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Abbreviation Explanation 
ACR  American College of Rheumatology  
AGR Albumin-to-globulin ratio  
aHR Adjusted hazard ratio 
AIC Akaike information criterion  
AUC Area under the ROC curve  
BILAG British Isles Lupus Assessment Group  
CIF Cumulative Incidence Function  
ESKD End-stage renal disease  
EULAR European Alliance of Associations for Rheumatology  
Harrell’s C Harrell’s concordance index 
HR Hazard ratio 
ISN/RPS International Society of Nephrology/Renal Pathologic 

Society  
KM Kaplan-Meier  
LN Lupus nephritis  
LRT Likelihood ratio test  
MLE Maximum likelihood estimation  
NETs Neutrophil extracellular traps  
NP Neuropsychiatric  
ROC Receiver operating characteristic  
SLE Systemic lupus erythematosus  
SLICC Systemic Lupus International Collaborating Clinics 
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1. Introduction 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with protean clinical 

manifestations and an erratic clinical course. Among its various clinical manifestations, kidney 

involvement represents a major milestone, with long-standing prognostic implications on 

morbidity and mortality (Anders et al., 2020). To underline this, the recently updated European 

Alliance of Associations for Rheumatology (EULAR) recommendations for SLE highlight the 

need for “regular screening for organ involvement (especially nephritis)” within one of the 

overarching principles for the management of the disease (Fanouriakis et al., 2023). In this regard, 

it is essential to identify patients who are at high risk for subsequent development of lupus nephritis 

(LN) [term used in this document interchangeably with “kidney involvement”], if the latter is not 

present at disease onset. Various cohort studies have shown that the prevalence of LN within SLE 

patients is higher in men (versus women), juvenile-onset (vs. adult-onset disease) and certain races 

or ethnicities, such as non-Whites, compared to Whites (Stefanidou et al., 2011; Hoffman et al., 

2009;Maningding et al., 2020). 

Kidney involvement often occurs as a presenting manifestation in patients with SLE, with the 

majority of patients developing LN within the first five years from disease onset. In the ‘Attikon’ 

lupus cohort, we found that kidney involvement was evident in a little over 10% of patients at 

disease onset, reaching a cumulative prevalence of 21% after a median five years of follow-up (D. 

Nikolopoulos et al., 2020). Among patients initially presenting with mild disease (according to 

British Isles Lupus Assessment Group (BILAG) index and initial treatments administered), males, 

those with neuropsychiatric involvement, as well as those positive for anti-ds DNA at baseline 

were at higher risk to subsequently progress to a more severe disease phenotype during follow-up, 

including some forms of LN (Di. S. Nikolopoulos et al., 2020). 

In the present study, we used data from our cohort to discern predictive factors at disease onset for 

the development of incident LN, in order to identify patient subgroups in need for a more vigilant 

monitoring, or earlier use of immunosuppressive drugs and/or biologics, that may decrease this 

risk. To strengthen our findings, we aimed to cross-validate our analysis in an independent patient 

cohort (University of Crete Lupus registry) in Greece. 

In the following chapters we will summarize current knowledge on SLE and LN pathophysiology 

(Chapter 2), highlighting specific risk factors for subsequent LN development, according to the 
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literature. This will serve as the basis for research methodology (Chapter 3), analysis results 

(Chapter 4) and, finally, discussion (Chapter 5). 

2. Theoretical background 
This section establishes the theoretical foundation for the subsequent chapters. We will briefly 

review SLE epidemiology, pathophysiology and main clinical manifestations. We also provide an 

overview of LN, which was the focus of this research, focusing on the clinical significance of early 

diagnosis. Next, we explore current literature on mechanisms by which SLE progresses to LN, 

highlighting known risk factors and knowledge gaps, particularly for the Greek population. 

2.1. Systemic lupus erythematosus 
SLE is the prototypic systemic autoimmune disease, characterized by multi-systemic 

manifestations and autoantibodies production. Its erosive skin manifestations were first described 

during the Middle Ages as a “wolf’s bite” (hence the term “lupus”) and in 1846 with the “butterfly” 

metaphor, by Ferdinand von Hebra (Figure 2-1), referring to the disease’s characteristic malar 

rash. Lupus’ systemic nature was recognized later by Moriz Kaposi (1837-1902), Osler in 

Baltimore and Jadassohn in Vienna. 

 
Figure 2-1. A woman with the SLE-characteristic malar rash, as depicted in Ferdinand von Hebra ‘Atlas of Skin Diseases’ (image 
under public domain). 
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2.1.1. Epidemiology 

Approximately 400,000 people are newly diagnosed with SLE each year worldwide, according to 

a 2023 systematic review and modeling study (Tian et al., 2023). Incidence rates vary substantially 

worldwide, from 1 to 23 per 100,000 persons/year, and are influenced by geographical regions and 

differences in the distribution of factors including age, race and gender of the population. Global 

SLE prevalence and affected population are estimated to be 43.7 (95% CI: 15.86-108.92) per 

100,000 persons and 3.41 million people, respectively.  

Most cases are diagnosed between the age of 15 and 64 years old (Boddaert et al., 2004). Women 

are affected 8 to 12 times more than men (Alonso et al., 2011). This difference is greater among 

patients presenting in their twenties and gets alleviated at older age, reaching an equal sex ratio for 

patients with disease onset after the age of 80 years (Hermansen et al., 2016). There is a trend for 

higher age at SLE diagnosis among men, as well as higher mortality, compared to women. Race 

is also strongly associated with SLE, with African-American and Hispanic descendants being 

affected more often and with more severe manifestations than Caucasians. This may be attributed 

to genetic as well as socioeconomic factors (Ugarte-Gil et al., 2016). 

 

2.1.2. Aetiology 

The pathogenesis of SLE remain incompletely understood and includes a complex interplay 

between genetic and environmental factors. Previous research has confirmed familial aggregation 

in SLE (Ulff-Møller et al., 2018), highlighting the genetic susceptibility component, with more 

than 100 associated genes. However, family clustered SLE accounts for only about 10% of the 

total SLE cases, with most of SLE patients being sporadic cases (Chen et al., 2008). Epigenetic 

effects further influence the genetic risk for SLE; the most well understood effect being DNA 

methylation (Javierre et al., 2010). Candidate environmental factors include ultraviolet light, 

drugs, cosmetic products, smoking, viruses (especially Epstein-Barr virus) and silica from 

occupational exposures such as painting and foundry work. 

Hormonal factors play a key role in SLE aetiology, as shown by the marked predominance of 

women in SLE, with the highest prevalence in women of childbearing age, but equal prevalence 

in men before puberty and after menopause. Observational studies on contraceptives use and 

hormonal replacement therapy for the risk of SLE development have shown conflicting data, while 

no association was with pregnancies. 
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Breakdown of immunological tolerance leads to elevated type I interferon levels and aberrant 

immune responses against nuclear, such as double-stranded DNA, and other self-antigens (Crow, 

2023). An overview of key concepts in SLE immunopathogenesis is presented in Figure 2-2. 

Defective clearance of apoptotic cells and debris accumulation elicit immune triggering and 

activation of Neutrophils, forming extracellular traps (NETs) (Dieker et al., 2016), nucleic acid 

recognition receptors in dendritic cells, B and T cells, and macrophages. B cells response drives 

the production of autoantibodies that constitute a hallmark in SLE pathogenesis. 

 

 

 
Figure 2-2. Overview of key events in immunopathogenesis of systemic lupus erythematosus. BCR, B cell receptor; 
FcγR, Fcγ receptor; IFN-α, interferon α; TLRs, Toll-like receptors; UV, ultraviolet. (Reproduced with permission 
from Bertsias et al, Ann Rheum Dis 2010b;69:1603–11.) 

 

 

 

2.1.2. Clinical presentation 

SLE can virtually affect any organ and shows great heterogeneity in the incidence and severity of 

its clinical features. Typical symptoms include fever (>38 °C), hair loss, skin rash, oral ulcers and 

arthralgias/arthritis (Siegel and Sammaritano, 2024). SLE is a disease that lacks specific 

pathognomonic features and diagnostic criteria are seldomly used, as clinical diagnosis by an 
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experience clinician is considered to be the “gold standard”. Several classification criteria have 

been designed, for epidemiological research. Their purpose is to create homogenous cohorts of 

comparable patients. Until 2019, the 1997 ACR and 2012 SLICC classification criteria were used 

(Table 2.2). The 2019 European Alliance of Associations for Rheumatology (formerly the 

European League Against Rheumatism)/American College of Rheumatology (EULAR/ACR) 

(Supplemental Table S1) are latest classification criteria, that reach a high sensitivity and 

specificity of 96.1% and 93.4%, respectively (Aringer et al., 2019). There criteria may also aid in 

SLE diagnosis, as they identify most patients. Nevertheless, they shouldn’t preclude diagnosis or 

treatment, given the marked variety of the disease’s clinical presentation.  

 
Table 2-1. Revised ACR and SLICC classification criteria for SLE. 

ACR criteria (1997 update) 
(Tan et al, 1982; Hochberg, 1997) 

SLICC criteria (2012) 
(Petri et al, 2012a*) 

Clinical criteria 
Skin 1. Malar rash (fixed erythema, flat or 

raised, over the malar eminences, 
tending to spare the nasolabial 
folds) 
2. Discoid rash (erythematous raised 
patches with adherent keratotic 
scaling and follicular plugging; 
atrophic scarring occur in older 
lesions) 
3. Photosensitivity (skin rash as a 
result of unusual reaction to 
sunlight, by patient history or 
physician observation) 

1. Acute cutaneous lupus (lupus malar rash, 
do not count if malar discoid; bullous lupus; 
toxic epidermal necrolysis variant of SLE; 
maculopapular lupus rash; photosensitive 
lupus rash), or subacute cutaneous lupus 
(non-indurated psoriasiform and/or annular 
polycyclic lesions that resolve without 
scarring) 
2. Chronic cutaneous lupus (classic discoid 
rash: localised or generalised; hypertrophic 
verrucous lupus; lupus panniculitis 
profundus; mucosal lupus; lupus 
erythematosus tumidus; chilblain lupus; 
discoid lupus/lichen planus overlap) 
3. Non-scarring alopecia 

Ulcers 4. Oral or nasopharyngeal ulceration 
peripheral joints, characterised by 
tenderness, swelling or effusion) 

4. Oral or nasal ulcers 

Synovitis 5. Non-erosive arthritis (involving ≥2 
peripheral joints, characterised by 
tenderness, swelling or effusion) 

5. Inflammatory synovitis (in ≥2 joints: (a) 
Characterised by swelling or effusion, or (b) 
Tenderness and ≥30 min of morning 
stiffness) 
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Serositis 6. Any of: (a) Pleuritis (convincing by a 
physician or evidence of pleural 
effusion); (b) Pericarditis 
(documented by ECG or rub or 
evidence of pericardial effusion) 
history of pleuritic pain or rub heard 

6. Any of: (a) Typical pleurisy (lasting >1 day, or 
pericardial pain (pain with recumbency 
improved by sitting forward, for >1 day), or 
pericardial effusion, or pericardial rub or 
pericarditis by electrocardiography 
pleural effusions, or pleural rub) (b) Typical 

