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Abstract
Despite the groundbreaking discovery of Higgs boson and the thus far successful

interpretation of experimental data received by the Large Hadron Collider (LHC) at
Cern, the Standard Model of Particle Physics (SM) still remains inadequate in pro-
viding a compelling explanation for various cosmological and not only issues, such as
the origin of dark matter, dark energy, matter-antimatter asymmetry, and the incor-
poration of Quantum Gravity and neutrino oscillations. These challenges indicate that
SM shall be considered as an effective theory valid at low energies and underscore the
importance of extending it. To gain insights into what lies beyond SM we need to
push its limits and explore potential inconsistencies with highly accurate experimen-
tal data obtained from the high luminosity LHC and upcoming colliders. Hence, it
has become essential to generate theoretical predictions with equally high precision
for multi-particle scattering processes, especially those involving Quantum Chromody-
namics (QCD). These theoretical predictions are conducted within the framework of
perturbative Quantum Field Theory, wherein the scattering cross section is computed
through a series expansion based on the coupling constants of the relevant theory.
The initial term of this expansion represents the leading-order prediction (LO), fol-
lowed by the subsequent next-to-leading-order (NLO) prediction, further extended to
the next-to-next-to-leading-order (NNLO) prediction, continued by the next-to-next-
to-next-to-leading-order (N3LO) prediction, and so forth.

Currently, the forefront of these computations reaches NNLO for processes involving
five particles and N3LO for those involving four particles. Within this thesis we tackle
these two frontiers in a two-fold manner. Concerning the NNLO computations, we
upgrade the HELAC framework so that to be able to construct generic two-loop QCD
scattering amplitudes using a mixed approach between Dyson-Schwinger recursion and
Feynman graphs generation. Regarding the N3LO corrections, we compute all the
three-loop 2 → 2 planar Feynman integral families (plus some non-planar ones) with
massless internal propagators and one massive external particle, relevant to processes
like e+e− → γ∗ → 3 jets, pp → Z+ jet and pp → H+ jet. Both our approaches
contribute to the virtual part of the corrections.

The structure of this thesis is divided into two main parts. The first part, consisting
of the first three chapters, represents a brief introduction to the currently employed
techniques and methods for the production of precise theoretical predictions for collider
physics phenomenology. More specifically, the first chapter of this part serves as an
introduction to fundamental aspects of SM and QCD, delving into how theoretical
estimations are crafted for cross sections predicted from collision experiments. The
second chapter is dedicated to multi-loop scattering amplitudes discussing their basic
properties, such as unitarity cuts and integration-by-parts identities, their construction
at Tree-level and One-loop using the recursive approach implemented in HELAC, and
their computation, focusing on the one-loop amplitude reduction paradigm, especially
the Ossola-Papadopoulos-Pittau (OPP) method, which resulted in the automation of
NLO computations. The third chapter delves into the concept of Feynman Integrals,
examining their characteristics and parametric representations, while also introducing
the main technique currently utilized for their computation, meaning the method of
differential equations and a variant of it, the simplified differential equations approach.
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In the second part, consisting of the forth and fifth chapters, we present in de-
tail our results for the HELAC two-loop upgrade and the computation of the three-loop
4-point Feynman integral families. Particularly, in the fourth we outline the algo-
rithm for the construction of two-loop scattering amplitudes encoded in HELAC-2LOOP,
providing a comprehensive rationale for each procedural aspect, and using as illustra-
tion a schematic example of a two-loop contribution to the scattering amplitude of
the process gg → gg. Furthermore, results concerning the construction of two-loop
scattering amplitudes for various processes are presented and discussed. In the fifth
chapter we provide details for the analytic computation in terms of real-valued multiple
poly-logarithm (for both Euclidean and physical kinematics) of the ladder-box and the
two tennis-court Feynman integral families, crucial for leading color 2 → 2 scattering
processes involving one massive external particle and massless particles circulating in
the loops, using the simplified differential equations approach. Moreover, we present
also the analytic computation of two non-planar families relevant for the same scatter-
ing process but for full-color predictions, employing the standard differential equation
method. Finally, in the last chapter we conclude, discussing on the importance of our
results and possible extensions and next steps on the same direction.
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Preface

This thesis gathers some of the main results I have obtained during my Ph.D. studies,
for the Doctorate Degree in Physical Sciences, from July 2018 to May 2024. These
studies have been performed at the National Center of Scientific Research "Demokri-
tos" and the National and Kapodistrian University of Athens, under the supervision of
Dr. Costas. G. Papadopoulos.

The thesis is organized as follows:

• Chapter 1 serves as an introduction to the Standard Model of Particle Physics
and the theoretical framework (Quantum ChromoDynamics) for the estimation
of observable quantities derived from collision experiments.

• Chapter 2 provides a concise overview of the concept of multi-loop scattering
amplitudes and the methodologies employed for their calculation.

• Chapter 3 delves into an exploration of Feynman integrals, examining their un-
derlying significance, identities, and computation methods.

• Chapter 4, based on the conference proceedings [1–3], gives a comprehensive pre-
sentation of the algorithm used for the construction of two-loop scattering am-
plitudes by HELAC-2LOOP, an in-development package aiming at the automation
of two-loop scattering amplitude calculations.

• Chapter 5, based on the articles [4–7], presents the analytical computation of the
three ladder-box (one planar and two non-planar) and two tennis-court Feynman
integral families, which are relevant for the computation of three-loop 2→ 2 scat-
tering processes that involve one massive external particle and massless particles
in the loops.

Additional papers and conference proceedings:

Over the past six years, I have been involved in various research projects, some of
which led to the publication of the articles [8, 9]. However, as these projects did not
align with the main focus of this thesis, they have not been included in the present work.
Furthermore, I have presented part of my work related to this thesis at several inter-
national conferences, including the XXVII Cracow Epiphany Conference, RADCOR–
Loopfest-2021, HEP-2021, CORFU-2021, HP2-2022 and RADCOR-2023. As a result,
the proceedings [1–3, 5, 10] based on these presentations have been published.
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https://indico.cern.ch/event/958085/contributions/4329148/attachments/2249165/3815301/RadCor2021.pdf
https://indico.cern.ch/event/1047066/contributions/4399340/attachments/2266138/3847632/HEP2021.pdf
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Περίληψη

Παρά την ανακάλυψη του μποζονίου Higgs και τη μέχρι στιγμής επιτυχημένη επεξήγηση
των πειραματικών δεδομένων που λαμβάνονται στον Large Hadron Collider (LHC) του
CERN, το Καθιερωμένο Πρότυπο της Σωματιδιακής Φυσικής (ΚΠ) εξακολουθεί να ε-
ίναι ανεπαρκές ως προς την παροχή μιας πειστικής ερμηνίας για διάφορα κοσμολογικά και

όχι μόνο ζητήματα, όπως η προέλευση της σκοτεινής ύλης και της σκοτεινής ενέργειας,

η ασυμμετρία μεταξύ ύλης και αντιύλης στο παρατηρούμενο σύμπαν, και η αδυναμία εν-

σωμάτωσης σε αυτό της Κβαντικής Βαρύτητας και των ταλαντώσεων των νετρίνων. Οι

προκλήσεις αυτές υποδεικνύουν ότι το ΚΠ θα πρέπει να θεωρείται μια αποτελεσματική

θεωρία η οποία ισχύει σε χαμηλές ενέργειες, και υπογραμμίζουν την αναγκαιότητα επέκτα-

σής της. Για να αποκτήσουμε γνώσεις σχετικά με το τι βρίσκεται πέρα από το ΚΠ πρέπει

να εξετάσουμε λεπτομερώς τα όριά της θεωρίας αυτής και να διερευνήσουμε πιθανές α-

συνέπειες μεταξύ των θεωρητικών προβλέψεων της και τα πειραματικά δεδομένα υψηλής

ακρίβειας που λαμβάνονται και θα ληφθούν από τον LHC υψηλής φωτεινότητας και μελλο-
ντικούς επιταχυντές. Ως εκ τούτου, είναι απαραίτητο να πραγματοποιηθούν, στα πλαίσια

του ΚΠ, θεωρητικές προβλέψεις υψηλής ακρίβεια για διάφορες διαδικασίες σκέδασης που

περιλαμβάνουν πολλά σωματιδία, ιδίως για εκείνες στις οποίες υπερισχύει η επίδραση της

Κβαντικής Χρωμοδυναμικής (QCD). Τέτοιου είδους προβλέψεις πραγματοποιούνται στο
πλαίσιο της διαταρακτικής Κβαντικής Θεωρίας Πεδίου, όπου η ενεργός διατομή σκέδασης

υπολογίζεται μέσω ενός αναπτύγματος ως προς τις σταθερές σύζευξης της σχετικής θε-

ωρίας. Ο πρώτος όρος του αναπτύγματος αυτού αντιπροσωπεύει την πρόβλεψη πρώτης

τάξης (LO), ακολουθούμενη από την πρόβλεψη δεύτερης τάξης (NLO), η οποία με την
σειρά της ακολουθείται απο την πρόβλεψη τρίτης τάξης (NNLO), η οποία συνεχίζεται από
την πρόβλεψη τέταρτης τάξης (N3LO), και ούτω καθεξής.
Επί του παρόντος, η αιχμή αυτών των υπολογισμών βρίσκεται στην NNLO τάξη για

