unitaries U, V subject to the relation V U = eiθUV . For
θ = 0 this is just the continuous functions on the torus, it can be seen as the crossed product C(S1)×Rθ

Z
with the automorphism Rθg(z) = g(eiθz) and U will be given by the identity function z whereas V will
be the image of 1 in the crossed product ,by definition V UV ∗ = eiθU . Consider the following subalgebra

Aθ =
∑

cnmU
nV m , cnm is rapidly decaying

If θ = 0 is 0 this would be just the smooth functions on the torus and their integral would be given by
c00 .Motivated by this we define a trace ϕ by ϕ(

∑
cnmU

nV m) = c00 and an inner product ⟨a, b⟩ = ϕ(a∗b)
Completing we get a hilbert space Hθ on which Aθ acts by multiplication.

Now recall that the dirac operator on the plane (R/2πZ)2 is given by

(
0 ∂x + i∂y

∂x − i∂y 0

)
on C∞((R/2πZ)2) ⊕ C∞((R/2πZ)2). Motivated by this we define the derivations on Aθ ,corresponding
to ∂x, ∂y: δ1(U) = iU, δ(V ) = 0 and δ2(U) = 0, δ2(V ) = iV and the ”dirac operator” densely defined on

Hθ ⊕Hθ: D =

(
0 δ1 + iδ2

δ1 − iδ2 0

)
So we get a spectral triple (Aθ,Hθ ⊕Hθ,D) leaving the verification

to the reader.

If one defines D acting on suitably chosen spaces as in the analysis parat then D is a fredholm operator :
D(I +D2)−1 is a parametrix.
The index of D is non-interesting because it’s 0 ,D being a selfadjoint operator.However if we write D as(

0 D−

D+ 0

)
: H+ ⊕H− → H+ ⊕H−

Then D+ is also fredholm D−(I +D2)−1 is a paramterix and ind(D+) = −ind(D−) is of interest.
This is the trivial instance of the index pairing which we are now going to define after a short geometrical
discussion. Before that a short digression when A is C(X) then we have a notion of derivation of functions
(elements of A) on that space using just the data of the spectral triple . This could be represented as [D, a] so
we can actually obtain obtain a metric on, the space X (which is spec(A) or the character space ) by defining
for two points ϕ, ψ :

d(ϕ, ψ) = sup(|ϕ(a)− ψ(a)| , ||[D, a]|| ≤ 1)

The noncommutative analog of a the gelfand spectrum is the pure space so in a manner analogous to this one
obtains a metric there.

1.3.1 The index pairing

We shall return to this later but first let’s give some motivation for this coming from geometry. Recall that a
spinor bundle S → M is a hermitian graded bundle S = S+ ⊕ S− over M together with a clifford multipli-
cation T ∗

xM ⊗ Sx → Sx such that the square of multiplication by ξx is given by the scalar −||ξx||2 in other
words it is a rperesentation of Cliff(T ∗

xM) → End(Sx)(also multiplication by ξx is odd with respect to the
grading).For example

∧
T ∗M is a spinor bundle with the clifford multiplication ξx → ξx ∧ +iξx (iξx denotes

metric contraction). Recall that a dirac operator on a vector bundle S is one who’s symbol has the property
that σ(ξx)

2sx = −|ξx|2sx.
Recall that a spinor connection ∇ on s is a compatible connection with the grading, the hermitian structure
and also compatible with the clifford multiplication in the sense that for a ∈ Γ(T ∗M), s ∈ Γ(S) we have:
∇X(a · s) = (∇LC

X a) · s + a · ∇Xs (we use the levi civita connection). In this case the S comes equiped with a

dirac operator given by D : S
∇−→ T ∗M ⊗S cliff−−→ S. Explicitly Ds =

∑
e∗i · ∇eis where ei is a basis of TxM and

e∗i is the dual basis on the cotangent space. Obviously D is odd with respect to the grading of S therefore we
get a spectral triple.
Now we come to the notion of twisting with a hermitian bundle E equiped with a compatible connection ∇E .
The vector bundle S⊗E is also a spinor bundle with the clifford multiplication acting on the first factor S and
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also has a spinor connection ∇S⊗E = ∇S ⊗ id + id ⊗ ∇E . Therefore we can form as before the twisted dirac
operator DE : S+⊗E⊕S−⊗E → S+⊗E⊕S−⊗E It is given explicitly by DE(s⊗e) = Ds⊗e+

∑
(e∗i ·s)⊗∇eie

we will return to the twisting of operators later.
The index of the operator D+

E : S+⊗ → S−⊗ is given by the atiyah singer index theorem :

ind(D+
E) =

∫
M

Â(TM) · ch(E)

where Â is the A-genus class and ch is the total chern class.
This is a special instance of the index pairing between the spectral triple given by the dirac operator (which as
we will see later represents a K-homology class ) and the K theory class given by the vector bundle E and the
result is the index of an elliptic operator (an integer ).

1.3.2 Brown Douglas Fillmore theory

K-homology is relevant both to geometry and operator algebras. In geometry an elliptic operator gives canoni-
cally a K homology cycle and in operator algebras it appears in the theory of extensions as we shall see which
are classified by the brown douglas fillmore theory. The pairing of K homology and K theory is interpreted
as an index pairing and is relevant of course to index theory.All of the interactions we are going to encounter
between K homology and K theory are special cases of a vast generalization due to Kasparov ,that of KK teory
as we shall see in the next section. Bdf theory began from a question about essentially unitary operators. An
essentially unitary operator T on a hilbert space is such that TT ∗ ∼ T ∗T are equal up to compact operators
(denote this by ∼).
The question is whether two such operators T1, T2 are essentially unitarily equivalent which means that there
exists a unitary operator U : H1 → H2 which intertwines them up to compacts: T2 ∼ UT1U

∗ . The answer to
this question is considerably easier when we deal with essentially self adjointness.
The essential spectrum of an operator T is the spectrum of it’s image in the calkin algebra . By atkinson
theorem this just means the set of λ ∈ C such that λI − T fails to be invertible modulo compact operators i.e.
fails to be fredholm.
Obviously essential unitary equivalence implies that two operators have the same essential spectrum. For es-
sentially self adjoint operators this goes the other way around so let’s restrict our attention to these for the
moment.
We can also just consider self adjoint operators by taking T+T∗

2 .
First we have the following :
Lemma :The essential spectrum of a self-adjoint operator is comprised of the limit points of the spectrum plus
the isolated points (that are eigenvalues ) of infinite multiplicity.
Proof:Isolated eigenvalues of finite multiplicity are obviously not in the essential spectrum so it suffices to prove
that the rest are.
For λ ∈ σ(T ) take an approximate eigenvector ( a sequence of unit vectors vk such that ||Tvk − λvk||) as in
the finite dimensional case it is easy to see that two different approximate eigenvectors for different λ, λ′ are
approximately orthogonal ⟨vk, v′k⟩ → 0 . Then if λ is a limit point of σ(T ) then obtain an orthonormal sequence
wk such that (T − λI)wk → 0 and conclude that T − λI is not a fredholm operator.
Then we have the following well known result :
Weyl Von Neumann Theorem :Every bounded self adjoint operator on a separable hilbert space is an ar-
bitrarily small compact pertrubation of a diagonal operator.
Proof: It suffices to prove this for the multiplication operator T : ϕ(λ) → λϕ(λ) on H = L2(σ(T ), µ) by the
spectral theorem.Take a sequence of refinements of σ(T ) in sets of diameter at most ϵ/2n in each step and denote
Hn ⊂ Hn+1 the subspace of functions that are constant in the n-th refinement and deonte Pn the orthogonal
projection on Hn. T is within ϵ/2n in norm to a multiplication operator that is constant on the n-th refinement,
this shows ||PnT − TPn|| ≤ 2ϵ/2n . Denote the projection Qn = Pn − Pn−1 and since Pn =

∑
Qn converges

strongly to the identity :T =
∑
TQn =

∑
QnTQn+[T,Qn]Qn where the first term is a direct sum of finite rank

selfadjoint (hence diagonal) operators and the second is bounded in norm by 2ϵ and is easy to see it’s compact.
The diagonal operator from the last theorem has the same essential spectrum as T ,which is the set of limit
points of it’s eigenvalue sequence and it’s easy to see that for 2 diagonal operators with the same essential spec-
trum we can arrange their eigenvalue sequences to differ by an element of c0 establishing unitary equivalence.
So we proved our first point :
The essential spectrum classifies the essential unitary equivalence classes for essentially self ad-
joint operators.
Things are not so straightforward for essentially normal operators. We have another invariant however that
of the index. Essentially unitary equivalent fredholm operators have the same index : index(T − λI) for
λ ̸∈ σess(T ) = X is a well defined function on essentially unitary equivalence classes of operators with essential
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spectrum X to be denoted by Ext(X) from now on. Ext(X) carries an addition operation given by direct sum
of operators. Also note that by homotopy invariance the index function index(T − λI) is locally constant on
C\X and 0 on the unbounded component of C\X.
In case the essential spectrum is the circle (|z| = 1) then one can show that index (T ) : Ext(S1) → Z is an
isomorphism of semigroups.
The brown douglas fillmore theorem is just the obvious generalization of this , the index function is an isomor-
phism of groups Ext(X) and the integer functions on the bounded components of C\X. Let’s review how C∗

algebra extensions get involved in the determination of Ext(X).
Given an essentially unitary operator T with essential spectrum X ,the first thing we get is an injective unital (it
maps the unit elements to each other) ∗-morphism C(X)→ Q(H).Now consider the C∗ algebra ET generated
by T, T ∗ and compact operators. We get an exact sequence of C∗ algebras

0→ K(H)→ ET → C(X)→ 0

Where ET → C(X) is given by projection to the calkin algebra composed with the functional calculus mor-
phism.
If T, T ′ are essentially unitary equivalent then AdU intertwines the morphisms C(X)→ Q(H) , C(X)→ Q(H′)
we also naturally get an isomorphism of extensions

0 K(H) ET C(X) 0

0 K(H′) ET ′ C(X) 0

AdU AdU

This suggests that Ext(X) be equivalently given by isomorphism classes of injective morphisms C(X)→ Q(H)
or extensions of C(X) by K(H) : 0→ K(H)→ ET → C(X)→ 0. This is indeed the case [HR]. And in general
any extension of a C∗ algebra A by K(H) can be equivalently given by an injective morphism A → Q(H). To
see this note that for an exact sequence of C∗ algebras 0 → J → E → A → 0 we naturally have a morphism
from E to the multiplier algebra of J : M(J) and a morphism A = E/J →M(J)/J = Q(J) into the corona
algebra,(known as the busby invariant). (in case J = K(H) we get a representation of E on H by ρ(e)j ·v = ej ·v
for j ∈ K(H) ⊂ E ).
Conversely from a morphism ϕ : A → Q(H) we get an extension by setting taking E to be the pullback C∗

algebra ⊂ B(H) ⊕ A : (T, a)|π(T ) = ϕ(a) and an exact sequence 0 → K(H) → E → A → 0. Equivalence in
the first case implies equivalence in the second case ,for details see so we can call Ext(A) the set formed by the
equivalence classes of injective ,unital extensions of A in any of the 2 above notions.
Ext(A) carries a semigroup structure (easy to see if we view it as extensions A → Q(H) ) . In short we have
the following :
Ext(X) and Ext(C(X)) are isomorphic as semigroups
An extension A→ Q(H) is split if it admits a lift A→ B(H) these intiutively represent the zero element in the
semigroup Ext(A)
Furthermore an extension ϕ : A → Q(H) is semisplit if the direct sum ϕ ⊕ ϕ′ with another extension
ϕ′ : A→ Q(H′) is split. ϕ′ is supposed to represent an additive inverse.
Before we go on we have to review a very basic extension.
The toeplitz extension:On L2(S

1) denote P the projection on the subspace that is the closed span H of
{einθ|n ≥ 0} and denote by Mg the operator of multiplication by g ∈ C(S1).It is easy to prove that P,Mg

commute up to compacts. Denote Tg = PMgP ∈ B(H) then Tg1g2 ∼ Tg1Tg2 and T ∗
g = Tg so we get the toeplitz

extension C(S1)→ Q(H). A few facts about that:
It’s straightforward to show that the essential spectrum of Tg is given by the range of g (think about the C∗

algebra produced by Tg and the compacts , an inverse modulo compacts should belong there). If g doesn’t have
a zero the index of Tg is equal to the winding number of g one proves that by reducing to the case of zn by
homotopy.The toeplitz extension can be generalized in geometry if we take the C∗ algebra to be the C(M) and
let P be a spectral projection of a selfadjoint pseudodifferential operator on a compact manifold M.
This suggests also a device for producing extensions : If we have a representation of A on H and P is a pro-
jection that commutes up to compacts with the action of A then we get an extension A→ Q(PH) by the rule
a→ Pρ(a)P . This is an abstract toeplitz extension. The following fact is straightforward :
Any semisplit extension is the same as an abstract toeplitz extension.
At this stage it would be convenient that for a C∗ algebra every extension is semisplit. We have the following .
Every extension C(X)→ Q(H) for a compact metric space is semisplit.
We are not going to cover every detail of this but certain arguments in the proof are of interest to us.
We need the notion of completly positive map between C∗ algebras A linear map σ : A → B is completely
positive if σ(1) = 1 and

∑
b∗i σ(a

∗
i aj)bj ≥ 0 for any a1, ..., an ,b1, ..., bn.

Maps A→ B(H) of the following short are completely positive : If V : H → H1 is an isometric embedding and
ρ : A → B(H) is a representation then σ(a) = V ∗ρ(a)V is completely positive. By Stinespring theorem these
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maps (compression to subspaces) are all the completely positive maps (the proof is an adaptation of the GNS
construction).
It is easy to show that an extension A→ Q(H) is semisplit iff it has a completely positive lifting A→ B(H). Now
the above is proved via the following two results; There is a sequence completely positive maps ϕn : A→ Q(H)
that converge pointwise and lift to B(H).
These are constructed by the nuclearity of C(X): approximate ϕ by finite rank completely positive operators
that can be lifted to B(H).
If σn is a sequence of completely positive liftable maps A→ Q(H) converging pointwise to σ then σ is liftable:
Let ρn be liftings to B(H) and take a countable dense set in a1, a2, ... ∈ C(X). We can assume that the following
holds ||σN (aj)− σN−1(aj)||Q(H) < 2−N for j < N .

We alter the liftings ρN to ρ′N such that ||ρ′N (aj)− ρ′N−1(aj)|| < 2−N for j < N . We do this with the help
of a quacicentral apporximate unity uk in K(H) for the separable C∗ algebra produced by K(H) and ρn(A) for
all n.
Inductively set

ρ′N+1(a) = (1− uk)1/2ρN+1(a)(1− uk)1/2 + u
1/2
k ρ′N (a)u

1/2
k

these project to σN+1(a) and for large enough k it can be arranged that ||ρ′N+1(aj) − ρ′N (aj)|| < 2−N−1.
Therefore the completely positive ρ′N converge pointwise to a completely positive lifting of σ.(this sort of
constructions are encountered in Kasparov theory)
We are now in a position to say that every every extension of C(X) is given by an abstract toeplitz extension
,or equivalently a representation of C(X) on a hilbert space together with a projection that commutes up to
compacts with this representation. As mentioned earlier a split extension represents the 0 element in Ext, this
is not at all easy to prove and is a consequence of voiculescu theorem, [23] therefore we have also shown that
Ext(C(X)) is an abelian group.(this holds for nuclear ,separable c∗ algebras A)
The above suggest that we are really interested in a K0 group of projections that commute up to compacts with
a representation of A for which nonzero a don’t act as compact operators(this is called an ample representation)
.We define the relevant C∗ algebras,the dual C∗algebra Dρ(A) = of an ample representation ρ : A → B(H) as
The subalgebra of B(H) of operators that commute up to compacts with ρ(A).It is a consequence of voiculescu
theorem that two ample representations are unitarily equivalent therefore we shall just write D(A) for the dual
algebra as the representation is irrelevant.
Projections inMn(Dρ) is the same thing as projections inDσ where σ is the direct sum representation ρ⊕ρ⊕...⊕ρ
therefore the K0 group K0(D(A)) is given by projections P ∈ D(A).Furthermore Iis shown to represent the 0
element and an additive inverse is given by I − P
If we associate to each P the toeplitz extension it defines then it is easy to see that two murray von neumann
equivalent projections define unitarily equivalent toeplitz extensions. Therefore combining all of the above we
see that this gives an isomorphism of groups:

K0(D(A)) ∼= Ext(A)

We now come to the definition of K-homology groups .The K homology groups K1(A),K0(A) are defined as
K1(A) = K0(D(Ã)) and K0(A) = K1(D(Ã)) (where Ã denotes the algebra with a unit adjoined).Note that
K0,K1 are contravariant functors in an obvious way ,if B → A is an injective homomrphism we obtain an
inclusion D(A) ⊂ D(B) .To define this for not necessarily injective morphisms we refer the reader to [23] this
will become much easier when we introduce another representation of K−homology that of fredholm modules
Now we define the index pairing between K-theory and K-homology.(recall the toeplitz extension and what all
of that means there)

• Pairing of K1(A) and K1(A)
An element of K1(A) is given by a projection P ∈ B(H) where H is an ample representation space of Ã
and an element of K1(A) is given by a unitary u over some matrix ring Mn(Ã) which can be made to act
on Hn. Let Pn denote the n fold direct sum of P
⟨K1(A),K1(A)⟩ is defined by ⟨[P ], [u]⟩ = index(PnuPn) on PnHn .pnuPn is fredholm because Pnu

∗Pn is
a two sided inverse modulo compacts.(for example in the toeplitz extension the pairing of the toeplitz
projection and the unitary z is 1)

• Pairing of K0(A) and K0(A)
Similarly a pairing of a class in K0(A) given by a unitary U ∈ B(H) with a class in K0(A) given by
differences of classes of projections over Ã is given by ⟨[U ], [p]⟩ = index(pUnp) on pHn.

As we shall see the brown douglas fillmore theorem is essentially the fact that the index pairing defines an
isomorphism

K1(A)→ hom(K1(A),Z)
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For A = C(X) . Assuming this is true we need two additional facts first.
The pointwise determinant gives an isomorphism of K1(C(X)) ∼= H1(X) where H1(X) is the group [X,C− 0]
(under pointwise multiplication).
H1(X) is freely generated by the functions z − λ where λ is some point in a bounded component of C\X (we
choose one point for each).
Proof of the brown douglas fillmore theorem:
As we have already seen Ext(X) ∼= K1(C(X)) the correspondence is that for T ∈ Ext(X) one get’s an in-
jective extension C(X) → Q(H) that is semisplit and is given by an abstract toeplitz extension which is
in turn given by a projection P on H1 where PH1 = H. The representation of C(X) on H1 is given
by the functional calculus on the normal operator T1 (where the identity function z goes to T1 ,note that
by definition PT1P ∼ T ). If [f ] ∈ H1(X) ∼= K1(C(X)) it is easy to see that the index pairing between
[f ] and [P ]K1(C(X)) ↔ [T ]Ext(X) is given by index(Pf(T1)P ). In particular if f = z − λ then this is just
index(P (T1 − λI)P ) = index(T − λI : H → H). The bdf theorem is a restatement of the fact that the index
function gives an isomorphism K1(C(X))→ hom(K1(C(X)),Z) = hom(H1(X),Z).
The proof of the fact that K1(A) → hom(K1(A),Z) is an isomorphism for some C∗ algebra (or a rationalized
version of this) is algebraic topological in nature and is done in a way similar with poincare duality.
Similarly to the bott periodicity and six term exact sequence in K theory and there is another six term exact
sequence in K homology (which is a special case of that in KK theory)

K1(A/J) K1(A) K1(J)

K0(J) K0(A) K0(A/J)

. One proves that the index pairing is compatible with the boundary maps (and functorial homomorphisms
which is trivial) and therefore obtains a morphism of the above exact sequence to the hom(−, Z) version of the
K theory exact sequence . (the latter is not always exact of course but in cases of interests to us one encounters
only free abelian groups,and anyway one can take the rationalized version)
Therefore one can prove for increasingly complicated C∗ algebras that the index pairing defines an isomor-
phism.For A = C it’s a simple excercise.The reader is referred to [23].

1.3.3 Fredholm modules

Now we are going to give an alternative definition of K homology that’s naturally encountered in geometry.
Definition:Fredholm module
A fredholm module (ρ,H, F ) over a separable C∗ algebra A is given by a separable hilbert space H together a
representation ρ of A and an operator F such that.

(F 2 − 1)ρ(a), (F − F ∗)ρ(a), Fρ(a)− ρ(a)F

are compact . As in the case of spectral triples the fredholm module can be ungraded or graded i.e. H = H+⊕H−

is graded together with a grading operator γ and the representation of A is by even operators whereas F is odd.
In fact spectral triples (if we take the C∗ algebra to be unital) are almost the same thing as fredholm modules
given a spectral triple (A,H, D) we can take F = D(I +D2)−1/2 and obtain a fredholm module.
We will also need to define p-multigraded fredholm modules,see [23]
We will get a group out of fredholm modules (or unitary equivalence classes thereof with the obvious meaning
) under direct sum. A fredholm module [x] is degenerate if the above three operators are identically 0.This
should represent the zero element a way to see this is that if we take the countable direct sum [Σx] of [x] then
this still represents a fredholm module and [Σx] + [x] ∼= [Σx] (unitary equivalence).
Therefore we factor out degenarate fredholm modules.
Next we impose that fredholm modules that are operator homotopic (meaning there is a continuous homotopy
of fredholm modules (ρ,H, Ft ,t → Ft should be continous in operator norm. In this way we obtain the K-
homology group KK−p(A) generated by p-multigraded fredholm modules.
We have that this definition of K-homology (for p = −1, 0 ) is equivalent to the one given in last section.

• We have a map K0(A)→ KK0(A).

Take a unitary U ∈ Dρ(A) and form the graded fredholm module (ρ⊕ 0,H⊕H,
(
0 U∗

U 0

)
)

• We also have a map K1(A)→ KK1(A).
Take a projection P ∈ Dρ(A) and form the ungraded fredholm modules (ρ,H, 2P − 1)
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The above maps are isomorphisms ,towards this : Every fredholm module [x] ∈ KK−p(A) has an additive in-
verse fredholm module [xop] (the one with opposite multigrading and opposite operator F op ) such that [x⊕xop]
is homotopic to a degenerate element.Therefore any class in KK−p(A) is represented by a single fredholm mod-
ule.
(two fredholm modules differ by compact perturbation if (F−F ′)ρ(a) is compact these are obviously homotopic)

Lemma :Every fredholm module (ρ,H, F ) is homotopic to one (ρ,H, F ′) such that F ′ is self adjoint and
||F ′|| ≤ 1:

First take F+F ′

2 that is a compact perturbation therefore assume that F is already self adjoint. Next take
ϕ(F ) (for the function ϕ(λ) = λ, λ ∈ [−1, 1], ϕ(λ) = −1 if λ ≤ −1 and ϕ(λ) = 1 if λ ≥ 1) ϕ(F ) is a com-
pact perturbation of F because they project to the same element in the quotient C∗ algebra D(A)/I where
I = {T ∈ D(A)|Tρ(a) ∈ K(H)
Normalization of fredholm modules : A Fredholm modules is normalized if F − F ∗ = F 2 − 1 = 0 (For
example the above maps produce normalized fredholm modules) Any class in KK−p(A) is represented by a
normalized fredholm module.

Continue from the last lemma and take the equivalent fredholm module (ρ⊕0,H,
(

F (1− F 2)1/2

(1− F 2)1/2 −F

)
)

Without too much additional effort one can prove that the above maps are isomorphic. Inspecting the above
one sees that we can actually define K homology with normalized fredholm modules.