Renal disorder 7. Any of: (a) Persistent proteinuria 
>0.5 g/day, or >3+ if measurement is 
not performed; (b) Cellular casts: 
red cell, haemoglobin, granular 
tubular or mixed 

7. Any of: (a) Urine protein/creatinine (or 24 h 
urine protein) representing ≥500 mg of 
protein/24 h, or (b) Red blood cell casts 

Neurological 
disorder 

8. Any of: (a) Seizures; (b) Psychosis (in 
the absence of offending drugs or 
known metabolic derangements) 

8. Any of: (a) Seizures; (b) Psychosis; (c) 
Mononeuritis multiplex; (d) Myelitis; (e) 
Peripheral or cranial neuropathy; (f) 
Cerebritis (acute confusional state) 

Haematological/ immunological criteria 
Haematological 
disorder 

9. Any of: (a) Haemolytic anaemia 
(with reticulocytosis); (b) 
Lymphopenia (<1500/mm3); (c) 
Thrombocytopenia (<100 000/mm3) 

1. Haemolytic anaemia 
2. Leukopenia (<4000/mm3), or lymphopenia 
(<1000/mm3) at least once 
3. Thrombocytopenia (<100 000/mm3) at least 
once 

Immunological 
disorder 

10. Any of: (a) Anti-DNA antibody to 
native DNA in abnormal titre; (b) 
Anti-Sm (presence of antibody to Sm 
nuclear antigen); (c) Positive finding 
of antiphospholipid antibodies 
(based on: (1) an abnormal serum 
concentration of IgG or IgM 
anticardiolipin antibodies; (2) a 
positive test result for SLE 
anticoagulant; or (3) a false-positive 
serological test for syphilis, known 
to be positive for ≥6 months and 
confirmed by negative Treponema 
pallidum immobilisation or 
fluorescent treponemal antibody 
absorption test) 

4. Anti-dsDNA above laboratory reference 
range (except ELISA: twice above laboratory 
reference range) 
5. Anti-Sm 
6. Antiphospholipid antibody positivity: lupus 
anticoagulant, false-positive test for syphilis 
(rapid plasma reagin), anticardiolipin 
(medium or high titre IgG, IgM, or IgA), or 
anti-β2 glycoprotein 1 (positive IgG, IgM, 
IgA) 
7. Low complement: low C3, or low C4, or low 
CH50 
8. Direct Coombs test (in the absence of 
haemolytic anaemia) 
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Antinuclear 
antibody 

11. Abnormal titre of ANA (by 
immunofluorescence or an 
equivalent assay at any time and in 
the absence of drugs known to be 
associated with drug-induced lupus) 

9. ANA (above laboratory reference range) 

Classification 
of SLE 

At least 4 out of 11 criteria Either biopsy-proven lupus nephritis in the 
presence of ANA or anti-dsDNA as a ‘stand- 
alone’ criterion, or four criteria with at least 
one of the clinical and one of the 
immunological/ANA 
criteria 

ACR, American College of Rheumatology; ANA, antinuclear antibody; SLE, systemic lupus erythematosus; SLICC, 
Systemic Lupus International Collaborating Clinics; (Tan et al, 1982; Hochberg, 1997); (Petri et al, 2012) 
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The following sections summarize the most common clinical manifestations. Their frequencies, 
from an international SLE inception cohort, are presented in Table 2-2 (Hanly et al., 2007). 

 
Table 2-2. Frequency of SLE manifestations defined according to ACR classification criteria in the SLICC 
inception cohort. 

 
 

Kidney involvement, the most common major organ manifestation and the focus of this research 

is more comprehensively reviewed in a separate section (2.2). 

SLE causes a variety of skin rashes. These include acute, subacute, and chronic forms with multiple 

clinical and histologic types. The most common, acute cutaneous lupus presents as a widespread 

or butterfly-shaped facial rash, in up to half of all SLE patients during their illness (Stull, Sprow 

and Werth, 2023). Subacute lupus shows as a light-sensitive, ring-shaped rash, affecting 10-15% 

of patients. Discoid lupus, the most prevalent chronic form, features well-defined, scaly red 

patches that may develop into permanent hair loss. Anti-Ro antibodies are linked to skin 

involvement. 

Musculoskeletal involvement is evident in 53-95% of SLE patients, with joint pain, usually in the 

hands, with or without inflammation and frequently consists the first clinical manifestation. 

Radiological damage to joints is uncommon in SLE and suggests another condition like 

rheumatoid arthritis (Dörner et al., 2022). Jaccoud's arthropathy, a long-term inflammation around 

joints causing temporary deformity, affects 3-13% of SLE patients. 
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Haematological abnormalities are common and can be the presenting symptom of SLE patients. 

Specific criteria for these were defined in the EULAR/ACR classification system. Prior studies 

show 22%-42% of SLE patients experience leukopenia -primarily lymphopenia- (Carli et al., 

2015), thrombocytopenia, or anemia. These manifestations are more frequent in patients with 

antiphospholipid antibodies (Chock et al., 2019). Macrophage activation syndrome, a life-

threatening but rare inflammatory condition, occurs in 0.9-4.6% of SLE cases (Aziz et al., 2021). 

Neuropsychiatric (NP) manifestations comprise a wide range of central and peripheral neurologic 

and psychiatric conditions, that do not always imply SLE-related attribution and require thorough 

evaluation; particularly to exclude infection (Bertsias et al., 2010). A meta-analysis of 22 studies 

with 6055 patients, reported a pooled prevalece of 52.2% among SLE patients (Meier et al., 2021). 

Non-specific symptoms, such as headache, mood disorders and cognitive dysfunction accounted 

for the majority of them. Nevertheless, NP manifestations significantly affect the quality of life 

and work disability of SLE patients, with unmet needs for better diagnostic and therapeutic tools. 

Cardiovascular and pleuropulmonary involvement in SLE includes various manifestations. 

Pericarditis develops in up to a quarter of SLE (Miner and Kim, 2014). A meta-analysis of 39 

studies reported pleuritis in 16.5% of patients (Medlin et al., 2018). Rarer complications include 

valve thickening, regurgitation and vegetations, myocarditis, pulmonary hypertension, interstitial 

lung disease. Nonbacterial thrombotic endocarditis of the mitral valve, linked to antiphospholipid 

antibodies, is the most common valvular manifestion but usually follows a benign course. 

 

2.2. Lupus nephritis 
 
2.2.1. Epidemiology 

LN is a major milestone in the natural history of SLE. It is a form of glomerulonephritis and 

represents the most frequent major organ manifestation. Almost half of SLE patients develop LN 

during the disease trajectory, while 15-20% present with LN at disease onset (Cervera et al., 2003). 

Prior studies have shown that incidence and prevalence vary depending on the population under 

study and the criretia used to diagnose SLE and LN, and are overall estimated at 1.3 cases per 

100,000 person-years and 21.2 per 100,000 persons, respectively (Hocaoǧlu et al., 2023). Kidney 

involvement appears more frequently among patients with non-European ancestry (African-

Americans, Hispanics, Asian ethnicities), compared to European descent patients (Korbet et al., 

2007) and in pediatric- versus adult-onset SLE (Amaral et al., 2014). Findings from most cohort 
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studies suggest a trend for higher prevalence of LN in men compared to women SLE patients, with 

a male-to-female ratio of 1.1:1 to 1.7:1 (Stefanidou et al., 2011). 

 

2.2.2. Diagnosis 

LN typically manifests initially as proteinuria, often without clinical signs of renal disease (also 

called ‘silent’ LN), making it a challenging diagnosis, particularly when LN is an inaugural feature 

of SLE. Newly active LN cases, whether in the context of inception SLE or established disease, 

may exhibit varied extra-renal SLE manifestations or none at all. Optimal outcomes depend on 

timely diagnosis and early treatment. Dipstick urinalysis serves as a readily accessible first 

screening tool, but systematic urinalysis is recommended in all SLE patients. 

Diagnosis of LN in SLE patients relies upon i) kidney biopsy, classified according to the 

International Society of Nephrology/Renal Pathologic Society (ISN/RPS) 2003 classification 

system (Table 2-3), or ii) clinical evidence of persistent proteinuria (>0.5 g per day in a 24-hour 

urine collection or spot urine protein/creatinine ratio >0.5) and/or evidence of "active" urinary 

sediment (≥5 red blood cells/high-power field or ≥5 white blood cells/high-power field without 

infection, or cellular casts of red or white blood cells), according to the 1997 ACR criteria. While 

classification criteria for SLE rely on clinical findings, the European League Against Rheumatism 

(EULAR) strongly recommends kidney biopsy for all patients with signs of renal disease, 

emphasizing early recognition to optimize outcomes. 

Significant proteinuria (>0.5 g/day) is nearly ubiquitous in active LN, spanning a spectrum from 

mild to nephrotic range (>3.5 g/day). "Active" urinary sediment, while less frequently observed, 

is another important finding in identifying kidney biopsy candidates. Renal biopsy may be 

warranted in rare instances of SLE patients exhibiting persistent unexplained microscopic 

hematuria, leukocyturia, or elevated serum creatinine without significant proteinuria. Orthostatic 

proteinuria may confound urinary protein excretion assessment, therefore the use of first morning 

urine samples are suggested, for improved reliability. Systematic assessment of laboratory 

parameters such as anti-dsDNA antibodies, complement levels (C3 and C4), and other biomarkers 

aids in LN diagnosis and monitoring is mandatory, while monitoring of antiphospholipid 

antibodies is also suggested, given their potential to induce distinct classes of  nephropathies. 
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Table 2-3. The 2003 ISN/RPS classification of LN. 

 
EM, electron microscopy; IF, immunofluorescence; LM, light microscopy; LN, lupus nephritis. aDiffuse segmental LN indicates 
that 50% or more of the involved glomeruli have segmental lesions (that is, glomerular lesions involving less than 50% of the 
glomerular tuft). bDiffuse global LN indicates that 50% or more of the involved glomeruli have global lesions (that is, glomerular 
lesions involving 50% or more of the glomerular tuft). (Lupus nephritis, Anders et al., 2020, Nature Reviews Disease Primers) 

 

2.2.3. Outcomes 

LN significantly impacts the prognosis of SLE patients. Although there is a decreasing rate in 

recent years, progression to end-stage renal disease (ESKD), the worst important complication of 

LN, occurs in up to 20% of all patients within the first decade of the disease course (Tektonidou, 

Dasgupta and Ward, 2016). 

Each disease flare results in irreversible nephron loss, that adds up to the natural loss due to 

physiological ageing (Figure 2-3). Impaired renal function at the time of LN diagnosis, as well as 

poor response to the initial treatment, are associated with poorer long-term outcomes (Mageau et 

al., 2019). Prognosis is significantly affected by the initial LN classification according to the 
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International Society of Nephrology/Renal Pathologic Society (ISN/RPS) 2003 classification 

system and was the main rationale for this classification. Patients with class III, IV or V LN are 

the highest risk for chronic kidney disease progression, whereas patients on class I or II are at 

intermediate risk.  