διεργασίες σκέδασης που περιλαμβάνουν πέντε σωματίδια, και στην N3LO τάξη για εκείνες
που περιλαμβάνουν τέσσερα σωματίδια. Στο πλαίσιο αυτής της διατριβής αντιμετωπίζου-

με αυτά τα δύο προβλήματα αιχμής με διττό τρόπο. ΄Οσον αφορά τους υπολογισμούς

NNLO τάξης, αναβαθμίζουμε το πακέτο HELAC έτσι ώστε να κατασκευάζει πλάτη σκέδα-
σης δύο βρόχων για QCD διεργασίες, χρησιμοποιώντας μια μικτή προσέγγιση μεταξύ
Dyson-Schwinger αναδρομής και δημιουργίας γραφημάτων Feynman. ΄Οσον αφορά τις
N3LO διορθώσεις, υπολογίζουμε όλες τις οικογένειες επίπεδων ολοκληρωμάτων Feyn-
man τριών βρόχων (καθώς και μερικές μη επίπεδες οικογένειες) για 2 → 2 διαδικασίες
σκέδασης με άμαζους εσωτερικούς διαδότες στους βρόχους και ένα έμμαζο εξωτερικό

σωματίδιο. Τα ολοκληρώματα αυτά είναι απαραίτητα για την μελέτη διεργασίων όπως οι

e+e− → γ∗ → 3 jets, pp → Z + jet και pp → H + jet. Και τα δύο αποτελέσματά μας
συνεισφέρουν στο εικονικό (virtual) μέρος των διορθώσεων.
Η δομή της παρούσας διατριβής χωρίζεται σε δύο κύρια μέρη. Το πρώτο μέρος, που

συγκροτείται απο τα τρία πρώτα κεφάλαια, αποτελεί μια σύντομη εισαγωγή στις τεχνικές

και τις μεθόδους που χρησιμοποιούνται σήμερα για την παραγωγή υψηλής ακρίβειας θε-

ωρητικών προβλέψεων για φαινομενολογία σχετιζόμενη με τους επιταχυντές σωματιδίων.



xvi

Πιο συγκεκριμένα, το πρώτο κεφάλαιο αυτού του μέρους χρησιμεύει ως μια εισαγωγή

σε θεμελιώδεις πτυχές του ΚΠ και της QCD, εμβαθύνοντας στον τρόπο με τον οποίο
δημιουργούνται θεωρητικές εκτιμήσεις για τις ενεργές διατομές που μετρούνται από τα

σύγχρονα πειράματα σύγκρουσης σωματιδίων. Το δεύτερο κεφάλαιο είναι αφιερωμένο

στα πλάτη σκέδασης πολλαπλών βρόχων, συζητώντας τις βασικές ιδιότητές τους, όπως τα

unitarity cuts και οι ταυτότητες που προκύπτουν από κατά παράγοντες ολοκλήρωσης, την
κατασκευή τους σε επίπεδο δέντρου και ενός βρόχου χρησιμοποιώντας την αναδρομική

προσέγγιση που εφαρμόζεται στο HELAC, και τον υπολογισμό τους, εστιάζοντας στο πα-
ράδειγμα της αναγωγής του πλάτους σκέδασης ενός βρόχου σε βασικά ολοκληρώματα στο

integrand level, και ειδικότερα στη μέθοδο Ossola-Papadopoulos-Pittau (OPP), η οποία
οδήγησε στην αυτοματοποίηση των NLO υπολογισμών. Το τρίτο κεφάλαιο εμβαθύνει
στην έννοια των ολοκληρωμάτων Feynman, εξετάζοντας τα χαρακτηριστικά τους και τις
παραμετρικές αναπαραστάσεις τους, ενώ παράλληλα παρουσιάζει την κύρια τεχνική που

χρησιμοποιείται σήμερα για τον υπολογισμό τους, δηλαδή τη μέθοδο των διαφορικών εξι-

σώσεων, καθώς και μια παραλλαγή της, την προσέγγιση των απλοποιημένων διαφορικών

εξισώσεων (SDE approach).
Στο δεύτερο μέρος, που αποτελείται από το τέταρτο και το πέμπτο κεφάλαιο, πα-

ρουσιάζουμε λεπτομερώς τα αποτελέσματά μας για την αναβάθμιση του HELAC και τον
υπολογισμό των οικογενειών ολοκληρωμάτων Feynman τριών βρόχων και με τέσσερα ε-
ξωτερικά σωματίδια. Ειδικότερα, στο τέταρτο κεφάλαιο περιγράφουμε τον αλγόριθμο για

την κατασκευή των πλατών σκέδασης δύο βρόχων που είναι κωδικοποιημένός στο πακέτο

HELAC-2LOOP, παρέχοντας μια περιεκτική αιτιολόγηση για κάθε αλγοριθμική πτυχή, και
χρησιμοποιώντας για καλύτερη κατανόηση ένα σχηματικό παράδειγμα μιας συνεισφοράς

δύο βρόχων στο πλάτος σκέδασης της διαδικασίας gg → gg. Επιπλέον, παρουσιάζονται
και συζητούνται αποτελέσματα σχετικά με την κατασκευή πλατών σκέδασης δύο βρόχων

για διάφορες διεργασίες. Προχωρώντας στο πέμπτο κεφάλαιο, παρέχουμε λεπτομέρειες

για τον αναλυτικό υπολογισμό σε όρους real-valued πολλαπλών πολυλογαρίθμων (τόσο
για την ευκλείδεια όσο και για τη φυσική κινηματική του προβήματος σκέδασης τεσ-

σάρων σωματιδίων, ένα εκ΄ των όποιων είναι έμμαζο) των οικογενειών ολοκληρωμάτων

Feynman, ladder-box και (δυο) tennis-courts, οι οποίες συνεισφέρουν στις leading color
2 → 2 διεργασίες σκέδασης που περιλαμβάνουν ένα έμμαζο εξωτερικό σωματίδιο και
άμαζα σωματίδια στους βρόχους, χρησιμοποιώντας την προσέγγιση των απλοποιημένων

διαφορικών εξισώσεων. Επιπλέον, παρουσιάζουμε τον αναλυτικό υπολογισμό δύο μη ε-

πίπεδων οικογενειών που σχετίζονται με την ίδια διαδικασία σκέδασης, αλλά για προ-

βλέψεις πλήρους χρώματος (full color), χρησιμοποιώντας την τυπική μέθοδο διαφορικών
εξισώσεων. Τέλος, στο τελευταίο κεφάλαιο συζητάμε τη σημασία των αποτελεσμάτων

μας, τις πιθανές επεκτάσεις και τα επόμενα βήματα που μπορούν να ακολουθηθούν προς

την ίδια κατεύθυνση.
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Chapter 1

Standard Model and Observables

In this chapter, we introduce some basic concepts of the Standard Model of Particle
Physics, focusing on Quantum ChromoDynamics, and we describe how theoretical es-
timations can be made for observable quantities obtained from collision experiments,
such as the Large Hadron Collider at CERN. This chapter is based on standard Quan-
tum Field Theory and Standard Model textbooks and reviews [11–17], and we refer
therein for more details.

1.1 Introduction to Standard Model
Particle physics serves as the fundamental cornerstone of our understanding of the
universe, aiming to unravel the enigmas surrounding elementary particles and their
interactions. Nowadays, our best understanding of nature’s fundamental elements and
interactions comes from the Standard Model of Particle Physics (SM), successfully
describing three (Electromagnetic, Weak, and Strong) of the total four fundamental
forces1. SM is a quantum field theory where the elementary particles arise from the
quantization of their respective fields, and its dynamics are described by a Lagrangian
density obeying the gauge symmetry groups

SU(3)C × U(1)Y × SU(2)L
EW Symmetry Breaking−−−−−−−−−−−−−−→ SU(3)C × U(1)Q,

where the subscripts C, Y, L, and Q refer to color, hypercharge, left-handed chirality,
and electric charge. SU(3)C is the color symmetry of Quantum ChromoDynamics
(QCD) and is realized as an exact symmetry of nature. U(1)Y × SU(2)L is linked to
the theory of Electroweak (EW) interactions and is spontaneously broken, via the Higgs
mechanism, to U(1)Q which describes the Weak and Electromagnetic interactions we
observe today, through Quantum ElectroDynamics (QED). The Electroweak symmetry
breaking occurs after the Big Bang when the universe cools down and the Higgs boson
acquires a non-zero vacuum expectation value. This mechanism is of high importance as
it maintains the gauge invariance of the SM Lagrangian density while at the same time
generating masses for the massive particles of SM. The fundamental particle content of
SM consists of: 1) the interacting matter, formed by twelve fermionic particles (bearing
spin 1/2) accompanied by their anti-particles, 2) the mediators of forces, composed of
four bosonic (bearing spin 1) particles, and 3) the scalar (spinless) Higgs boson, H.