The index pairing

As we did before we can directly define an index pairing between KK(A) and K theory (assume A is unital the
nonunital case is similar)

• Pairing of KK0(A) and K0(A)
Take a class in KK0(A) represented by a graded fredholm module (ρ,H, F ) where H = H+ ⊕ H− and

F =

(
0 F−

F+ 0

)
and a class [p] ∈ K0(A) where p is a projection in Mn(A) which can be made to act

evenly on Hn = (H+)n ⊕ (H−)n as P = ρ(p). The index is given by

index((P (F+)nP ) : (H+)n → (H−)n)

Note that P (F−)nP is an inverse modulo compacts ,this pairing has a simple geometrical meaning as we
shall see (like that described in the twisting of dirac operators in the section about spectral triples)

• Pairing of KK1(A) and K1(A)
Take a class in KK1(A) represented by an ungraded fredholm module (ρ,H, F ) and a class [u] ∈ K1(A) for
a unitary u ∈Mn(A) which acts on Hn as ρ(u) = U .Denote P = 1+F

2 it is a projection up to compacts.The
index is given by:

index(PnUPn − (1− Pn)) : Hn → Hn

Note that PnUPn − (1− Pn) is essentially unitary.

The above are well defined pairings between abelian groups and they are exactly the same as the ones defined
before (in the second one we need to take a normalized fredholm module so that P is actually a projection). In
a subsequent section we are going to see how this pairing can be computed using chern charachters and prove
index theorems in the context of cyclic cohomology and homology.

The product

We are going to construct a product KK(A1) × KK(A2) → KK(A1 ⊗ A2) which we are going to interpret
geometrically later.This construction is at the heart of KK theory.
We need some things first: We know that a self-adjoint operator is fredholm if and only if 0 is not in the essential
spectrum ,is not an accumulation point of the (essential ) spectrum ,the following is an immediate consequence
of this.
An odd ,self adjoint operator F on a graded hilbert space H is fredholm iff for some ϵ > 0 F 2 − ϵI is positive
in Q(H)
We usually care about index(F+) which is just dim(kerF )+ − dim(kerF )− (the graded dimension), we will
denote this just by index(F ).

If FF ′ + F ′F is positive in Q(H) then index(F ) = index(F ′):
t → cos(π2 t)F + sin(π2 t)F

′ is a homotopy of graded fredholm operators. The product of two classes given by
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fredholm modules (ρ1,H1, F1) and (ρ2,H2, F2) should be given by a fredholm module whose hilbert space and
representation are given by tensor products H1 ⊗ H2 and ρ1 ⊗ ρ2 .It remains to determine the operator F ,
intiutively the following relation between the indices should hold index(F ) = index(F1)index(F2).
Definition: An operator F on H1 ⊗H2 is alligned with F1 and F2 if

F (F1 ⊗g I) + (F1 ⊗g I)F ≥ 0 modulo compacts

F (I ⊗g F2) + (I ⊗g F2)F ≥ 0 modulo compacts

(⊗g is the graded tensor product of operators :T1 ⊗g T2(v1 ⊗ v2) = (−1)deg(T2)deg(v1)T1v1 ⊗ T2v2)
There exist such fredholm operators and any of them has index index(F1)index(F2).
F = F1 ⊗g I + I ⊗g F2 is aligned with F1, F2 (for example F (F1 ⊗g I) + (F1 ⊗g I)F = 2(F 2

1 ⊗g I) ≥ 0. To show
F is fredholm note that for small ϵ:

F 2 − ϵI = (F 2
1 − ϵI)⊗g I + I ⊗g F 2

2 = F 2
1 ⊗g I + I ⊗g (F 2

2 − ϵI) ≥ 0 moduloK(H1)⊗ B(H2),B(H1)⊗K(H2)

Lemmae A1,A2 show that it is positive modulo K(H1) ⊗ K(H2) = K(H1 ⊗ H2).Therefore is fredholm by the
above.
Lemma A1: If I, J are ideals in a C∗ algebra and a is positive modulo both then it is positive modulo I ∩ J :
Positivity of a modulo an ideal is equivalent to a− = a−|a|

2 ∈ I
Lemma A2: If I, J are closed ideals then I ∩ J = IJ
write positive self adjoint elements in I ∩ J as squares of elements. If F ′ is another graded fredholm operator
aligned with F1, F2 then FF ′ +F ′F ≥ 0 by construction and they have the same index.To determine the index
of F note that kerF = kerF 2 = ker(F 2

1 ⊗g I + I ⊗g F 2
2 ) = kerF1 ⊗ kerF2

F = F1 ⊗g I + I ⊗g F2 is not yet the product we are looking for cause it doesn’t satisfy F 2 − I but modifying
it by adding ”weights” is the actual construction of the product.
The weights will be positive operators N1, N2 on H1 ⊗H2 with the following properties:
N2

1 +N2
2 = I

N1, N2 commute modulo compact operators with F1 ⊗g I, I ⊗g F2

N1(F1 ⊗g I)2 ∼ N1 and N2(I ⊗g F2) ∼ N2

These are obtained with kasparov technical theorem.
Then

F = N
1
2
1 (F1 ⊗g I)N

1
2
1 +N

1
2
2 (I ⊗g F2)N

1
2
2

defines an odd fredholm operator that is aligned with F1, F2 and F 2 ∼ I. Now we do these in the context of
fredholm modules we .
In analogy with a previous statement we have the following important lemma :
Important lemma: If (ρ,H, F0) ,(ρ,H, F1) are fredholm modules such that ρ(a)(F0F1+F1F0)ρ(a

∗) ≥ 0 mod-
ulo compacts for every a ∈ A then F0, F1 are operator homotopic.

Proof:Denote by I ⊂ D(A) the ideal of T such that Tρ(a), ρ(a)T ∈ K(H).
F0F1 + F1F0 commutes modulo I with F0, F1

ρ(a)(F0F1+F1F0)ρ(a
∗) ≥ 0 modulo compacts implies that there is a positive operator S such that S− (F0F1+

F1F0) ∈ I ,this follows from the lemma:
If T ∈ D(A) is selfadjoint modulo I (which is the case for F0F1 + F1F0) and ρ(a)Tρ(a

∗) ≥ 0 modulo compacts
then T is positive modulo I.
Take (T +T ∗)/2 therefore it suffices to prove it for T self-adjoint.Write T = T+−T− then T+T− = T−T+ = 0
and for any a, R = ρ(a)Tρ(a∗) = ρ(a)T+ρ(a∗)− ρ(a)T−ρ(a∗) = R+ −R− and R+R−, R−R+ are compact.We
then get R− is compact therefore T− ∈ I.
The path

Ft = (cos tF0 + sin tF1)(1 + cos t sin tS)−
1
2

is an operator homotopy between F0, F1 We say that the fredholm module (ρ1 ⊗ ρ2 = ρ,H1 ⊗ H2 = H, F ) is
aligned with (ρ1,2,H1,2, F1,2) if

ρ(a)(F (F1 ⊗g I) + (F1 ⊗g I)F )ρ(a∗) ≥ 0 modulo compacts

ρ(a)(F (I ⊗g F2) + (I ⊗g F2)F )ρ(a
∗) ≥ 0 modulo compacts

and if ρ(a)F derives K(H1) ⊗ B(H2) Then (ρ,H, F ) represents the product. An F is constructed using the
sort of construction described above and then the above lemma is used to show that any other F satisfying the
above is operator homotopic to the one we constructed.The details are omitted.
This product is associative and the unit element is given by the generator in KK0(C)
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Fredholm modules arising from geometry

K homology originally was developed from abstracting the properties of elliptic operators.
Every p-multigraded elliptic pseudodifferential operator P on sections of a p-multigraded vector bundle S over
M gives rise to a p-multigraded fredholm module (ρ, L2(S), ϕ(P )) in KK−p(C0(M)) where C0(M) acts as
multiplication by functions, and ϕ is a normalizing odd function such that ϕ(t) → ±1 when t → ±∞ such as
tanh. Any two normalizing functions give the same class.
The kasparov product of the fredholm modules given by elliptic operators D1, D2 is given by the fredholm
module of the operator D1×D2 = D1⊗g I + I ⊗g D2 on the bundle S1⊗S2. One has two check the conditions
of the kasparov product ,delicate analysis is involved.
In geometric terms the index pairing between a K homology class given by the dirac operator D (graded or
ungraded) and a K theory class given by a vector bundle E is the index of the operator DE .For example about
the pairing of KK0(C(M)) and K0(C(M)) ∼= K0(M)if we represent a vector bundle [E] by a projection in
MN (C(M)) then we get the index of the operator Pϕ(D)nP : PS ⊗Cn → PS ⊗Cn which is the same thing as
the index of the operator ϕ(PDnP ) since these are compact perturbations of each other which is the same thing
as the index of ϕ(DE) since DE and PDnP have the same symbol and are therefore compact perturbations of
each other and the same thing as the index of DE by the spectral decomposition.

1.4 KK theory

KK theory is a generalization of both K homology and K theory The index pairing as well as the product we
saw in the last section are special cases of the product in KK theory. It uses hilbert modules to be defined so
let’s review this material first. See also [3],[11],[13],[26],[25]

1.4.1 Hilbert modules

Let A,B be a C∗ algebras Defintion :A Hilbert B module is a complex vector space E which is also a right B
module equiped with a B valued inner product ⟨, ⟩ which is linear in the second variable (and conjugate linear
in the first such that the following hold.:

• ⟨x, yb⟩ = ⟨x, y⟩b (and ⟨xb, y⟩ = b∗⟨x, y⟩)

• ⟨x, y⟩∗ = ⟨y, x⟩

• ⟨x, x⟩ ≥ 0 and 0 iff x = 0

The norm ||x|| = ||⟨x, x⟩|| 12 turns E into a normed vector space which should be complete. If not we refer to it
as a pre-hilbert module,
We have classical inequalities :

||eb|| ≤ ||e||||b| and ||⟨e, f⟩|| ≤ ||e||||f ||

These show that a pre hilbert module can be completed into a hilbert module.
Examples include :

• B itself is a hilbert B-module with inner product ⟨a, b⟩ = a∗b

• HB the module of sequences (b1, b2, b3, ...) such that the inner product ⟨(a1, a2, ...), (b1, b2, ...)⟩ =
∑
a∗i bi

converges in B. When B = C this is just l2

For E1, E2 hilbert B modules we denote LB(E1, E2) the space of linear maps that are also B-module maps
such that T : E1 → E2 has an adjoint :⟨Te1, e2⟩ = ⟨e1, T ∗e2⟩. (this is not always the case). One shows with the
principle of uniform boundedness that T is actually bounded. The norm satisfies ||T || = ||T ∗|| and LB(E1, E2)
is closed in this norm. Furthermore LB(E,E) = LB(E) is a C∗ algebra.
The generalization of compact operators is the subspace KB(E1, E2) ,the closed linear span of maps of the form
Θx,y : E1 → E2 (where x ∈ E2 and y ∈ E1) where Θx,y(e1) = x⟨y, e1⟩. KB(E) is an ideal in LB(E) and we
have that the multiplier algebraM(KB(H)) is just LB(H)
Kasparov stabilization theorem :If E is a countably generated Hilbert B-module then E ⊕HB ∼= HB
We have the following constructions with hilbert B modules: We denote E1 ⊕ E2 the direct sum hilbert B
module.
Pushout
If f : B → A is a surjective homomorphism between C∗ algebras then we have the pushout f∗(E) hilbert A
module defined as follows :
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Denote by N the submodule of x such that f(⟨x, x⟩) = 0 and then consider the prehilbert A-module E/N with
inner product ⟨x+N, y +N⟩ = f(⟨x, y⟩). ( You will need two facts to see why this works first f sends positive
elements to positive elements and the cauchy schwarz inequality for the inner product f(⟨, ⟩). )Then complete
E/N to get f∗(E) .The reader is encouraged about what this does in simple situations.
Internal tensor product .
If E is a hilbert B module and F is a hilbert A module and ϕ : B → LA(F ) is a *-homomorphism (which makes
F an A,B bimodule) We form the algebraic tensor product E ⊗B F which is a right A module in an obvious
way and we define an A valued inner product ⟨e1 ⊗ f1, e2 ⊗ f2⟩ = ⟨f1, ϕ(⟨e1, e2⟩)f2⟩ which is well defined and
A-linear. As before consider the A-submodule N of E⊗B F of z such that ⟨z, z⟩ = 0 and complete the quotient
pre-hilbert A module E ⊗B F/N to get E ⊗ϕ F .
Every F ∈ LB(E) corresponds via a *homomorphism to a F ⊗ϕ I ∈ LA(E⊗f F ) (It suffices to check that F ⊗ I
maps N to itself but this holds because it is adjoinable)
We have that the pushout f∗(E) is just the internal tensor product with A via f : B → LA(A): E ⊗f A .The
above homomorphism takes KB(E) to KA(E ⊗f A) in this case.
External tensor product.
There is also an external tensor product of a hilbert B module E and a hilbert C module F yielding a hilbert
B ⊗ C module E ⊗ F . Assume that B or C nuclear so that the tensor product is unique. .

stabilization

A Hilbert B-module E is called countably generated when there is a countable set {xn} in E such that span
of the set {xnb : n ∈ N, b ∈ B} is dense in E. A set {xn} in E with this property is called a set of generators for E.

[Kasparov’s stabilization theorem]. If E is a countably generated Hilbert B-module, then E ⊕HB ≈ HB .
Let {ηn} ⊆ E be a countable set of generators for E, chosen such that for each n ∈ N, ηn = ηm for infinitely
many other m ∈ N. After normalizing each ηn we can assume that ∥ηn∥ ≤ 1 for all n. Let ϵi be the element
of HB whose coordinates are all zero, except at the i-th place where there is 1 , the unit in B. Define
T : HB → E ⊕ HB to be the element of LB (HB , E ⊕HB) given by T (ϵi) =

(
2−iηi, 4

−iϵi
)
, i ∈ N. Then

T =
∑
i 2

−iΘ(ηi,2−iϵi),ϵi ∈ KB (HB , E ⊕HB). Fix n ∈ N. For every other m ∈ N such that ηn = ηm we have
that (ηn, 2

−mϵm) = T (2mϵm) ∈ RanT . Since there are infinitely many such m, we see that (ηn, 0) is contained
in the closure of Ran T . But then (0, ϵn) = 4n (T (ϵn)− 2−n (ηn, 0)) is also in this closure. Since T is a B-module
map and {(ηn, 0) , (0, ϵn) : n ∈ N} generates a dense B-submodule of E ⊕ HB , we conclude that T has dense
range. Note that

T ∗T =
∑
i,j

2−(i+j)Θϵi(<ηi,ηj>+<2−iϵi,2−jϵj>,ϵj

=
∑
i

4−2iΘϵi,ϵi +

(∑
i

2−iΘ(ηi,0),ϵi

)∗(∑
i

2−iΘ(ηi,0),ϵi

)
≥
∑
i

4−2iΘϵi,ϵi .

The latter operator is obviously positive and has dense range in HB so it is strictly positive by . Since
T ∗T dominates this element in KB (HB) it must also be strictly positive, i.e. have dense range by . Therefore

|T | = (T ∗T )
1
2 has also dense range. Define V : HB → E ⊕HB to be the element in LB (HB , E ⊕HB) given by

V (|T |x) = Tx, x ∈ HB . Since
⟨V (|T |x), V (|T |y)⟩ = ⟨Tx, Ty⟩
= ⟨x, T ∗Ty⟩ = ⟨|T |x, |T |y⟩

for all x, y ∈ HB and RanV contains RanT , we conclude that V defines the desired isomorphism.

1.4.2 The KK-groups

The definition of KK theory is similar to the definition of K-homology via fredholm modules ,except that now
instead of hilbert spaces we are using hilbert modules.
Definition :An (A,B) hilbert bimodule is a hilbert B module E toghether with a representation A → LB(E).
We also have the notion of graded hilbert bimodule if E is graded (say with grading operator γ and the
representation of A is even.
A Kasparov A,B-module is a triple (ϕ,E, F ) where E is a (graded or ungraded) hilbert (A,B) bimodule and
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F ∈ LB(E) is an element of degree 1. such that :

(F 2 − 1)a, (F − F ∗)a, [F, a] ∈ KB(E)

Denote E(A,B) the set of kasparov A,B-modules .
These come with an obvious direct sum.
A degenerate kasparov module is one for which the above 3 operators are 0. Denote these by D(A,B).

The pullback of E = (E, ϕ, F ) ∈ E(A,B) by ψ : C → A is : ψ∗(E) = (E, ϕ ◦ ψ,F ) ∈ E(C,B)
The pushforward by f : B → C is defined by the kasparov module f∗(E) = (ϕ⊗I, E⊗fC,F⊗f I) ,by the remarks
on the internal tensor product this is still a kasparov module in E(A,C). We have that g∗(f∗(E)) ∼= (g ◦ f)∗(E).
Two Kasparov A,B-modules E1, E2 are isomorphic if there is an isometry of (graded) hilbert B modules inter-
twining the the representations of A and the operators F1, F2 .

Homotopy Let IB denote B ⊗ C[0, 1] we have obvious evaluation homomorphisms πt : IB → B
Two Kasparov A,B modules are homotopic if there is a kasparov A, IB-module such that they are isomorphic
to the pushforwards of it under the evaluation homomorphisms π0, π1.
Slightly weaker relation than this is operator homotopy two kasparov modules (E, ϕ, F0) and (E, ϕ, F1) are
operator homotopic if there is a homotopy of kasparov modules (E, ϕ, Ft) .This relation is contained in the
former , just take The A, IB bimodule (IE, Iϕ, IF ) .(The A, IB bimodule structure is (Iϕ(a)e)(t) = ϕ(a)e(t)
and eb(t) = e(t)b(t) and IF acts as IF (e)(t) = Ftet.)

The KK-group as in the case of K homology we turn the set of isomorphism classes of kasparov modules
into a group under direct sum of kasparov modules and the additional requirements that degenerate modules
to represent the zero element and homotopic elements represent the same element. It is a nontrivial result that
if one uses the equivalence relation of operator homotopy instead of homotopy then one gets the same groups
which we shall denote by KK(A,B). We say groups because as in K homology for every kasparov module there
is a similarly defined module which is shown to be an additive inverse.Pushforwards and pullbacks descend to
well defined maps on KK groups.
It holds that degenerate modules are homotopic to 0. For this take a degenerate module (E, ϕ, F ) and then
take the A-IB module (E ⊗ C0[0, 1), Iϕ, IF ) giving a homotopy to the 0 module.
We have the analogous lemma as in K homology that if :
(E, ϕ, F ), (E, ϕ, F ′) ∈ E(A,B) and ϕ(a)(FF ′ + F ′F )ϕ(a)∗ ≥ 0 modulo KB(E) then F, F ′ are operator homo-
topic. The proof are exactly the same.
For example KK(C,C) is easily seen to be Z which follows from our result that the index is a bijective map
from operator homotopy classes of fredholm operators to Z.

1.4.3 The Product

The most general form of the product is

Kk(A1, B1 ⊗D)×KK(A2 ⊗D,B2)→ KK(A1 ⊗A2, B1 ⊗B2)

We shall see how to construct the product KK(A,B) ×KK(B,C) → KK(A,C). Take classes in KK(A,B)
and KK(B,C) given by kasparov modules (E1, ϕ, F1) and (E2, f, F2) ,we form the internal tensor product
E12 = E1 ⊗f E2 (which has an obvious grading) and is a hilbert A,C bimodule.
What should a product operator F1 × F2 be ,If we try F1 ⊗ I + I ⊗ F2 as we did for K-homology then we run
into trouble because I ⊗ F2 is not a well defined operator. For that we have the notion of an F2 connection:
Let Tx ∈ LB(E2, E12) be given by Tx(e2) = x⊗f e2 the adjoint is given by T ∗

x (e1 ⊗f e2) = f(⟨x, e1⟩)e2.

Consider the operator T̃x =

(
0 T ∗

x

Tx 0

)
∈ LB(E2 ⊕ E12) Note that the (grading) degrees of Tx, T

∗
x , T̃x

An element F ∈ LB(E12) (of degree 1) is called an F2 connection when [T̃x, F2 ⊕ F ] ∈ KB(E2 ⊕ E12) (graded
commutator) for all x ∈ E1 This means in particular that

TxF2 − FTγ1(x) ∈ KB(E2, E12)

F2T
∗
x − T ∗

γ1(x)
F ∈ KB(E12, E2)

F2 connections always exist :write later

Definition of the kasparov product : The Kasparov product of E1 = (E1, ϕ1, F1) ∈ E(A,B) and
E2 = (E2, ϕ2, F2) ∈ E(B,C) is E12 = (E12, ϕ⊗ϕ2

id = ϕ̃, F ) ∈ E(A,C) for any F satisfying :

F is an F2 − connection
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ϕ̃(a)((F1 ⊗ϕ2 I)F + F (F1 ⊗ϕ2 I))ϕ̃(a)
∗ ≥ 0 modKC(E12)

Kasparov products do always exist ,first one finds an F2 connection G and sets F =M(F1 ⊗ϕ2 I) +NG where
M,N are positive weights that are obtained through kasparov technical theorem. Then one shows that any F ′

satisfying the above is homotopic to F by using the important lemma .
This then descends to a product KK(A,B)×KK(B,C)→ KK(A,C) ,we are not going to reproduce the entire
procedure here as it wouldn’t have been much enlightening to the reader who is refered to [skandalis,elements
of kk theory] for the details.
we just review the basic ingredients.

Construction of the Kasparov product

Connection always exist

See [11]

a) For any G ∈ L(E) satisfying [d,G] ∈ R (E ′) (∀d ∈ D), there exist G connections on E . b) The space of
G-connections is affine; the associated vector space is the space of 0 connections:{

Ω ∈ L (E ′′) ,Ω(k⊗̂1) ∈ R (E ′′) and (k⊗̂1)Ω ∈ R (E ′′) for all k ∈ R(E)
}
.

c) If G̃ is a G-connection and k ∈ R(E) then [G̃, k⊗̂1] ∈ R (E ′′).
Proof. If P ∈ LA (E1) is a projection of degree zero and F ∈ LB (E12) is an F2-connection for E1 then the

operator (P ⊗f id)F (P ⊗f id) is an F2-connection for PE1. To see this it suffices to observe that

(P ⊗f id)Tx = Tx,

(P ⊗f id)TSE1
(x) = TSE1

(x), x ∈ PE1,

and that
(P ⊗f id)KB (E2, E12) ⊆ KB (E2, PE1 ⊗f E2) ,

KB (E12, E2) (P ⊗f id) ⊆ KB (PE1 ⊗f E2, E2) .

For example, for x ∈ PE1, we find

TxF2 − (P ⊗f id)F (P ⊗f id)TSS1
(x)

=

= TxF2 − (P ⊗f id)FTSE1
(x)

= (P ⊗f id)
(
TxF2 − FTSE1

(x)

)
∈ (P ⊗f id)KB (E2, E12)

⊆ KB (E2, PE1 ⊗f E2) .

Therefore by the stabilization theorem it is enough to construct a G-connection on E = H⊗̂CD̃ ( D̃ is obtained
from D by adjoining a unit which acts as the identity in E ′. But then G̃ = 1H⊗̂CG ∈ L

(
E⊗̂D̃E ′

)
= L

(
H⊗̂CE ′

)
is a G-connection (the set of ξ ∈ E such that conditions of Definition A. 1 are satisfied is a closed D̃ submodule
of E as [D̃,G] ∈ R (E ′), and contains H⊗̂CC

)
. Call a connection of the form

(
P ⊗̂D1E′

) (
1H⊗̂CG

) (
P ⊗̂D1E′

)
a

Grassmann connection.
(b) is trivial
(c) It is enough to prove it for k = θξ,η. But θξ,η⊗̂1 = TξT

∗
η .