Delays in diagnosis or treatment initiation result in greater nephron loss and shorter kidney 

lifespan, while some patients progress to ESKD after the first first LN episode. Therefore, vigilant 

surveillance for early signs of kidney involvement and identifying subsets of patients at 

particularly increased risk for LN development is of utmost imprtance, to improve long-term 

outcomes of SLE patients. 

 
Figure 2-3. ESKD in LN patients during their lifetime. 

 
Figure 2-3. Image reproduced with permission from "Lupus nephritis", Primer Nature, 2020, Anders et al, 
https://doi.org/10.1038/ s41572-019-0141-9. 
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2.2.4. Risk factors 

The complete aetiology of SLE and LN remains unknown and includes genetic, hormonal and 

environmental components. Prior studies have identified several risk factors for SLE, which can 

be overlapping risk factors for LN. 

However, few studies have tried to specifically elucidate kidney involvement factors in SLE 

patients. A study from 2018 with 278 Korean patients found that higher age, low C3, high anti-

dsDNA titre, anti-Sm antibody and low albumin-to-globulin ratio (AGR) were associated with 

future nephritis, but only anti-Sm and low AGR had a clinically relevant aHR (95% CI) of 2.097 

(1.040-4.229) and 4.972 (2.394-10.326), respectively (Kwon et al., 2018). Another Chinese study 

with 1652 patients, showed that male sex, age <18 years old at SLE diagnosis, with high anti-

dsDNA titre were at higher risk for LN, with an adjusted HR (95% CI) of 1.40 (1.12-1.75), 1.50 

(1.09-2.06) and 1.57 (1.30-1.90), although the main focus of this study was to construct a machine 

learning model for future LN prediction (Chan et al., 2023). Additionally, a 2017 study on pregnant 

women with SLE showed association of LN with low C4 and past kidney disease, but not with 

anti-dsDNA antibody titre (Buyon et al., 2017). 

Despite the considerable volume of research being done on SLE and LN, current literature does 

clearly elucidate which specific SLE features at diagnosis affect future LN development, whereas 

some conflicting results have been presented by existing studies. Our research tries to investigate 

LN risk factors, particularly in the Greek population.  
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3. Methodology 
 
3.1. Simple analysis 
 
3.1.1. Categorical data  

The chi-squared test is a commonly used method to investigate associations between two 

categorical variables. The null hypothesis, 𝐻!, is that there is no association between them, while 

the alternative hypothesis, 𝐻!, suggests that there is significant association. The test compares the 

observed and the expected frequencies in each category, under the assumption of no association. 

Data are formulated in cross-tabulation tables, with r rows and c columns. The chi-square statistic 

is compared to a 𝑋" distribution with (𝑟 − 1) ∗ (𝑐 − 1) degrees of freedom and is calculated as 

follows: 

𝑋" =++
(𝛰#$ − 𝐸#$)"

𝐸#$$#

 

 
𝜪𝒊𝒋: the observed frequency in the ith row and jth column 

𝑬𝒊𝒋: the expected frequency in the ith row and jth column, under the null hypothesis 

 

Another method of analysis for this type of data, when the sample sizes are small, is Fisher’s 
exact test. 

 

 

3.1.2. Continuous data 

When dealing with continuous data the variables can take any value within a range. A common 

way to compare continuous variables is through correlation analysis methods. These include: 

 

• the Pearson correlation coefficient, r: this test is a measure of the linear association 

between two continuous variables. It represents the ratio between the covariance of the two 

variables and the product of their standard deviations, and takes values ranging from -1 to 

+1. This method assumes normality of the distribution for both variables. 
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𝑟 =
∑(𝑥 − 𝑥̅) ∗ (𝑦 −	𝑦5)

6∑(𝑥 − 𝑥̅)" ∗ ∑(𝑦 −	𝑦5)"
 

x, y: the two variables being investigated 

𝑥̅, 𝑦5: their respective means 

 

• the Spearman’s rank correlation coefficient: this is the non-parametric counterpart to the 

Pearson correlation coefficient. It assesses the monotonic relationship of the two variables 

and also takes values from -1 to +1.  

 

𝑟 = 1 −
6 ∙ ∑ 𝑑"

𝑛(𝑛" − 1) 

𝒅: the difference of the order of observation, after observations are placed in 

ascending/descending order 

n: the total number of observations 

 

• two-sample unpaired t-test: a statistical test that explores whether there is a significant 

difference in the mean of a variable between two groups of interest. Its assumptions include 

normality of the variable’s distribution in both groups and equal standard deviation and the 

statistic has 𝑛' + 𝑛" − 2 degrees of freedom. 

 

𝑡 = 	
𝑥' − 𝑥"

?𝑠'
"

𝑛'
+ 𝑠""
𝑛"

 

𝑥', 𝑥": the two continuous variables 

𝑠', 𝑠": standard deviations 

𝑛', 𝑛": number of observations for each sample 
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3.2. Survival analysis 
 
In this chapter we introduce the basic concepts of survival analysis. 

 
3.2.1. Time-to-event data and functions 

Survival analysis is the term used when referring to studies where the time from well-defined 

origin until the event of interest is being analyzed. This kind of analysis is very common in 

biomedical research and has several advantages over standard methods, such as incidence rate 

calculations, due to the specific features of survival data; they tend to not be symmetrically 

distributed, as they are frequently positively skewed (Collet, D., 2008), and are subject to 

censoring. 

Incidence rates are useful when relatively constant risk over time can be assumed, as they provide 

an average rate during the corresponding period. However, when risk is not constant, the hazard 

rate and survival analysis provide better estimates. The risk is calculated over short time intervals, 

during which time is relatively constant. Therefore, the hazard function, ℎ(𝑡), is an instantaneous 

risk of the event happening at time 𝑡, given the individual has survived up to time 𝑡. It is defined 

as follows: 

 

ℎ(𝑡) 	= 	 lim
()⟶!

(
𝑃(𝑡	 ≤ 𝑇 < 𝑡	 + 𝛥𝑡	|	𝑇	 ≥ 𝑡)

𝛥	𝑡 ) 

 

The survival function, 𝑆(𝑡), which represents the probability of an individual to survive longer 

than time 𝑡, is defined as: 

𝑆(𝑡) 	= 	𝑃(𝑇 > 𝑡) 	= 	𝑒𝑥𝑝{−𝐻(𝑡)} 

 

where 𝐻(𝑡) is the cumulative hazard function, that is the cumulative risk of the outcome occurring 

by time 𝑡: 

𝐻(𝑡) = 	S ℎ(𝑢)𝑑𝑢
)

!
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3.2.2. Censoring 

The survival time of a subject is considered ‘censored’ when the outcome of interest has not been 

observed. The most common type is ‘right censoring’, that can happen when a) the study time has 

been completed with the patient not experiencing the event (also called administrative censoring), 

or b) the patient is lost to follow-up. Individuals with censored time contribute some information 

to the analysis, up to their last follow-up. ‘Left censoring’ occurs when the actual survival time is 

less than the one observed. The final type is ‘interval censoring’, when the survival time is known 

to lie between two time-points, without exact knowledge of its value. The different types of 

censoring are displayed in Figure 3-1. 

 

 
Figure 3-1. The different types of censoring in survival analysis (adapted from Pornsawangdee, 2021). 

 
Standard survival analysis methods assume that censoring is independent of survival time. This 

assumption is, for example, violated if patients with better prognosis tend to continue participating 

in the study, while patients with worse prognosis tend to drop out. Another important assumption 
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is that survival probability does not depend on whether a patient has been recruited early or late in 

the study. An example of this would be a study where the outcome of a disease gradually got more 

favorable, as doctors accumulated experience during the study period. 

 

3.2.3. Non-parametric method 

The Kaplan-Meier (KM) estimate, 𝑆(𝑡)U , is the most frequently used method to estimate the 

survivor function, when analyzing right-censored data. 

 

𝑆(𝑡)U =	 V 𝑃W(𝜏$) = V Y1	 −	
𝑑$
𝑟$
Z

$:,!-)

	
$:,!-)

 

Where 𝝉𝟏, 𝝉𝟐, . . . , 𝝉𝜿 are k distinct and ordered event times observed in a sample of 𝒏 individuals, 

𝒕 is a time point such that 𝝉𝒋 < 𝒕 < 𝝉𝒋1𝟏 and 𝒅𝒕 is the number of events at time 𝑡. 

The KM estimate requires the following conditions: 

• The study sample is representative of the population of interest. 

• The events happened at the specified times. 

• Independent (non-informative) censoring. 

• Survival probability independent from recruitment time, relevant to the study duration. 

The log-rank test, which calculates a chi-squared test based on the differences between the 

expected and observed number of events, is a method to compare two or more groups of survival 

times. It does not make assumptions about the distribution of survival time, but is more powerful 

in the presence of proportional hazards (more on proportional hazards in the following section). 

 

3.2.4. Cox proportional hazards model 

The Cox regression model is an extension of the parametric methods discussed previously, that 

allows for analysis with multiple explanatory variables. A key assumption of this model is the 

proportionality of hazards. The main idea is that the hazard ratio (HR) of the different groups 

defined by the explanatory variables of the model is constant over time.  
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Therefore: 

𝐻𝑅(𝑡) = 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

ℎ#(𝑡) = ℎ!(𝑡) ∙ 𝜓(𝑥#) 

𝒉𝟎(𝒕): the baseline hazard fuction of t 

𝒙𝒊:  an observation from a vector 𝑥# of explanatory variables and may include continuous and 

categorical variables or interaction terms. 

𝝍(𝒙𝒊): the HR for subject 𝑖, that depends only on the covariates of the model and are time 

invariant 

 

Summarizing, the individual’s hazard, ℎ#(𝑡), is a constant multiple of the underlying baseline 

hazard, ℎ!(𝑡), while the constant of proportionality 𝜓(𝑥#) is affected only by the values of the 

individual’s explanatory variables. 

The full equation of the model becomes the following: 

log(ℎ𝑎𝑧𝑎𝑟𝑑	𝑜𝑓	𝑌) = log[ℎ!(𝑡)] +	𝛽'𝑋' +	𝛽"𝑋" +⋯+ 𝛽4𝑋4 

for 𝒑 covariates. 

A key strength of the Cox regression model is that it is possible to make estimations about the β-

coefficients without making assumptions about the distribution of the baseline hazard function, 

ℎ!(𝑡). Hence it is called a ‘semi-parametric’ method. The β-coefficients are estimated with the 

maximum likelihood estimation (MLE) and then the estimates 𝛽r  are used to estimate the baseline 

hazard function. This technique is called ‘partial likelihood’ and relies on the the rankings of the 

event times, not the actual survival times. 

 

3.2.5. Competing events analysis 

In many real-world scenarios patients in a survival study can experience multiple other events, that 

preclude the observation of the event being investigated. The probabilities of these events are 

termed competing risks. For example, in a study about death from heart disease, death due to other 
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causes precludes a person from having the former outcome. Hence, ‘cause-specific analysis’ has 

to be utilized. 