1The quantization and incorporation of Gravity within the SM is an open question, while a plethora
of gravitational phenomena is described through a geometrical interpretation of Gravity, the General
Relativity.
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Flavor Charge Mass 2I3 C S T B YW I3
W

u (uL, uR) +2/3 2.16+0.49
−0.26 MeV 1 0 0 0 0 (1/3, 4/3) (1/2, 0)

d (dL, dR) −1/3 4.67+0.48
−0.17 MeV −1 0 0 0 0 (1/3,−2/3) (−1/2, 0)

c (cL, cR) +2/3 1.27± 0.02 GeV 0 1 0 0 0 (1/3, 4/3) (1/2, 0)
s (sL, sR) −1/3 93.4+8.6

−3.4 MeV 0 0 −1 0 0 (1/3,−2/3) (−1/2, 0)
t (tL, tR) +2/3 172.69± 0.3 GeV 0 0 0 1 0 (1/3, 4/3) (1/2, 0)
b (bL, bR) −1/3 4.18+0.03

−0.02 GeV 0 0 0 0 −1 (1/3,−2/3) (−1/2, 0)

Table 1.1: SM quarks. Charges are proportional to positron’s charge.

The fermionic constituents of matter are separated into six quarks and six lep-
tons, independently grouped into three generations according to their flavor2. The first
generation of quarks contains up (u) and down (d) bearing isospin (I3), the second
consists of charm (c) and strange (s) carrying the quantum numbers of charm (C) and
strangeness (S), respectively, and the third includes top (t) and bottom (b) bearing
bottomness (B) and topness (T ), respectively. The first generation of leptons contains
electron (e−) and its neutrino (νe), the second consists of muon (µ) and its neutrino νµ,
and the third includes tau (τ) and its neutrino (ντ ). To each lepton type a lepton num-
ber (Le, Lµ, Lτ ) is associated. The anti-particles are denoted with an over-line, named
inserting the prefix anti- to the name of the particle3 and have the same quantum num-
bers but with opposite sign. In Tables 1.1 and 1.2 we quote the SM fermions (quarks
and leptons, respectively) with their EW quantum numbers and masses. Therein, with
I3
W we denote the third component of weak isospin (SU(2)L charge), and with YW the
weak hypercharge defined via the relation

Q = I3
W + YW

2 , (1.1)

and choosen so that the electric charge (Q) to be in agreement with the experimental
predictions. Concerning the mediators of forces, Strong interactions are induced by
the massless gluon (g), Weak interactions by the massive W± and Z bosons, and
Electormagnetic ones by the massless photon (γ). We collect these bosons and the
Higgs one together with their EW quantum numbers and masses in Table 1.3.

Quarks carry mass, charge, flavor (weak charge), and color, interacting thus through
Electroweak and Strong interactions. On the other side, leptons e−, µ and τ , carry
mass, charge, and flavor thus being "blind" to Strong interactions, while their neutrinos
being massless4 and neutral, interact only weakly. According to the classification of
Eugene Wigner for the irreducible representations of the Poincare group [18], each
spin 1/2 fermion comes in two different states of chirality, the left-handed (L) and the

2Experimentally the existence of three generations is well-proven but the reason why is still un-
known.

3Except for electron’s anti-particle, which is denoted as e+ and is named positron.
4Although within the SM neutrinos can not acquire mass, the existence of neutrino oscillations

foreshadow that they carry a small mass, the effect of which is insignificant for collider physics.
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Flavor Charge Mass Le Lµ Lτ YW I3
W

e (eL, eR) −1 0.51099895 MeV 1 0 0 (−1,−2) (−1/2, 0)
νe (νLe ) 0 < 225 eV 1 0 0 (−1) (1/2)

µ (µL, µR) −1 105.6583755 MeV 0 1 0 (−1,−2) (−1/2, 0)
νµ (νLµ ) 0 < 0.19 MeV 0 1 0 (−1) (1/2)
τ (τL, τR) −1 1776.86± 0.12 MeV 0 0 1 (−1,−2) (−1/2, 0)
ντ (νLτ ) 0 < 18.2 MeV 0 0 1 (−1) (1/2)

Table 1.2: SM leptons. Charges are proportional to positron’s charge and the error estima-
tions for the masses of e and µ are ±15 × 10−11 and ±0.0000023, respectively, not noted
above for space convenience.

Flavor Charge Mass YW I3
W

g 0 0 0 0
W± ±1 80.377± 0.012 GeV 0 ±1
Z 0 91.1876± 0.0021 GeV 0 0
γ 0 < 10−18 eV 0 0
H 0 125.25± 0.17 GeV 1 −1/2

Table 1.3: SM bosons. Charges are proportional to positron’s charge

right-handed (R). For massless fermions chirality coincides with helicity, defined as
the projection of spin onto the direction of the momentum. The left-handed fermions
transform as SU(2) doublets(

uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
,

(
eL
νLe

)
,

(
µL
νLµ

)
,

(
τL
νLτ

)
,

and the right-handed fermions as singlets. For neutrinos, it is assumed, and observed so
far, that only left-handed chirality ones exist, along with right-handed anti-neutrinos.
Massive spin 1 bosons, like W± and Z, come in three different polarization states (one
longitudinal and two transverse), while massless gauge bosons, like gluon and photon,
have only two polarization states (two transverse).

As interested in QCD perturbative corrections within this thesis, in the following
we will focus on the Quantum Chromodynamics sector of the SM. For a complete
discussion5 of the Lagrangian density of the SM and its Feynman rules, we refer to the
analytic source [19].

5Meaning, including the EW interactions.
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1.2 Quantum Chromodynamics

1.2.1 Lagrangian and Feynman Rules
In SM the Strong interactions between quarks and gluons are described via a non-
abelian gauge theory known as QCD6. QCD is obeying the SU(Nc) symmetry group,
with Nc = 3 being the number of colors (red, green, blue). This group contains N2

c −1 =
8 generators, taij, being 3 × 3 traceless hermitian matrices. The indices enumerating
the rows and columns of these matrices (i, j = 1, ..., 3) are called fundamental indices,
while the indices enumerating the generators (a = 1, ..., 8) are referred to as adjoint
indices. Gluons live in the adjoint representation of the symmetry group, having thus
8 colors, while quarks live in the fundamental, having thus 3 colors. The generators of
SU(Nc) satisfy the commutation relation

[ta, tb] = ifabctc ⇒ fabc = − i

TR
Tr([ta, tb]tc), (1.2)

where fabc are the fully anti-symmetric structure constants of SU(Nc) and Tr(tatb) =
TRδ

ab with TR = 1/2. Some useful relations for computing expressions containing
products of taij matrices and fabc constants, the so-called color algebra of SU(Nc), are

8∑
a=1

taijt
a
kl = TR

(
δjkδil −

1
Nc

δijδkl

)
(Fierz Identity), (1.3)

8∑
a=1

taijt
a
jk = N2

c − 1
2Nc

δik, (1.4)

8∑
c,d=1

facdf bcd = Ncδ
ab. (1.5)

The Lagrangian density of QCD remains invariant under local gauge transforma-
tions of the form U(x) = eit

aθa(x), and is made up of three different terms

LQCD = LClassic + LGF + LGhost. (1.6)

The first term is the classical Lagrangian density consisting of a Yang-Mills and a
fermionic part, while the other two terms are necessary for the proper quantization of
the theory. Using the notation ψiq (ψ̄iq = γ0ψiq

†) for the quark (anti-quark) field with
flavor q and fundamental index i, and Aaµ for the gluon gauge field with adjoint index
a, LClassic can be written in the following form

LClassic = −1
4F

a
µνF

µν
a +

Nf∑
q=1

ψ̄iq( /Dij − δijmq)ψjq , (1.7)

where mq are the masses of the quarks induced by the Higgs mechanism and Nf

(Nf = 6) the number of quark flavors. Usually in high-energy collisions, all the quarks
are assumed to be massless, except for the top quark. Starting from Eq. (1.7) and

6The gauge charges are called colors and thus the underlying gauge theory is baptized Quantum
ChromoDynamics.
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applied as notation from here on, summation over dummy indices is assumed and
Feynman’s slash notation (γµpµ = /p) is used, with γµ the Dirac gamma matrices. The
field strength tensor, Fα

µν , and the covariant derivative, Dµ
ij, are defined by the relations

F a
µν = ∂µA

a
ν − ∂µAaν + gsf

abcAbµA
c
ν , (1.8)

Dµ
ij = δij∂

µ − igstaijAµa , (1.9)

with gs the coupling constant of the strong interactions, which is often expressed in
terms of the dimensionless parameter

as = g2
s

4π . (1.10)

The non-abelian group structure of SU(Nc) results in the introduction of the last
term in the definition of F a

µν , which implies that gluons interact with themselves. The
interactions between quarks and gluons show up from the second term of the covariant
derivative.

The classical Lagrangian density contains degenerate field configurations which are
equivalent up to gauge transformations, causing the construction of the gluon propa-
gator impossible due to non-invertibility of the gluon field bilinear operator. This issue
can be solved by following a gauge fixing procedure, which results in adding the last
two terms of eq. (1.6) in LClassic in order to allow for a consistent quantization of the
theory. For the gauge fixing term, LGF, the most common choice (many gauge choices
are possible) is a covariant gauge (Rξ gauge) of the form

LGF = − 1
2ξ (∂µAµa)(∂νAaν), (1.11)

where ξ is an arbitrary parameter (Lagrange multiplier) the choice of which specifies
the gauge fixing. The most typical choices for ξ are the Feynman-’t Hooft gauge, where
ξ = 1, and the Landau gauge, where ξ → 0. In the following chapters we will use the
Feynman-’t Hooft gauge.