Kasparov techincal theorem

quasicentral approximate units

The following is going to be very useful. Let J be an ideal in a C∗-algebra B. An approximate unit {uα} for J
is quasicentral for B if ∥buα − uαb∥ → 0, for every b ∈ B. As is the case with ordinary approximate units, if B
is separable we may require our quasicentral approximate unit to be a sequence, while if B is non-separable we
must settle for a net.

Existence of quasicentral units:

If J is an ideal in a separable C∗-algebra B then there is an approximate unit for J which is quasicentral
for B. In fact, if {un} is any approximate unit for J then there is a quasicentral approximate unit {vn} for
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which each vn is a finite convex combination of the elements {un, un+1, . . .}.

Proof: [HR]
The following is proved by the use of the above device
Kasparov technical theorem: Let B be a graded σ-unital C∗-algebra, let E1, E2 be σ-unital subalgebras of
M(B) and let F be a separable closed linear subspace ofM(B). Assume that

1. β
B
(Ei) = Ei, i = 1, 2, and β

B
(F) = F ,

2. E1E2 ⊆ B

3. [F , E1] ⊆ E1.

Then there exist elements M,N ∈M(B) of degree 0 such that N +M = 1, N,M ≥ 0,ME1 ⊆ B,NE2 ⊆ B
and [N,F ] ⊆ B
Proof:[elements of KK theory]

existence

Let (E , F ) ∈ KK(A,D) and (E ′, F ′) ∈ KK(D,B). Put E ′′ = E⊗̂DE ′. It is an A,B bimodule.
Theorem: There exists an F ′ connection F ′′ (of degree one) on E such that: (a) (E ′′, F ′′) is a Kasparov bimodule.
(b)

[
F ′′, F ⊗̂1

]
= P + h where P ≥ 0 and

h ∈ ℑ = {k ∈ L (E ′′) , kA ⊂ R (E ′′) , Ak ⊆ R (E ′′)} .

Such a connection is unique up to operatorial homotopy; the class of (E ′′, F ′′) in KK(A,B) is the Kasparov
product(E , F )⊗D (E ′, F ′).

Proof. Existence. Let G be an F ′ connection on E . Let E1 be the C∗-subalgebra of L (E ′′)
generated by R(E)⊗̂1 and R (E ′′). Let E2 be the (separable) C∗-subalgebra of L (E ′′)
generated by

{
G2 − 1, G−G∗, [G,F ⊗̂1], [G, a](a ∈ A)

}
. Let F be the (separable) vector space spanned by

F ⊗̂1, G and A. Finally put E = R (E ′′). As all elements of E2 are 0 -connections E1 · E2 ⊆ E. Using A. 2 (c)
we get [F , E1] ⊆ E1. Apply kasparov technical theorem and get M,N ∈ L (E ′′) ,M ≥ 0, N ≥ 0,M + N = 1
such that ME1 ⊆ E,NE2 ⊆ E, [M,F ] ⊆ E. Put then F ′′ =M1/2F ⊗̂1 +N1/2G. One gets easily that (E ′′, F ′′)
is a Kasparov bimodule. As M · E1 ⊆ E,M1/2 is a 0 -connection; as [M,F ⊗̂1] ∈ E,M1/2(F ⊗̂1) is also a
0 -connection. By A. 2 (b) N1/2 is a 1-connection. Hence F ′′ is an F ′ connection. Finally

[
F ′′, F ⊗̂1

]
=

M1/2[F ⊗̂1, F ⊗̂1] modulo R (E ′′). But as 2M1/2
(
F 2⊗̂1

)
= 2M1/2 modulo ℑ we get the positivity condition.

uniqueness

Uniqueness. Let first G0 and G1 be two F ′ connections. Let E2 be the C∗-subalgebra of L (E ′′) generated by{
G0 −G1, G

2
0 − 1, G0 −G∗

0,
[
G0, F ⊗̂1

]
, [G0, a] a ∈ A

}
and F the subspace spanned by F ⊗̂1, G0, G1, A. Apply

then kasparov technical theorem (with E1 and E as defined above). Put F ′′
t =M1/2(F ⊗̂1)+N1/2 ((1− t)G0 + tG1).

It now remains to prove that if G is an F ′ connection satisfying (a) and (b), and if M,N are constructed as
above, we can join G and F ′′ = M1/2(F ⊗̂1) + N1/2G by a norm continuous path of G-connections satis-
fying (a) and (b). Let Qt = (tM)1/2(F ⊗̂1) + (1 − tM)1/2G. Write [F ⊗̂1, G] = P + h with P ≥ 0 and

h ∈ ℑ. Put Zt = 1 + t1/2(1 − t)1/2P , and F ′′
t = QtZ

−1/2
t . One checks easily that |Qt|2 − Zt ∈ ℑ. More-

over [A,Qt] ⊂ R (E ′′) ; hence [A,Zt] ⊂ R (E ′′). Thus [A,F ′′
t ] ⊂ R (E ′′), and |F ′′

t |
2 − 1 = Z

−1/2
t

(
|Qt|2−

Zt)Z
−1/2
t ∈ ℑ. Also [Qt, Zt] ∈ ℑ, so that F ′′

t − F ′′∗
t ∈ ℑ. We thus get that (E ′′, F ′′

t ) is a Kasparov A,B
bimodule. As Qt is a G-connection and P is a 0 -connection, F ′′

t is a G-connection. Finally [F ⊗̂1, P ] ∈ ℑ
so that

[
F ⊗̂1, Z−1/2

t

]
∈ ℑ and hence

[
F ⊗̂1, F ′′

t

]
= Z

−1/4
t

(
2(tM)1/2 + (1− t)1/2P

)
Z

−1/4
t + ht where ht ∈ ℑ.

Thus F ′′
t is the desired homotopy between F ′′

0 = G and F ′′
1 = F ′′.

1.4.4 Properties

The basic properties of the product can be summarized in the following: 3.2. Abstract properties of KK(A,B).
Let A an B be two C∗-algebras. In order to simplify our presentation, we assume that A and B are separable.
Here is the list of the most important properties of the KK functor. - KK(A,B) is an abelian group. -
Functorial properties The functor KK is covariant in B and contravariant in A : if f : B → C and g : A→ D
are two homomorphisms of C∗-algebras, there exist two homomorphisms of groups:

f∗ : KK(A,B)→ KK(A,C) and g∗ : KK(D,B)→ KK(A,B).
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In particular id∗ = id and id∗ = id. - Each *-morphism f : A → B defines an element, denoted by [f ], in
KK(A,B). We set 1A := [idA] ∈ KK(A,A). - Homotopy invariance KK(A,B) is homotopy invariant.

Recall that the C∗-algebras A and B are homotopic, if there exist two *-morphisms f : A→ B and g : B → A
such that f ◦ g is homotopic to idB and g ◦ f is homotopic to idA. Two homomorphisms F,G : A → B are
homotopic when there exists a ∗-morphism H : A→ C([0, 1], B) such that H(a)(0) = F (a) and H(a)(1) = G(a)
for any a ∈ A. - Stability If K is the algebra of compact operators on a Hilbert space, there are isomorphisms:

KK(A,B ⊗K) ≃ KK(A⊗K, B) ≃ KK(A,B).

More generally, the bifunctor KK is invariant under Morita equivalence. - Suspension If E is a C∗-algebra
there exists an homomorphism

τE : KK(A,B)→ KK(A⊗ E,B ⊗ E)

which satisfies τE ◦ τD = τE⊗D for any C∗-algebra D. - Kasparov product There is a well defined bilinear
coupling:

KK(A,D)×KK(D,B) → KK(A,B)
(x, y) 7→ x⊗ y

called the Kasparov product. It is associative, covariant in B and contravariant in A: if f : C → A and
g : B → E are two homomorphisms of C∗-algebras then

f∗(x⊗ y) = f∗(x)⊗ y and g∗(x⊗ y) = x⊗ g∗(y).

If g : D → C is another *-morphism, x ∈ KK(A,D) and z ∈ KK(C,B) then

h∗(x)⊗ z = x⊗ h∗(z).

Moreover, the following equalities hold:

f∗(x) = [f ]⊗ x, g∗(z) = z ⊗ [g] and [f ◦ h] = [h]⊗ [f ].

In particular
x⊗ 1D = 1A ⊗ x = x.

The usual K-theory groups appears as special cases of KK-groups:

KK(C, B) ≃ K0(B),

while the K-homology of a C∗-algebra A is defined by

K0(A) = KK(A,C).

Any x ∈ KK(A,B) induces a homomorphism of groups:

KK(C, A) ≃ K0(A) → K0(B) ≃ KK(C, B)
α 7→ α⊗ x

In most situations, the induced homomorphism KK(A,B) → Mor (K0(A),K0(B)) is surjective. Thus one
can think of KK-elements as homomorphisms between K groups.

Morita equivalence recall ,the notion of morita equivalence of C∗ algebras we introduced earlier.A morita
equivalence gives a KK-equivalence as follows .
If C∗ algebras A,B are morita equivalent and AEB is an imprimitivity bimodule then the kasparov module
given by AEB concentrated in degree 0. Together with the 0 operator gives the KK equivalence of A,B. Note
that A acts as KB(E) because ⟨E,E⟩A = A and any ⟨x, y⟩A acts as ⟨x, y⟩Ae = x⟨y, e⟩B .
The product of AEB and BE

op
A is easily seen to be the identity in KK(A,A).

The KK element of a family of order 0 psueodifferential operators

Let X be a smooth manifold and Y a locally compact parameter space. In this section we shall first interpret
the construction of continuous families, indexed by Y , of pseudo-differential operators on X, as yielding a map
Ψ∗ : K (T ∗X × Y )→ KK(X,Y ). The Kasparov product of two such families can be computed from a formula
at the symbol level see [skandalis]
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1.5 Groupoids ,algebroids, C∗ algebras of groupoids

1.6 Lie groupoids

A Lie groupoid G⇒M is a smooth category (the morphisms ,as well as the objects manifolds).
Namely it consists of two manifolds G and M , called respectively the groupoid and the base, together with:

• two submersions s, r : G→M called respectively the source projection and target projection,

• a smooth immersion map 1: x 7→ 1x,M → G called the object (unit) inclusion map

• and a partial multiplication (h, g) 7→ hg in G defined on the set G ∗G = {(h, g) ∈ G×G | s(h) = r(g)}

• A smooth (involution) inversion map γ → γ−1 where γ−1 is a two sided inverse :γγ−1 = 1r(γ) and
γ−1γ = 1s(γ).

all subject to the following conditions:

1. s(hg) = s(g) and r(hg) = r(h) for all (h, g) ∈ G ∗G

2. s(1x) = r(1x) = x

3. s(γ−1) = r(γ) and r(γ−1) = s(γ)

Also Denote:
The left-translation corresponding to g is Lg : G

s(g) → Gr(g), h 7→ gh;
the right-translation corresponding to g is Rg : Gr(g) → Gs(g), h 7→ hg.
Examples
Any manifold M may be regarded as a Lie groupoid on itself with every element a unity

1. M ×M ⇒M with the obvious groupoid structure is called the pair groupoid.

2. Let q :M → Q be a surjective submersion. Then

R(q) =M ××qM = {(x, y) ∈M ×M | q(x) = q(y)}

is a Lie groupoid on M with respect to the restriction of the pair groupoid structure.

3. The groupoid of homotopy classes of paths between two points Π(M) ⇒M is the fundamental groupoid
of M .

4. Let (E, q,M) be a vector bundle. Let Φ(E) denote the set of all vector space isomorphisms ξ : Ex → Ey
for x, y ∈M . Then Φ(E) is a Lie groupoid on M .

5. Let G × M → M be a smooth action of a Lie group G on a manifold M with r(g × m) = gm and
s(g ×m) = m ,multiplication (g1, g2m) ◦ (g2,m) = (g1g2,m) and object inclusion m→ (1,m).This is the
action groupoid

Definition: A bisection of G is a smooth map σ : M → G which is right-inverse to α : G → M and is
such that β ◦σ :M →M is a diffeomorphism. The set of bisections of G is denoted B(G). A Local bisection is
defined on an open set U ⊂M the set of which is denoted BU (G).There is an obvious way of composing (local)
bisections σ′ ⋆ σ(x) = σ′(r(σ(x)))σ(x). Denote the left and right translations by bisections as Lσ, Rσ
Local bisections exist: For γ ∈ G with s(γ) = x there is x ∈ U a bisection σ : U → G for which σ(x) = γ:

Proof:We just have to pick a subspace of dimension dim(M) of TγG which is transverse to both ker ds and
ker dt.This subspace will be tangent to a submanifold of G for which s, r restrict to local diffeomorphisms
around γ.
Corollary:Let G⇒M be a Lie groupoid. For each x ∈M , rx : Gx →M is of constant rank.

Proof Take g, h ∈ Gx. Then j = gh−1 is defined and so there is a local bisection σ ∈ BUG with r(h) ∈ U and
σ((r(h)) = j.

Now Lσ : GUx → GVx , where V = (r ◦ σ)(U), maps h to g and rx ◦ Lσ = (β ◦ σ) ◦ rx. Hence the ranks of rx
at g and h are equal.
From the constant rank theorem we get: For all x, y ∈ M,Gyx is a closed embedded submanifold of Gx, of G

y

and of G. In particular, each vertex group Gxx is a Lie group.
Also for each x ∈M , the orbit Ox = rx (Gx) is an immersed submanifold of M .Itis isomorphic to the quotient
space of the (right) group action of Gxx on Gx via rx : Gx/G

x
x → Ox.

Composition of local bisections is well defined and has a groupoid structure.This also holds for 1-jets of bisections
,this groupoid J1G will be useful later on.
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Pullback groupoids

Consider (lie) groupoid G⇒M and any map f : N →M . The pullback groupoid is defined as

f⇊(G) = N ×f,r G×s,f N ⇒ N

with the obvious groupoid structure:

• r(x, g, y) = x and s(x, g, y) = y

• (x, g, y) ◦ (y, h, z) = (x, gh, z)

• 1x = (x, 1f (x), x) and (x, g, y)−1 = (y, g−1, x)

If f is transversal to G (see the next section) (which is the case when f is a surjective submersion) then f⇊G
is a lie groupoid.

1.6.1 Lie algebroids

Definition: A Lie algebroid on a manifold M is a vector bundle (A, q,M) together with a vector bundle map
a : A → TM over M , called the anchor of A, and a bracket [, ] :,ΓA × ΓA → ΓA which is R-bilinear and
alternating, satisfies the Jacobi identity, and is such that

[X,uY ] = u[X,Y ] + a(X)(u)Y, (Leibniz rule)

a([X,Y ]) = [a(X), a(Y )],

A vertical vector field on G is one that is tangent to the s-fibers, namely it is s related to the 0 vector field on
M .
Right invariant vector fields on G denoted by XR(G) are vector fields on G tangent to the s-fibers and Rg
related ,this is meaningful since Rg is a diffeomorphism between s-fibers.
We explain ,a section X of A correspnds to a right invariant vector field on G via
The simplest examples of Lie algebroids are Lie algebras, Lie algebra bundles, and the tangent bundle to a
manifold.
Another example :The trivial Lie algebroid with structure algebra g
On TM ⊕ (M × g) define an anchor a = π1 : TM ⊕ (M × g)→ TM and a bracket

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ {X(W )− Y (V ) + [V,W ]}.

Then TM ⊕ (M × g) is a Lie algebroid on M .

The Lie algebroid of a Lie groupoid

The Lie algebroid of G is defined to be the pullback of the subbundle ker(ds) by the object inclusion map.
A = ∪x∈MT1x (Gx) with the natural vector bundle structure overM which it inherits from TG. The Lie bracket
is placed on the module of sections of A via the correspondence between sections of A and right-invariant vector
fields on G.

Γ(A)↔ XR(G)

The anchor map a : A→ TM is given by Tr restricted on the unit space M .
We explain:a vertical vector field on G is one that is tangent to the s-fibers, namely it is s related to the 0

vector field on M .
Right invariant vector fields on G denoted by XR(G) are vector fields on G tangent to the s-fibers and Rg
related ,this is meaningful since Rg is a diffeomorphism between s-fibers.
From the definition we immediately conclude that XR(G) is a Lie subalgebra of all vector fields on G. A section
X of A correspnds to a right invariant vector field XR on G via XR(γ) = TRγ(X(r(γ)) and conversely a right
invariant vector field restricted to M is a section of A.
We immediately get that XR is r-related to a(X) hence we get the second defining identity a([X,Y ]) =
[a(X), a(Y )].Now it remains to prove the Leibniz identity:
For u ∈ C∞(M) : uY ∈ Γ(A) corresponds to (u ◦ r)Y R.Therfore

[X,uY ]↔ [XR, (u ◦ r)Y R] = XR(u ◦ r)Y R + (u ◦ r)[XR, Y R] =

= Tr(XR)(u)Y R + (u ◦ r)[XR, Y R]↔ a(X)(u)Y + [X,Y ]

example: The lie algebroid of the pair groupoid is the tangent bundle lie algebroid.
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The exponential map

For a XΓA consider the flow ϕXt of the right invariant vector field XR.
From the ”relatedness” properties of XR we immediately get that

• s ◦ ϕXt = s namely ϕt is a flow along the s fibers Gx.

• Rg ◦ ϕXt = ϕXt ◦Rg the flow is right invariant

• If ψXt denotes the flow of a(X) then r ◦ ϕXt = ψXt

Starting the flow from the unit space we can get local bisections as suggested by the following:
Let W ⊆ M be an open subset, and take X ∈ ΓWA. Then for each x0 ∈ W there is an open neighbourhood
U of x0 in W , called a flow neighbourhood for X, an ε > 0, and a unique smooth family of local bisections
ExptX ∈ BUG, |t| < ε, such that;

1. d
dt Exp tX

∣∣
0
= X

2. Exp 0X = id ∈ ΓUG

3. Exp(t+ s)X = (Exp tX) ⋆ (Exp sX), whenever |t|, |s|, |t+ s| < ε

4. Exp−tX = (Exp tX)−1

5. {r ◦ Exp tX : U → Ut} is a local 1-parameter group of transformations for a(X) ∈ ΓWTM in U

The exponential map X → ExpX sends local sections of ΓA to local bisections.

pullback lie algebroids

Definition A smooth map f : N → M is transverse to a Lie groupoid G ⇒ M when for all x ∈ N :
Tf (TxN) + a(A)f(x) = Tf(x)M .

Let A be a lie algebroid overM .The pullback Lie algebroid f !A of A over a smooth map f : N →M is described
by the vector bundle TN×Tf,f∗(a)f

∗(A) over N . Namely the fiber over y ∈ N is given by Z⊕X where Z ∈ TyN
and X ∈ Af(y) such that Tf(Z) = a(X).The anchor is given by a!(Z ⊕X) = Z
This should be viewed as the pullback in the category of vector bundles over N of Tf : TN → f∗TM and
f∗(a) : f∗A→ f∗TM .It fits in a pullback square:

f !A A

TN TM

a

Tf

f !A is of course a well defined vector bundle in case f is transverse to A (which is always the case if f is a
surjective submersion). General sections of f !A are expressions of the form :

Z ⊕
(∑

ui ⊗Xi

)
ui ∈ C∞(N), such that T (f) (Z(y)) =

∑
ui(y)a(Xi(f(y))) ∀y ∈ N

The bracket is defined by[
Z1 ⊕

(∑
ui ⊗Xi

)
, Z2 ⊕

(∑
vj ⊗ Yj

)]
=

[Z1, Z2]⊕
(∑

uivj ⊗ [Xi, Yj ] +
∑

Z1 (vj)⊗ Yj −
∑

Z2 (ui)⊗Xi

)
Example The pullback of the lie algebra g over the map M → point is the trivial lie algebroid M × g
Fact: The algebroid of a pullback groupoid (over a transverse map) is the pullback lie algebroid (of the
groupoid).
The s-fiber of f⇊G is identified with N ×f,r Gf(y) the above fact is then clear.We will be mainly interested in
the pullback Lie algebroid as vector bundle or as the infinitesimal object of a Lie groupoid.

representations

Let A be a Lie algebroid on M and let E be a vector bundle, also on M . A representation of A on E is a
morphism of Lie algebroids over M ,

ρ : A→ D(E).

Example:Let E be a vector bundle onM , and let∇ be a flat connection in E . ThenX 7→ ∇X is a representation
of TM on E.
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lie algebroid cohomology

Lie algebroid cohomology H•(A) is defined in direct analogy to de Rham cohomology is defined by the complex
(Γ (∧A∗) ,dA).where dA is the chevalley eilenberg operator:
Explicitly, for ω ∈ Γ

(
∧kA∗)

(dAω) (X1, . . . , Xk+1) =
∑
i<j

(−1)i+jω
(
[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1

)

+

k+1∑
i=1

(−1)i+1a (Xi)ω
(
X1, . . . , X̂i, . . . , Xk+1

)
Of course d2A = 0 in the case of de Rham cohomology for X ∈ Γ(A), on Γ(A∗) there are the insertion operator
iX (of degree -1) the Lie derivative LX (of degree 0) defined on functions as LX(f) = a(X)f and the exterior
derivative dA is of degree 1. These satisfy the usual identities.
dA ◦ iX + iX ◦ dA = LX , [LX ,LY ] = L[X,X] , [LX , iY ] = i[X,Y ]

1.6.2 Lie groupoid cohomology

Lie groupoid cohomology is a generalization of alexander spanier cohomology.(See the section about connes
moscovici index theorem) First we have to define BpG : the space of p-arrows:

BpG = {(g1, . . . , gp) | gi ∈ G, s (gi) = r (gi+1)} .

This is a manifold.
There are p+ 1 face maps, where

∂i : BpG → Bp−1G, i = 0, . . . , p

amounts to ’omitting the i-th base point’. Explicitly,

∂i (g1, . . . , gp) =


(g2, . . . , gp) i = 0

(g1, . . . , gigi+1, . . . , gp) 0 < i < p

(g1, . . . , gp−1) i = p.

For p = 1 we have ∂0(g) = s(g), ∂1(g) = t(g). There are also degeneracy maps ϵi : BpG → Bp+1G,
’repeating the i-th base point’ by inserting a trivial arrow. That is,

ϵi (g1, . . . , gp) = (g1, . . . , gi,mi, gi+1, . . . , gp) .

Definition : The complex (C • (G), δ) of differentiable groupoid cochains is given by

Cp(G) = C∞ (BpG) , δ =

p+1∑
i=0

(−1)i∂∗i

it is not hard to check to verify that δ does indeed square to zero. Of interest to us is the localized version
of these complexes, denoted C•

M (G) whose cochains are the germs of functions on BpG along the p-diagonal
M ⊆ BpG.It’s cohomology is the Lie groupoid cohomology.

The cohomology of C•
M (M ×M) is by definition the alexander spanier cohomology of M .