Standard survival methods and KM estimates under competing risks are not accurate. To illustrate 

this, if we employ a cause-specific approach, then the KM estimate of the survival probability for 

the jth cause of event becomes: 

 

𝑆$56(𝑡) = 𝑃(𝑇 > 𝑡) 

and all other types of events (competing events) are considered censored. Therefore, we assume 

that outcome j is the only cause of an event and doesn’t consider the other causes. The 

supplemental probability 𝐹(𝑡) = 1 − 𝑆$56(𝑡) tends to overestimate the cumulative incidence of 

the outcome j. 

An alternative of the KM method is the Cumulative Incidence Function (CIF). In this method a 

new random variable, C, that denotes event type j. 

Therefore, the joint event probability becomes: 

𝐹$(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑗), 𝑗 = 1,… ,𝑚 

and represents the probability that an individual will experience event j by time t. 

𝐹(𝑡) = 	+𝐹$(𝑡)
7

$8'

 

The maximum value of this function is: 

𝑃(𝑇 ≤ +∞, 𝐶 = 𝑗) = 𝑃(𝐶 = 𝑗) 

and: lim
)→1:

𝐹$(𝑡) 	= 	𝑃(𝐶 = 𝑗) 	≠ 1 

This is why 𝐹$(𝑡) cannot be considered a proper probability distribution function and is termed the 

subdistribution function. In the ‘cause-specific’ context, the survival (also called subsurvivor) 

function cannot be directly interpreted as a sizable quantity. 𝐹$(𝑡) is often estimated using the 

Aalen-Johansen estimator, which is a generalization of the KM estimator and considers the 

survival function regarding all types of events (i.e. the disease-free survival). 
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When multiple covariates are used in time-to-event analysis, adjustments must be made in the 

standard Cox regression model in order to accommodate for the competing causes of failure. One 

approach is to use cause-specific Cox regression. In this type of analysis, all other event types are 

considered censored observations. In doing so, the risk set at each event time comprises individuals 

not having experienced any type of event (i.e. not having failed due to competing events). The 

results can be interpreted as measures of association between the explanatory variables and the 

event of interest. However, they cannot be directly interpreted as hazards ratios of standard Cox 

regression(Andersen and Keiding, 2012). 

 

Fine and Gray (1999) introduced an alternative way to analyze competing risks survival data, by 

modelling the subdistribution hazard function, 𝜆$(𝑡), which is a direct function of the cause 

specific CIF: 

 

𝜆$(𝑡) = 	 lim()→!

𝑃(𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡, 𝐶 = 𝑗	|𝑇 > 𝑡	𝑜𝑟	(𝑇 ≤ 𝑡	𝑎𝑛𝑑	𝐶 ≠ 𝑗))
𝛥𝑡  

C: the type of event being analyzed 

 

In practical terms, the main difference between the two aforementioned methods lies in the risk 

set being considered at each event time. In cause-specific Cox regression, at every event time the 

risk set contains individuals that are not censored due to experiencing a competing event, whereas 

these individuals are retained in the risk set for the Fine and Gray model. In that sense, individuals 

that failed due to a competing event, in the latter model, are considered ‘immortal’ and the resulting 

hazard function cannon directly be interpreted as the instantaneous hazard rate at time t from cause 

j, given that the individual has not experienced event j up to that point. 

Both methods complement each other and are frequently used in different scenarios. In aetiological 

type of research, when the goal is to investigate the factors associated with a particular outcome, 

the cause-specific Cox model is considered more appropriate (Andersen, P.K. and Keiding, N., 

2012). In contrast, when the goal is to make predictions about the incidence of a particular event, 

for example when estimating a subject’s risk of failure over time or when making decisions on 

population-level interventions, the Fine and Gray model is more appropriate. 
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3.3. External validation 
 

External validation plays a crucial role in assessing the findings of a study. It allows us to explore 

whether the findings from examining the study sample are generalizable to a broader population. 

To this end, the most commonly used techniques used today are a) splitting the starting dataset 

into two parts, a ‘training’ and a ‘validation’ set (this is called internal validation), and b) validating 

the results in an external set of patients (external validation) (Rahman et al., 2017). 

 

3.3.1. Concordance measures 

In survival analysis, a common way to assess a model’s predictive performance is by examining 

its discrimination abilities. This is a measure of how well high and lower risk patients are separated. 

Subjects at higher risk should tend to exhibit shorter time-to-failure than those at lower risk. To 

this regard, a key metric used is the concordant pair. It consists of two individuals, among whom 

the individual with higher predicted risk experiences the event earlier. 

Harrell’s concordance index estimator (Harrell’s C) is frequently used in time-to-event data, where 

censoring is present. Simply, it expresses the number of concordant pairs, divided by the sum of 

concordant and discordant pairs. 

 

𝐻𝑎𝑟𝑟𝑒𝑙𝑙;𝑠	𝐶 =
#	𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑔	𝑝𝑎𝑖𝑟𝑠

#𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑠 + #𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑠 

Or in formula form: 

𝐶 =
∑ 𝐼(𝑇�# >	𝑇�$) ∙ 𝐼(𝜂< >	𝜂#)#,$ ∙ 𝛥$

∑ 𝐼�𝑇�# >	𝑇�$� ∙#,$ 𝛥$
 

i, j: the observations pairs 

𝑻�𝒊: right-censored time-to-event for subject i 

𝜼𝒊: linear predictor of the hazard function (see section 3.2.4) 

𝜟𝒊: indicates whether time 𝑇�# has been fully observed (𝛥# = 1), or is censored (𝛥# = 0) 
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Harrell’s C ranges from 0 to 1. Values close to 0.5 indicate no discriminative ability and close to 

1 indicate perfect discrimination. Several textbooks suggest that models with C-index close above 

0.7 adequately discriminate between risk profiles (Neeman, 2009). 

3.3.2. Time-dependent receiver operating characteristics curves 

The receiver operating characteristic (ROC) curve assesses the ability of a test (or a predictive 

model) to discriminate between cases that develop a particular disease and those who do not. They 

are constructed by plotting the sensitivity (the true positive rate) to 1 minus specificity (the false 

positive rate), at several classification thresholds. Using this curve, the model’s diagnostic 

accuracy is measured by calculating the area under the ROC curve (AUC),  

In the context of time-to-event data the risk of disease is not static, but evolves over time. 

Consequently, sensitivity and specificity are also time-varying quantities. This led to the 

adaptation of the AUC concept to survival analysis, through the introduction of time-dependent 

ROC curves (Bansal and Heagerty, 2019). In this method multiple ROC curves are created, 

assessing the model’s performance, at multiple survival times. This allows for the calculation of 

different AUC values at each time point and, therefore, AUC becomes a time-dependent quantity. 
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3.4. Patients and data 
 
3.4.1. Patient cohorts 

The ‘Attikon’ lupus cohort is a longitudinal cohort of SLE patients at the ‘Attikon’ University 

Hospital, a tertiary centre serving nearly two million residents in Western Attica, Greece. The 

cohort was established in January 2014 in the hospital’s rheumatology department and is still 

ongoing. It comprises a ‘prevalent cohort’, which includes all patients diagnosed with SLE, even 

prior to the establishment of the registry, and an ‘inception cohort’, which follows patients from 

diagnosis onwards (D. Nikolopoulos et al., 2020). A comprehensive medical history including 

demographics, clinical and laboratory information is documented at cohort entry and respective 

changes are registered at subsequent follow-ups. For the purpose of the present study, we relied 

on retrospectively collected data for all patients in the registry up to December 2019, for whom 

the necessary data were available. A comprehensive medical history including demographics, 

clinical and laboratory information is documented at cohort entry and respective changes are 

registered at subsequent follow-ups.  

The validation cohort was the University of Crete Lupus registry, located at the Department of 

Rheumatology, University Hospital of Heraklion, which serves as the single referral centre on the 

island of Crete (population 0.6M), and has a dedicated lupus clinic and registry (Gergianaki et al., 

2017; Adamichou et al., 2019). 

 

3.4.2. Ethical Considerations 

As the study was based on archival, routinely collected, and de-identified data, no informed 

consent was required and sought by patients. The study was approved by the ‘Attikon’ Ethics 

Committee (protocol number 103/06-03-2014), and, additionally, by the Ethics Committee of the 

University Hospital of Heraklion (protocol number 5944/14-6-2017). 

 

3.4.3. Patients and definitions 

SLE was defined according to the American College of Rheumatology (ACR) 1997 (Hochberg, 

1997) and/or the Systemic Lupus Erythematosus International Collaborating Clinics (SLICC) 

2012 criteria (Petri et al., 2012), either at the time of diagnosis or cumulatively over the course of 

the disease. Kidney involvement was defined as: 
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• i) LN diagnosed by kidney biopsy, classified according to the International Society of 

Nephrology/Renal Pathologic Society (ISN/RPS) 2003 classification system, 

• ii) clinical evidence of LN, according to the 1997 ACR criteria (persistent proteinuria 

>0.5 g per day in a 24-hour urine collection or a spot urine sample protein/creatinine 

ratio >0.5, or red blood cell casts).  

 

Of note, for patients who did not undergo kidney biopsy, patient treatment records were reviewed 

and immunosuppressive therapy for kidney involvement was required to be included in the study, 

to denote clinically meaningful lupus-related kidney disease and avoid other causes of kidney 

disease. Survival (LN-free) time was calculated as the interval between SLE and LN diagnosis or 

last follow-up visit, whichever came first. Since the purpose of this study was to identify 

associations between clinical and laboratory parameters at SLE onset and subsequent development 

of LN, patients who manifested LN as a presenting manifestation of their disease were excluded 

from the analysis.  

Baseline data on patients’ demographics, including age, sex, disease duration, as well as presenting 

disease manifestations, complement status and autoantibody profile (coded as binary variables - 

low C3 and/or low C4 vs both normal, anti-dsDNA (ELISA or CLIFT assay), anti-Sm, anti-Ro, 

anti-La, anti-RNP, anti-cardiolipin, anti-β2GPI, lupus anticoagulant) use were documented. Of 

note, laboratory data were not tested in a central laboratory, rather patients were asked to 

demonstrate their baseline immunologic status and autoantibody profile, which had to be 

performed in certified laboratories. For patients in the ‘prevalent cohort’, as part of routine practice 

in our cohort, detailed information on clinical and laboratory characteristics at the time of disease 

are specifically sought through patient interview, as well as past medical notes, during the visit of 

enrolment in the ‘Attikon’ cohort. 

 

3.4.4. Study outline 

For the descriptive analysis, mean and standard deviation or median and interquartile range were 

used for continuous variables, depending on normality of the distribution of values, and frequency 

and percentage were used for categorical variables. Differences in baseline data were assessed with 

t-test for continuous and chi-squared test for categorical variables. 
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Time-to-event analyses were employed to investigate data behavior over time. The non-parametric 

Kaplan-Meier (KM) method was used to estimate survival (i.e., LN-free) probability. Survival 

functions between relevant groups of interest were compared visually utilizing KM curves, and 

statistically using the log-rank test. Based on the observed data, there was no indication of 

dependence between the distribution of LN and censoring (which is present when some/partial 

information about the survival time of a patient is known, but they did not experience the event of 

interest up to last visit), thus censoring was assumed to be non-informative.  

The functional form of ‘age’ as a continuous variable was investigated with a) categorization into 

arbitrary groups followed by KM estimation, b) plots of the Martingale residuals against ‘age’. 