Although the gauge fixing allows for a proper definition of gluon propagator it comes
with a price: it introduces unphysical degrees of freedom, by allowing the propagation
of longitudinal and time-like polarization gluon states. These unwanted degrees of
freedom are canceled by the Faddeev-Popov Lagrangian density [20]

LGhost = (∂µc̄a)(δab∂µ − gsfabcAµc )cb, (1.12)

which introduces ghost (ca) and anti-ghost (c̄a) fields. Ghosts are colored (living in
the adjoint representation) complex anti-commuting scalars, therefore violating the
spin-statistics theorem. Being unphysical by construction, ghosts do not correspond to
real particles and never appear as external states in scattering amplitudes, but only as
virtual particles in closed loops.

Having all the pieces of the QCD Lagrangian density in place we can now read
the QCD Feynman rules. From the bilinear terms we read the propagators and from
the terms containing three or four fields (interactions) the vertices. We collect the
QCD Feynman rules for propagators and vertices in Figure 1.1, using straight lines
for quarks, curly lines for gluons, and dashed lines for ghosts. Supplementary to these
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i jk P = δji
i(/k +mq)
k2 −m2

q + iε

a bk

µ ν Πµν = iδab

(
−gµν
k2 + iε

+ (1− ξ) kµkν
(k2 + iε)2

)

a bk Π = iδab
k2 + iε

µ, a ν, b

ρ, c

p1 p2

p3

V µνρ
ggg = gsf

abc [gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ]

µ, a ν, b

p1 p2

σ, d ρ, c
p4 p3

V µνρσ
gggg = −ig2

s

[
fxabfxcd(gµρgνσ − gµσgνρ)

+ fxacfxdb(gµσgρν − gµνgρσ)
+fxadfxbc(gµνgρσ − gµρgνσ)

]

i j

µ, a

p1 p2

p3 V µ
gqq̄ = igsγ

µtaij

a b

µ, c

p1 p2

p3 V µ
gcc̄ = gsf

abcpµ1

Figure 1.1: QCD Feyynman rules, in Rξ gauge, for propagators and vertices. The +iε
prescription, introduced in the denominator of the propagators, is used to fix the contour
over which the integration in the complex k0 plane should be made. In all the vertices
momentum conservation is implied, meaning that for the 3-vertices we have pµ1 +pµ2 +pµ3 = 0,
and for the 4-vertex pµ1 + pµ2 + pµ3 + pµ4 = 0.
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rules, for the computation of Feynman diagrams we need to apply also the following
ones

• For each loop multiply with ddk/(2π)d and integrate over the loop momentum
k, where with d we represent the number of space-time dimensions. As we will
discuss later, in general d 6= 4.

• Multiply with (−1) for each fermionic and ghost loop.

• Multiply each diagram with a symmetry factor that accounts for all equivalent
permutations of internal or external legs.

and multiply with the wave functions (Dirac’s spinor uλ(p) and υλ(p)) or polarisation
vectors (ελµ(p)) for incoming and outgoing particles

• Incoming quark (fermion): uλ(p).

• Outgoing quark (fermion): ūλ(p).

• Incoming anti-quark (anti-fermion): ῡλ(p).

• Outgoing anti-quark (anti-fermion): υλ(p).

• Incoming gluon (or photon): ελµ(p).

• Outgoing gluon (or photon): ελµ(p)∗.

where λ takes into account the chirality of fermions (anti-fermions) and the polarization
of gluon (photon). Feynman rules are a powerful computational tool for theoretical
calculation of observable quantities for collider physics as they are used for the con-
struction of Feynman diagrams. The later are used for the computation of scattering
amplitudes (matrix elements), which are equal to the sum over all the Feynman dia-
grams contributing to a process at hand.

1.2.2 Regularization and Renormalization
In QCD computations, tree-order calculations (where no loops at the loop momenta
appear) of matrix elements are not accurate enough to match the experimental precision
of current colliding experiments, thus the need for computing higher-order corrections
containing loop integrals becomes apparent. However, the integration over the whole
possible momentum space of the loop momenta gives rise to two kinds of divergences:
the Infra-Red (IR) and Ultra-Violet (UV) divergences. IR divergences arise when the
loop momentum becomes soft (kµ → 0) or collinear to the momentum of an external
massless particle, while UV ones show up in the large loop momentum region (kµ →∞).
The fact that the observable quantities are finite means that these divergences cancel,
leaving behind a finite part. In order to manipulate and cancel the divergences we need
a regulator to quantify them.

While many different regularization schemes have been studied the most successful
one seems to be Dimensional Regularization (DR) [21, 22], which regularizes both UV
and IR divergences at the same time and preserves both Lorentz and gauge invari-
ance. In DR, the divergences are regularized by analytically continuing the space-time
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dimensions from 4 to d = 4 − 2ε, and appear in the limit ε → 0 as poles in ε (the
regulator of DR). The integration measure changes too in DR as

∫ L∏
i=1

d4ki
(2π)4 → µ̄(4−d)L

∫ L∏
i=1

ddki
(2π)d , (1.13)

where L is the number of independent loop momenta, and µ̄ is an arbitrary mass scale
introduced to preserve the dimensions of the coupling constants and the loop integral.
The algebra is also extended to d−dimensions, implying for instance δijδij = d. The
d−dimensional integrals behave identically to their 4-dimensional counterparts, thus
fulfilling the standard laws (axioms) of integration [23]

1) Linearity:
∫
ddk (af(k) + bg(k)) = a

∫
ddk f(k) + b

∫
ddk g(k) ,

2) Scaling:
∫
ddk f(µk) = µ−d

∫
ddk f(k) ,

3) Translation Invariance:
∫
ddk f(k + p) =

∫
ddk f(k) ,

(1.14)

and have the properties

1) Interchange of Integrations:
∫
ddk1

∫
ddk2 f(k1, k2) =

∫
ddk2

∫
ddk1 f(k1, k2) ,

2) Scaleless Integrals Vanish:
∫
ddk

(
k−2

)a
= 0 , (1.15)

3) Total derivatives Vanish within Integrals:
∫
ddk

∂

∂kµ
f(k) = 0 .

The second property is derived from the second axiom. The third property can be
considered as a consequence of translation invariance in k−space and as we will see
in the next chapters it gives rise to a set of identities that is of high importance
for phenomenological calculations. Having quantified UV and IR divergences we can
see now how we can systematically remove them from theoretical computations of
observables.

Concerning UV divergences, the cancellation is done following a so-called Renor-
malization procedure, where a redefinition in the parameters (fields, masses, coupling
constants) of the Lagrangian density is applied. This is reasonable by realizing that
the bare parameters, introduced to LQCD in the previous subsection, do not directly
correspond to physical parameters, due to loop corrections. Within a renormalization
procedure, the bare parameters are rewritten in terms of renormalized ones as

mq = Zmm
r
q, gs = µε

√
Zgg

r
s , ψ =

√
Zψψ

r, Aaµ =
√
ZAA

a,r
µ , ca =

√
Zcc

r
a,

(1.16)
where Zi = 1 + δi are renormalization factors containing a divergent part, δi, which
is computed order by order in perturbation theory for sake of canceling the UV diver-
gences at each order. Thus we have

δi =
∞∑
l=0

(
ars
4π

)l
δi,l, (1.17)
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with l the number of loops, ars = (grs)2/4π, and δi,0 = 0, meaning that at the leading
order, where no loops and UV divergences exist, the bare parameters correspond to the
physical ones. The redefinition of the parameters of LQCD results into a redefinition of
LQCD itself in the following way7

LQCD(gs,mq, ψq, A
a
µ, ca)→ LQCD(µ, grs ,mr

q, ψ
r
q , A

a,r
µ , cra) + LCT(µ, δi, . . . , cra). (1.18)

The first term in the rhs of Eq. (1.18) is the same as the one in Eq. (1.6) with the
only difference being that the bare parameters have been replaced by the renormalized
ones. Thus the Feynman Rules read from this part are identical to the ones mentioned
in the previous subsection8. The second term in the rhs of Eq. (1.18), LCT, contains
new terms (consisting of the divergent parts δi) that cancel the UV divergences implied
by the integration of the loop momenta. These terms are so-called counter-terms and
generate additional Feynman rules, which depend on the order of perturbation theory.