As in the case of Alexander spanier cohomology there is an isomorphism from Lie groupoid cohomology to Lie
algebroid cohomology:
There is a chain map

Φ : C•
M (G)→ Γ (∧•A∗)

Defined by

Φ(ϕ)(X1, X2, ..., Xk)m =
∑
σ∈Sk

(−1)sgn(σ)RXσ(1)
RXσ(2)

...RXσ(k)
ϕ(m)

Where for X ∈ Γ(A) and ϕ ∈ CkM (G): RXϕ ∈ Ck−1
M (G)

RX(ϕ)(g2, ..., gk) =
d

dτ
ϕ(Exp(τX)(r(g2)), g2, g3, ..., gk)|τ=0

Fact :Φ is a quasi isomorphism ,see [Weinstein,Xu].
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1.7 Groupoid C* algebras

The groupoid C∗ algebra consists of functions onG together with multiplication (compostition) in an appropriate
sense so let:

Ω1/2 be the complex line bundle of half densities Ω1/2(ker ds⊕ ker dr) on the vector bundle ker ds)⊕ ker dr
over G.Notice that for fixed γ ∈ G :

top∧
((ker ds⊕ ker dr)γ) =

top∧
ker dsγ ⊗

top∧
ker drγ

Using this we get
Ω1/2(ker ds⊕ ker dr) ∼= Ω1/2(ker ds)⊗ Ω1/2(ker dt)

The composition rule for sections a, b of this vector bundle is something of the form a ◦ b =
∫
Grγ a(γ1)b(γ

−1
1 γ)

.One way to see this is Is if we consider the manifold G(2) = G ×s,r G of composable pairs with projections

G(2) pr2−−→
pr1

G and multiplication G(2) m−→ G. The convolution product of a, b ∈ Γc(G; Ω
1/2) is defined by inte-

grating pr∗1 a · pr∗2 b over the fibers of m.
The involution i : γ → γ−1 interchanges the subbundles ker ds, ker dt therefore acts naturally on Ω1/2. The
involution ∗ on Γc(G; Ω

1/2) acts as f∗(γ) = i∗(f(γ−1))
For γ ∈ G the fiber m−1(γ) is parametrized by η ∈ r−1(r(γ)) → (η, η−1γ) (or by β ∈ s−1(s(γ)) → (γβ−1, β))
this roughly gives the standard expression a ◦ b =

∫
r−1(r(γ))

a(η)b(η−1γ).

Note that the parametrizations above imply isomorphisms

ker dm ∼= pr∗1(ker dr)
∼= pr∗2(ker ds)

Also it’s easy to see that we have isomorphisms (through right and left compositions)

pr∗1(ker ds)
∼= m∗(ker ds) and pr∗2(ker dr)

∼= m∗(ker dr)

Therefore pr∗1 a,pr
∗
2 b can be identified as sections of

Ω1/2(m∗(ker ds))⊗ Ω1/2(ker dm) and Ω1/2(ker dm)⊗ Ω1/2(m∗(ker dt))

respectively and moreover pr∗1 a · pr∗2 b is a section of

Ω1/2(m∗(ker ds))⊗ Ω1/2(ker dm)⊗ Ω1/2(ker dm)⊗ Ω1/2(m∗(ker dt)) ∼= m∗(Ω1/2)⊗ Ω1(ker dm)

Integrating over the fiber m−1(γ) the density part we get a well defined section of Ω
1/2
γ . Explicit expression of

these are as follows:
For τs ⊗ τr ∈

∧top
ker dsγ ⊗

∧top
ker dtγ ,γ ∈ G and denote γ2 = γ−1

1 γ for γ1 ∈ Gr(γ)

a ◦ b(γ)[τs ⊗ τr] =
∫
Gr(γ)

a(γ1)[Rγ−1
2 ∗(τs)⊗ [•]]b(γ2)[(Rγ ◦ i)∗[•]⊗ Lγ−1

1 ∗(τr)]

Note that the above is a density on the manifold Grγ .Integration of the pullback density by the diffeomorphism
Lγ ◦ i : Gs(γ) → Gr(γ) , γ2 → γγ−1

2 = γ1 yields that the above is equal to :

a ◦ b(γ)[τs ⊗ τr] =
∫
Gs(γ)

a(γ1)[Rγ−1
2 ∗(τs)⊗ (Lγ ◦ i)∗[•]]b(γ2)[[•]⊗ Lγ−1

1 ∗(τr)]

The involution is given by :
a∗(γ)[τs ⊗ τr] = a(γ−1)[i∗τr ⊗ i∗τs]∗

(Transpose operator)
Here is a quick verification that this is actually a star algebra.
(associativity): Denote γ2 = γ−1

1 γγ−1
3 for γ1 ∈ Gr(γ), γ3 ∈ Gs(γ) and γ12 = γ1γ2.

(a ◦ b) ◦ c(γ)[τs ⊗ τr] =
∫
Gs(γ)

a ◦ b(γ12)[Rγ−1
3 ∗(τs)⊗ (Lγ ◦ i)∗[•]]c(γ3)[[•]⊗ Lγ−1

12 ∗(τr)] =

∫
Gs(γ)

(∫
Gr(γ)

a(γ1)[(Rγ−1
2
Rγ−1

3
)∗(τs)⊗ [⋄]]b(γ2)[(Rγ12 ◦ i)∗[⋄]⊗ (Lγ−1

1
Lγ ◦ i)∗[•]]

)
c(γ3)[[•]⊗ Lγ−1

12 ∗(τr)]
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a ◦ (b ◦ c)(γ)[τs ⊗ τr] =
∫
Gr(γ)

a(γ1)[Rγ−1
23 ∗(τs)⊗ [⋄]]b ◦ c(γ23)[(Rγ ◦ i)∗[⋄]⊗ Lγ−1

1 ∗(τr)] =∫
Gr(γ)

a(γ1)[Rγ−1
23 ∗(τs)⊗ [⋄]]

(∫
Gs(γ)

b(γ2)[(Rγ−1
3
Rγ ◦ i)∗[⋄]⊗ (Lγ23 ◦ i)∗[•]]c(γ3)[[•]⊗ (Lγ−1

2
Lγ−1

1
)∗(τr)]

)
These are identical double integrals , now the star identity (a ◦ b)∗ = b∗ ◦ a∗ can be proved in the same manner
and the pullback by the diffeomorphism i : Gr(γ → Gs(γ−1) shall be used. This algebra has a star representation
πx on each hilbert space L2(Gx) which has an obvious form. More precisely for each x ∈ G0 ,L2(Gx) is by
definition half densities on the manifold Gx namely sections of the vector bundle Ω1/2(ker ds) restricted there.
For ξ ∈ L2(Gx), γ ∈ Gx,τs ∈

∧top
ker dsγ it is given by:

πx(a)ξ(γ)[τs] =

∫
Gr(γ)

a(γ1)[Rγ−1
2 ∗(τs)⊗ [•]]ξ(γ2)[(Rγ ◦ i)∗[•]]

The fact that this is a star representation can be proved along the same lines as before.

Remark:haar systems

Usually one is given a G-invariant family of measures λx on Gx (this means that the pushforward of λr(γ) on
Gr(γ) under the right multiplication by γ map Rγ : Gr(γ) → Gs(γ) is λs(γ) ,one can do the same with left
translation) The family of λx is then called a right (or left) haar system.
In case a haar system is given the C∗ algebra C∗(G) can be defined with functions. The product is going to be
given by a ◦ b(γ) =

∫
Gs(γ)

a(γγ−1
1 )b(γ1)dλs(γ)(γ1) and involution by f∗(γ) = f(γ−1).

Cc(G,Ω
1/2) completed with the norm ∥a∥ = maxx∈G0

∥πx(a)∥ is the reduced C∗ algebra C∗
red(G). This is the

one we will mainly use ,we shall refer to it by just the groupoid C∗ algebra C∗(G).
There is also the full C∗ algebra to define it first we introduce the L1 norm

∥f∥1 = sup(max(

∫
Gx

|f(γ)|,
∫
Gx

|f(γ−1)|))

The inequalities ∥f ◦ g∥1 ≤ ∥f∥1∥g∥1 and ∥f∗∥ = ∥f∥1 hold.
The full C∗ algebra is the completion of Cc(G,Ω

1/2) with

∥f∥full = supπ ∥π(f)∥

where π is a representation of G such that ∥π(f)∥ ≤ ∥f∥1.
Obviously for the representations πx (by a minkowski inequality) ∥πx(f)∥L2 ≤ ∥f∥1

Alternate version of the convolution algebra

Γ(G, r∗
top∧

A∗)

Carries also a convolution product that is associative. This can be seen as follows :sections of this are basically
top forms on the fibers Gx so we can integrate along fibers,explicitly the convolution can be given by:

a ◦ b(γ)[αr(γ)] =
∫
Gs(γ)

a(γh−1)[αr(γ)]b(h)[Rγ−1∗[−]] =
∫
Gr(γ)

a(h)[αr(γ)]b(h
−1γ)[Rh∗ ◦ i∗[−]]

1.8 Morita equivalence

Morita equivalence of rings typical refers to the equivalence of categories of left modules mod A
∼= mod B over

two rings. This equivalence can be shown to be implemented by two bimodules BPA,AQB such that P⊗AQ ∼= B
and Q⊗A P ∼= A such that the equivalence is implemented by the functors P ⊗A (−) and Q⊗B (−). Let’s see
how this applies to C∗ algebras and it’s geometric counterpart for groupoids , we are going to further see that
a morita equivalence for Lie groupoids gives a morita equivalence of their C∗ algebras.
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1.8.1 Strong morita equivalence of C∗ algebras

Definition: An (A,B) imprimitivity bimodule is a hilbert bimodule AEB with A and B valued inner products
⟨, ⟩A (antilinear in it’s second argument) and ⟨, ⟩B such that the following hold :

1. ⟨E,E⟩A = A and ⟨E,E⟩B = B

2. ⟨a · x, y⟩B = ⟨x, a∗ · y⟩B and ⟨x · b, y⟩A = ⟨x, y · b∗⟩A

3. ⟨x, y⟩A · z = x · ⟨y, z⟩B

The typical example is the K(H)− C bimodule H where H is a hilbert space.

1.8.2 Morita equivalence of Lie groupoids

In a similar fashion to the algebraic morita equivalence it works as follows . A left (resp. right) representation

space for a groupoid G is a space X over G0 X
σ−→ G0 such that there is an action of G on X defined as :

G×r,σ X → X where G×s,ρ X = {(g, x)|s(g) = ρ(x)} and it satisfies ρ(g · x) = r(g) so that it is an actions in
the sense of groupoids.A right action is defined analogously.
Definition A (G,H) equivalence for lie groupoids is a space Z (a manifold) that is simultaneously a left G-space
and a right H-space , there are surjective submersions ρ : Z → G0 ,σ : Z → H0

Z

G(0) H(0)

ρ σ

The actions are G×s,ρ Z → Z and Z ×σ,r H → Z the actions commute and they induce bijections Z/H
ρ−→ G0

and G\Z σ−→ H0. Another definition is given by a Lie groupoid X and G0 i1−→ X0,H0 i2−→ X0 are transverse to
the groupoids G,H and meet all orbits then G,H are isomorphic to the pullback groupoids by i∗1(X), i∗2(X) .
This definition implies the first if we let Z be the following space G0 ×i1,σ X ×ρ,i2 H0 with the obvious actions
by G,H . The trivial example is the (G,Gxx)−equivalence Gx , where G is a transitive lie groupoid such as the
fundamental groupoid.

1.8.3 G ∼morita H ⇒ C∗(G) ∼morita C∗(H)

The morita equivalence of lie groupoids gives an equivalence of their C∗ algebras as introduced later .
The imprimitivity bimodule is going to be extracted from the space Z :consider Cc(Z) which is going to
be completed later into a hilbert bimodule after we introduce to it the structure of a Cc(G), Cc(H) (pre)-
imprimitivity bimodule . Details why this works can be found in [31]
If ϕ ∈ Cc(Z), f ∈ Cc(G), g ∈ Cc(H) then:
a left Cc(G) action is given by

f · ϕ(z) =
∫
Gρ(z)

f(γ)ϕ(γ−1z)dγ

and a right Cc(H)-action is given by

ϕ · g(z) =
∫
Hσ(z)

ϕ(z · η)g(η−1)dη

The Cc(H) valued inner product is (which is independent of z with σ(z) = r(η) due to the translational
invariance of the haar measure)

⟨ϕ, ψ⟩Cc(H)(η) =

∫
Gρ(z)

ϕ(γ−1 · z)ψ(γ−1 · z · η)dγ

The Cc(H) valued inner product is (which is independent of z with ρ(z) = r(γ) )

⟨ϕ, ψ⟩Cc(G)(η) =

∫
Gσ(z)

ϕ(γ−1 · z · η)ψ(z · η)dη
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1.9 Representations

Hilbert bundles arise in a standard way when a commutative C∗-algebra C0(X) is represented non-degenerately
on a Hilbert space. In that case there is a probability measure µ (called a basic measure) on X and a represen-
tation of the Hilbert space as a Hilbert bundle L2 (X, {Hu} , µ) with respect to which the elements of C0(X)
act as diagonalizable operators. So the operator associated with g ∈ C0(X) on the original Hilbert space is now
identified as an operator on the L2-space of sections of the bundle, and given explicitly by u → g(u)Iu where
Iu is the identity operator on Hu. (Think of the spectral theorem!)
A representation of the locally compact groupoid G is defined by a Hilbert bundle

(
G0, {Hu} , µ

)
where µ is a

measure on G0 (that also gives a measure on G by fiber integration) and, for each x ∈ G, a unitary element
L(x) ∈ B

(
Hd(x), Hr(x)

)
such that: (i) L(u) is the identity map on Hu for all u ∈ G0; (ii) L(x)L(y) = L(xy) for

ν2-a.e. (x, y) ∈ G2; (iii) L(x)−1 = L
(
x−1

)
for ν-a.e. x ∈ G; (iv) for any ξ, η ∈ L2

(
G0, {Hu} , µ

)
, the function

x→ ⟨L(x)ξ(d(x)), η(r(x))⟩

is measurable on G.
As commented earlier, we are interested in linking up representations of G with representations of Cc(G). Cc(G)
is a normed *-algebra under the I-norm, and that all representations of Cc(G) (on a Hilbert space) considered
in the book are assumed to be I-norm continuous. Since Cc(G) is separable (trivial), every representation of
Cc(G) generates a separable C∗-algebra, and such C∗-algebras can always be realized on a separable Hilbert
space. We can assume then that every representation of Cc(G) under consideration is on a separable Hilbert
space.

A representation L of the locally compact groupoid G ”integrates up” to give
a representation πL : Cc(G)→ B

(
L2(H)

)
, where H = L2

(
G0, {Hu} , µ

)
, and where πL is given by:

⟨πL(f)ξ, η⟩ =
∫
G

f(x)⟨L(x)(ξ(d(x))), η(r(x))⟩dν0(x).

Desintagration theorem

: The above defines a representation πL of Cc(G) of norm ≤ 1 on H = L2
(
G0, {Hu} , µ

)
.

Let G be a lie groupoid. Then every representation of Cc(G) is of the form πL for some representation L of
G, and the correspondence L→ πL preserves the natural equivalence relations on the representations of G and
the representations of Cc(G). The proof is very technical, the first step is to show that from a representation
of Cc(G) one can obtain a representation of the functions of the base space ,thus by a version of the spectral
theorem one get’s a field of hilbert spaces on the base space. The reader is refered to [36].

1.10 Tangent groupoid

Connes defines the tangent groupoid TM as the adiabatic groupoid of the pair groupoid (see previous section)
explicitly the underlying space is:

TM × {0} ∪M ×M × (0, 1]

the groupoid structure is given by:

(x,X, 0) ◦ (x, Y, 0) = (x,X + Y, 0)

on the part TM × {0} (denote this groupoid TM)

(x, y, t) ◦ (y, z, t) = (x, z, t)

on the part M ×M × (0, 1] (denote BM this groupoid). The unit space is M × [0, 1] with the obvious range(r)
,source(s) and inclusion maps. The smooth structure is given in some equivalent ways, one requires that in
coordinates charts U the map TU × [0, ϵ)→ TM given by

(z, Z, t)→ (z + tZ, z, t) t > 0

(z, Z, 0)→ (z, Z, 0)

The smooth structure outside of t = 0 is trivial, one checks that this indeed defines a smooth structure (that
can also be defined invariantly using a metric and exponential maps).One can also do this by specifying the
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smooth functions (see smooth structure of deformation to normal cone). The tangent groupoid is the union of
a closed and open subgroupoid TM = TM ∪M ×M × (0, 1] and due to this decomposition one has an exact
sequence of C∗ algebras:

0 −→ C∗(BM )
ι∗−→ C∗(TM)

ev0∗−−−→ C∗(TM) −→ 0

evt denotes evaluation at t
The exactness of this sequence can be deduced from the general result about the deformation to normal cone
for groupoids,an elementary proof can be found in the appendix.
It turns out that C∗(BM ) is isomorphic to K⊗C0((0, 1]) = C0((0, 1],K) where K is the C∗ algebra of compact
operators on L2(M) (a separable hilbert space) and is contractible : to be made clear shortly.

Whereas C∗(TM) ∼= C0(T
∗M) the isomorphism via the fourier transform on tangent spaces :straightforward,

recall that C∗(TM) is the completion of the compactly supported smooth functions on TM (roughly ,a metric
gives us a haar system) when viewed as convolutional operators on the L2 of the tangent spaces and the norm
of a convolution operator on L2 is equal to the maximum norm of it’s fourier transform.

Now the map

K0(C
∗(TM))

[ev0∗]−−−→ K0(C
∗(TM))

in K theory is invertible , this follows from the fact that C∗(BM ) is contractible and six term exact sequence.
Connes then defines:
(note that K0(C

∗(TM)) ∼= K0(C0(T
∗M)) ∼= K0(T ∗M) and C∗(TMt=1) ∼= C∗(M ×M) ∼= K)

Analytic index:

Inda = [ev1∗] ◦ [ev0∗]−1 : K0(T ∗M)→ K0(C
∗(TMt=1)) ∼= K0(K) ∼= Z

And it turns out that this is exactly the analytic index map of atiyah and singer.

1.10.1 C∗(TM)

Before we go any further let’s inspect the groupoid C∗(TM). Specifically we inspect what happens in the
part given by subgroupoid BM . The underlying topological spaces of BM and M ×M × (0, 1] are the same
but as riemannian manifolds are completely different as BM blows up at zero.This is reflected in the groupoid
structure.
C∗(TM) is given through a completion of Cc(TM,Ω1/2(ker ds)⊗Ω1/2(ker dt)) In BM such sections are given by

Γ(M ×M × (0, 1],Ω1/2⊗Ω1/2) and the fiber over (x, y, t) is Ω
1/2
x ⊗Ω

1/2
y and it is easy to see that the L2 spaces

they act on are Ω1/2(M) through integration of a 1-density: Ω
1/2
x ⊗ Ω

1/2
y ⊗ Ω

1/2
y = Ω

1/2
x ⊗ Ω1

y. Therefore such
sections on M ×M × {t} can be viewed as integral operators on L2(M) and under any realization of L2(M)
because the norms would be essentially the same.(For example we could take a measure on M giving a nonzero
section of Ω1/2(M) and then realize L2(M) through functions ,the norms would be equivalent) . Conversely
any bounded operator on L2(M) that has a continuous kernel can be given by a section in Γ(M×M,Ω1/2⊗Ω1/2).

Furthermore we have a well defined ∗−representation of Γ(M ×M ×{t},Ω1/2⊗Ω1/2) on L2(M,Ω1/2) (denote it
L2(M) from now on) and the norm is defined as the operator norm. The norm on Γ(M×M×(0, 1],Ω1/2⊗Ω1/2)
is defined to be the supremum over all t , in short we conclude that:

Γ(M ×M × (0, 1],Ω1/2 ⊗ Ω1/2) isometrically embedded in C((0, 1],K)

Now C∗(BM ) is given by the completion of sections with compact support Cc(M ×M × (0, 1],Ω1/2⊗Ω1/2) and
these are contained in the C∗- subalgebra C0((0, 1],K) and it is easy to see that this is actually the completion
therefore is equal to C∗(BM ) as stated earlier. From now on denote C((0, 1],K) = K∞ and C0((0, 1],K) = K0

Now let’s see what elements of C∗(TM) near t = 0 look like. One could take a metric on M so that the
bundle Ω1/2 ⊗Ω1/2 is trivialised (the bundle over TM is similar and is also trivialised with a metric) and then
talk about elements of Cc(TM,Ω1/2(ker ds)⊗Ω1/2(ker dt)) as functions on TM) but that is completely wrong.

Instead of using the coordinates (y, z, t) that apply only to t > 0 to see what sections look like locally we
will use the coordinates (z, Z, t) around points (z, Z, 0) ∈ TM given earlier. The transition between these
systems of coordinates on t > 0 are given by:

(y, z, t)→ (z,
y − z
t

, t) (z, Z, t)→ (z + tZ, z, t)
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A local section around a point in t > 0 in the first coordinate chart is given by |dy|1/2 ⊗ |dz|1/2.
Whereas a local section around (z0, Z0, 0) in the second coordinate chart is given by |dZ|1/2 ⊗ |dZ|1/2 = |dZ|1
The explanation for the second |dZ|1/2 is the bundle trivialization of ker dt : Z ′ → (−tZ ′, Z ′, 0). Then it is easy
to see that a general local section around (z0, Z0, 0) is given by k(z, Z, t)|dZ|1/2 and is represented in the first
coordinate chart as:

k(z, Z, t)←→ 1

tn
k(z,

y − z
t

, t)|dy|1/2 ⊗ |dz|1/2

We conclude that a compactly supported section that is described in the two parts U × U × (0, ϵ) and TU for
any local coordinate chart U as:

1

tn
KU (y, z, t)|dy|1/2 ⊗ |dz|1/2 in U × U × (0, ϵ)

kU (z, Z)|dZ|1 in TU

represents an element of Cc(TM,Ω1/2(ker ds)⊗ Ω1/2(ker dt)) if :

(z, Z, t)→ KU (z + tZ, z, t)

(z, Z, 0)→ kU (z, Z)

is smooth. In other words that the composite function KU , kU is smooth on TU and then C∗(TM) is taken
as the completion of these functions , note that k(x,X)|dX|1 acts as a convolution operator on L2(TxM) and
it’s norm is given by the max norm of the fourier transform.

1.10.2 Asymptotic pseudodifferential calculus

What we are about to do next is formulated correctly with the use of half densities instead of functions and
sections of vector bundles tensored with half densities Γ(Ω1/2 ⊗E) instead of sections Γ(E) of E itself. But for
notational simplicity and to capture the ideas we are going to write down functions and pretend they are half
densities. The plan here is to take a pseudodifferential operator P = Opp with symbol p(x, ξ) on a manifold
and get a family of operators Pt indexed by t whose symbols under some sense are pt(x, ξ) = p(x, tξ). Write
Pt = Optp = Oppt to indicate such a construction and pt for the symbol of Pt .
Moreover for negative order psedodifferential operators we want to obtain an element of C∗(TM) that on
M ×M × (0, 1] is given by Pt (in the sense of compact operators on L2(M) see earlier discussion) and on TM
is given for each x0 ∈M as the operator on L2(TxM) whose symbol is the frozen symbol p(x0, ξ) on x0.
The first step is to see how that works out on an open subset U ⊂ Rn when p ∈ S(T ∗U) (schwarz class). So for
f ∈ L2(U):

Ptf(x) =

∫
p(x, tξ)ei⟨x,ξ⟩f̂(ξ)dξ =

∫
p(x, tξ)ei⟨x−y,ξ⟩f(y)dξdy

ξ→ξ/t
=

∫ (
1

tn
p(x, ξ)ei⟨

x−y
t ,ξ⟩dξ

)
f(y)dy =

=

∫
1

tn
p̂(x,

y − x
t

)f(y)dy =

∫
1

tn
K(x, y, t)f(y)dy

Whereas for g in L2(Tx0
U) we get :

P0x0
g(X) =

∫
p(x0, ξ)e

i⟨X,ξ⟩ĝ(ξ) =

∫ (
p(x0, ξ)e

i⟨X−Y,ξ⟩dξ
)
g(Y )dY =∫

p̂(x0, Y −X)g(Y )dY =

∫
k(x0, X − Y )g(Y )dY

From our previous discussion we see that the kernels

1

tn
K(x, y, t) =

1

tn
p̂(x,

y − x
t

)

k(x,X) = p̂(x,−X)

comprise an element of C0(TU,Ω1/2(ker ds)⊗Ω1/2(ker dt)).We also need that the operators Pt, P0x are uniformly
bounded ,for the P0x it’s trivial whereas for the Pt we see that the 1

tnK(x, y, t) have a bound of the form
(1/t)n

1+((1/t)|y−x|)N and this yields that they are uniformly L1 with respect to x, y. Therefore we get a well defined
map

S(T ∗U)→ C∗(TU)
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Still working on Rn we would like to consider the family of operators for t > 0 given by the sym-
bol p(x, tξ) where p ∈ Symm

K compactly supported in K with respect to x acting on sobolev spaces as
Opp(x,tξ) : W s+m

0 (U) → W s
0 (U) for some bounded open set K ⊂ U .(refer to W s

0 (U) as just W s) We prove
the following very important properties:

Lemma 0: Opp(x,tξ) :W
s+m →W s has uniformly bounded norm which is bounded by norms of p in Symm

K

and is continous in the operator norm with respect to t.
Proof: same as the one without the deformation.