The maximally selected rank statistics method, based on log-rank test, was used to determine the 

optimal cut-off point for age at SLE diagnosis, below which the risk for LN is maximized; this 

was estimated at 26 years (this is explained in more detail in the ‘Results’ section). Proportional 

hazards (PH) assumption for each independent variable was assessed with log-log survival plots, 

as well as the Grambsch-Therneau test for PH. 

Univariate Cox regression was conducted to explore associations of individual baseline variables 

with the subsequent development of LN. Subsequently, a multivariate model encompassing all 

statistically significant variables (p <0.2) identified in the univariate step was used. Model 

selection was based on the likelihood ratio test (LRT) and the Akaike information criterion (AIC). 

No evidence of interactions between independent variables was detected. Scaled Schoenfeld 

residuals were used for the evaluation of model fit. Based on the negligible proportion of missing 

data for crucial variables, no imputation techniques were employed. 

Performance of our final multivariate model was evaluated through independent validation, with 

a focus on measures of discrimination. To this end, KM curves and hazard ratios derived from Cox 

regression were compared across the two cohorts. Harrell’s concordance index (C-index), and 

time-dependent area under the ROC curve (AUC) were explored (described earlier in 

‘methodology’), to assess the discriminatory power of the model, between high- and low-LN risk 

patients, after applying it to the independent validation cohort. 

Finally, we explored the consistency of the associations for proliferative (ISN/RPS 2003 class III, 

IV or mixed) versus non-proliferative LN, for patients with histological diagnosis. The cause-

specific Cox model was selected (as opposed to the Fine and Gray model), based on the 

aetiological focus of this study, with the aim to find associations between baseline factors and 
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eventual LN development, instead of making accurate predictions on patient survival rates(Lau, 

Cole and Gange, 2009). The non-parametric Aalen-Johansen method was employed to estimate 

cumulative incidence curves for this part of the analysis. All analyses were performed using R 

Statistical Software (v4.3.2; R Foundation for Statistical Computing, Vienna, Austria) and the 

‘survminer’ (v0.4.9; Kassambara, Kosinski and Biecek 2021) and ‘cmprsk’ (v2.2.11; Gray 2022) 

R packages. 

 
4. Results 
 
4.1. Patient characteristics 
A total of 570 SLE patients from ‘Attikon’ cohort were evaluated. Overall, 125 patients (22%) 

developed kidney involvement; 59 (47%) already had evident nephritis at initial presentation and 

were excluded from the study, as previously explained. Thus, the final sample comprised of 511 

SLE patients and 66 cases of ‘incident’ LN. 

The median (IQR) time to development of kidney involvement was 45 (22 – 94) months; of note, 

21 patients (32% of all LN cases) developed LN after more than 5 years following disease onset. 

Non-LN patients had a median (IQR) follow-up time of 23 (11 – 106) months. Total cumulative 

LN incidence at 1, 5 and 10 years after SLE diagnosis was 12.1%, 15.4% and 17%, respectively. 

The corresponding cumulative incidence for the study population (i.e. patients with no kidney 

involvement at baseline) was 2%, 5.7% and 7.4%. 

Clinical and laboratory characteristics at disease onset, and comparisons between LN and non-LN 

groups are shown in Table 4.1. Clinical SLE manifestations were similarly distributed among the 

two groups, with no major differences. On the contrary, patients who developed LN were 

significantly younger at SLE onset [mean (SD) 29 (13) years vs 40 (15) years, p < 0.001] and had 

a higher frequency of positive anti-dsDNA antibodies [48 (77%) vs 135 (33%), p < 0.001], anti-

RNP antibodies [10 (20%) vs 33 (9.9%), p < 0.05] and low C3 and/or C4 [51 (88%) vs 173 (47%), 

p < 0.001]. Although a tendency for a higher percentage of males was noted in the LN group, this 

difference was not statistically significant (17% vs 10%, p = 0.08).  
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Table 4.1. Baseline characteristics between patients who subsequently developed lupus nephritis 
and those who did not. 
Characteristic Overall (n = 511) Non-LN (n= 

445) 

LN (n = 66) p-valuea 

Age of SLE Dx, Mean (SD) 38 (15) 40 (15) 27 (13) <0.001* 

Age of LN Dx, Median 

(IQR) 

28 (21 – 41) NA 28 (20 – 

41) 

 

Female sex, n (%) 457 (89) 402 (90) 55 (83) 0.08 

Fever, n (%) 129 (26) 108 (24) 21 (34) 0.09 

Hemolytic anemia, n (%) 16 (3.1) 13 (2.9) 3 (4.6) 0.44 

Leukopenia, n (%) 119 (23) 106 (24) 13 (20) 0.46 

Thrombocytopenia, n (%) 58 (11) 50 (11) 8 (12) 0.83 

Neurologic, n (%) 39 (7.6) 34 (7.6) 5 (7.6) 0.99 

Malar rash, n (%) 206 (40) 178 (40) 28 (42) 0.71 

Alopecia, n (%) 119 (23) 108 (24) 11 (17) 0.17 

Ulcers, n (%) 93 (18) 86 (19) 7 (11) 0.087 

Acute CLE, n (%) 337 (66) 297 (67) 40 (61) 0.33 

Chronic CLE, n (%) 51 (10) 44 (9.9) 7 (11) 0.83 

Serositis, n (%) 60 (12) 52 (12) 8 (12) 0.92 
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Characteristic Overall (n = 511) Non-LN (n= 

445) 

LN (n = 66) p-valuea 

Arthritis, n (%) 377 (74) 327 (73) 50 (76) 0.70 

Anti-dsDNA, n (%) 186 (40) 135 (33) 51 (81) <0.001 

Low C3 and/or C4, n (%) 226 (52) 173 (47) 53 (90) <0.001 

Anti-Sm, n (%) 34 (8.8) 28 (8.3) 6 (12) 0.42 

Anti-Ro, n (%) 126 (32) 106 (30) 20 (39) 0.20 

Anti-La, n (%) 50 (13) 42 (12) 8 (16) 0.47 

Anti-RNP, n (%) 43 (11) 33 (9.9) 10 (20) 0.03 

Anti-cardiolipin, n (%) 110 (40) 92 (39) 18 (41) 0.86 

Anti-B2GPI, n (%) 66 (26) 56 (26) 10 (24) 0.84 

Lupus anticoagulant, n 

(%) 

37 (17) 29 (16) 8 (23) 0.33 

a: Chi-squared unless otherwise denoted, *: unpaired samples t-test 

 
 

4.2. Univariate analysis of baseline factors 
 
Comparative analysis was conducted within distinct groups of the study population according to 

demographic, clinical and laboratory variables, at their baseline values. KM-estimated cumulative 

incidence curves are presented below, and group differences are assessed with the log-rank test, as 

well as Cox PH models. 
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4.2.1. Effect of age and linearity assessment 

The use of continuous variables in statistical models presents the challenge of assessing their 

linearity, to accurately interpret their effect. During exploratory analysis ‘age’ was initially 

categorized in 3 groups and the respective KM estimation is illustrated in Figure 4.2.1. 

 
Figure 4.2.1: Cumulative LN incidence curves according to age at SLE diagnosis; p: p-value of the respective log-rank test.; 
shaded regions represent the corresponding 95% confidence intervals. 

 

The youngest group, aged <25 years old, appears to have the highest risk for LN during the whole 

study duration, while the curves do not intersect at any point. Progressively older age groups seem 

to have better prognosis. This was also confirmed by the log-rank test, that yielded a p-value < 

0.0001, indicating a highly significant association. Therefore, our data suggest a progressively 
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higher risk for LN for younger ages. However, the functional form of ‘age’ cannot be adequately 

identified by the categorization of the variable. 

Another approach frequently used when assessing linearity, as suggested by (Thernau-Grambch 

1990), is to plot the Martingale residuals of the corresponding Cox model to the variable being 

investigated. This is depicted for ‘age’ in Figure 4.2.2. 

 
Figure 4.2.2. Martingale residuals plotted against ‘age’ as a continuous variable, to assess its functional form. No 
indication of non-linearity is detected, shown by the almost horizontal smoothed line.  

 

As suggested by the above plot, it is safe to assume that age can be used in its continuous form, 

shown from the almost horizontal red line, representing the Martingale residuals over ‘age’. This 

univariate Cox model revealed 5% lesser risk for LN per greater year at SLE diagnosis (Table 

4.2.1). 
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Characteristic HR1 95% CI1 p-value 

Age of_SLE_diagnosis 

(per year) 

0.95 0.92, 0.97 <0.001 

1 HR = Hazard Ratio, CI = Confidence Interval 
Table 4.2.1. Univariate Cox PH model with age as a continuous variable for the risk of LN. 

 
Moreover, because of no deviation from linearity, categorization of the continuous variable can be 

safely conducted. Hothorn and Lausen (2002) suggested a method of determining the optimal cut 

point of a predictor variable, based on the value that yields the maximum value of the log-rank 

test, while providing a reasonable sample size in the resulting groups. The distribution of this test 

is shown in Figure 4.2.3, and the optimal cutoff for age was found at 26 years. While using the 

categorical form has the drawback of loss of some information about the effect of the covariate, 

the definition of a pure threshold has the benefit of improved interpretability, as it gives a clear 

message to the reader. Compared to interpreting the coefficient of a continuous variable, providing 

age stratification gives more actionable information to clinicians. 

 
 
Figure 4.2.3. Age at SLE diagnosis associated with the maximum risk for subsequent kidney involvement. Maximally 
selected ranked statistics analysis, to pinpoint the threshold associated with the maximum risk for subsequent kidney 
involvement; x-axis represents age at SLE diagnosis as a continuous variable and y-axis depicts the absolute 
standardized log-rank value. The vertical line indicates the optimal cutoff point, estimated at 26 years. 
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This method resulted in a HR for LN of 4.10 (95% CI: 2.25-7.47) for patients under 26 years old 

at SLE diagnosis (Table 4.2.2). The corresponding KM estimation is shown in Figure 4.2.4. 

 

Characteristic HR1 95% CI1 p-value 

Age (years) as 
categorical 

   

    ≥26 — — 
 

    <26 4.10 2.25, 
7.47 

<0.001 

1 HR = Hazard Ratio, CI = Confidence Interval 
Table 4.2.2. Univariate Cox PH model with age as a categorical variable for the outcome of LN. 

 

 
Figure 4.2.4: Cumulative LN incidence curves according to age category at SLE diagnosis; p: p-value of the 
respective log-rank test.; shaded regions represent the corresponding 95% confidence intervals. 
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4.2.2. Effect of baseline serology 

Auto-antibodies (and especially anti-dsDNA) and hypocomplementemia are strongly associated 

with SLE disease activity and LN flares. Here we explore the baseline anti-dsDNA and 

complements status in relation to subsequent LN.  

 

 
Figure 4.2.5: Cumulative LN incidence curves according to anti-dsDNA antibody status at SLE diagnosis; p: p-value 
of the respective log-rank test.; shaded regions represent the corresponding 95% confidence intervals. 
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Figure 4.2.6: Cumulative LN incidence curves according to complements status at SLE diagnosis; p: p-value of the 
respective log-rank test; shaded regions represent the corresponding 95% confidence intervals. 