In Eq. (1.16) beside the renormalization factors, we have also introduced an ar-
bitrary mass scale, the renormalization scale µ, aiming to keep the strong coupling
constant dimensionless. There is freedom in the definition of µ resulting in the ex-
istence of different renormalization schemes. The most famous one is the modified
minimal subtraction scheme (MS), in which µ is related to µ̄ of Eq. (1.13) via the
relation

µ2 = 4πe−γE µ̄2, (1.19)

with γE = 0.5772156649 the Euler-Mascheroni constant. At the end of the day, physical
observables should not depend on the choice of the renormalization scheme. This is
expressed via the Renormalization Group Equations (RGE) which relates the value of
a parameter in a chosen renormalization scale with the value of the same parameter
in another scale. The RGE of ars leads to the so-called running of the strong coupling,
expressed by the equation

µ2 ∂a
r
s

∂µ2 = β(ars) = −
∞∑
n=0

(
βn
ars
4π

)n+2
, (1.20)

where β(ars) is the QCD β-function, which is computed perturbatively on ars and is
known up to five loops (β4) [24–28]. At one-loop the solution of (1.20) results to

ars(µ2) = ars(µ2
0)

1 + β0ars(µ2
0) ln (µ2/µ2

0) with β0 = 11Nc − 2nf
3 . (1.21)

Here µ0 is an initial renormalization scale, and β0 is computed for the coupling of an
effective theory in which nf of the quark flavors are considered light (mq � µ) and the
remaining heavier quark flavors decouple from the theory.

From Eq. (1.21) follows that for nf ≤ 16 (NC = 6) the sign of β0 is positive
and therefore ars(µ2) decreases for large value of µ2. This means that at large scales
(high energies) QCD acts as a weak theory and quarks and gluons can be treated as
if they were free particles, a phenomenon called asymptotic freedom, which has been

7The gauge fixing parameter, ξ, is also renormalized in terms of the renormalization factor of the
gauge field, as ξ = ZAξ

r, in order for Eq. (1.11) to not produce counter-terms.
8Of course again the bare parameters should be replaced by the renormalized ones.



10 Chapter 1. Standard Model and Observables

Figure 1.2: Running of the strong coupling as a function of the energy scale (as(Q2) ≡ ars(µ2)
and Q ≡ µ). Colored error bars correspond to different experimental measurements, while
the solid black line accounts for the theoretical prediction. The world average value for the
strong coupling at the energy scale equal to the mass of Z boson is ars(M2

Z) = 0, 1179±0.0009.
Figure taken from [15].

confirmed experimentally9 (see Figure 1.2). A consequence of asymptotic freedom is
that at high energies QCD can be treated perturbatively using ars as the expansion
parameter, allowing for very accurate computations of scattering observables of QCD
processes. This is not anymore the case at low energies (ΛQCD ≈ 250 MeV), where ars
becomes sufficiently large (stronger interaction) and the perturbative approach breaks.
At these energies, quarks and gluons can not be observed as free particles but exist
only as bound states in the form of colorless hadrons, a phenomenon called color
confinement. Hadrons consist of mesons, composed of an equal number of valence
quarks and anti-quarks, and baryons containing an odd number of valence quarks (at
least three).

Regarding IR singularities, these have a different physical interpretation from the
UV ones, and thus a different way of treatment. These are canceled at the level of
physical observables thus we are going to discuss their resolution in the next section,
after having introduced first the notion of cross sections.

1.3 Precision Calculations and Observables
Particle collisions form the main way of experimentally testing the validity of SM and
exploring the physics beyond it. These are happening within huge circular infrastruc-
tures called particle colliders, where one or more beams of particles are accelerated in
order to collide, resulting in a scattering event. The colliding particles must be charged,
as they are accelerated through electromagnetic fields, each time they go around the

9Asymptotic freedom is a property of non-abelian field theories, QED is not asymptotically free.
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cycle10. The outcome (particles) of a scattering event is recorded through detectors
surrounding the collider, and through the application of 4-momentum conservation to
find missing 4-momenta of weakly interacting particles (such as neutrinos) that can
not be detected by the detector. The records of the scattering events are collected and
analyzed by our experimental colleagues, resulting in scattering observables. The most
robust and straightforward observable that can be measured by colliding experiments
is the cross section.

1.3.1 Cross sections
The cross section is a quantity measuring the probability of a scattering event taking
place, and depends on the properties of the colliding beams, meaning their particle
content, size, and intensities. For the definition of the cross section, consider two
colliding bunches of different types of particles, Na and Nb, with a common transverse
area, say A. Then the cross section of a particular scattering event is related to the
above-stated quantities and the total number of times this event occurred, Nevent, via
the relation

σ ≡ ANevent

NaNb

. (1.22)

From Eq. (1.22) we understand that the unit of the cross section is m2, but for
historical reasons the barn (1b = 10−28m2) is used instead. In real-life experiments, we
don’t deal with the number of colliding particles and their common transverse area but
with the flux of colliding beams. The properties of the flux, such as how the particles
are distributed within the beams, are taken into account by the so-called luminosity,
L(t), which is an experimentally measurable quantity. In terms of luminosity, the cross
section of a scattering event is computed via the formula

σ = Nevent∫ T
0 dt L(t)

, (1.23)

where
∫ T

0 dt L(t) is the integrated luminosity (measured in b−1) and T the operation
time of the collider. Another useful observable quantity is the differential cross section
which gives information not only about the total number of scattering events but also
about the scattering angle or the energy bin of the outgoing particles.

Cross sections can be computed theoretically within the context of Quantum Field
Theory (QFT), a combination of Quantum Mechanics and Special Relativity. Within
this framework, differential probabilities are given by the modulus squared of inner
products of Hilbert states. Having this in mind and focusing on the scattering process,
consider an incoming state described by two distinct wave packets of well-separated
single-particle states, concentrated about the momenta p1 and p2, respectively, con-
structed in the remote past (ti → −∞) and freely evolving since then. Let’s denote
this incoming state as |i; ti〉 ≡ |p1, p2, Q1, Q2; ti〉, where Q1 and Q2 symbolize the quan-
tum numbers that the two particles can bear, such as helicities. As time elapses the
wave functions of these states overlap, and the particles start interacting and scatter
into some final states. Assuming that the duration of the interaction is finite, in the

10Due to synchroton radiation (∼ 1/r2) radiated by charged accelerated particles, modern colliders
are constructed with a large circumference in order for the beam to reach high energies.
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distant future (tf → ∞) the final states will again be freely evolving wave packets
of n single-particle states, let’s denote them 〈f ; tf | ≡ 〈p3, ..., pn, Q3, ..., Qn; tf |. The
incoming and the final states are related via time translation and the overlap of the
two states defines the scattering matrix (S−matrix)

〈f |S |i〉 = lim
ti→−∞
tf→∞

〈f ; tf |U(tf , ti) |i; ti〉 , (1.24)

where U(tf , ti) is the unitary time-evolution operator given in the interaction picture,
by the expression

U(tf , ti) = T
[
e
∫ tf
ti

dtHI(t)
]
, (1.25)

with HI being the interaction part of the Hamiltonian describing the theory at hand,
H = H0 +HI (H0 being the free field part), and T is the time-order operator.

In order to incorporate a non-interacting theory and the fact that even if the theory
at hand contains interactions there is always a possibility that the incoming states
simply miss one another, the S−matrix is rewritten in terms of the transfer matrix
(T−matrix)

S = 1 + iT, (1.26)

which encodes the probability of a given state from the far past evolving into one
other (different) state in the far future. By factoring out a δ function reflecting the
4-momentum conservation from the T−matrix we define the scattering amplitude

〈f | iT |i〉 = (2π)4δ(4)((p1 + p2 −
n∑
j=3

pj)× iM(p1, p2 → p3, . . . , pn). (1.27)

When the interaction Hamiltonian is small allowing for a perturbative expansion to
be applied in Eq. (1.25), as is the case in QCD, the scattering amplitude M can be
computed in perturbation theory using Feynman diagrams and Feynman rules, such as
the ones we have seen in the previous section. From the scattering amplitude square,
the cross section is computed using the relation

dσ = 1
4E1E2|u1 − u2|

dΦ(n−2) |M(p1, p2 → p3, . . . , pn)|2 , (1.28)

where |u1 − u2| is the relative velocity of the colliding beams as viewed from the
laboratory frame and

dΦ(n−2) =
n∏
j=3

(
d3pj
(2π)3

1
2Ej

)
(2π)4δ(4)((p1 + p2 −

n∑
j=3

pj), (1.29)

is the Lorentz invariant phase space of the final state particles. Above with Ej we
denote the energy corresponding to the 4-momentum pµj . Eq. (1.28) is the master
formula for making theoretical predictions of cross sections when the colliding beams
are constituted by elementary particles (such as e+e− collisions). If in the incoming
states, we have composite objects such as hadrons, we need in addition to take into
account information about their structure. This is the case of Large Hadron Collider
(LHC), where the colliding beams consist of protons.
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Having introduced the concept of cross section we can now discuss the remedy of
IR divergences. In the previous section we saw that one source of IR singularities in
perturbative computations is the integration over loop momenta that become soft or
collinear to the momenta of massless external particles (virtual divergences), but it
turns out this is not the only case. IR divergences also appear in cross sections due
to the emission of additional unresolved particles (real-emission divergences), result-
ing from phase space integrations (Eq. (1.29)) over a soft or collinear region of the
momenta of the additional particles. Within SM, the Kinoshita-Lee-Nauenberg (KLN)
theorem [29, 30] ensures that real-emission and virtual IR divergences cancel each other
leading to a finite result for the cross section, only after summing order by order in
perturbation theory. Thus IR divergences arising from loop integrations are canceled
from IR divergences arising from fewer loops but extra unresolved particles in the final
state. From a physical standpoint, this means that a scattering process containing n
particles cannot be distinguished from a process with n + X particles where the X
cannot be resolved, making sense also experimentally as the detectors cannot observe
particles of very small momenta nor can distinguish particles radiated in the same
direction, due to finite resolution.