Lemma 1a: If p ∈ Symm
K and q ∈ Symk

K then

(pt ◦ qt)(x, ξ)− pt(x, ξ)qt(x, ξ) = rt(x, tξ)

Where rt is a uniformly bounded family of symbols in Symm+k−1
K tending to 0 so

Optp ◦Optq −Optpq = Kt :W s+m+k →W s

Where Kt is a uniformly bounded compact operator tending to 0 in norm.
Proof: Same as the proof of the composition formula.

Lemma 1b: If p ∈ Symm
K a matrix valued symbol acting on trivial vector bundles E = Cm1 → F = Cm2

over U carrying some hermitian structure (not trivial) then

(pt)
†(x, ξ)− (p∗)t(x, ξ) = rt(x, tξ)

Where rt is a uniformly bounded family of symbols in Symm−1
K tending to 0 so

(Optp)
∗ −Optp∗ = Lt :W s+m(F )→W s(E)

Where Kt is a uniformly bounded family of compact operators tending to 0.
Proof: Same as the proof of the adjoint formula.

Let’s record these properties in case we are dealing with symbols in Cc(T
∗U) for a bounded open subset

of Rn in that case we have
Oppt : L2(U) → L2(U) is uniformly bounded and compact for each t thus it defines an element of K∞.

(K = K(L2(U)))

Optp ◦Optq −Optpq and (Optp)
∗ −Optp̄ are compact operators tending to 0 as t→ 0 thus they are elements of

the closed ideal K0.
So we get a well defined ∗−homomorphism

Cc(T
∗U)→ K∞/K0

The usual proof that ∗−homomorphisms have norm at most 1 works in this case so that we can also get a
continous extension to C0(T

∗U) that has also norm 1.
Lemma 2: Opt : Cc(T

∗U)→ K∞/K0 has norm ≤ 1 .

Now suppose we are given a symbol (of order m) p(x, ξ) : Ex → Fx which is given exactly by a bun-
dle morphism in π∗E → π∗F above T ∗M .We want to define a family of uniformly bounded operators
(Opp)

t : W s+m(E) → W s(F ) namely an element of C((0, 1),B(W s+m(E),W s(F )) and we want this to be
uniquely defined modulo C0((0, 1),K(W s+m(E),W s(F )) ,we call this equivalence ,for notational simplicity ig-
nore the bundles.
Let’s describe the standard procedure first we will be using for defining operators indexed by t. Fix a quadratic
partition of unity (ψj) subordinate to coordinate patches cover (Uj , ϕj) . Use pushforward of symbols (If
σ ∈ C(T ∗X) and ϕ : X → Y is a diffeomorphism then ϕ∗σ ∈ C(T ∗Y ) and ϕ∗σ(ϕ(x), η) = σ(x, ϕ′(x)T η)) (also
ϕ∗j denotes pullback of half densities that we pretend are functions) Then the family of operators on L2(M) are
given by

Optp =
∑

ϕ∗j (ψj ◦Optϕj∗p ◦ ψj)(ϕ
−1
j )∗ =

∑
ψj ◦Optp ◦ ψj
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then we already know that any two constructions will have the same principal symbol for every t and thus
they differ by an element in C((0, 1),K(W s+m,W s)) Moreover require that if we apply this to a symbol in
Cc(T

∗M) (and by extent to C0(T ∗M)) the resulting family Optp together with the element in C∗(TM) given
by p(x, ξ) comprise a well defined element of C∗(TM)
observation : The distributional kernel of p(x, tξ) decays faster than any power of t outside the diagonal:
For ϕ, ψ ∈ Cc(U) with disjoint supports from lemma 1a we see ϕ ◦ pt − pt ◦ ϕ = t(rt)t repeated application will
give (adϕ)Npt = tN (rt)t for some rt ∈ Symm−N but also (adϕ)Nptψ = ϕNptψ = tnKtψ for the kernel Kt of rt.

Using the above observation and Lemma 1a it’s not hard to see that the second requirement is going to be
automatically satisfied cause ψj ◦Optp ◦ψj = ψ2

j ◦Optp+ψj(Op
t
p ◦ψj −ψj ◦Optp) defines an element in C∗(TM)

that is given by ψ2
j ◦Optp on C∗(TM). Having verified that it is quite clear that we have a bounded linear map

Cc(T
∗M) → C∗(TM) that can be extended to C0(T

∗M) and is the identity when composed with ev0∗. Now
it remains to verify that any choice of coordinate charts give equivalent operator families.We state the relevant
result.
Lemma 1c: Let κ : X → Y be a diffeomorphism of open sets and p(x, ξ) ∈ Symm compactly supported in X
then

Optκ∗p − (κ−1)∗Optpκ
∗ :W s+m(Y )→W s(Y )

is a compact operator that tends to 0 as t→ 0.
Proof: The same procedure as in the case of coordinate invariance applies.
So if we have different partitions of unity and charts we can state that (using lemma 1a) :
Optp =

∑
ψj ◦Optp ◦ ψj =

∑
ψjψ

′
i ◦Optp ◦ ψjψ′

i
∼=
∑
ψ2
jψ

′
i ◦Optp ◦ ψ′

i =
∑
ψ′
i ◦Optp ◦ ψ′

i = Op
′t
p

It is also easy to see why lemmae 1a,1b carry over to manifolds from now on we are going to take these for granted
as well as the invariance of the definition in C((0, 1),B(W s+m(E),W s(F ))/C0((0, 1),K(W s+m(E),W s(F )) ,note
that the composition and adjoint of such classes are also well defined. Also note that when defining p† we want
it to define Opp† = (Opp)

∗ through a fixed standard procedure. Note that if we are dealing with differential
operators then we do not need any of these ,their deformation is invariantly defined and lemmae 1a, 1b are
trivial for differential operators (in lemma 1a even if just p is a differential operator and that’s all we need. So
we could do what’s next just for differential operator in which case things are much simpler.

1.10.3 Comparison of analytic indices

Now we are going to prove that the analytic index defined by connes is the same as the one defined by atiyah
singer (fredholm index).The plan is simple we are going to use a standard device which gives projections out of
arbitrary operators to obtain an element in K0(C

∗(TM)) whose images under [ev∗0 ] and [ev∗1 ] are respectively
the symbol class and the fredholm index of the operator.Thus showing the equivalence of the two index maps.
Consider an elliptic pseudodifferential operator of positive order m

Opp = P : C∞(E)→ C∞(F )

acting between hermitian vector bundles with elliptic symbol p(x, ξ) (|p(x, ξ)e| > δ|ξ|m|e| for |ξ| ≥ 1)
Consider the two families of operators acting on L2(E ⊕ F ) for t > 0.

Qt =

(
−i (Optp)

∗

Optp −i

)−1

and Optq where the symbol q =

(
−i p∗

p −i

)−1

The first is a family of resolvents of elliptic self adjoint operators whereas the second is an asymptotic pseudod-
ifferential operator of order −m.
We are now going to show that Qt −Opqt ∈ K0.

Optq ∈ C((0, 1),B(L2(E ⊕ F ),Wm(E ⊕ F ))/C0((0, 1),K(L2(E ⊕ F ),Wm(E ⊕ F ))(
−i (Optp)

∗

Optp −i

)
∈ C((0, 1),B(Wm(E ⊕ F ), L2(E ⊕ F ))/C0((0, 1),K(Wm(E ⊕ F ), L2(E ⊕ F ))

Also note that due to lemma 1b (
−i (Optp)

∗

Optp −i

)
∼=
(
−i (Optp∗)
Optp −i

)
= Optq−1

Therefore (
−i (Optp)

∗

Optp −i

)
◦Optq ∼= Optq−1 ◦Optq ∼= 1
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So we have that: (
−i (Optp)

∗

Optp −i

)
◦Optq = I +Kt

For a family Kt of compact operators tending to 0.But then I + Kt has an inverse I + K ′
t for K

′
t ∈ K0 and

t → 0 Therefore we have managed to recover the resolvent for t → 0 : Qt = Optq ◦ (I +K ′
t) the result follows

immediately.
Now since Qt − Opqt ∈ K0 it defines an element of C∗(TM,E ⊕ F ) therefore we get a well defined element
Qt = Optq + (Qt −Optq) of C∗(TM,E ⊕F ) that is given by Qt on t > 0 and given by the symbol q in C∗(TM),
that’s all we needed.

Consider the element Ut =

(
i (Optp)

∗

Optp i

)
◦
(
−i (Optp)

∗

Optp −i

)−1

= I+2iQt of C̃
∗(TM,E⊕F ) take also the

bundle automorphism ε =

(
1 0
0 −1

)
and view it also as ε : C∞(E⊕F )→ C∞(E⊕F ).Because ε anticommutes

with Dt =

(
0 (Optp)

∗

Optp 0

)
. We get that εUt is self adjoint and also (εUt)

2 = 1.

Now add orthogonally vector bundles to E and F to make them trivial: E ⊕ E′ = CN1 and F ⊕ F ′ = CN2 .
Extend Ut to act on C∞((E ⊕ E′) ⊕ (F ⊕ F ′)) by acting as the identity on E′ ⊕ F ′. Also extend ε to be the

automorphism

(
1 0
0 −1

)
on CN1 ⊕ CN2 . We still have that εUt is self adjoint and also (εUt)

2 = 1.

Now we see that

1

2
(εUt + I) defines a projection in C̃∗(TM,E ⊕ E′ ⊕ F ⊕ F ′) = C̃∗(TM,CN1 ⊕ CN2) =MN (C̃∗(TM))

Which is given by the symbol 1
2 (εu+ I) on C̃∗(TM,CN1 ⊕ CN2) =MN (C̃∗(TM)) =MN (C̃0(T

∗M))

Where u is the (matrix) symbol that acts as

(
i p∗

p i

)
◦
(
−i p∗

p −i

)−1

= I+2iq on π∗E⊕π∗F and as the identity

on π∗E′ ⊕ π∗F ′

So we get a well defined element [ 12 (εUt + I)] ∈ K0(C̃
∗(TM)) and finally a well defined element :

b = [
1

2
(ε+ I)]− [

1

2
(εUt + I)] ∈ K0(C

∗(TM))

Fredholm index

The image of b under ev1∗ is [ 12 (ε + I)] − [ 12 (εU + I)] ∈ K0(K). Consider the action of D on C∞(E ⊕ F ) ,
we know from the spectral theory of selfadjoint elliptic operators that D has a discrete spectrum in R and the
eigenfunctions form an orthonormal basis of L2(E ⊕ F )
Consider the homotopy of operators : T ∈ [1,+∞)

UT = (TD + i) ◦ (TD − i)−1 : L2(E ⊕ F )→ L2(E ⊕ F )

UT is −I on kerD and converges in norm to the identity on (kerD)⊥ thus UT converges to (I−PkerD)−PkerD =
I − 2PkerD. The extension (by the identity on E′ ⊕ F ′) of UT on C∞(CN1 ⊕ CN2) converges in norm to the
operator I − 2PkerD where PkerD is extended by zero to E′ ⊕ F ′. Thus we get

[
1

2
(ε+ I)]− [

1

2
(εU + I)] = [

1

2
(ε+ I)]− [

1

2
(ε(I − 2PkerD) + I)] = [

1

2
(ε+ I)]− [

1

2
(ε+ I)− εPkerD]

and this is mapped under the trace isomorphism Tr : K0(K)→ Z to Tr(εPkerD) = dim(kerP )− dim(kerP ∗)

Symbol class

The image of b under ev0∗ is [ 12 (ε+I)]−[
1
2 (εu+I)] ∈ K0(C0(T

∗M)) as a difference of elements in K0(C̃0(T
∗M)).

Of course C̃0(T
∗M) = C(T ∗M+) and the element in K0(T ∗M) that we are going to get is by definition the

difference of the image bundles of the projection valued functions 1
2 (ε + I), 12 (εu + I) on T ∗M+ which are of

course equal at ∞. For simplicity of notation denote by E the pullback bundle π∗E over T ∗M . E cannot be
seen as a vector bundle on T ∗M+ because it cannot be trivialised near infinity whereas E ⊕E′ ∼= CN1 can and
also [E ⊕ E′] is the image bundle of 1

2 (ε+ I).
It remains to describe the image bundle of 1

2 (εu+ I).

Consider the action of 1
2 (εu+ I) on E ⊕ F .On T ∗M right compose it with

(
−i p∗

p −i

)
it gives

1

2
(εu+ I)

(
−i p∗

p −i

)
=

1

2

((
i p∗

−p −i

)
+

(
−i p∗

p −i

))
=

(
0 p∗

0 −i

)
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For |ξ| ≤ 1 we can see that the image bundle is isomorphic to F however the above is not good for describing
the image bundle near ∞. For |ξ| ≥ 1 further right compose with (p∗)−1 to get(

1 0
−i(p∗)−1 0

)
So there the image bundle is isomorphic to E. In short we conclude (after considering the action on E′ ⊕ F ′)
the following :The image bundle of 1

2 (εu+ I) over T ∗M+ is isomorphic to [LE ⊕ E′] where :
LE ⊕ E′ is F ⊕ E′ for |ξ| ≤ 1 and E ⊕ E′ for |ξ| ≥ 1 and thus (can be trivialized and be a well defined bundle
near∞) with clutching function on the unit sphere bundle S(T ∗M) given by: cp∗;F ⊕E′ → E⊕E′. (the value
of c doesn’t matter).
So we get that the symbol class in K0(T ∗M) is exactly [E ⊕ E′]− [LE ⊕ E′].
One last thing :similarly consider the vector bundle LF ⊕F ′ over T ∗M+ which is E⊕F ′ for |ξ| ≤ 1 and F ⊕F ′

for |ξ| ≥ 1 with clutching function on S(T ∗M) given by : cp : E ⊕ F ′ → F ⊕ F ′.
We then have that [E ⊕ E′]− [LE ⊕ E′] = [LF ⊕ F ′]− [F ⊕ F ′]:
[LE⊕E′⊕LF ⊕F ′] is the bundle that is given by E⊕E′⊕F ⊕F ′ both for |ξ| ≤ 1 and |ξ| ≥ 1 but has clutching
function on S(T ∗M) given by(

0 p∗

−p 0

)
: E ⊕ E′ ⊕ F ⊕ F ′ → E ⊕ E′ ⊕ F ⊕ F ′

(It is skew symmetric ) which is homotopic to the identity clutching function through the homotopy of clutching
functions : (

1− t tp∗

−tp 1− t

)
(invertible)

Thus [LE ⊕ E′ ⊕ LF ⊕ F ′] = [E ⊕ E′ ⊕ F ⊕ F ′].
[LF ⊕ F ′]− [F ⊕ F ′] is exactly the symbol class of p as defined by Atiyah and Singer
(see Lawson and Michelson Spin Geometry ).

1.11 DNC

1.11.1 Deformation to normal cone

Recall the deformation to the normal cone construction for a submanifold V ⊂M with normal bundle NV and
a diffeomorphism θ : NV → U where U is a tubular neighborhood of V in M

DNC(M,V ) =M ×R∗ ∪NV × 0

it’s smooth structure is given by the requirement that Θ : (x, ξ, t)→ DNC(M,V )
(θ(x, tξ), t) for t ̸= 0
(x, ξ, 0) for t = 0
is a diffeomorphism of NV ×R on it’s image. The manifold with boundary DNC+is taken to be the restriction
to positive t M ×R∗

+ ∪NV × 0. In the case of groupoids observe that ker ds restricted on the unit submanifold
can be identified with it’s normal bundle . The adiabatic groupoid is DNC+(G,G0) and is explicitly given by

TG = (A× {0}) ∪G× R∗ ⇒M × R

It is a groupoid with composition rule:
(γ1, t) ◦ (γ2, t) = (γ1γ2, t)
(x, ξ, 0) ◦ (x, η, 0) = (x, ξ + η, 0)
We get a short exact sequence of C∗ algebras of groupoids

0→ C0(R∗)⊗ C∗(G)→ C∗(TG)→ C∗(A)→ 0

where the above maps are roughly inclusion and evaluation .For the details and proof of exactness of this sequence
refer the reader to [androulidakis,skandalis]. If we choose a metric on A the C∗ algebra of this groupoid becomes
functions with convolution on fibers which through fourier transform (recall the norm) becomes functions on
the dual lie algebroid (with max norm). The K0 theory of this C∗ algebra is where symbols live. Due to the
fact that the first term of the above exart sequence is a contractible C∗ algebra and six term exact sequence
the K theory map [ev0] : K0(C

∗(Gad))→ K0(C
∗(A)) = K0(C0(A

∗)) is invertible. The index map is defined as

[ev1] ◦ [ev0]−1 : K0(C0(A
∗))→ K0(C

∗(G))
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1.12 Proof of atiyah singer

This section follows [13]

1.12.1 Groupoids used in the proof

In this section we are going to give the proof of the atiyah singer index theory using just the deformation
to normal cone construction. This proof uses just geometrical constructions and gives the description of the
topological index using these and then puts both the analytical and topological index in a commmutative
diagram.One encounters such proofs in algebraic topology, the hard part is to prove that the classical topological
index coincides with the one given here. This fact uses KK theory which is a more powerful device to deal with
K theory. Let N →M be a vector bundle (later to be a the normal bundle ) .Let

∗p∗(TM) = N ×M TM ×M N ⇒ N

be the pullback groupoid of TM along the submersion N →M . (See morita equivalence ) It is morita equivalent
to TM and the space giving this equivalence (following the observation) is p∗(N) (pullback vector bundle ) with
the obvious actions.It’s Lie algebroid is trivially isomorphic to TN as the pullback lie algebroid of N →M
The thom groupoid TGN is by definition the deformation groupoid of ∗p∗(TM) therefore as a space

TGN = TN × {0} ∪ ∗p∗(TM)× (0, 1]

and has the given smooth structure
We also need the tangent thom groupoid

TGN = TN × {0} ∪ ∗
(p× id[0,1])

∗(TM)× (0, 1]

This is not a deformation groupoid though a functorial description of it’s smooth structure can be given.(see
later) As a space it’s comprised of the following parts

• (n1, n2, t, s) for t and n1, n2 ∈ N

• (n1, n2, Xm, 0, s) for s > 0 and n1, n2 belonging to the fiber over m

• (Yn, 0, 0) at the corner t, s = 0 and Yn a tangent vector at n ∈ N

Note that on t > 0 this space doesn’t blow up when s → 0 . Locally in coordinates it’s smooth structure near
a point in t = s = 0 is given by the requirement that the map (Rn,Rk)× Rk × Rn × [0, 1)× [0, 1)→ TGN

• (n, nv, X, t, s)→ (n+ tX + (s+ t)nv, n, t, s) when t > 0

• (n, nv, X, 0, s)→ (n+ snv, n, 0, s) when t = 0

• (n, nv, X, 0, 0)→ (Yn = X + nv, 0, 0) when t = s = 0

1.12.2 Topological index

The topological index can be derived in this setting in the same manner that the analytic was using deformation
groupoids. Recall that TM is morita equivalent to ∗p∗(TM) so are the corresponding C∗ algebras and so we
get an isomorphism in K theory K0(C

∗(TM)) ∼= K0(C
∗(∗p∗(TM)). Composing with the map given by the

deformation groupoid TGN we get an element in K0(C ∗ (TN)) and the analytical index map applied to this
gives a number which turns out to be the topological index. The proof of this fact uses KK-theory. So we get
the topological index map through the following sequence:

K0(C
∗(TM)) K0(C

∗(∗p∗(TM))) K0(C
∗(TGN )) K0(C

∗(TN)) Zinda

The topological index map and the analytic index map fit into a diagram that is commutative and are therefore
equal:

K0(C
∗(M ×M)) K0(C

∗(N ×N)) K0(C([0, 1], C
∗(N ×N))) K0(C

∗(N ×N))

K0(C
∗(TM)) K0(C

∗(
∗
(p× id[0,1])

∗(TM))) K0(C
∗(TGN )) K0(C

∗(TN))

K0(C
∗(TM)) K0(C

∗(∗p∗(TM))) K0(C
∗(TGN )) K0(C

∗(TN))

s=0s=1

t=1

evt=0
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The leftmost part of this diagram is by explicit morita equivalences described earlier and the commutativity
follows immediately (K0 can be viewed as projective modules in this case.)The rest of the diagram commutes
trivially.

1.13 Equality with atiyah singer topological index

Here we are going to use the following groupoid which is closely related to a thom groupoid : Let N → X
be a vector bundle. Think about applying the deformation to normal cone construction to a fiber Nx. Nx
is a vector space so it’s tangent bundle can be naturally identified with Nx ⊕ Nx. Think of it as the fiber
of the complexified bundle E = N × C ∼= N ⊕ N .Therefore the deformation to normal cone has total space
Ex × [0, 1] = Nx ⊕ Nx × [0, 1] ⇒ Nx × [0, 1] ,the second summand Nx represents tangent vectors and the
smooth structure is defined by the map (v, V, t)→ (v+ tV, v, t) for t > 0 and (v, V, 0)→ (v, V, 0) being smooth.
Now think of applying the deformation to normal cone construction simultaneously on every fiber one gets
the groupoid IN which can be thought of as the deformation of the groupoid N ×X N and it’s total space is
E × [0, 1] ⇒ N × [0, 1]
Recall the section on the atiyah singer topological index , one has an embedding of the manifold M on an
euclidean space and N is the normal bundle. Denote q : TM → M then TN → TM is isomorphic to
q∗N ⊕ q∗N → TM which is naturally a complex vector bundle. Recall that the atiyah singer topological index
arises from the thom isomorphism K0(TM)→ K0(TN) we will return to this later.

1.13.1 The thom element

For a complex hermitian vector bundle p : E → X which is a complexification of a real metric vector bundle
E = N ⊕ N (so we can write local sections as N + iN the second factor representing the imaginary part) we
have the thom isomorphism K0(C(X), C(E)) this can be implemented by the following KK theory element
referred to as the thom element

T = (C0(E, p
∗(
∧
E)), ρ, C) ∈ KK(C0(X), C0(E))

Where C is represented by the endomorphism field given by clifford multiplication multiplied by a normalizing
constant:

Cω(ex) =
1

1 + ||ex||2
(ex ∧ ω(ex)− ιexω(ex))

Note that C is self adjoint ,and C2 → I in the limit to infinity to the fibers.Moreover it is odd with respect to
the grading C0(E, p

∗(
∧
E)) = C0(E, p

∗(
∧even

E))⊕ C0(E, p
∗(
∧odd

E))
Let’s see why multiplication with this element implements the classical thom isomorphism in K theory.
If we use K theory with compact supports then an element [ξ] ∈ K0(X) is represented by [ξ0, ξ1; a] where a is
an isomorphism outside a compact set and approximately unitary (give ξ0, ξ1 hermitian structures).
For a vector bundle E → X The thom isomorphism i! : K

0(X) → K0(E) sends [ξ] to the element represented

by the complex Tot(p∗ξ⊗ΛE) where ΛE denotes the complex ...
∧i

E
e∧−−→

∧i+1
E → .... This is in turn can be

represented by the two term complex[
ξ0 ⊗ Λ0 ⊕ ξ1 ⊗ Λ1; ξ0 ⊗ Λ1 ⊕ ξ1 ⊗ Λ0; θ =

(
N(1⊗ C) M (α∗ ⊗ 1)
M(α⊗ 1) −N(1⊗ C)

)]
where M and N are the multiplication operators by the functions M(v) = 1

∥v∥2+1 and N = 1−M , respectively.