In Figures 4.2.5 and 4.2.6 the KM curves show that patients who are i) anti-dsDNA positive and 

ii) have low complements, respectively, at SLE diagnosis have a consistently greater risk for 

subsequent LN. The incidence curves diverge from early in the study and keep separating further 

over time, without intersecting. The corresponding log-rank tests are also highly significant (p 

<0.0001 for both variables. Univariate Cox models were fitted (Tables 4.2.3 and 4.2.4) with a HR 

of 5.12 (95% CI 2.39-10.98) and 4.88 (95% CI 1.92-12.43) for anti-dsDNA and low complements, 

respectively. 

 
 
Characteristic HR1 95% CI1 p-value 

anti-dsDNA 
   

    No — — 
 

    Yes 4.58 2.12, 9.90 <0.001 
1 HR = Hazard Ratio, CI = Confidence Interval 

Table 4.2.3. Cox PH model for baseline high anti-dsDNA antibodies and the outcome of LN. 
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Characteristic HR1 95% CI1 p-value 

Low 
complements 

   

    No — — 
 

    Yes 4.36 1.70, 
11.2 

0.002 

1 HR = Hazard Ratio, CI = Confidence Interval 
Table 4.2.4. Cox PH model for baseline low complements and the outcome of LN. 

 

We also stratified our study population as per baseline status of both anti-dsDNA and complement 

status (i.e., single positivity of either, or combined low C3/C4 and positive anti-dsDNA). Notably, 

combined hypocomplementemia and anti-ds DNA positivity at disease initiation, as depicted in 

Figure 4.2.7 suggested there may be an interaction between the two variables. To explore the 

presence of an interaction multivariate Cox PH models with: 

1) anti-dsDNA and ‘low complements’ 

2) anti-dsDNA, ‘low complements’ and their interaction (which was not statistically 

significant, p = 0.3) 

were fitted (Table 4.2.5) and compared by the likelihood ratio test, which was not significant (p-

value = 0.31), and the Akaike Information criterion (AIC). AIC value was lower for the model 

without interaction (350.6 vs 352.3). Both tests showed no evidence of a significant interaction 

between anti-dsDNA positivity and low complements at baseline, therefore the parsimonious 

model with no interaction was considered more appropriate. 
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Figure 4.2.7: Cumulative LN incidence curves estimated by the KM method, comparing distinct groups 

within the study population, based on all possible combinations of baseline anti-dsDNA antibodies; p: p-

value of the respective log-rank test. 
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Cox PH regression With interaction No interaction 

Characteristic HR1 p-value HR1 p-value 

Anti-dsDNA 
  

  

    No — 
 

—  

    Yes 1.56 0.6 3.45 0.004 

Low complements 
  

  

    No — 
 

—  

    Yes 1.71 0.5 3.16 0.019 

Anti-dsDNA * Low 
complements 

  
—  

    Yes * Yes 2.84 0.3 —  

1 HR = Hazard Ratio 

Table 4.2.5. Cox PH regression models with and without interaction between serologic variables for the outcome of 
LN. 

 

 

4.2.3. Effect of gender 

The KM plot (Figure 4.2.8) shows a higher incidence curve for males. Although the confidence 

intervals seem to overlap, the curves diverge further as more events are observed over time, along 

with a statistically significant log-rank test (p-value < 0.05). The corresponding HR from Cox 

regression was 2.48, (95% CI 1.16-5.30), shown in Table 4.2.6, indicating that male patients had 

a significantly greater risk for subsequent LN compared to females. 
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Figure 4.2.8: Cumulative LN incidence curves according to gender; p: p-value of the respective log-rank test; shaded 

regions represent the corresponding 95% confidence intervals. 

 

 

Characteristic HR1 95% CI1 p-value 

Gender 
   

    Female — — 
 

    Male 2.75 1.28, 5.92 0.009 
1 HR = Hazard Ratio, CI = Confidence Interval 

Table 4.2.6. Cox PH regression for the effect of gender on LN incidence. 
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Other variables that were tested, but did not reach statistical significance included anti-ENA 

antibodies (anti-Ro, anti-La, anti-Sm, anti-RNP), antiphospholipid antibodies, as well as all 

clinical manifestations at disease onset. 

4.3. Multivariate analysis 
 
4.3.1. Variable selection 

Building upon our findings on univariate analysis, multivariate Cox PH models were constructed, 

utilizing baseline variables significantly associated with eventual LN development on SLE 

patients. Variable selection is a crucial part of every analysis, particularly when associations 

between the outcome and all possible aetiological factors is the main interest of a study. Heinze, 

et al. (2018), have suggested pragmatic guidelines regarding the choice of variables included in 

models with censored data, in real-life scenarios. They have used the term ‘events per variable’ 

(EPV) as a guide that helps identify appropriate procedures such as backwards/forward selection 

and shrinkage methods. However, ‘strong’ variables -known from existing literature to have an 

effect on the outcome- should be retained in the model, regardless of EPV (Heinze, Wallisch and 

Dunkler, 2018). 

Our study sample comprises a total of 66 LN cases and the analysis so far has identified 4 baseline 

factors associated with the outcome: age, gender, anti-dsDNA and complements status. Prior 

studies, presented in the introductory section 2.2.4, provide some evidence for each one of these 

covariates, albeit with some conflicting results and in different populations. Therefore, due to the 

low EPV value of 16.5, and limited number of candidate explanatory variables, all 4 factors were 

incorporated in the final model. 

 
4.3.2. Multivariate model with age as a continuous variable 

Firstly, a Cox PH model with the aforementioned covariates and age of SLE diagnosis as a 

continuous variable was constructed. Our data suggest that male sex (aHR 3.47, 95% CI: 1.1.49-

8.08, p < 0.01), age (aHR per year 0.95, 95% CI: 0.92-0.98, p < 0.01) and high anti-dsDNA titre 

(aHR 2.52, 95% CI: 1.04-6.10, p < 0.05) were independently associated with LN. 

Hypocomplementemia did not retain a significant effect, although a clear trend for higher LN risk 

was evident (aHR 2.21, 95% CI: 0.81-5.98, p = 0.12) (Table 4.3.1).  
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Characteristic HR1 95% CI1 p-value 

Sex 
   

    Female — — 
 

    Male 3.47 1.49, 8.08 0.004 

Age of SLE Dx (per year) 0.95 0.92, 0.98 0.003 

Anti-dsDNA 
   

    No — — 
 

    Yes 2.52 1.04, 6.10 0.040 

Low C3 and/or C4 
   

    No — — 
 

    Yes 2.21 0.81, 5.98 0.12 
1 HR = Hazard Ratio, CI = Confidence Interval 

Table 4.3.1. Cox PH multivariate regression with age as continuous for the outcome of LN. 

 

4.3.2. Model with age as a categorical variable 

The functional form of ‘age’ as a continuous variable was investigated during univariate analysis 

(section 4.2.1). This analysis revealed the optimal cutoff was found at 26 years. Subsequently, a 

multivariate Cox PH model was fitted, treating age as a categorical variable (<26 years vs. ≥26 

years). Our data suggest that age of SLE diagnosis below 26 years (aHR 3.71, 95% CI: 1.84-7.48, 

p < 0.001), male sex (aHR 4.31, 95% CI: 1.82-10.20, p < 0.001) and high anti-dsDNA titre (aHR 

2.48, 95% CI: 1.03-5.97, p < 0.05) were independently associated with LN. Conversely, 

hypocomplementemia did not retain a significant effect, although, again, a clear trend was evident 

(aHR 2.24, 95% CI: 0.83-6.05, p = 0.11) (Table 4.3.2). The results are presented in the forest plot 

of Figure 4.3.2. 

In line with earlier discussion, the use of categorical variables translates more easily into actionable 

information for clinicians. Furthermore, between the two presented multivariate models, the latter 
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(with age as a categorical variable) had a lower AIC value (350.6 vs. 355.1). Consequently, this 

model was selected for the final presentation. The model’s full hazard function is presented below: 

 

log(𝐻𝑅) = log[ℎ!(𝑡)] +	𝛽' ∙ 𝐼(𝑚𝑎𝑙𝑒	𝑠𝑒𝑥) +	𝛽" ∙ 𝐼[𝑎𝑔𝑒(< 26)] + 

𝛽> ∙ 𝐼(𝑎𝑛𝑡𝑖𝑑𝑠𝐷𝑁𝐴	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + 𝛽? ∙ 𝐼(𝑙𝑜𝑤	𝐶3/𝐶4) 

𝐻𝑅: the Hazard ratio for LN 

ℎ!(𝑡): baseline hazard as a function of time 

𝑡: time in years 

(𝑚𝑎𝑙𝑒	𝑠𝑒𝑥): pseudo-variable representing male sex (female = 0, male =1) 

[𝑎𝑔𝑒(< 26)]: pseudo-variable representing age lower than 26 years 

(𝑎𝑛𝑡𝑖𝑑𝑠𝐷𝑁𝐴	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒): pseudo-variable representing anti-dsDNA positivity 

(𝑙𝑜𝑤	𝐶3/𝐶4): pseudo-variable representing low C3 and/or C4 

𝛽', 𝛽"…: the model’s coefficients 

 

 
Figure 4.3.1: Factors at SLE diagnosis associated with subsequent kidney involvement. Multivariable Cox 

regression analysis for the identification of factors present at SLE diagnosis independently associated with 

subsequent kidney involvement: forest plot illustrating the adjusted hazard ratios and their corresponding 

95% confidence intervals for each covariate; *: p-value < 0.05; ***: p-value < 0.001. 
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Characteristic HR1 95% CI1 p-value 

Sex 

   

    Female — — 

 

    Male 4.31 1.82, 10.2 <0.001 

Age of SLE Dx  

< 26 yrs 

   

    No — — 

 

    Yes 3.71 1.84, 7.48 <0.001 

Anti-dsDNA 

   

    No — — 

 

    Yes 2.48 1.03, 5.97 0.043 

Low C3 and/or C4 

   

    No — — 

 

    Yes 2.24 0.83, 6.05 0.11 
1 HR = Hazard Ratio, CI = Confidence Interval 

Table 4.3.2. Cox PH multivariate regression with age as categorical for the outcome of LN. 

 

4.3.3. Interpretation of the results – across groups comparisons 

In order to assess the combined impact of identified variables, we contrasted the aHR with the 

reference category, in the presence of an increasing number of predictive factors at baseline. The 

different linear combinations are presented in Table 4.3.3.  