1.3.2 Perturbative QCD
As already mentioned, Eq. (1.28) needs to be revised in order to describe scattering
processes that include colliding hadrons. In order to make predictions about their
interactions we need information about their elementary particle structure (long-range
effect). According to the QCD-improved parton model, hadrons are composed of a cloud
of partons (quarks and gluons) [31], where partons are constantly emitted and absorbed.
In high-energy collisions of hadrons, the interactions and the scattering happens at
the level of partons (short-range effect), which are carrying a fraction of hadron’s
momentum. At this scale, partons are asymptotically free, and the coupling constant
is small enough so that the scattering amplitudes can be computed perturbatively.

A very important theorem that allows for the computation of QCD observables
is the factorization theorem [32–34]. This theorem states that long-range and short-
range effects can be separated at high energies11, and the differential cross section for
the scattering of two initial hadrons (h1, h2), with momenta (p1, p2) and center of mass
energy s = (p1 + p2)2, to some final state f is given by the expression

dσh1h2→f =
∑

i,j=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2Fi/h1(x1, µF )Fj/h2(x2, µF ) dσ̂ij→f

+O (ΛQCD/s) ,
(1.30)

where Fi/h1 and Fj/h2 are the parton distribution functions (PDFs) and dσ̂ij→f the
hard-scattering cross section for the production of the final state f from the interaction
of two partons i and j with momenta x1p1 and x2p2, respectively. PDFs encode the
partonic composition of hadrons and can be interpreted as the number density of a
specific type of parton (i) inside a fast-moving hadron (h1), that carries a fraction (x1)
of hadron’s momentum (p1). They cannot be computed perturbatively and need to
be extrapolated from experimental data, but since the structure of hadrons does not

11The interference terms are suppressed ΛQCD.
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depend on the considered process of an experiment, they are universal. This means
that one can determine PDFs using data from a suitable process and then use them
for making predictions for other processes.

Similarly to the parameters of the QCD Lagragnian density, the PDFs are also renor-
malized in terms of an factorization scale µF , in order to absorb divergences induced
by soft and collinear emissions of partons in the initial state. The evolution of PDFs
between different µF scales is obtained perturbatively by the (RGE-like) Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [35–37]. DGLAP equations are a
(2nf +1)−dimensional matrix equation in the space of quarks, anti-quarks and gluons,
and for the proton case they read

∂

∂ lnµ2
F

(
Fqi(x, µ2

F )
Fg(x, µ2

F )

)
=
∑
qj ,q̄j

∫ 1

x

dz

z

(
Pqi→qj(z, ars(µ2

F )) Pqi→g(z, ars(µ2
F ))

Pg→qj(z, ars(µ2
F )) Pg→g(z, ars(µ2

F ))

)(
Fqi(x/z, µ2

F )
Fg(x/z, µ2

F )

)
,

with Pi→j(z, ars(µ2
F )) being the splitting functions computed in a series expansion on

ars(µ2
F )

Pi→j(z, ars(µ2
F )) =

n∑
i1=1

(
ars(µ2

F )
2π

)i1
P

(i1)
i→j(z),

and are known up to third order in the series expansion [38, 39].
The hard-scattering cross section dσ̂ij→f ≡ dσ̂ij→f (x1p1, x2p2, µ, µF ) depends both

in the factorization scale µF and the renormalization scale µ, it is process dependent
and it is thus considered the main ingredient for connecting experiments and theory.
As already stated, dσ̂ij→f can be computed perturbatively within a series expansion in
powers of aRs . Normalizing this expansion in terms of the powers of ars of the first term
of the expansion we have

dσ̂ij→f = dσ̂LOij→f +
(
ars
2π

)
dσ̂NLOij→f +

(
ars
2π

)2
dσ̂NNLOij→f +

(
ars
2π

)3
dσ̂N

3LO
ij→f +O

(
(ars)4

)
, (1.31)

where LO stands for Leading Order, NLO for Next-to-Leading Order, NNLO for Next-
to-Next-to-Leading Order and N3LO for Next-to-Next-to-Next-to-Leading Order. We
have on purpose written the above expansion till N3LO because in the next chapters
we will deal with QCD corrections up to this order. Let us mention here that if we
could compute the pertutbative expansions on ars to all-orders the scale dependence on
µ and µF would vanish. But because this is not the case, usually, µF and µ are chosen
so that µF = µ = µ0 or varied from µ0/2 to 2µ0, where µ0 is a chosen mass scale such
as mt, mH , etc.

Focusing on the NNLO contribution to the hard-scattering cross section, in agree-
ment with what we have seen in the previous subsection, this receives contributions
from three different sources

1. The virtual corrections, which contain the interference term of two-loop Feynman
graphs with tree-level ones and the one-loop squared Feynman graphs.

2. The mixed real−virtual corrections, which contain one-loop Feynman graphs with
an extra particle, which can become unresolved.

3. The doubly−real corrections, which contain tree-level Feynman graphs with two
extra particles, which can become unresolved.
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Each of these contributions is individually divergent12, and the divergences cancel in
the sum leaving behind a finite result for the cross section

dσ̂NNLOij→f ∼
∫
dΦ(n)

∣∣∣M(0)
n+2

∣∣∣2 + 2
∫
dΦ(n−1)Re

[
M(1)

n+1(M(0)
n+1)∗

]
+
∫
dΦ(n−2)

∣∣∣M(1)
n

∣∣∣2 + 2
∫
dΦ(n−2)Re

[
M(2)

n (M(0)
n )∗

]
,

(1.32)

where n− 2 is the number of particles in the final state f , andM(L)
n ≡M(L)(p1, p2 →

p3, . . . , pn) is the L−loop and n−particle scattering amplitude. The approximate sym-
bol is used above due to not including the energy and velocity terms of Eq. (1.28).
Within this thesis we will focus on the construction and computation (at the integrand-
level?) of the two-loop amplitude,M(2)

n , while we will also discuss the computation of
three-loop Feynman integrals for relevant three-loop amplitudes.

We comment here that in order to make theoretical predictions for cross sections of
processes containing partons in the hard-scattering final state, one needs to further take
into account non-perturbative information about the evolution of these partons into
physical states that are observable by the detector. The final state evolution contains
of several process-independent ingredients (similarly to PDFs), such as the further
emission of extra partons from the final state partons (parton showers), the combination
of the partons into hadrons (hadronization) and the use of jet algorithms. Jets are
collimated cones of hadrons (and other particles) produced by the hadronization of
partons, and their accurate definition depends on the jet algorithm used for their
identification from the signals of an event.

12Due to IR divergences, as the UV ones have been removed by renormalization.





17

Chapter 2

Scattering Amplitudes

In this chapter, we briefly discuss the procedure followed for the computation of scat-
tering amplitudes. We start by stating some important properties of scattering am-
plitudes, continue with their recursive construction using Dyson-Schwinger equations,
and finally close with the techniques that led to the automation of one-loop ampli-
tude calculations and a quotation of the currently applied methods on the multi-loop
frontier.

2.1 Introduction and Properties
Being the fundamental link between theoretical models and experimental observables,
scattering amplitudes are at the core of phenomenological predictions. As already
discussed in the previous chapter, scattering amplitudes are computed within a per-
turbative expansion around the coupling constants of the theory at hand. For the case
of QCD, the expansion is done around the strong coupling constant, ars

Mn = (ars)
t
L∑
l=0

(ars)
lM(l)

n , (2.1)

where n is the number of particles involved in the scattering, l is the order of the
expansion, and t is the power of ars at the leading order. At each order of the expansion,
the scattering amplitude of a process at hand is equal to the sum of the Feynman graphs
contributing to this process at the specific order. In the following, we will assume that
l is equal to the number of loops, but this is not always the case1. Thus at the leading
order the amplitude is equal to the sum of tree-level graphs, at NLO is equal to the
sum of one-loop graphs, at NNLO is equal to the sum of two-loop graphs, and so on.

For avoiding redundant computations in QCD, it is convenient to apply a color
decomposition in the scattering amplitudes. Any l-loop n-particle QCD scattering
amplitude can be decomposed into a color factor and a kinematic-dependent part

M(l)
n =

∑
F

c
(l)
F A

(l)
n,F (2.2)

where c(l)
F is the color factor of the color-stripped amplitude, A(l)

n,F , which can be con-
structed using color-stripped Feynman rules and contains information regarding kine-
matics. For the computation of color factors, there exist different color representations

1For processes where tree-level graphs do not exist, like the case of gg → HHH, the leading order
term corresponds to the sum of one-loop graphs.
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(color basis) with the most famous one being the fundamental representation, where the
color factors are expressed in terms of traces of the SU(3) generators taij (see subsection
1.2.1) [40]. Within this thesis, we are going to use the color-flow (color-connection)
representation [41–43], which we will present in Section 2.2.