Proposition: Under the isomorphism K0(X) ≃ KK (C, C0(X)) which is such that to the triple [ξ0; ξ1;α] there
corresponds to the Kasparov module:

x = (C0(X, ξ), 1, α̃) , ξ = ξ0 ⊕ ξ1 and α̃ =

(
0 α∗

α 0

)
.

We have that the thom isomorphism is the same as the kasparov product with T
Proof. i!(x) corresponds to (E , θ̃) where:

E = C0(X, ξ)⊗
ρ
C0 (E, p

∗(ΛE)) ≃ C0 (E, p
∗(ξ ⊗ ΛE)) and θ̃ =

(
0 θ∗

θ 0

)
∈ L(E).

It will be useful to rewrite θ̃ as
θ̃ =M(α̃⊗̂1) +N(1⊗̂C)
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Where we are using ⊗̂ is the graded tensor product (see previous section).
Now we have to check that this is indeed the kasparov product [ξ]⊗ T .
We will be using the following (the proof is trivial) .
Let X be a locally compact ,paracompact space and V → X a hermitian vector bundle , On the hilbert C0(X)
module C0(X,V ) , C0(X) acts (on the left ) as compact operators.
All of the following are justified by this.

• M(α̃⊗̂1) is a 0 -connection on E
Let s be a section in C0(X, ξ) then:

M(α̃⊗̂1) ◦ Ts =MTã(s) ∈ K(C0(E, p
∗(
∧
E)), C0(E, p

∗(ξ ⊗
∧
E)))

Ts ◦M(α̃⊗̂1) =MT ∗
ã(s) ∈ K(C0(E, p

∗(ξ ⊗
∧
E)), C0(E, p

∗(
∧
E)))

Note that T ∗
s acts in an obvious way.

• N(1⊗̂C) is a C-connection on E

TsC −N(1⊗̂C)Tγ(s) = TsC −NTsC =MTsC ∈ K(C0(E, p
∗(
∧
E)), C0(E, p

∗(ξ ⊗
∧
E)))

CT ∗
s − T ∗

γ(s)N(1⊗̂C) =MCT ∗
s ∈ K(C0(E, p

∗(ξ ⊗
∧
E)), C0(E, p

∗(
∧
E)))

This yields that θ̃ =M(α̃⊗̂1) +N(1⊗̂C) is a C-connection on E . Secondly we have that

[α̃⊗̂1, θ̃] = 2Mα̃2⊗̂1 ≥ 0 in L(E)

(the above is a graded commutator) which proves that (E , θ̃) represents the Kasparov product of x and T .

1.13.2 The inverse thom element

The inverse thom element is constructed using the standard procedure for the deformation groupoid IN . One
gets for the evaluation homomorphisms e0 : C∗(IN ) → C∗(IN |t=0) = C∗(EN ) where EN is the vector bundle
groupoid E → N (projection to the first factor of E = N ⊕N)
and e1 : C∗(IN )→ C∗(IN |t=1) = C∗(N ×X N) the element [e0]

−1⊗ [e1] ∈ KK(C∗(EN ), C∗(N ×X N)) N ×X N
is morita equivalent to the trivial groupoid X (every point is a unit) as the corresponding pullback groupoid
over N → X. The morita equivalence KK element is given by M = (C(L2(N)), k, 0) where C(L2(N)) is the
C0(X)-hilbert module of sections of the continuous field of hilbert spaces L2(Nx) and C∗(N ×X N) acts as a
continuous field of compact operators . (Note that we have the family of lebesgue measures on Nx that gives a
haar system for N ×X N .) Composing with this morita equivalence element we get

Tinv = [e0]
−1 ⊗ [e1]⊗M ∈ KK(C∗(EN ), C0(X))

Also note that the fourier transform on the second factor of E (using the metric structure) gives an isomorphism
of C∗(EN ) and C0(E).Use this to reinterpret T as an element in KK(C0(X), C∗(EN )).

1.13.3 T and Tinv are inverse to each other

In viewing T as a C∗(EN ) hilbert module through an isomorphism with C0(E) we might as well apply the
fourier transform with respect to the second factor of E to C0(E, p

∗(
∧
E)) and let C∗(EN ) act by convolution

on the second factor. ρ will still represent the obvious multiplication by functions and C is going to become :

Cω(v + iw) =

∫
Nx×Nx

ei⟨w−w′,ξ⟩C(v + iξ)ω(v + iw′)dw′dξ

It suffices to show that T ⊗ Tinv = 1 ∈ KK(C0(X), C0(X)) since we already know that thom isomorphism is
an isomorphism.
The first step is to compute T̃ = T ⊗ [e0]

−1 ∈ KK(C0(X), C∗(IN )) which is equivalent to T̃ ⊗ [e0] = T . Since
the underlying hilbert module of T is given by the sections of EN in the vector bundle p∗(

∧
E) it makes perfect

sense to consider T̃ as (C∗(IN , p
∗(
∧
E)), ..., ...) where p : IN → X is the obvious projection and C∗(IN , p

∗(
∧
E))

arises as a C∗(IN )−hilbert module completion. The representation of C0(X) is going to be given by the obvious
multiplication by functions. And to get a consistent endomorphism C̃ with it’s part at t = 0 one puts

C̃ω(v + iw, t) =

∫
Nx×Nx

ei⟨
v−v′

t ,ξ⟩C(v + iξ)ω(v′ + iw, t)
dv′

tn
dξ
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for t > 0 and C for t = 0. Then it is easy to see that T̃ ⊗ [e0] = e0∗(T̃ ) = T . Then T̃ ⊗ [e1] = e1∗(T̃ ) is
represented by (C∗(N ×X N, p∗(

∧
E)), ρ1, C1) where ρ1 is multiplication by functions and C1 is given by the

above formula for t = 1. Finally we compose with the morita equivalence.
Through

ω(·, ·)⊗ f →
∫
Nx

ω(vx, ξx)f(ξx)dξ

C∗(N ×X N, p∗(
∧
E))⊗C∗(N×XN) C(L2(N))

is identified with C(L2(N, p
∗(
∧
E))) (continous field of hilbert spaces) . So it turns out that T̃ ⊗ [e1] ⊗M ∈

KK(C0(X), C0(X)) is represented by the hilbert module C(L2(N, p
∗(
∧
E))) (or a completed version of this)

together with the endomorphism F1 given by

F1ω(vx) =

∫
Nx×Nx

ei⟨(v−v
′),ξ⟩C(v + iξ)ω(v′)dv′dξ

Both C0(X) act as multiplication.From the section on KK theory such an element can be equivalently viewed
as an element of KK(C, C(M)) = K(M) as the forgetful map KK(C(M).C(M)) → KK(C, C(M)) ∼= K(M)
composed with the inclusion K(M)→ KK(C(M).C(M)) give the identity on elements represented by a family
of endomorphisms on a hilbert bundle.This then is a family of pseudodifferential operators on the fibers Nx ∼ Rn
whose symbols are given by the bott elements λNx

. One expects that the family index is the identity.Which
is indeed the case.It is proved through passing to O(n) equivariant K theory (as is done in the section about
thom isomorphism and ) proving that the O(n) equivariant index of this zero order operator over Rn is 1.

In hormander this analytic index is represented by the complex C∞(Rn,
∧k Cn) x∧+d−−−→ C∞(Rn,

∧k+1 Cn) in
[hormander] it is shown through a homotopy of hypoeliptic operator that the O(n) equivariant index is 1 in
KO(n)(TRn)

1.13.4 Finishing the proof

We apply the above to the complex vector bundle q∗N ⊕ q∗N → TM . The groupoid Iq∗N used before is not
exactly isomorphic to the thom groupoid TGN used in the before.But their C∗ algebras are if one applies fourier
transform on the fibers TxM(with respect to a metric) .Note that the conolution product in C∗(TGN ) is simul-
taneous convolution in the tangent space TxM and convolution in the pair groupoid Nx ×Nx (or convolution
with respect with the vertical tangent space of TN at t = 0) so the above isomorphism should be clear. This
isomorphism is apparently compatible with evaluations at t = 0, 1.
So we proved that the bottom row of the above diagram defines the thom isomorphism (if we identify C∗(TM), C∗(TN)
with C0(T

∗M), C0(T
∗N)).

Now it remains to show that the rightmost column defines the composition of the canonical inclusion (N is iden-
tified with an open subset of Rn) K0(C

∗(TN)) → K0(C
∗(TRn)) followed by bott periodicity K0(C

∗(TRn)) =
K0(C0(R2n)) ∼= Z .
This follows from the obvious commutativity of the diagram :

Z ∼= K0(C
∗(N ×N)) K0(C

∗(Rn × Rn)) ∼= Z

K0(C
∗(TN)) K0(C

∗(TRn))

K0(C
∗(TN)) K0(C

∗(TRn))
and the fact that the analytic index map for T ∗Rn is the same as bott periodicity . Or alternatively one can
see that this is just the story developed in this section for a point imbedded in Rn.
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Chapter 2

2.1 Hochschild homology

Let A be a k algebra and M an A bimodule.
Consider the module Cn(A,M) :=M ⊗A⊗n (where ⊗ = ⊗k and A⊗n = A⊗ . . .⊗A,n factors). The Hochschild
boundary is the k-linear map b :M ⊗A⊗n →M ⊗A⊗n−1 given by the formula

b (m, a1, . . . , an) := (ma1, a2, . . . , an) +
∑
i=1

(−1)i (m, a1, . . . , aiai+1, . . . , an)

+ (−1)n (anm, a1, . . . , an−1)

di :M ⊗A⊗n →M ⊗A⊗n−1 given by

d0 (m, a1, . . . , an) := (ma1, a2, . . . , an)

di (m, a1, . . . , an) := (m, a1, . . . , aiai+1, . . . , an) for 1 ≤ i < n

dn (m, a1, . . . , an) := (anm, a1, . . . , an−1)

With this notation one has

b =

n∑
i=0

(−1)idi

1.1.2 Lemma. b ◦ b = 0.
Proof. It is immediate to check that

didj = dj−1di for 0 ≤ i < j ≤ n

Hochschild homology is by definition the the homology of the complex: C∗(A,M).

. . .→M ⊗A⊗n b−→M ⊗A⊗n−1 b−→ . . .
b−→M ⊗A b−→M

For example H0(A,M) =MA =M/{am−ma | a ∈ A,m ∈M}.
In the case where M = A we denote H∗(A,A) by HH∗(A) the Hochschild complex C∗(A) which is sometimes
called cyclic bar complex.

Hochschild homology is functorial both in the module M and in the algebra A.
For example the group

H0(A,M) =MA =M/{am−ma | a ∈ A,m ∈M}

Also one finds that HH0(A) = HH0 (Mr(A)) = A/[A,A].

Bar resolution

Let Ae = A ⊗ Aop be the enveloping algebra of the associative and unital algebra A. The left Ae-module
structure of A is given by (a⊗ a′) c = aca′.
Consider the following complex, called the bar complex

Cbar
∗ : . . .→ A⊗n+1 b′−→ A⊗n b′−→ . . .

b′−→ A⊗2
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where A⊗2 is in degree 0 and where b′ =
∑n−1
i=0 (−1)idi (note that the sum is only up to n− 1 ) The map b′ = µ

: A⊗A→ A is an augmentation for the bar complex.
If A is a unital k-algebra. The complex Cbar

∗ is a projective (free in most cases) resolution of the Ae-module A
with s : A⊗n → A⊗n+1, s (a1, . . . , an) = (1, a1, . . . , an) , ,a contracting homotopy.
It is called the ”bar resolution” of A.

Tor interpretation

It is easy to see that the bar resolution tensored with M over Ae is the hochschild complex,therefore

Hn(A,M) = TorA
e

n (M,A).

normalized hochschild complex

If A is unital denote A = A/k · 1. Hochschild homology can be equivalently given by the complex C∗(A,M)

where Cn(A,M) =M ⊗A⊗n
. This is the quotient of hochschild complex by the subcomplex D∗ of degenerate

elements.Elements for which ai = 1 for at least one i. It is easy to see that b vanishes on these elements therefore
we get a well defined boundary map on the quotient subcomplex.
To prove that using the normalized complex we find hochschild homology, it suffices to see that:
The complex D∗ is acyclic which in turn shows that the projection map C∗(A,M) → C̄∗(A,M) is a quasi-
isomorphism of complexes.
Consider sp : M ⊗ A⊗(n−1) → M ⊗ A⊗n, sp : m ⊗ a1 ⊗ ... ⊗ an−1 → m ⊗ a1 ⊗ ... ⊗ ap−1 ⊗ 1 ⊗ ... ⊗ an. Take
the filtration FpD∗ of the complex D∗ where FpDn is the submodule generated by the images of s1, s2, ..., sp .
For p ≥ n :FpDn = Dn and for p ≤ 0 : FpDn = 0 therefore the filtration is bounded and the spectral sequence
associated to the filtration converges to the homology of D∗.
It suffices to show that the homology of Gp,q = FpDp+q/Fp−1Dp+q vanishes (the spectral sequence collapses at
the E1 page it turns out that sp defines a contracting homotopy of this complex.

2.1.1 Morita invariance

Let M be a bimodule over the k-algebra A and letMr(M) be the module of r× r matrices with coefficients in
M . Bordering by zeroes

α 7→


0

α ·
.

0 · 0 0


defines an inclusion inc: Mr(M)→Mr+1(M).
The (ordinary) trace map tr :Mr(M)→M is given by

tr(α) =

r∑
i=1

αii

It is clear that tr is compatible with inc and defines tr : M(M) → M . 1.2.1 Definition. The generalized
trace map (or simply trace map)

tr :Mr(M)⊗Mr(A)
⊗n →M ⊗A⊗n

is given by

tr(α⊗ β ⊗ . . .⊗ η) =
∑

αi0i1 ⊗ βi1i2 ⊗ . . .⊗ ηini0 ,

where the sum is extended over all possible sets of indices (i0, . . . , in).
For ui ∈Mr(k), a0 ∈M and ai ∈ A for i ≥ 1. The generalized trace map takes the form

tr (u0a0 ⊗ . . .⊗ unan) = tr (u0 . . . un) a0 ⊗ . . .⊗ an

The generalized trace map is a morphism of complexes from C∗ (Mr(A),Mr(M)) to C∗(A,M).
(Morita Invariance for Matrices): Let A be a unital k-algebra. Then for any r ≥ 1 (including r =∞ ) the maps

tr∗ : H∗ (Mr(A),Mr(M))→ H∗(A,M)
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and
inc∗ : H∗(A,M)→ H∗ (Mr(A),Mr(M))

are isomorphisms and inverse to each other.

Proof. It is immediate that tr ◦ inc = id, therefore it suffices to prove that inc ◦ tr is homotopic to id. In fact
there is a homotopy h =

∑
(−1)ihi constructed as follows. For i = (0, . . . , n) let hi :Mr(M) ⊗Mr(A)

⊗n →
Mr(M)⊗Mr(A)

⊗n+1 be defined by the formula

hi
(
α0, . . . , αn

)
=
∑

Ej1
(
α0
jk

)
⊗ E11

(
α1
km

)
⊗ . . .

. . .⊗ E11

(
αipq
)
⊗ E1q(1)⊗ αi+1 ⊗ αi+2 ⊗ . . .⊗ αn,

where the sum is extended over all possible sets of indices (j, k,m, . . . , p, q). In this formula α0 is in Mr(M)
and the others αs are inMr(A);

More generally we have that: If R and S are Morita equivalent k-algebras and M is an R-bimodule, then
there is a natural isomorphism

H∗(R,M) ∼= H∗ (S,Q⊗RM ⊗R P )

inner derivation

Inner derivations act as zero on hochschild homology, inner derivations act on Cn(A,M) as.

ad(u) (a0, . . . , an) =
∑

0≤i≤n

(a0, . . . , ai−1, [u, ai] , ai+1, . . . , an) .

It is easily checked that ad(u) commutes with the Hochschild boundary. 1.3.3 Proposition. Let h(u) :
Cn(A,M)→ Cn+1(A,M) be the map of degree 1 defined by

h(u) (a0, . . . , an) :=
∑

0≤i≤n

(−1)i (a0, . . . , ai, u, ai+1, . . . , an) .

Then the following equality holds:
bh(u) + h(u)b = −ad(u).

Consequently ad (u)∗ : Hn(A,M)→ Hn(A,M) is the zero map.

2.1.2 Hochschild cohomology

Hochschild cohomology of A with coefficients in M as

Hn(A,M) = Hn

(
HomAe

(
Cbar

∗ (A),M
))
.

Hn(A,M) = ExtnAe(A,M)

The coboundary map β′ in the Hom-complex is given by

β′(ϕ) = −(−1)nϕ ◦ b′

for any cochain ϕ in HomAe

(
Cbar
n (A),M

)
. Explicitly, such a cochain ϕ is completely determined by a k-linear

map f : A⊗n →M . The relationship is given by

ϕ (a0 [a1| . . . |an] an+1) = a0f (a1, . . . , an) an+1.

Then the formula for the coboundary map is

β(f) (a1, . . . , an+1) =a1f (a2, . . . , an+1)

+
∑

0<i<n+1

(−1)if (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f (a1, . . . , an) an+1.
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H0(A,M) is the subgroup of invariants of M

H0(A,M) =MA = {m ∈M | am = ma for any a in A}.

For n = 1 a 1-cocycle is a k-module homomorphism D : A→M satisfying the identity

D (aa′) = aD (a′) +D(a)a′, for a and a′ ∈ A.

Such a map is called a derivation (or sometimes a crossed homomorphism) from A to M and the k-module
of derivations is denoted Der(A,M) (cf. 1.3.1). It is a coboundary if it has the form adm(a) = [m, a] = ma−am
for some fixed m ∈ M ; adm is called an inner derivation (or sometimes a principal crossed homomorphism).
Therefore

H1(A,M) = Der(A,M)/{ inner derivations }.
It is sometimes called the group of outer derivations. In the particular case M = A the module H1(A,A) is

in fact a Lie algebra with Lie bracket given by [D,D′] = D ◦D′ −D′ ◦D. Indeed it is immediate to check that
[D,D′] is a derivation and that, if D′ = adu for some u ∈ A, then [D, adu] = adD(u).
1.5.5 The Particular Case M = A∗. Notation.
There is defined an explicit map the other way round, called the cotrace map, as follows. Let f ∈ Cn(A,M)
and let α1, . . . , αn be inMr(A). Then F (α1, . . . , αn) is a matrix inMr(M) whose (i, j)-entry is∑

f
(
(α1)ii2 , (α2)i2i3 , . . . , (αn)inj

)
where the sum is extended over all possible sets of indices (i2, i3, . . . , in). The map of complexes C∗(A,M) →
C∗ (Mr(A),Mr(M)) , f 7→ F induces the cotrace map

cotr : H∗(A,M)→ H∗ (Mr(A),Mr(M)) .

⟨cotr(f), x′⟩ = ⟨f, tr (x′)⟩ ∈MA

for f ∈ Hn(A,M) and x′ ∈ HHn (Mr(A))

The cotrace map and inc* ∗ are isomorphisms and inverse to each other.
1.5.7 Normalized Complex. Suppose that A is unital. Then the reduced complex C̄∗(A,M) is the subcomplex
of C∗(A,M) made up of the maps f which vanish on elements (a0, . . . , an) such that one of the ai ’s (i ̸= 0) is
1 . The inclusion C̄∗ ↪→ C∗ is a quasi-isomorphism.

2.2 Cyclic homology

2.1.0 Cyclic Group Action. The cyclic group Z/(n + 1)Z action on the module A⊗n+1 is given by letting its
generator t = tn act by

tn (a0, . . . , an) = (−1)n (an, a0, . . . , an−1)

on the generators of A⊗n+1. It is then extended to A⊗n+1 by linearity; it is called the cyclic operator. Remark
that (−1)n is the sign of the cyclic permutation on (n + 1) letters. Let N = 1 + t + . . . + tn denote the corre-
sponding norm operator on A⊗n+1.

2.1.2 The Cyclic Bicomplex. As an immediate consequence of Lemma 2.1.1, the following is a first quadrant
bicomplex denoted CC(A), and called the cyclic bicomplex:

...
...

...
...

A⊗3 A⊗3 A⊗3 A⊗3 . . .

A⊗2 A⊗2 A⊗2 A⊗2 . . .

A A A A . . .

b −b′

1−t

b

N

−b′

1−t

b −b′

1−t

b

N

−b′

1−t

1−t N 1−t
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2.1.4 Connes’ Complex. The cokernel A⊗n+1/(1− t) of the endomorphism (1− t) of A⊗n+1 is the coinvariant
space of A⊗n+1 for the action of the cyclic group Z/(n+ 1)Z. Following A. Connes we denote it by Cλn(A) :=
A⊗n+1/(1− t). By Lemma 2.1.1 the following is a well-defined complex

Cλ∗ (A) : . . .
b−→ Cλn(A)

b−→ Cλn−1(A)
b−→ . . .

b−→ Cλ0 (A)

called Connes complex, and whose nth homology group is denotedHλ
n(A). The natural surjection p : TotCC(A)→

Cλ(A) is the quotient map A⊗n+1 → A⊗n+1/(1− t) on the first column and 0 on the others.

It is trivial to see that row number n is an acyclic complex except H0 = Cλn(A). As a consequence the
homology of the bicomplex CC(A) is canonically isomorphic to the homology of Connes’ complex Cλ∗ (A).
We previously proved that the b′-complex is contractible when A is unital. So one can expect to simplify the
double chain complex CC(A) by getting rid of the contractible complexes (odd degree columns). To do this we
use the following easy result.
(Killing Contractible Complexes). Let

. . .→ An ⊕A′
n

d=

 α β
γ δ


−−−−−−−−−−→ An−1 ⊕A′

n−1 → . . .

be a complex of k-modules such that (A′
∗, δ) is a complex and is contractible with contracting homotopy

h : A′
n → A′

n+1. Then the following inclusion of complexes is a quasi-isomorphism:

(id,−hγ) : (A∗, α− βhγ) ↪→ (A∗ ⊕A′
∗, d) .

Factoring out the odd degree columns we end up with:
Connes’ Boundary Map B and the Bicomplex B(A):

A⊗3 A⊗2 A

A⊗2 A

A

b

B

b

B

b

B

Where B is of course given by: B = (1− t)sN :
Explicitly B : A⊗n+1 → A⊗n+2 is given by

B (a0, . . . , an) =

n∑
i=0

(−1)ni (1, ai, . . . , an, a0, . . . , ai−1)

− (−1)ni (ai, 1, ai+1, . . . , an, a0, . . . , ai−1)

2.2.1 The bicomplex B(A)

A⊗A3
A⊗A2

A⊗A A

A⊗A2
A⊗A A

A⊗A A

A

b b

B

b

B B

b

B

b

B

b

B
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The Bicomplex B(A). The (b, B)-bicomplex B(A) can be simplified further by replacing the Hochschild
complexes by their normalizations (cf. 1.1.15). Let Ā = A/k and consider the new bicomplex B(A) : where
B̄ = sN : A⊗ Ā⊗n → A⊗ Ā⊗n+1 is given by the formula

B̄ (a0, . . . , an) =

n∑
i=0

(−1)ni (1, ai, . . . , an, a0, . . . , ai−1) .

(Remark that the sign (−1)ni is exactly the sign of the involved cyclic permutation). In particular

B̄(a) = (1, a), B̄ (a, a′) = (1, a, a′)− (1, a′, a) .