Notably, the collective aHR for all factors was almost 90-fold (88.77), when compared to a 

serologically inactive, older, female patient, thereby highlighting the crucial role of each 

independent factor on eventual kidney involvement, also illustrated in the 3-D bar plot in Figure 

4.3.2. 
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Low_complements Anti-dsDNA 
antibody 

Age of 
SLE 
diagnosis 

Sex LN Hazard 
Ratio 

95% CI 

No No >26 Female 1 1 1 
Yes No >26 Female 2.24 0.829 6.05 
No Yes >26 Female 2.48 1.029 5.96 
Yes Yes >26 Female 5.54 1.811 16.98 
No No <26 Female 3.71 1.843 7.48 
Yes No <26 Female 8.31 2.555 27.01 
No Yes <26 Female 9.19 3.321 25.45 
Yes Yes <26 Female 20.58 6.226 68.02 
No No >26 Male 4.31 1.817 10.24 
Yes No >26 Male 9.66 2.694 34.61 
No Yes >26 Male 10.69 3.104 36.78 
Yes Yes >26 Male 23.92 6.021 95 
No No <26 Male 16.01 4.562 56.19 
Yes No <26 Male 35.84 7.684 167.15 
No Yes <26 Male 39.66 9.211 170.75 
Yes Yes <26 Male 88.77 18.745 420.41 

Table 4.3.3. Linear combinations of baseline variables and the corresponding LN HR, after multivariate 
Cox regression. 
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Figure 4.3.2: Combination of predictive factors progressively multiplies the risk of subsequent kidney 

involvement. Cox regression analysis estimates of the adjusted HR (aHR) for different combinations of 

serologic activity and age at SLE diagnosis for female (A) and male (B) patients, compared to a 

serologically inactive, female patient, with age at SLE diagnosis > 26 years, as reference. 

 

 

 

4.4. Independent validation – Crete Lupus Registry 
 
The findings of our primary analysis were externally evaluated using data from an independent 

cohort of 506 lupus patients from the Crete Lupus Registry. In this validation dataset, 46 patients 

developed kidney involvement, of whom 28 had nephritis at the time of SLE diagnosis. 

 

4.4.1. Kaplan-Meier curves 

KM curves across groups of interest for the original and validation cohorts were closely aligned, 

indicating that the overall LN incidence patterns were similar in the two populations (Figure 

4.4.1). Age <26 years, male sex, anti-dsDNA and low complements were associated with 

significantly higher-incidence curves and retained a consistently higher LN risk for the duration 

of the study, similarly to the original cohort. Again, combined serologic activity at baseline 
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conferred the highest LN risk over time (Figure 4.4.2), but no significant interaction between them 

was detected.  

 

 
Figure 4.4.1. Composite cumulative incidence curves for incident kidney involvement across 
groups of interest for the validation cohort (Crete Lupus registry). Cumulative incidence curves 
comparing distinct groups within the validation cohort, based on (A) anti-dsDNA status, (B) sex, 
(C) complements status and (D) age category. P-values refer to the corresponding log-rank test. 
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Figure 4.4.2. Risk stratification by baseline serologic activity profile in the validation cohort 
(Crete Lupus registry). Distinct cumulative incidence curves, representing various combinations 
of baseline anti-dsDNA antibody and complements status, estimated by the Kaplan-Meier method, 
on the validation cohort. The associated log-rank test revealed a highly significant difference in 
LN probability among the different groups (p-value < 0.001). 
 
 
4.4.2. Cox regression 

Cox PH regression revealed overlapping hazard ratios between the two centres, suggesting that the 

significant factors identified in the primary cohort remain consistent (Table 4.4.1). However, the 

multivariate model on the validation set exhibited reduced statistical significance and smaller 

magnitude of the associated effects, likely attributable to the smaller number of LN events,. More 

specifically, baseline anti-dsDNA antibody (HR 2.81, 95% CI: 1.06-7.43) and low complements 

(HR 3.20, 95% CI: 1.15-9.92) were significantly associated with an increased risk for LN, whereas 

male sex (HR 2.11, 95% CI: 0.58-7.66) and age <26 years (HR 1.42, 95% CI: 0.41-4.86) did not 

reach statistical significance in the validation cohort. In conclusion, findings from the Cox 

regression analysis were generally in line with the original cohort, supporting the generalizability 

of the identified LN risk factors. 
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Table 4.4.1. Multivariate Cox proportional hazards model results in the validation cohort (Crete 
Lupus registry) 

Characteristic HR1 95% CI1 p-value 

Sex 
   

    Female — — 
 

    Male 2.11 0.58, 7.66 0.3 

Age of SLE Dx < 26 years 
   

    No — — 
 

    Yes 1.42 0.41, 4.86 0.6 

Anti-dsDNA 
   

    No — — 
 

    Yes 2.81 1.06, 7.43 0.038 

Low C3 and/or C4 
   

    No — — 
 

    Yes 3.20 1.15, 8.92 0.027 

1 HR = Hazard Ratio, CI = Confidence Interval 

Footnote: Estimated hazard ratios with the associated 95% confidence intervals and p-values, 
after multivariate analysis on the validation cohort. The results were observed to overlap and 
align in the same direction with the original cohort data. 
 
 
4.4.3. Model Performance Assessment on independent data 

We further assessed the performance of our model by calculating Harrell’s C-index in both cohorts. 

In the original cohort, the C-index of 0.768 indicated high discrimination ability. This finding 

suggests that our model could effectively rank patients according to their predicted risk. When 

applied to the validation cohort, the C-index remained remarkably stable (0.724), signifying that 

the model’s ability to identify high-risk patients generalized well on independent data.  
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Furthermore, time-dependent AUC values obtained through cross-validation ranged between 0.78 

and 0.88 (Figure 4.4.3). In essence, the validation findings suggest that the model developed on 

the ‘Attikon’ cohort maintained robust accuracy across many time points, when applied to external 

cohort.  

 
 

 
Figure 4.4.3. Cross-validation AUC values for predictive accuracy of the original model, applied 
to independent cohort data. Extension of AUC that accounts for time-to-event data, where 
sensitivity and specificity are based on the survival time under investigation. The observed AUC 
values (ranging from 0.78 to 0.88) at different time-points pertain to the application of the original 
model on the independent cohort data, indicating a high level of predictive accuracy during 
external validation. 
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4.5. Competing risks analysis: proliferative versus non-proliferative LN 

To explore whether baseline factors identified in the previous analyses were associated with 

specific histologic class, a competing risks analysis was conducted in patients from the ‘Attikon’ 

cohort who underwent kidney biopsy and had proliferative (n = 35) versus non-proliferative LN 

(n = 24). Non-parametric cumulative incidence curves, estimated by the Aalen-Johansen estimator, 

demonstrated similar temporal patterns for the two histologic groups, when stratified based on 

genderm anti-dsDNA and low complements status (Figure 4.5.1). However, the cumulative 

incidence curves according to age group did not seem to significantly differ when examining non-

proliferative LN cases, but only for proliferative LN. It should be noted that due to the method 

used, these curves do not represent a ‘proper’ LN risk distribution, but a subdistribution function, 

which cannot be properly interpreted as a realizable quantity. They do, however, allow us to make 

assess the associations with previously identified groups. 

After employing cause-specific Cox PH models, predictive baseline factors were generally 

consistent, with overlapping confidence intervals for the hazard ratios but of smaller magnitude 

compared to the original cohort data. Additionally, more robust predictor-outcome relationships 

were observed for proliferative compared to non-proliferative LN (Tables 4.5.1 and 4.5.2). 

• For proliferative LN significant associations were found with age <26 years (HR 6.96, p < 

0.001), anti-dsDNA (HR 6.59, p < 0.001) and low complements (HR 8.15, p < 0.01) on 

univariate analysis. On multivariate analysis male sex (aHR 3.96, p < 0.05) and age <26 

years (aHR 5.93, p < 0.001) were significant risk factors. 

• For non-proliferative LN the associations were less prominent, with only anti-dsDNA 

reaching a statistically significant HR of 3.77 (p < 0.05). Nevertheless, a trend for greater 

LN risk was found for all previously identified risk factors, in line with the primary 

findings. 

It is important to acknowledge that these analyses were probably underpowered, as a 

consequence of dividing the outcome into two competing events. This limitation may have 

hampered the identification of significant associations, especially for non-proliferative LN. 
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Figure 4.5.1: Cumulative incidence curves for proliferative and non-proliferative LN. Cumulative 
incidence curves for the two possible outcomes of proliferative and non-proliferative LN, 
estimated by the Aalen-Johansen method, based on sex (A), anti-dsDNA (B), complements status 
(C) and age group (D). 
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Table 4.5.1 Cause-specific Cox regression for proliferative LN 

Characteristic 

Univariate Multivariate 

HR1 95% CI1 p-value HR1 95% CI1 p-value 

Sex       

    Female — —  — —  

    Male 1.93 0.67, 5.53 0.22 3.96 1.30, 12.1 0.015 

Age of SLE Dx <26 years       

    No — —  — —  

    Yes 6.96 2.96, 16.4 <0.001 5.93 2.26, 15.6 <0.001 

Anti-dsDNA       

    No — —  — —  

    Yes 6.59 2.30, 18.9 <0.001 3.02 0.84, 10.8 0.091 

Low C3 and/or C4       

    No — —  — —  

    Yes 8.15 1.93, 34.3 0.004 3.33 0.74, 14.9 0.12 

1 HR = Hazard Ratio, CI = Confidence Interval 
Footnote: Proliferative-specific Cox PH regression, showing associations after of univariate 
(left) and multivariate (right) analysis, with accompanying 95% confidence intervals and p-
values. 
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Table 4.5.2 Cause-specific Cox regression for non-proliferative LN 

Characteristic 

Univariate Multivariate 

HR1 95% CI1 p-value HR1 95% CI1 p-value 

Sex       

    Female — —  — —  

    Male 2.25 0.66, 7.71 0.20 2.18 0.47, 10.2 0.3 

Age of SLE Dx <26 years       

    No — —  — —  

    Yes 1.68 0.68, 4.12 0.26 1.12 0.36, 3.51 0.8 

Anti-dsDNA       

    No — —  — —  

    Yes 3.77 1.24, 11.5 0.020 1.96 0.57, 6.75 0.3 

Low C3 and/or C4       

    No — —  — —  

    Yes 2.97 0.85, 10.4 0.089 1.70 0.43, 6.63 0.4 
1 HR = Hazard Ratio, CI = Confidence Interval 

Footnote: Non-proliferative-specific Cox PH regression, showing associations after of univariate 
(left) and multivariate (right) analysis, with accompanying 95% confidence intervals and p-
values. 
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5. Discussion 
 
LN is a major milestone in the natural history of SLE. Together with major neuropsychiatric 

disease, it impacts on the prognosis of patients more than any other manifestation, given also its 

relatively increased frequency compared to other serious manifestations. Indeed, despite declining 

rates over recent decades, up to 20% of LN patients may progress to end-stage kidney disease 

within the first decade of the disease course, thus prompting for early identification with the first 

signs of kidney involvement (Tektonidou, Dasgupta and Ward, 2016). To this end, while increased 

awareness is needed for all patients with SLE, it is important to identify early those subsets of 

patients who are at particularly increased risk to develop LN. We used data from the ‘Attikon” 

lupus cohort and found that, at disease onset, male patients, those younger in age, and those with 

serologic activity carry a higher risk to manifest evidence of kidney involvement at some point in 

the future. Importantly, a combination of these factors confers a multiplicative, significantly higher 

risk over individual factors alone. Finally, we were able to confirm our findings in a totally 

independent large patient cohort, further strengthening the validity of the results. 