A color-stripped l-loop scattering amplitude with n external particles can be written
as2

A(l)
n =

∫ (
l∏

i=1

ddki
(2π)dµ

4−d
)
A(l)
n , (2.3)

with {k} being the loop momenta and A(l)
n being the amplitude integrand. In general,

A(l)
n has the following form

A(l)
n =

∑
I⊆T

NI ({k}, {p}, γµ, {εµ})∏
j∈I D

aj
j ({k}, {p},mj)

, (2.4)

where T is the set containing all the l-loop graph topologies of the process at hand,
NI is the topology numerator depending on invariant contractions of gamma matrices,
polarization vectors, and momenta (NI is a scalar quantity), and aj > 0 are integer
exponents of the inverse loop propagators

Dj = q2
j −m2

j + iε, (2.5)

with mj being the masses of the virtual loop particles, +iε being the usual prescription,
and qj being a combination from the set of loop and external ({p}) momenta

qj =
l∑

i=1
b

(j)
i ki +

n−1∑
i=1

b
′(j)
i pi, with b

(j)
i , b

′(j)
i = 0,±1. (2.6)

The integrand numerators, as the inverse loop propagators, are polynomials in the
components of the loop momenta. The d-dimensional loop momenta can be decom-
posed into a 4-dimensional (k̄i) and an ε-dimensional part (k∗i )

ki = k̄i + k∗i with ki · kj = k̄i · k̄j + µij, (2.7)

where µij = µji = k∗i · k∗j . Therefore A(l)
n is a rational function of

nl = 4l + l(l + 1)
2 , (2.8)

independent loop coordinates, and can only depend on nl loop scalar products (let’s
denote them {z1, . . . , znl})

1)ki · kj, → #z = l(l + 1)/2
2)ki · pj, → #z = min[4, n− 1]× l
3)ki · tj, → #z = (4−min[4, n− 1])× l

2Here we concentrate on amplitudes containing loops. For tree-level amplitudes, there do not exist
loop momenta and integrations over them. Hence the subsequent analysis does not concern them.
From here on, we omit the index F for convenience.
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where tj are vectors orthogonal to the external momenta, meaning pi·tj = 0, originating
from polarization vectors. From the above expression, we see that for n ≥ 5 we have
tj = 0, as expected since the external momenta span the 4-dimensional space. For a
topology I with nI propagators, nI of the loop scalar products can be expressed as
linear combinations of inverse propagators. These are called reducible scalar products,
and if they appear in the numerator they can cancel propagators from the denominator
resulting in topologies with fewer propagators. The rest of the loop scalar products
that can not be written in terms of the propagators of the topology (being nir = nl−nI
in number) are called irreducible scalar products, let us denote them {z̄(I)

1 , . . . , z̄(I)
nir
}. If

nI > nl then the propagators of the topology I are not independent and the topology
is reducible to topologies with fewer propagators.

The observation above together with the constraint on the powers of loop momenta
that we can have on the numerator of a topology (nIth), imposed by the UV structure
of the theory at hand, indicates that the numerators can have the following form

NI ({k}, {p}, γµ, {εµ}) =
nIth∑

i1,...,inir=0
C

(I)
i1,...,inir

(
z̄

(I)
1

)i1 · · · (z̄(I)
nir

)inir , (2.9)

with the coefficients being rational functions of the dimensional regulator and the scalar
products of external momenta, C(I)

i1,...,inl
≡ C

(I)
i1,...,inl

({pi · pj}, ε). Thus in the end, the
color-stripped l-loop amplitude can be written as a sum of process-independent scalar
integrals of loop momenta, the so-called Feynman integrals, multiplied by some rational
coefficients depending on the process at hand

A(l)
n =

∑
I⊆T

 nIth∑
i1,...,inir=0

C
(I)
i1,...,inir

∫ [
l∏

i=1

ddki
(2π)dµ

4−d
] (

z̄
(I)
1

)i1 · · · (z̄(I)
nir

)inir∏
j∈I D

aj
j ({k}, {p},mj)

 . (2.10)

We need to comment here that the Feynman integrals appearing in the rhs of the
above expression should not be confused with the integral expressions resulting from
the application of the Feynman rules to the Feynman diagrams of QCD. Feynman
integrals do not obey the Feynman rules of Figure 1.1 but to them can be assigned
Feynman graphs, where the vertices are equal to one and do not depend on the number
or kind of particle that they contain (e.g. we can have six particles in a vertex) but the
momentum must be conserved on them, and the inverse propagators have the form of
Eq. (2.5). We will discuss more about Feynman integrals in the next Chapter.

The complexity of the computation of scattering amplitudes grows very fast with
the number of loops and their kinematics, which depend on the number of external
particles and internal3 or external (different or not) masses. The kinematic complexity
of a scattering amplitude can be quantified in terms of its independent kinematic
invariant scales (Mandelstam variables)

nscales = np + nm − 1. (2.11)

Let’s shortly describe the terms on the rhs of the above expression. Assuming that all
the external momenta are incoming (or equivalently outgoing), np corresponds to the

3Meaning masses included in the propagators.
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number of momentum invariants

sij = sji = (pi + pj)2, (2.12)

resulted by the contractions of different and independent momenta, meaning the total
number of sij with i < j and j < n,

np = (n− 1)(n− 2)/2. (2.13)

This holds true only for n ≤ 5 because, in a 4-dimensional vector space, it is not possible
to have more than 4 independent vectors. nm is the number of different internal and
external masses, and −1 is a result of the momentum conservation which imposes the
following constrain ∑

i<j<n

sij =
∑
k

m2
k, (2.14)

on the momentum invariants and masses of the external particles. For example, con-
sider the amplitudes of a 4-particle and a 5-particle scattering with one external massive
particle and no massive intermediate particles. In the first case we have np = 3, nm = 1
and thus nscales = 3, while in the second we have np = 6, nm = 1 and thus nscales = 6.
In order to fully specify the kinematics, in addition to the independent Mandelstam
variables one needs also a pseudo-scalar4 invariant [44], defined usually as

tr5 = 4iεµ1µ2µ3µ4p
µ1
1 p

µ2
2 p

µ3
3 p

µ4
4 , (2.15)

with εµ1µ2µ3µ4 being the 4-dimensional Levi-Civita symbol, and tr5 = 0 for n < 5.

2.1.1 Unitarity Cuts and Generalized Unitarity Cuts
In sections 1.2 and 1.3 we revealed an unexpected property of the scattering amplitudes
beyond tree-level: they diverge. Therein we discussed the origin of the (UV and IR)
divergences, as well as, their resolution in order to obtain finite results for physical ob-
servables. Another important property of the scattering amplitudes is the appearance
of branch cut singularities when the loop particles can be produced as real particles,
meaning when the loop particles go on-shell. This follows from probability conservation
in the scattering process, which corresponds to the unitarity of the S−matrix

SS† = 1 (1.26)===⇒ i(T † − T ) = TT †. (2.16)

We remind that the completeness relation of the identity matrix in the Fock space
reads

1 =
∑

{x},nx≥0

∫
dΦnx |{x}〉 〈{x}| (2.17)

with |{x}〉 denoting an nx−particle state where the particles can be of different kinds
and bear different quantum numbers, and thus the sum runs both on the nx and
{x} meaning that we sum in all the particle species of the model and their quantum
numbers. Sandwiching Eq. (2.16) between an initial state |i〉 and a final state 〈f | and

4Pseudo-scalar is a quantity that behaves like a scalar, except that it changes sign under a parity
inversion (p0, ~p)→ (p0,−~p).
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using Eq. (2.17) we obtain

2Im (Mi→f ) =
∑

{x},nx≥0

∫
dΦnx(2π)4δ(4)(pi − p{nx})M{x}→fM∗

i→{x}, (2.18)

which is known as the optical theorem, that relates the imaginary part of an ampli-
tude to the product of two amplitudes integrated over all intermediate particle states.
Expanding the amplitudes of Eq. (2.18) in coupling constants, we observe that the
imaginary part of a multi-loop amplitude is given by the product of lower loop am-
plitudes, implying thus relations between terms of different order in the perturbative
expansion.

Considering now the amplitude as an analytic function of some complex5 kinematic
invariants, s, it can be shown [44] that its imaginary part is related to its discontinuity
when s crosses the real axis

Disc (Mi→f (s)) = lim
ε→0

(Mi→f (s+ iε)−Mi→f (s− iε)) = 2iIm (Mi→f (s)) . (2.19)

Thus the imaginary part of a scattering amplitude is proportional to its discontinuity
across the branch cut of interest. For real momenta, the discontinuities of a scattering
amplitude are sourced by the +iε prescription (see Feynman rules in Figure 1.1) when
a loop propagator goes on-shell (k2 = m2 in the following equation). In that case, the
discontinuity of an amplitude in a given kinematical channel is computed by cutting
the loop propagators in that channel and using Cutkosky’s rule [45]

1
k2 −m2 + iε

→ 2πi× δ(k2 −m2)θ(k0) with θ(k0) =

1, k0 ≥ 0
0, k0 < 0

. (2.20)

Due to being related to the unitarity of S−matrix, these types of cuts are called
unitarity cuts. By allowing for the loop momenta to be complex we can take even
more cuts beyond the ones prescribed by unitarity (multi-channel cuts). These cuts are
called generalized unitarity cuts [46, 47] and are computed by deforming the integration
contour around the poles of the cut propagators and using the residue theorem.