If the context is clear we will often write simply B instead of B̄. By Proposition 1.1.15 the normalization
process does not change the homology of the columns. Therefore, by a standard spectral sequence argument
(cf. 1.0.12) the surjective map of complexes B(A) → B(A) is a quasiisomorphism. Thus we have proved the
following:
2.1.10 Corollary. For any unital k-algebra A there is a canonical isomorphism

H∗(TotB(A)) ∼= HC∗(A).

The following are quasi-isomorphisms

TotB(A)← TotB(A) ↪→ TotCC(A)→ Cλ(A),

(Connes’ Periodicity Exact Sequence).From the short exact sequence 0→ CC(A){2} → CC(A)→ CC(A)[2, 0]→
0 (where the first term is the first two columns of the bicomplex CC(A) and the last term is CC(A)[2, 0] shifted
by 2 we obtain a natural long exact sequence

. . .→ HHn(A)
I−→ HCn(A)

S−→ HCn−2(A)
B−→ HHn−1(A)

I−→ . . . .

When A is unital this sequence can be deduced more simply from the bicomplex B(A) (or equivalently from
B(A) ), by considering the exact sequence of complexes

0→ C(A)→ Tot(B(A)) S−→ Tot(B(A))[2]→ 0,

where the first map is the identification of C(A) with the first column of B(A). Then the periodicity operator
S is obtained by factoring out by this first column.Using this sequence ,examining the first terms and induction
one proves that if a map between k algebras induces isomorphisms in hochschild homology then it does so in
cyclic homology for example we get morita invariance:

The generalized trace map tr : Mr(A)
⊗n+1 → A⊗n+1 (cf. 1.2.1) is compatible with the cyclic action.

(Morita Invariance for Cyclic Homology). For any r ≥ 1 (including r = ∞ ) and any H-unital (e.g. unital)
k-algebra A the map tr∗ : HC∗ (Mr(A)) → HC∗(A) is an isomorphism, with inverse induced by the inclusion
inc : A = M1(A) ↪→ Mr(A). More generally, if A and A′ are Morita equivalent k-algebras, then there is a
canonical isomorphism HC∗(A) ∼= HC∗ (A

′)
2.2.10 Corollary. For any r ≥ 1 (including r =∞ ), the trace map induces an isomorphism tr∗ : Hλ

n (Mr(A))→
Hλ
n(A) for any unital k-algebra A(Q ⊂ k).

2.2.2 Cyclic cohomology

Cyclic cohomology is the dual theory to cyclic homology:

HCn(A) := Hn (TotCC∗∗(A))

2.4.2 Connes’ Definition. A cochain f in Cn(A) is said to be cyclic if it satisfies the relation

f (a0, . . . , an) = (−1)nf (an, a0, . . . , an−1) , ai ∈ A.

These cyclic cochains form a sub- k-module of Cn(A) denoted Cnλ (A).
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Shuffle product

Let Sn be the symmetric group acting on the set {1, . . . , n}. A (p, q)-shuffle is a permutation σ in Sp+q such
that

σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < σ(p+ 2) < . . . < σ(p+ q).

For any k-algebra A we let Sn act on the left on Cn = Cn(A) = A⊗A⊗n by:

σ. (a0, a1, . . . , an) =
(
a0, aσ−1(1), aσ−1(2), . . . , aσ−1(n)

)
.

In other words, if σ is a (p, q)-shuffle the elements {a1, a2, . . . , ap} appear in the same order in the sequence
σ · (a0, . . . , an) and so do the elements {ap+1, ap+2, . . . , ap+q}. Let A′ be another k-algebra. The shuffle product

−×− = shpq : Cp(A)⊗ Cq (A′)→ Cp+q (A⊗A′)

is defined by the following formula:

(a0, a1, . . . , ap)×
(
a′0, a

′
1, . . . , a

′
q

)
=
∑
σ

sgn(σ)σ.
(
a0 ⊗ a′0, a1 ⊗ 1, . . . , ap ⊗ 1, 1⊗ a′1, . . . , 1⊗ a′q

)

2.3 Chern characters

In this section we are going to express the index pairing in terms of the pairing of cyclic Homology and cohomol-
ogy.(The reader should refer to the section about these first.) The aim is to associate to a suitable representative
of a K-theory class, respectively a K-homology class, a class in periodic cyclic homology, respectively a class in
periodic cyclic cohomology, called a Chern character in both cases. The principal result is then that the pairing
between the latter gives the index pairing of K-homology and K-theory.
In the context of spectral triples the result is:

⟨[x], [(A,H,D)]⟩ = − 1√
2πi
⟨[Ch∗(x)] , [Ch∗(A,H,D)]⟩

Note that we are using the (b, B) complexes:

(Bϕm) (a0, a1, . . . , am−1) =
∑m−1
j=0 (−1)(m−1)jϕm (1, aj , aj+1, . . . , am−1, a0, . . . , aj−1)

(bϕm−2) (a0, a1, . . . , am−1) =
∑m−2
j=0 (−1)jϕm−2 (a0, a1, . . . , ajaj+1, . . . , am−1)+(−1)m−1ϕm−2 (am−1a0, a1, . . . , am−2)

The pairing between a (b, B)-cochain ϕ = (ϕm)
M
m=1 and a

(
bT , BT

)
-chain c = (cm) is given by (M ∈ N or

M =∞) is:

⟨ϕ, c⟩ =
M∑
m=1

ϕm (cm) .

2.3.1 Chern character on K0(A), K1(A)

• We recall that the Chern character Ch∗(u) of a unitary u ∈ A is the following (infinite) collection of odd
chains Ch2j+1(u) satisfying bCh2j+3(u) +BCh2j+1(u) = 0,

Ch2j+1(u) = (−1)jj!u∗ ⊗ u⊗ u∗ ⊗ · · · ⊗ u (2j + 2 entries ).

• Similarly, the (b, B) Chern character of a projection p in an algebra A is an even (b, B) cycle with 2m-th
term, m ≥ 1, given by

Ch2m(p) = (−1)m (2m)!

2(m!)
(2p− 1)⊗ p⊗2m.

For m = 0 the definition is Ch0(p) = p. It is a (b, B) cycle.
With the trace inducing the (morita equivalence) isomorphism these can be extended to projections and
unitaries over matrix rings of A.
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2.3.2 The JLO cocycle

Connes then proved that the so called JLO cocycle is a representative for the Chern character of a spectral triple.
We describe it explicitly . It is given on even spectral triples by an infinite sequence of cochains (JLO2k)k≥0

defined by

JLO2k (a0, a1, . . . , a2k) =

∫
∆

Trace
(
γa0e

−t0D2

[D, a1] e−t1D
2

· · · e−t2k−1D2

[D, a2k] e−t2kD
2
)
dt0dt1 · · · dt2k.

Here ∆ =
{
(t0, t1, . . . , t2k) ∈ R2k+1 : tj ≥ 0, t0 + t1 + · · ·+ t2k = 1

}
is the standard simplex.

In the odd case we have (JLO2k+1)k≥0 defined by

JLO2k+1 (a0, a1, . . . , a2k+1) =
√
2πi

∫
∆

Trace
(
a0e

−t0D2

[D, a1] e−t1D
2

· · · e−t2kD
2

[D, a2k] e−t2k+1D2
)
dt0dt1 · · · dt2k+1

As stated earlier the pairing between this cocycle and K theory (which exists under some assumptions) gives
the index pairing.We mention this cocycle here because it is similar to other cocycles we are going to use later.

⟨[p], [(A,H,D)]⟩ = ⟨[Ch(p)], [JLO(A,H,D)]⟩ =
∞∑
k=0

JLO2k (Ch2k(p))

2.3.3 The chern charachter of a fredholm module

The underlying theme of this first part is to ” quantize ” the usual calculus of differential forms. Letting A be
an algebra over C we introduce the following operator theoretic definitions for

• the differential df of any f ∈ A

• the graded algebra Ω = ⊕Ωq of differential forms

• the integration ω →
∫
ω ∈ C of forms ω ∈ Ωn,

In the context of a fredholm module (or spectral triple) these correspond to:

df = i[F, f ] = i(Ff − fF) ∀f ∈ A ,

Ωq =
{
Σf0df1 . . . dfq, f j ∈ A

}
,∫

ω = Trace(εω) ∀ω ∈ Ωn.

The data required for these definitions to have a meaning is an n-summable Fredholm module (H,F) over
A .

Fa− aF ∈ L n(H)

where L n(H) is the Schatten ideal .

Let then A be a not necessarily commutative algebra over C and (H,F) an n-summable (normalized)
Fredholm module over A . For any a ∈ A , one has da = i[ F, a] ∈ L n(H). For each q ∈ N, let Ωq be the linear
span in L n/q(H) of the operators (

a0 + λI
)
da1da2 . . . daq, aj ∈ A , λ ∈ C.

Since L n/q1 ×L n/q2 ⊂ L n/(q1+q2) (follows from some Holder inequality) ) one checks that the composition
of operators, Ωq1 × Ωq2 → Ωq1+q2 endows Ω =

⊕n
j=0 Ω

j with a structure of a graded algebra. The differential
d, dω = i[ F, ω] is such that

d2 = 0, d (ω1ω2) = (dω1)ω2 + (−1)degω1ω1dω2 ∀ω1, ω2 ∈ Ω.

Thus (Ω, d) is a graded differential algebra, with d2 = 0. Moreover the linear functional
∫
: Ωn → G, defined

by ∫
ω = Trace(εω) ∀ω ∈ Ωn
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has the same properties as the integration of the trace of ordinary matrix valued differential forms on an oriented
manifold, namely, ∫

dω = 0 ∀ω ∈ Ωn−1,

∫
ω2ω1 = (−1)degω1 degω2

∫
ω1ω2

for any ωj ∈ Ωqj , j = 1, 2, q1 + q2 = n. Thus our construction associates to any n-summable Fredholm module
(H, F) over A an n-dimensional cycle over A in the following sense.

Definition: A cycle of dimension n is a triple
(
Ω, d,

∫ )
where Ω =

⊕n
j=0 Ω

j is a graded algebra over C, d is

a graded derivation of degree I such that d2 = 0, and
∫
: Ωn → C is a closed graded trace on Ω.

Let A be an algebra over C. Then a cycle over A is given by a cycle (Ω, d, f) and a homomorphism ρ : A → Ω0.
As we shall see a cycle of dimension n over A is essentially determined by its character, the (n+ 1)-linear

function τ ,

τ
(
a0, . . . , an

)
=

∫
ρ
(
a0
)
d
(
ρ
(
a1
))
d
(
ρ
(
a2
))
. . . d (ρ (an)) ∀aj ∈ A .

Moreover (cf. part II, proposition I), an n + I linear function τ on A is the character of a cycle of dimen-
sion n over A if and only if it is a cyclic cocycle.By the above remarks this will ultimately give the chern
charachter of a fredholm module.

ch∗ : {n summable Fredholm modules over A } → Hnλ(A ).

the character τ ∈ Cn
λ(A ) of any n summable Fredholm module over A is equal to o for n odd. Let us

now restrict to even n ’s. Also it turns out that the (n+2k)-dimensional character τn+2k of (H,F) is determined
uniquely as an element of Hn+2k

λ (A ) by the n-dimensional character τn of (H,F). More precisely, under the
periodicity map S : Hnλ(A )→ Hn+2

λ (A ) such that

τn+2k = Skτn in Hn+2k
λ (A ).

H∗(A ) = H∗
λ(A )⊗c(σ) C

where C(σ) acts on C by P(σ)z = P(I)z for z ∈ C. The above results yield a map
ch ∗ : { finitely summable Fredholm modules over A } → H∗(A ).
Moreover The following hold :
Two finitely summable Fredholm modules over A which are homotopic (among such modules) yield the same
element of H∗(A ).
One has a canonical pairing ⟨, ⟩ between Hev (A ) and K0(A ) . see [7]

Now we are going to prove that for a summable fredholm module the pairing of the chern character with
K theory gives the index pairing.

⟨ch∗[e], ch∗(H,F)⟩ = ⟨[e], [(H,F)]⟩ ∀e ∈ ProjMk(A ).

By the above remarks the left hand side can also be expressed as a pairing between K theory and Hev (A ).
First we do it for 1−summable fredholm modules:

The character of a 1-summable Fredholm module

Let A be an algebra over C, with the trivial Z/2 grading. Let (H,F) be a I-summable Fredholm module over
A . Lemma 1. - a) The equality τ(a) = 1

2 Trace(εF[F, a]),∀a ∈ A , defines a trace on A . b) The index map,
K0(A )→ Z, is given by the trace τ :

Index F+
e = (τ#Trace)(e) ∀e ∈ ProjMq(A ).

Proof. - a) Since A is trivially Z/2 graded, one has εa = aε for all a ∈ A . As εF = −Fε one has
εF[F, a] = εF2a− εFa F = εF2a+ FaεF = εa+ FaεF since F2 = I. Thus,

εF[F, a] = [F, a]εF.
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Then

τ(ab) =
1

2
Trace(εF[F, ab]) =

1

2
Trace(εF[F, a]b+ εFa[ F, b])

=
1

2
Trace([F, a]εFb+ [F, b]εFa)

which is symmetric in a and b. Thus τ(ab) = τ(ba) for a, b ∈ A .

b) Replacing A by Mq(A ), and (H,F) by (H⊗Cq, F⊗ I) we may assume that q = I. Let F =

[
o Q
P o

]
so

that PQ = IH− ,QP = IH+ . With H1 = eH+, H2 = eH−we let P′ (resp. Q′ ) be the operator from H1 to H2

(resp. H2 to H1 ) which is the restriction of ePe (resp. eQe ) to H1 (resp. H2). Since [F, e] ∈ L 1(H) one has
P′Q′ − IH2

∈ L 1 (H2) ,Q
′P′ − IH1

∈ L 1 (H1). Thus one has

IndexP′ = Trace (IH1
−Q′P′)− Trace (IH2

− P′Q′)

= TraceH+(e− eQePe)− TraceH− (e− eP eQe)
= Trace(ε(e− e Fe Fe)).

Trace(ε(e− eFeFe)) = Trace(ε(e− FeFe)e) = Trace(εF(Fe− e F)e)

=
1

2
Trace([ F, e]εFe+ εF[F, e]e) =

1

2
Trace(εFe[ F, e] + εF[F, e]e) =

1

2
Trace(εF[F, e]) = τ(e).

The Higher characters for a p-summable Fredholm module

Let (H,F) be a p-summable Fredholm module over A . As explained before we shall associate to (H,F) an
n-dimensional cycle over A , where n is an arbitrary even integer such that n ≧ p.
For any T ∈ L (H) such that [F,T] ∈ L 1(H) let

Trs( T) =
I

2
Trace(εF([F,T])).

a) If T is homogeneous with odd degree, then Trs( T) = 0.
b) If T ∈ L 1(H) then Trs( T) = Trace(εT).
c) One has [F,Ωn] ⊂ L 1(H) and the restriction of Trs to Ωn defines a closed graded trace on the differential
algebra Ω.
The above lemmas are easy and left to the reader.
Let n = 2m be an even integer, and (H,F) an (n+1)-summable Fredholm module over A . Then the associated
cycle over A is given by the graded differential algebra (Ω, d), the integral∫

ω = (2iπ)mm! Trs(ω) ∀ω ∈ Ωn

and the homomorphism π : A → Ω0 ⊂ L (H) of definition 1.

Proposition 5. - Let n = 2m, (H,F) be an (n + I)-summable Fredholm module over A , and τ be the char-
acter of the cycle associated to ( H,F),

τ
(
a0, . . . , an

)
= (2iπ)mm! Trs

(
a0da1 . . . dan

)
.

is a cyclic cocycle.

When the algebra A is not unital, one first extends φ ∈ Znλ(A ) to φ̃ ∈ Znλ(A ), where Ã is obtained from
A by adjoining a unit, (note the cyclic property)

φ̃
(
a0 + λ01, . . . , an + λnI

)
= φ

(
a0, . . . , an

)
∀aj ∈ A , λj ∈ C.

Then one applies the above formula, for e ∈ Mk(Ã ).
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Let n = 2m and (H, F) an (n + 1) summable Fredholm module over A . Then the index map K0(A ) → Z is
given by the pairing of K0(A ) with the class in Hnλ(A ) of the n-dimensional character τn of (H,F) :

Index F+
e = ⟨[e], (τn)⟩ for e ∈ ProjMq(A ).

One has ⟨e, τm⟩ = (−I)m

2 Trace
(
εF[F, e]2m+1

)
. As [F, e] = e[ F, e] + [F, e]e, one has

Trace
(
εF([F, e])2m+1

)
= Trace

(
εFe[ F, e][F, e]2m

)
+Trace

(
εF[F, e]e[ F, e]2m

)
.

Now εF = −Fε,F[F, e]2m+1 = −[F, e]2m+1 F, so that

Trace
(
εFe[ F, e]2m+1

)
= −Trace

(
Fεe[ F, e]2m+1

)
= −Trace

(
εe[ F, e]2m+1 F

)
= Trace

(
εe F[ F, e]2m+1

)
.

As e[ F, e]2 = [F, e]2e we get

Trace
(
εF[F, e]2m+1

)
= 2Trace

(
εe F[ F, e]e[ F, e]2m

)
= 2Trace

(
εe F[ F, e]e(e[ F, e]2e)m

)
= 2(−1)m Trace ε(e− eFeFe)m+1

And then:
Trace ε(e− eFeFe)m+1 =

TraceH+ (e− eQePe)m+1 − TraceH− (e− ePeQe)m+1
=

Trace (IH1
−Q′P′)

m+1 − Trace (IH2
− P′Q′)

m+1
=

Index(P ′)

2.3.4 Deformation and cyclic cocycles

The following is taken from [16].Revisit the section on comparison of analytic indices. We are going to use
a very similar construction here (the two constructions are essentially the same) to obtain a projection over
C ∗ (TRn).Then we use cyclic cocycles to give an explicit formula for an index theorem on Rn.
Consider a pseudodifferential operator on Rn that is given by a matrix valued symbol a.
On the part t = 0 , this projection is given by the element

ea =

(
(1 + a∗a)

−1
(1 + a∗a)

−1
a∗

a (1 + a∗a)
−1

a (1 + a∗a)
−1
a∗

)
.

inM2k(C̃0(T
∗Rn)) =M2k(C̃

∗(TRn)) which is basically the projection on the graph (in L2(T
∗Rn)k⊕L2(T

∗(Rn)k)

of a viewed as a multiplication operator on L2(T
∗Rn)k. It is easy to check that êa = ea −

(
0 0
0 1

)
∈

M2k (C0 (T
∗Rn))

Similarly for a densely defined closed operator T on L2(Rn) (for example for an elliptic pseudodifferential
operator, T is then fredholm) consider the the projection on to it’s graph given by

e =

(
(1 + T ∗T )

−1
(1 + T ∗T )

−1
T ∗

T (1 + T ∗T )
−1

T (1 + T ∗T )
−1
T ∗

)
.

Where e ∈M2k

(
K
(
L2 (Rn)

)∼)
=M2k(C̃

∗(M ×M)) and it is easily checked that

e−
(

0 0
0 1

)
∈M2k

(
K
(
L2 (Rn)

))
=M2k(C

∗(M ×M)). and that the difference

[e]−
[(

0 0
0 1

)]
determines an element of K0

(
K
(
L2 (Rn)

))
. Moreover the same method used earlier shows that this element

is exactly [kerT ]− [kerT ∗] which corresponds to indexT under the isomprphism K0(K) ∼= Z.
Now the element given by the grpah projection et on the graph of Opta on t > 0 and by ea on t = 0 is a well
defined projection over C∗(TRn) as proved in section comparison of analytic indices.
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the cyclic cocycle

Now consider the densely defined cyclic 2n−cocycle on the algebra K∞ of integral operators in K(L2Rn) with
smooth kernels.

ω (T0, . . . , T2n) =
(−1)n

n!

∑
σ∈S2n

sgn(σ) Tr
(
T0δσ(1) (T1) · · · δσ(2n) (T2n)

)
Where δ2j−1(T ) = [Dj , T ] , δ2j(T ) = [Mj , T ] and Dj = ∂

∂xj
and Mj denotes pointwise multiplication by xj .

Because Tr(δj(T) = 0 and the derivations δ commute with one another it is easily checked that ω is indeed a
cyclic cocycle.
The pairing between this cyclic cocycle and K0(K(L2(Rn))) can be shown to be well defined and furthermore
it gives the isomorphism K0(K) ∼= Z(by the above properties it can be defined on the unitization ).

Also consider the cocycle ϵ0 on S(T ∗Rn) defined by

ε0
(
f0, . . . , f2n

)
=

1

(2πi)nn!

∫
T∗Rn

f0df1 ∧ · · · ∧ dfn,

where T ∗Rn is has the orientation given by the symplectic structure.
Under a certain sense the cocycle ω when calculated on deformed pseudodifferential operators converges to a
cocycle on their symbols.That last cocycle is exactly ϵ0.

limt→0 ω(Opta0 , ...,Opta2n)→ ϵ0(a0, ..., a2n)

The reasons for that are the following two identities

δ2j−1

(
Opta

)
=
[
Dj ,Opta

]
= Opt∂a

∂xj

δ2j
(
Opta

)
=
[
Mj ,Opta

]
= Optit ∂a

∂ξj

the fact that the trace of a pseudodifferential operator with rapidly decaying symbol p(x, ξ) is given by :

Tr(Opp : L2(Rn)→ L2(Rn)) =
∫
T∗Rn

p(x, ξ)dxdξ

and the symbolic calculus of asymptotic pseudodifferential operators discussed earlier.
If we apply this principle to the pairing of cyclic cohomology with K theory and use it on the deformed projec-
tion constructed earlier then we will get that formula for the index.

index Pa =
1

(2πi)nn!

∫
T∗Rn

tr
(
êa (dêa)

2n
)
,

2.4 Connes Moscovici localized index theorem

2.4.1 Alexander Spanier cohomology

Let us start recalling the definition of Alexander-Spanier cohomology with real coefficients, of a topological
space M . With q ≥ 0, let Cq(M) be the vector space of all functions φ from Mq+1 to R; a coboundary
homomorphism δ : Cq(M)→ Cq+1(M) is defined by the formula

(δφ)
(
x0, . . . , xq+1

)
=

q+1∑
i=0

(−1)iφ
(
x0, . . . , xi−1, xi+1, . . . , xq+1

)
,

and C∗(M) = {Cq(M), δ} is a cochain complex over R. Its cohomology is trivial, except in dimension 0 .
The nontrivial cohomological information is concentrated in the subcomplex of ”locally zero” cochains. An
element φ ∈ Cq(M) is said to be locally zero if there is an open covering U of M such that φ vanishes on
the neighborhood U q+1 =

⋃
U∈U Uq+1 of the q th diagonal of M . If φ is locally zero then, evidently, so is

δφ. One obtains thus a subcomplex C∗
0 (M) = {Cq0(M), δ} of C∗(M). The corresponding quotient complex

C̄∗(M) =
{
C̄q(M), δ

}
is called the Alexander-Spanier complex of M with coefficients in R and its graded coho-

mology space H̄∗(M) is called the Alexander-Spanier cohomology of M (with real coefficients). If φ ∈ Cq(M),
we shall denote by φ̄ its image in C̄q(M) and by [φ̄] the corresponding cohomology class. We are now going to
identify alexander spanier cohomology with de rham cohomology.
First we need a lemma:(let B) be a sufficiently fine covering)
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If x =
(
x0, . . . , xq

)
∈ Bq+1 and t = (t0, . . . , tq) ∈ Σq, the function sending y ∈M to

∑q
i=0 tid

2
(
xi, y

)
has a

minimum which is attained in a unique point
∑q
i=1 tix

i ∈ M . Moreover, this point depends differentiably on
(x, t) ∈ Bq+1 × Σq.