The cumulative incidence of LN in our cohort consisting exclusively of white patients was 22%, 

in line with existing literature that supports a lower incidence of kidney disease in the white race 

compared to African-Americans, Asians or Hispanics (rates ranging from 35 to well over 50%, 

depending on several cohort studies) (Seligman et al., 2002;Feldman et al., 2013; Hanly et al., 

2015; Jakes et al., 2012). Importantly, we also confirmed that, although LN is frequently evident 

as a presenting manifestation in a substantial proportion οf SLE patients, more than half of LN 

patients (53%) developed kidney involvement following SLE diagnosis. Median time of LN 

occurrence after SLE diagnosis was 4 years, while a considerable number of patients (n = 21) were 

diagnosed with LN more than 5 years from diagnosis, which is traditionally considered as a 

timepoint after which LN rarely develops. Thus, vigilance for emerging signs of kidney 

involvement should be lifelong in SLE, and late-onset LN (i.e., diagnosed more than 5 years 

following disease onset) has similar clinical characteristics and outcome with its early-onset 

counterpart (Ahn et al., 2020;Delfino, Dos Santos and Skare, 2020). 

When LN is not part of the initial clinical presentation of SLE, identifying patient subgroups that 

are at particularly increased risk to subsequently develop kidney disease is of utmost importance. 

Of note, most studies that have examined risk factors for LN have not separated LN cases based 
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on timing of its appearance Our findings corroborate evidence from previous literature which 

support that patients with SLE of younger age and male sex are more likely to develop LN 

(Seligman et al., 2002; Hanly et al., 2015). Our analysis identified a cut-off for age at SLE 

diagnosis (26 years), below which the risk for future kidney involvement increases significantly. 

Moreover, acute changes in serologic activity (sharp rises of anti-ds DNA or acute drops in C3/C4 

levels) have traditionally been linked to imminent flares of LN, however their status at baseline 

has been less studied as a risk factor for LN occurrence later in the course of the disease. Two 

recent studies in Asian populations found that hypocomplementemia and high anti-dsDNA titre at 

diagnosis of SLE were associated with a risk of future LN, although multivariate analysis found 

an independent association only for low C3 in one of the two studies (Kwon et al., 2018). Our 

findings are in line with these observations and suggest that baseline serologic activity is a major 

determinant of future kidney disease, while the latter showed no association with any of the clinical 

manifestations during disease presentation. More importantly, our study further suggests that the 

type of serologic activity matters, because patients with combined anti-ds DNA positivity and low 

C3 and/or C4 were at significantly higher risk to exhibit kidney involvement over their disease 

course, compared to either positivity alone. 

Lupus patients who present with ‘high-risk’ features to develop severe disease represent a 

challenge for treating physicians. Patients with persistent serologic activity are at increased risk 

for a subsequent disease flare and warrant close monitoring (Huang et al., 2021; Ng et al., 2006), 

yet there is wide consensus that sole serologic activity is not an indication for treatment 

intensification in patients with lupus(Steiman et al., 2012), and the most recent widely accepted 

definition of remission from the Definition Of Remission In SLE (DORIS) international project 

does not require serologic inactivity for a patient to be labelled as being in remission (van 

Vollenhoven et al., 2021). Our study is focused solely on baseline characteristics (when serologic 

is typically also accompanied by clinical activity, hence therapy is needed) and does not relate to 

later stages of the disease when hypocomplementemia and/or anti-ds DNA positivity may be the 

only finding. Nevertheless, the issue of treatment of patients at high risk to develop later serious 

manifestations is important. The recent EULAR recommendations advocate for an early use of 

disease-modifying drugs, including biologics, to better control the disease (Fanouriakis et al., 

2023). A recent post-hoc analysis of the BLISS trials reported that belimumab may be able to 

reduce the incidence of de novo renal flares (Parodis et al., 2023), a formal pragmatic randomised 
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clinical trial would be needed to address this question. Based on our study findings, patients at the 

highest risk, as suggested by our findings, would be particularly suitable candidates for such a trial. 

Our study has several limitations that need to be acknowledged. First, both the ‘Attikon’ and the 

validation cohort consist almost exclusively of Whites, thus data cannot necessarily be 

extrapolated to populations with different racial characteristics. Confirmation of our findings in 

high-risk groups, such as African-American or Asian patients, would be desirable. Also, we have 

not included in our analysis the therapies that patients received after SLE diagnosis but prior to the 

development of LN, because specific time periods of individual immunosuppressive treatments 

are not captured in the dataset of the ‘Attikon’cohort. Thus, potential differences in 

immunosuppressive treatment and/or use of hydroxychloroquine which may have influenced the 

development of LN could not be taken into account. Moreover, complement and anti-ds DNA 

antibody levels tend to fluctuate over time and be affected by administered therapies. Based on 

data availability, we focused only on baseline values of these tests at the time of SLE diagnosis 

and were not able to examine possible longitudinal changes and their potential to alter their 

association with LN occurrence. Finally, in our dataset, both C3 and C4 are documented as a single 

binary variable in our database (low C3 and/or C4 vs both being normal), thus we could not 

decipher whether either of, only one of, or both low C3 and C4 at SLE diagnosis are independently 

associated with risk of incident LN.  

In conclusion, our retrospective cohort study in an exclusively white race SLE cohort with external 

validation showed that patients who are diagnosed at a young age and have evidence of combined 

serologic activity -especially combined hypocomplementemia and high anti-ds DNA- are at 

substantially increased risk to develop kidney involvement over the following years. These patients 

clearly represent a special high-risk population who should be put under vigilant monitoring for 

the earliest detection of a disease manifestation with profound prognostic repercussions. 
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Abstract 
 
Objectives: To discern predictive factors for incident kidney involvement in patients with 

systemic lupus erythematosus (SLE). 

Methods: Patients with SLE from the ‘Attikon’ Lupus cohort were monitored for lupus nephritis 

(LN), defined by kidney histology and/or classification criteria. Demographic and clinical 

characteristics at baseline were compared against patients who did not develop LN. LN-free 

survival curves were generated by Kaplan-Meier. A multivariate Cox proportional hazards model 

was used to identify independent predictors of LN. Independent validation was performed in the 

University of Crete Lupus registry. 

Results: Among the 570 patients in the derivation cohort, 59 exhibited LN as their initial 

presentation, while an additional 66 developed LN during the follow-up period (collectively, 

21.9% incidence). In the latter group, baseline factors predictive of subsequent kidney involvement 

were male sex (multivariable-adjusted [a]HR 4.31, 95% CI: 1.82-10.2), age of SLE diagnosis 

below 26 years (aHR 3.71, 95% CI: 1.84-7.48), high anti-dsDNA titre (aHR 2.48, 95% CI: 1.03-

5.97) and low C3 and/or C4 (although not statistically significant, aHR 2.24, 95% CI: 0.83-6.05, 

p = 0.11). A combination of these factors at time of diagnosis conferred an almost 90-fold risk 

compared to serologically inactive, older, female patients (aHR 88.77, 95% CI:18.75-420.41), 

signifying a very high-risk group. Independent validation in the Crete Lupus registry showed 

concordant results with the original cohort. 

Conclusion: Male sex, younger age and serologic activity at SLE diagnosis are strongly associated 

with subsequent kidney involvement. Vigilant surveillance and consideration of early use of 

disease-modifying drugs is warranted in these subsets of patients. 
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Περίληψη 
 
Σκοπός: Η ανάδειξη παραγόντων κινδύνου για μελλοντική εμφάνιση νεφρικής προσβολής σε 

ασθενείς με Συστηματικό Ερυθηματώδη Λύκο (ΣΕΛ). 

Μέθοδοι: Ασθενείς από την κοόρτη ασθενών με ΣΕΛ του Π.Γ.Ν. ‘Αττικόν’ παρακολουθήθηκαν 

αναδρομικά μέχρι την εμφάνιση νεφρίτιδας, διαγνωσμένη βάση νεφρικής βιοψίας ή/και κριτηρίων 

ταξινόμησης. Συλλέχθηκαν δημογραφικά και κλινικο-εργαστηριακά αρχικά χαρακτηριστικά και 

έγινε σύγκριση μεταξύ ασθενών που εμφάνισαν ή όχι νεφρίτιδα. Σχεδιάστηκαν καμπύλες 

επιβίωσης και αθροιστικής επίπτωσης νεφρίτιδας με την Kaplan-Meier μέθοδο. 

Μονοπαραγοντικά και πολυπαραγοντικά μοντέλα Cox χρησιμοποιήθηκαν για την εντόπιση 

ανεξάρτητων παραγόντων κινδύνου για νεφρίτιδα. Πραγματοποιήθηκε ανεξάρτητη αξιολόγηση 

των ευρημάτων στην κοόρτη ασθενών με ΣΕΛ του Π.Γ.Ν. Ηρακλείου. 

Αποτελέσματα: Από τους 570 ασθενείς της βασικής κοόρτης, οι 59 παρουσίαζαν νεφρίτιδα ως 

αρχική εκδήλωση της νόσου και 66 ανέπτυξαν νεφρίτιδα κατά τη διάρκεια της μελέτης 

(αθροιστική συχνότητα 21.9%). Οι παράγοντες κινδύνου που συσχετίσθηκαν με ακόλουθη 

εμφάνιση νεφρικής προσβολής ήταν το ανδρικό φύλο (multivariable-adjusted [a]HR 4.31, 95% 

CI: 1.82-10.2), η ηλικία διάγνωσης ΣΕΛ < 26 ετών(aHR 3.71, 95% CI: 1.84-7.48), υψηλά επίπεδα 

anti-dsDNA αντισωμάτων (aHR 2.48, 95% CI: 1.03-5.97) και τα χαμηλά συμπληρώματα C3 ή και 

C4 (παρόλο που δεν έφτασαν στατιστική σημαντικότητα, aHR 2.24, 95% CI: 0.83-6.05, p = 0.11). 

Ο συνδυασμός των παραπάνω παραγόντων κατά τη διάγνωση του ΣΕΛ σχετίσθηκε με σχεδόν 90-

πλάσιο κίνδυνο για ανάπτυξη νεφρίτιδας, συγκριτικά με ορολογικά ανενεργούς, >26 ετών 

ασθενείς γυναικείου φύλου (aHR 88.77, 95% CI:18.75-420.41), αναδεικνύοντας ένα γκρουπ 

ασθενών ιδιαίτερα αυξημένου κινδύνου. Η εξωτερική αξιολόγηση των ευρημάτων στην κοόρτη 

ασθενών με λύκο του ΠΑΓΝΗ ανέδειξε σύμφωνα αποτελέσματα με την αρχική κοόρτη. 

Συμπεράσματα: Το ανδρικό φύλο, η ηλικία <26 ετών με ορολογική ενεργότητα κατά τη διάγνωση 

του ΣΕΛ συσχετίσθηκαν σε στατιστικά σημαντικό βαθμό με ακόλουθη εμφάνιση νεφρικής 

προσβολής. Η στενή επιτήρηση και ενδεχόμενη πρώιμη έναρξη ανοσοτροποποιητικής αγωγής 

ενδείκνυται ιδιαίτερα σε αυτές τις κατηγορίες ασθενών. 
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