Given x ∈ Bq+1 we now define a C∞ simplex sq[x] : Σ
q →M by setting

sq[x] (t0, . . . , tq) =

q∑
i=0

tix
i.

Together with the covering B, it will be convenient to fix a collection of functions χ = {χq}q ≥ 0 such

that: (f) χq ∈ C∞ (Mq+1
)
, support χq ⊂ Bq+1 and χq ≡ 1 on a neighborhood of the q th diagonal in

Mq+1 (g) χq
(
xτ(0), . . . , xτ(q)

)
= χq

(
x0, . . . , xq

)
,∀τ ∈ Sq+1 = the permutation.group of order (q + 1)! Let

now Λ∗(M) = {Λq(M), d} be the de Rham complex of differential forms on M . Given ω ∈ Λq(M), we define
ρ(ω) ∈ Cq(M) by

ρ(ω)
(
x0, . . . , xq

)
= χq

(
x0, . . . , xq

) ∫
sq [x0,...,x0]

ω.

The vanishing of χq outside U q+1 gives an obvious meaning to the right hand side for any
(
x0, . . . , xq

)
∈

Mq+1. It is also clear that the class
ρ̄(ω) = ρ(ω) ∈ C̄q(M)

is independent of the choice of B and χ with the above properties. The map ρ̄ : Λ∗(M)→ C̄∗(M) thus defined
is chain map.

δρ(ω) = ρ̄(dω).

Indeed, from the definition of the simplex sq[x] it follows easily that its boundary ∂sq[x] can be expressed
as follows:

∂sq
[
x0, . . . , xq

]
=

q∑
i=0

(−1)isq−1

[
x0, . . . , xi−1, xi+1, . . . , xq

]
thus, the claimed identity is a consequence of Stokes’ theorem for chains.

The induced homomorphism in cohomology ρ̄∗ : H∗
dR(M) → H̄∗(M) is an isomorphism. It is locally an

isomorphism of presheaves therefore it is globally an isomorphism .

Universal differential forms

In order to find an explicit formula for a left inverse to ρ̄∗, it will be helpful to bring into the discussion the
universal complex of the Fréchet algebra A = C∞(M) :
Universal defferential forms:

Ω0(A ) = A ,Ω1(A ) = Ker(A ⊗̂A
multipilication−−−−−−−−−−→ A ), which is, in an obvious way, a bimodule over A , and

Ωq(A ) = Ω1(A )⊗̂ . . . ⊗̂Ω1(A ) ( q times) for q ≥ 1; it is equipped with a continuous coboundary homomorphism
∂ : Ωq(A )→ Ωq+1(A ), uniquely characterized by the equations

∂f = 1⊗ f − f ⊗ 1, ∀f ∈ A ,

∂
(
f0∂f1 ⊗ . . .⊗ ∂fq

)
= ∂f0 ⊗ ∂f1 ⊗ . . .⊗ ∂fq,∀f0, f1, . . . , fq ∈ A .

There is a natural surjection v of Cq(M) ∼= A ⊗̂ . . . ⊗̂A (q + 1 times) onto Ωq(M), which sends an elementary
tensor f0 ⊗ f1 ⊗ . . .⊗ fq ∈ Cq(M) to f0df1 ⊗ . . .⊗ dfq ∈ Ωq(M). In particular, it sends

δ
(
f0 ⊗ f1 ⊗ . . .⊗ fq

)
=

q+1∑
i=0

(−1)if0 ⊗ . . .⊗ f i−1 ⊗ 1⊗ f i ⊗ . . .⊗ . . .⊗ fq

to
d
(
f0df1 ⊗ . . .⊗ dfq

)
= df0 ⊗ df1 ⊗ . . .⊗ dfq.

On the other hand, by the universality of {Ω∗(A ), ∂}, there exists a canonical morphism of complexes
µ : Ω∗(A )→ Λ∗(M) such that

µ
(
f0∂f1 ⊗ . . .⊗ ∂fq

)
= f0df1 ∧ . . . ∧ dfq.
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Composing it with the morphism v : C∗(M) → Ω∗(A ), we obtain a morphism of complexes λ = µ◦v :
C∗(M) → Λ∗(M), which evidently vanishes on C∗

0 (M). Thus, it induces a morphism λ̄ : C̄∗(M) → Λ∗(M),
characterized by:

λ̄
(
f0 ⊗ f1 ⊗ . . .⊗ fq

)−
= f0df1 ∧ . . . ∧ dfq.

For an arbitrary cochain φ̄ ∈ C̄a(M) one has therefore:

λ̄(φ̄)x
(
v1, . . . , vq)

=
1

q!

∑
τ∈S4

sgn(τ)
∂

∂ε1
· · · ∂

∂εq
φ
(
x, expx ε1v

τ(1), . . . , expx εqv
τ(q)
)∣∣∣∣∣
εi=0

As a refinement of the analytic index of an elliptic symbol, we shall construct for each even-dimensional
Alexander-Spanier cohomology class (with compact support) on a C∞ manifold M a localized index map
from the K-group K0 (T ∗M,T ∗M −M) to C. When M is compact, K0 (T ∗M,T ∗M −M) is the K-theory
with compact support K0

c (T
∗M) and the ordinary index map corresponds to the unit class [1] ∈ H̄0(M).

A : C∞
c

(
M,E ⊗ |Λ|1/2(M)

)
→ C∞ (M,F ⊗ |Λ|1/2(M)

)
,the distributional kernel A(x, y) of A ∈ Ψr(M ;E,F )

is a section of the bundle Hom(E,F )⊗ |Λ|1/2(M ×M), i.e.

A(x, y) ∈ Hom(Ey, Fx)⊗ |Λ|1/2TxM ⊗ |Λ|1/2TyM,∀(x, y) ∈M ×M.

2.4.2 Localized indices

Let A0, . . . , Aq ∈ Ψ∞(M ;E) with at least one of them in Ψ−∞(M ;E); we define the distribution tr
(
A0, . . . , Aq

)
on Mq+1 by the formula

tr
(
A0, . . . , Aq

)
(φ) = (−1)q

∫
tr
(
A0
(
x0, x1

)
. . . Aq

(
xq, x0

))
φ
(
x0, . . . , xq

)
,∀φ ∈ C∞

c

(
Mq+1

)
For a fixed φ ∈ C∞

c

(
Mq+1

)
, we also set

τ(φ)
(
A0, . . . , Aq

)
= tr

(
A0, . . . , Aq

)
(φ),∀Aj ∈ Ψ∞(M ;E).

(2.1) Lemma. (i) Let φ ∈ Cqλ,cc(M). Then τ(φ) ∈ Cqλ (Ψ−∞(M ;E)) = the space of q-dimensional cyclic cochains

of the algebra Ψ−∞(M ;E), i.e.

τ(φ)
(
A1, . . . , Aq, A0

)
= (−1)qτ(φ)

(
A0, . . . , Aq−1, Aq

)
∀Aj ∈ Ψ−∞(M ;E).

(ii) τ : C∗
λ,c(M)→ C∗

λ (Ψ
−∞(M ;E)) is a homomorphism of complexes, i.e.

τ(δφ) = bτ(φ)

where b is the coboundary of the cyclic cohomology complex [8]. (iii) If q > 0, Aj ∈ Ψ−∞(M ;E) and f j ∈
DO0(M ;E), j = 0, . . . , q, one has

τ(φ)
(
A0 + f0, . . . , Aq + fq

)
= τ(φ)

(
A0, . . . , Aq

)

construct a pairing of the above projections with arbitrary Alexander-Spanier cocycles on M , which will recap-
ture the stable information carried by the symbols.

cohomology with compact supports. Consider a cocycle φ ∈ Zqλ,cc(M), that is φ ∈ Cqλ,cc(M) and δφ ∈ Cq+1
g (M).

Let L be an invertible lift of the symbol ã such that L(x, y) = 0 outside a ”small” neighborhood of the diagonal,
the ”size” of which depends on where δφ vanishes, in a way which will be obvious from the context. Such a lift
can be manufactured, for example, by localizing the support of A and B in the above construction. Denoting
as before,

PL = L

(
IE 0
0 0

)
L−1, RL = PL −

(
0 0
0 IF

)
∈ Ψ−∞
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we define

Indφ(a) = τ(φ) (RL, . . . , RL) = (−1)q
∫
Mq+1

tr
(
RL
(
x0, x1

)
. . . RL

(
xq, x0

))
φ
(
x0, . . . , xq

)
One has to check that the definition makes sense, i.e. that the right hand side is independent of the lift L.

If q is odd, in view of Lemma (2.1) (i), this is obvious; it is also uninteresting, since it gives Indφ(a) = 0. So,
we shall assume from now on that q is even.

τ(φ) (P1, . . . , P1)− τ(φ) (P0, . . . , P0) = (q + 1)

∫ 1

0

τ(δφ) (Ts, Ps, . . . , Ps) ds

where Ts = (1− 2Ps)
d
dsPs.

Proof. We notice that d
dsPs = [Ts, Ps] and therefore,

d

ds
τ(φ) (Ps, . . . Ps) =

a∑
0

τ(φ) (Ps, . . . , [Ts, Ps] , . . . , Ps)

= (q + 1)τ(φ) ([Ts, Ps] , Ps, . . . , Ps) .

This last expression is easily recognized to coincide with (q+1)bτ(φ) (Ts, Ps, . . . , Ps), which by Lemma (2.1)
(ii) is in turn equal to (q + 1)τ(δφ) (Ts, Ps, . . . , Ps).

Indφ̄(a) = Ind(a)

and the definition is unambiguous. The next lemma shows that the localized index map thus defined actually
depends only on the cohomology class [φ⃗]. (2.3) Lemma. If ψ ∈ Cq−1

α,cc(M), then Ind δψψ(a) = 0. Proof. With
P = PL and L as above, one has:

Indδψ(a) = τ(δψ)(P, . . . , P ) = bτ(ψ)(P, . . . , P )

= τ(ψ)(P, . . . , P ) = −τ(ψ)(P, . . . , P )

(2.4) Theorem. For any [φ̄] ∈ H̄ev
c (M) the map Ind d[φ̄] from elliptic symbols to C induces a homomor-

phism Ind[φ̄] : K
0 (T ∗M,T ∗M −M)→ C.

AsBs − I ∈ Ψ−∞, BsAs − I ∈ Ψ−∞ and each As (resp. Bs ) is supported in a sufficiently small neighborhood
of the diagonal. Denote by Ls the lifting of ãs manufactured from As and Bs, and by Ps the corresponding
idempotent. Again, we may assume q > 0, and then the claim follows by applying Lemma (2.2) to the path
{Ps}.

The localized index maps thus defined can be easily transferred to elliptic operators. Namely, if [φ̄] ∈ H̄ev
c (M)

and A ∈ Ψ′(M ;E,F )−1, we define
Ind[φ̄]A = Ind[Φ̄](a),

where a ∈ Psy0(M ;E,F ) is uniquely determined by the condition a |S∗M = σpr(A)|S∗M . As in the case of the
ordinary index. Since for the computation of a [φ̄]-index we can always pick a representative φ with compact
support, there will be no loss of generality in restricting our attention to compact

2.4.3 Localized index for groupoids

The localized index for Groupoids As stated earlier the obvious generalization of Alexander Spanier cohomology
for groupoids is differentiable groupoid cohomology To define a localized index we first need wy some form of
transversal density. ( For example if the groupoid is the holonomy groupoid of a foliation the localized pairing is
going to roughly give a continuous function on the leaf space, if we integrate this with some form of transversal
density (or measure on the leap space) we get a number. Consider a lie groupoid G ⇒ M with lie algebroid
A −→M . Consider the following line bundle over M ,the bundle of ”transversal densities”)

L =

top∧
T ∗M ⊗

top∧
A

It is easy to see why this should be transversal densities l, given a section of
∧top

A∗ and pairiving it with a
section of L we get a top form on M , exactly what a transversal dénsity would do for foliations.
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Now we are going to prove that L carries a representation of E even though A and TM don’t. A and TM
carry a representation at the level of bisections. Consider a bisection β over g ∈ G : β(s(g)) = g. From the
diffeomorphism sending s(g)→ r(g) associated to β we get the differential Ts(g)M → Tr(g)M .
The differential of Rg−1Lβ : Gs(g) → Gr(g) which sends 1s(g) to 1r(g) gives a linear map As(g) → Ar(g). By the
description of these maps it is easy to see that we abs they commute with the anchor maps so we get a map of
the complexes A• → T•M
It is easy to see that this essentially is a representation of the 1 jets oF bisections groupoid J1G on A and
TM . Furthermore we have a representation of J1G as chain maps to the chain complex of vector bundles over
M consisting just of 2 nonzero terms, A in degree 0 and TM in degree 1 of course this representation doesn’t
descend to a representation of G but as we shall see it does so up to homotopy.
Towards this it suffices to prove that 2 elements over g ∈ G in J1G give homotopic chain maps .Obviously it
will be enough to prove this over units 1x and to assume that one of the two elements comes from the identity
bisection. OF course the identity bisection id induces the identity map both on Ax and TxM . Consider another
bisection σ over 1x.

The difference θx = Txσ − Txid gives of well defined map

θx : TxM → (ker ds)1x = Ax

The induced map of σ on TxM is given by

T1xr ◦ Txσ = T1xr ◦ (Txσ − Txid) + T1xr ◦ Tx id = αx ◦ θx + I

The induced map of σ on Ax is given by the differential at 1x of

Gx
(σ◦r,id)−−−−−→ G ∗G→ Gx

using the differential of multiplication (see [mackenzie]) this is found to be equal to :
(using the identity bisections)

X → X + Txσ ◦ T1xr(X)− Tx(id) ◦ T1xr(X) = = X + θx ◦ αx(X)

Therefore ex : TxM → Ax defines x homotopy of the induced maps. Now that we have shown that for
every g ∈ G we have or well defined map chain map up to homotopy we will get a well defined representation
of G on the berezinian

∧top
T ∗M ⊗

∧top
A of the complex.

Because the above maps come from representations of J1G they are linear isomorphisms.To show that two maps
that are homotopic induce the same map on the berezinian we only need to prove that a chain automorphism
that is homotopic to the identity induces the identity on the berezinian. In the case of interest to us A• → T•M
this follows from standard linear algebra and is left to the reader.
There is a more general lemma we mention along with it’s stragihtforward proof:
In general if we define the berezinian of a chain complex . . .→ Ei → Ei+1 → . . . to be

⊗ top∧
E2i ⊗

⊗ top∧
E∗

2i+1

then homotopic chain isomorphisms induce the same map on berezinians.
Proof: As before it suffices to consider the case where we have chain isomorphisms on the same chain complex
and one of these is the identity. We need the following lemma: For a morphism of short exact sequences of
vector spaces:

0 A B C 0

0 A B C 0

f1 f f2

We have that det(f) = det(f1) det(f2) this follows easily from the block decomposition of f .
Consider a chain map ϕ• on E• that is homotopic to the identity.φ induces morphisms of the following short
exact sequences

0→ fi−1 (Ei−1)→ Ei → Ei/Fi−1 (Ei−1)→ 0

0→ ker fi/fi−1 (Ei−1)→ Ei/fi−1 (Ei−1)→ Ei/ ker fi → 0

Using the above lemma on the above exact sequences together the fact that φ is a quasi isomorphism we easily
get the result (that Πdet (φ2i) /Πdet (φ2i+1) = 1)
Now assume that L has a G invariant section Ω (which is the same as a holonomy invariant transversal measure)
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using this we can define a trace on the convolution algebra AG = Γ(G, r∗
∧top

A∗) The following defines a trace:If
Ω is represented as

∑
ω ⊗ ΛA then:

τ(a) =

∫
M

a(1x)(ΛAx)ωx

Proposition: τ defines a trace.
Proof:

a ◦ b(γ)[αr(γ)] =
∫
Gs(γ)

a(γh−1)[αr(γ)]b(h)[Rγ−1∗[−]] =
∫
Gr(γ)

a(h)[αr(γ)]b(h
−1γ)[Rh∗ ◦ i∗[−]]

We have to prove that τ(a ◦ b) = τ(b ◦ a) First we need to reduce to the case where a, b are supported in a
small enough neighborhood of the diagonal.First suppose that a is supported in a neighborhood of γ and b in
a neighborhood of γ−1 Then suppose that σ is a bisection over γ and that for η close to 1s(γ) ,we denote a0, b0
the pullbacks by the translations given by the bisections(they are supported in a neighborhood U of 1x).

b(Lση)[Lσαr(η)] = a0(η)[αr(η)] (2.1)

a(Rσ−1η)[αr(η)] = b0(η)[αr(η)] (2.2)

Now τ(a ◦ b) is given by :

τ(a ◦ b) =
∑∫

M

∫
Gx

a(h−1)[ΛAx]b(h)ωx =
∑∫

G

a(h−1)[ΛAs(h)]b(h) ∧ s∗ω

Where b is extended arbitrarily to a form on G the wedge product with s∗ω which vanishes on ker(ds) is
unambiguously defined.
For the expression of τ(b ◦ a) we will use the pullback of the above by the inversion i : G → G and the final
expression is going to look like ∑∫

G

b(h)[ΛAr(h)]i
∗a(h) ∧ r∗ω

Now in both cases we are going to pullback the above integrals by the left translation by the bisection σ :Lσ
and we will actually get that τ(a ◦ b) = τ(a0 ◦ b0) and τ(b ◦ a) = τ(b0 ◦ a0):

τ(a ◦ b) =
∑∫

U

a(Rσ−1η−1)[ΛAs(η)]L
∗
σb(h) ∧ s∗ω =

∑∫
U

a0(η
−1)[ΛAs(η)]b0(η) ∧ s∗ω = τ(a0 ◦ b0)

τ(b ◦ a) =
∑∫

U

b(Lση)[ΛAr(Lση)]L
∗
σi

∗a(η) ∧ L∗
σr

∗ω =
∑∫

U

b(Lση)[ΛAr(Lση)]i
∗R∗

σ−1a(η) ∧ r∗δ∗σω

=
∑∫

U

b0(η)[ΛAr(η)]i
∗a(η) ∧ r∗ω = τ(b0 ◦ a0)

Where the last equality follows from the translational invariance of Ω ,δσ denotes the diffeomorphism as-
sociated to σ. Using partitions of unity argument it suffices to prove the statement for sections supported
in a neighborhood of a point in the diagonal. Around that point we are going to use a diffeomorphism
A → U (from an open neighborhood of A) using the exponential map and local sections of A around x0
Let (x1, x2, ..., xn, t1, ..., tk)→ expx(t1Y1 + ...+ tkYk) be such coordinates:
Also represent Ω as Y1 ∧ ... ∧ Yk ⊗ fdx1...dxn then:

τ(a ◦ b) =
∫
U

a(h−1)[ΛAs(h)]b(h)[R
∗
h−1 [−]] ∧ s∗ω =

=

∫
a(expx(t · Y )−1)[ΛAx]b(expx(t · Y ))[R∗

h−1 [−]] ∧ s∗ω =

=

∫
a(expx(t · Y )−1)[Y1 ∧ ... ∧ Yk|x]b(expx(t · Y ))[Y1 ∧ ... ∧ Yk]fdx1...dxndt1...dtk

τ(b ◦ a) though more tedious of a computation gives the same thing due to the translational invariance of Ω.
Before we define the localized index we need to note that Cp(G) (and CpM (G) carry a cyclic structure given by :
τkϕ(g1, ..., gk) = ϕ((g1g2...gk)

−1, g1, ..., gk−1) The corresponding cyclic cohomology is denoted by HCp(G).
Given this trace the we can define a chain map of cocyclic modules that gives a map from lie groupoid cyclic
cohomology to cyclic cohomology of the convolution algebra

χp : C
p(G)→ Hom(A⊗(p+1)

G ,C)
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χp(ϕ)(a0 ⊗ ...⊗ ak) =
∫
M

(∫
g0g1...gk=1x

ϕ(g1, ..., gk)a0(g0)...ak(gk)

)
. As suggested by the connes moscovici index theorem we will take localized K theory of the algebra A and
using the chern charachter as well as the isomorphism of lie algebroid cohomology with groupoid cohomology
we will get a pairing

HC∗(A)×K loc
0 (A)→ C

. As noted in the quantization procedure for symbols on groupoids the support of the kernel can be localized
around the diagonal.In other words an elliptic pseudodifferential operatr on a groupoid defines (exactly as done
in connes moscovici) a localized index class in K loc

0 A the pairing of this localized index class with a lie algebroid
cohomology class can be given by a topological formula involving the symbol of the operator.This formula
generalizes several index theorems ,for foliations for group actions etc. Details can be found in [38].

2.5 Appendix

Proof of exactness of: 0 −→ C∗(BM )
ι∗−→ C∗(TM)

ev0∗−−−→ C∗(TM) −→ 0
(1) exactness at C∗(TM): First consider the situation locally and take an arbitrary section f ∈ Cc(TU)) (where
U is a convex open subset of Rn) that is represented by kernels k,K as above. Now it is easy to see that the
correspondence between symbols and kernels has an inverse in this case.Namely there is a family of symbols pt
such that pt(x, tξ) and p0(x0, ξ) represent f .They are explicitly given by:

pt(x, ξ) =

∫
K(x, x+ tZ, t)ei⟨Z,ξ⟩dZ =

∫
g(x+ tZ,−Z, t)ei⟨Z,ξ⟩dZ

p0(x, ξ) =

∫
k(x,−Z)ei⟨Z,ξ⟩dZ =

∫
g(x,−Z, 0)ei⟨Z,ξ⟩dZ

Where g(x, Z, t) is compactly supported with respect to x, Z then it is easy to see that pt → p0 in Sym0 therefore
Lemma 0 immediately gives that ||Oppt(x,tξ) −Opp0(x,tξ)||L2→L2

→ 0 as t→ 0.
We also know from Lemma 2 that the class of Opp0(x,tξ) in K∞/K0 has norm bounded by sup |p0(x, ξ)|. But
the sup norm of p0 is just supx∈M ||π(x,0)(f)||

All these suggest that the inequality

sup
x∈M
||π(x,0)(f)|| ≥ lim sup

t→0
||π(x,t)(f)||

is true , so having proved this locally in order to extend it globally we use subtle partition of unity arguments.
For each x ∈M find a finite number of open neighborhoods x ∈ Vx and Vx ∈ U ix such that each U ix is an open
chart mapped to a convex subset of Rn and the U ix cover M Then cover M by finite such open neighborhoods
Vj and take a partition of unity ψj subordinate to them,use it to break down any element of L2(M).
Then we know that the open subsets TU ij of TM cover it’s closed subspace s−1(V̄j) so take a partition of unity

ϕij and ϕj on TM subordinate to TU ij and TM − s−1(V̄j) Now for any f ∈ Cc(TM,Ω1/2(ker ds)⊗Ω1/2(ker dt))
break down π(f):

π(f) =
∑

π(ϕijf)ψj + π(ϕjf)ψj

Since π(ϕjf)ψj = 0 and π(ϕijf)ψj reduces locally. We have proved that

C sup
x∈M
||π(x,0)(f)|| ≥ lim sup

t→0
||π(x,t)(f)||

globally. This inequality gets passed of course to f ∈ C∗(TM) and we can finally conclude that ker(ev0∗) =
K0 = C∗(BM ).
(2)exactness at C∗(TM):
For an open coordinate chart consider the composite map:

Cc(T
∗U)→ C∗(TU)

extension by 0−−−−−−−−−→ C∗(TM)
ev0∗−−−→ C∗(TM) ∼= C0(T

∗M)

It is equal to the map Cc(T
∗U)

extension by 0−−−−−−−−−→ C0(T
∗M). Therefore the image of C∗(TM)

ev0∗−−−→ C∗(TM) ∼=
C0(T

∗M) contains the dense subspace Cc(T
∗M) and this together with the standard fact that ∗−morphisms

of C∗ algebras have closed range give that it is surjective.
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