2.1.2 Integration-By-Parts Identities
In Eq. (2.10) we saw that the scattering amplitudes containing loops can be represented
as a sum of Feynman integrals. However, the increment in the number of loops results
in a huge augmentation in the number of Feynman diagrams, and thus an enormous
increase in the number of Feynman integrals needed to be computed for the determi-
nation of the scattering amplitude. Hopefully, it turns out that not all the Feynman
integrals of a scattering amplitude are independent due to the existence of relations
between them, emerging by the vanishing of total derivatives in dimensional regular-
ization (third property of Eq. (1.15)). These relations are called integration-by-part
identities (IBPs) [48, 49], are linear in the Feynman integrals with the coefficients being
rational functions of the external kinematic invariants and the dimensional regulator,

5This is an unphysical generalization because for physical processes we have real momenta that
correspond to real invariants.
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and have the following form

∫ (
l∏

i=1

ddki
(2π)d

)
∂

∂kµb

uµb z̄i11 · · · z̄
inir
nir∏

j D
aj
j

 = 0, (2.21)

where the vector uµb can be any linear combination of the external or loop momenta with
rational coefficients depending on loop or kinematic scalar products. IBP identities can
be used to reduce the Feynman integrals of a scattering amplitude to a finite basis of
independent integrals [50], the so-called master integrals. Another set of identities that
produces linear relation between Feynman Integrals are the Lorentz-invariance (LI)
identities [51]

n−1∑
j1=1

(
pµj1

∂

∂pj1,ν
− pνj1

∂

∂pj1,µ

)∫ (
l∏

i=1

ddki
(2π)d

)
z̄i11 · · · z̄

inir
nir∏

j D
aj
j

=
 0. (2.22)

LI identities are proved to be linear combinations of IBP identities [52], but can help
convergence in solving the linear system of equations produced by IBPs. For a detailed
discussion of IBP and LI identities, we refer the interested reader to [53].

The most famous technique for solving the system of IBP identities and determining
a set of master integrals is Laporta’s algorithm [54]. Within this algorithm, the integrals
are assigned a weight according to their complexity, with the simpler integrals, defined
as the ones that have fewer propagators or irreducible scalar products, obtaining the
lower weight. Then for the provided integrals IBP and LI identities are generated and
solved using Gaussian elimination, expressing higher-weight integrals in terms of lower-
weight ones. The integrals that remain undetermined from this procedure are chosen
to be the master integrals. The choice of master integrals is not unique, as one can
provide a lower index for specific integrals in this procedure, and a convenient choice
may help a lot in the reduction procedure [55, 56] or in their computation, as we will
see in the next Chapter. There exist several publicly-available automated packages
that implement Laporta’s algorithm, such as AIR [57], FIRE [58], LiteRed [59], KIRA
[60], REDUZE [61], Azurite [62], NeatIBP [63] etc.

In general, solving IBP identities for problems with many scales and loops is a
bottleneck, and so far impossible in many cases. This is because IBPs produce a large
number of linear equations to be solved, with huge expressions appearing in their coef-
ficients. For this reason, many strategies [64–75] have been proposed in the last years
in order to improve several aspects of Laporta’s algorithm and facilitate in many cases
the reduction, while also new methods for reducing to a set of master integrals by com-
pletely skipping the IBP reduction are under investigation [76–80]. Of these strategies,
the one that has been proven to be the most efficient and has been adopted from most
of the last versions of the automated packages stated above is the IBP reduction using
constant numbers, and especially finite fields, for the variables of the coefficients of
the equations (integrals are kept symbolic) and reconstruction of their analytic form in
the final expressions [66, 68]. This method avoids numerically the intermediate large
expressions and reconstructs the final results which are much simpler, and is perfectly
suited for IBP coefficients which are always rational numbers of kinematic invariants
and ε. The cost to be paid for using this method is that one should repeat the com-
putation for different values of the variables in order to reconstruct the analytic form
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of the final expressions. For implementing complex numerical algorithms over finite
fields and reconstructing multivariate rational functions, the package FiniteFlow [70]
is publicly available.

2.1.3 Computational Procedure
Having in mind the things stated in the previous subsections let’s summarize here the
procedure needed to be followed for the computation of a l-loop scattering amplitude
with n external particles. In general, one should follow three non-trivial steps

1. Construct the scattering amplitude for the process at hand by using Feynman
rules to generate the contributing diagrams or to apply a Dyson-Schwinger re-
cursion

M(l)
n =

∑
F

c
(l)
F

∫ (
l∏

i=1

ddki
(2π)dµ

4−d
)∑
I⊆T

NI,F ({k}, {p}, γµ, {εµ})∏
j∈I D

aj
j ({k}, {p},mj)

. (2.23)

2. Reduce at the integrand or/and integral level the scattering amplitude into a set
of master integrals, determining the rational coefficients of the reduction

M(l)
n =

∑
F

c
(l)
F

(∑
i′
c̃

(l)
i′,F ({pi · pj}, {m}, ε)F (l)

i′,F ({pi · pj}, {m}, ε)
)
. (2.24)

3. Compute the master integrals using numerical or analytical methods.

For the computation of tree-level amplitudes, the first step is sufficient.
Regarding the first of the above-mentioned steps, the generation of the contributing

Feynman diagrams can be done using automated packages like QGRAF [81] or FeynArts
[82], and the manipulation of the expressions for the construction of the amplitude is
possible through frameworks such as FORM [83], FeynCalc [84, 85] and FormCalc [86].
The Dyson-Schwinger recursion has been applied at tree-level within HELAC [42, 87],
and at one-loop within HELAC-1LOOP [88] and Recola [89, 90] in a hybrid approach
together with graph topologies (blob-topologies). More details of this approach will be
given in section 2.3. A similar hybrid approach we have developed within HELAC-2LOOP
[3], which we are going to discuss in Chapter 4.

In Section 2.4 we will review the second of the aforementioned steps. Within this
section, we will start discussing the well-known one-loop techniques that led to the
automation of NLO computations, focusing on the Ossola-Papadopoulos-Pittau (OPP)
method [91, 92], and then we will summarize the currently used methods for multi-loop
amplitude reductions. The third step is the main topic of Chapter 3, and some novel
results concerning three-loop master integrals are going to be presented in Chapter 5.

2.2 Color-Flow Representation
In the color-flow representation [41–43] the eight-component gluon field, Aaµ, is traded
for a Nc ×Nc (= 9) traceless matrix, (Aµ)ij, by multiplying and contracting, over the
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adjoint index a, with the corresponding
√

2taij matrix

(Aµ)ij =
√

2Aaµtaij. (2.25)

Thus gluons (and ghosts) bear a pair of color (fundamental) and anti-color (anti-
fundamental) indices (i, j), while quarks have only a color index (i, 0)6. The contrac-
tion of Eq. (2.25) is applied for every gluon of the scattering amplitude leading to a
simplified color factor, being equal to a product of Kronecker delta functions carrying
fundamental and anti-fundamental indices of the external particles. This form of the
color factor holds true for amplitudes of any kind of external particles, leading to a
unified approach for any process. More specifically, if a l-loop n-particle scattering am-
plitude consists of ng gluons, nqq̄ quarks and nqq̄ anti-quarks, then it bears k = ng +nqq̄
color lines (indices) and can be decomposed as

M(l)
n =

k!∑
σ

δ
iσ1
j1 δ

iσ2
j2 · · · δ

iσk
jk
A(l)
n,σ, (2.26)

where the sum is running over all the possible permutations σi of the set {1, 2, 3, . . . , k},
k! in total. In the above expression, we have chosen to keep fixed the order of anti-color
indices and permute the color ones, but without altering the result one could do the
opposite. Let us comment here that, in the definition of A(l)

n,σ there are included some
coefficients which are polynomials on Nc, the form of which we will see with an example
in Chapter 4. For a better understanding of the notation in Eq. (2.26), we give below
the form of three color factors

1)δi1j1δ
i2
j2 · · · δ

ik
jk
, 2)δi2j1δ

i1
j2 · · · δ

ik
jk

and 3)δikj1δ
i1
j2 · · · δ

i2
jk
. (2.27)

The (color-summed) interference term of two scattering amplitudes, coming in gen-
eral from different orders of the expansion, is given by

M(l)
n (M(l′)

n )∗ =
∑
σσ′
A(l)
n,σCσσ′(A

(l′)
n,σ′)∗, (2.28)

with the color matrix, Cσσ′ , having the very simple form

Cσσ′ = δ
iσ1
j1 δ

iσ2
j2 · · · δ

iσk
jk
δj1iσ′1

δj2iσ′2
· · · δjkiσ′

k

= δ
iσ1
iσ′1
δ
iσ2
iσ′2
· · · δiσkiσ′

k

= Nm(σ,σ′)
c , (2.29)

where 1 ≤ m(σ, σ′) ≤ k counts the number of common cycles of the two permutations
(σ, σ′). The color structure of the color-flow representation shows how the color flows
in the real physical process and reflects the fact that the color remains unchanged
on an uninterrupted color line. An advantage of this representation is the fact that
it is very well-suited for the recursive construction of the scattering amplitude using
Dyson-Schwinger Equations.

The Feynman rules for the construction of scattering amplitudes in the color-flow
representation are obtained by contracting with

√
2taij matrices for each gluon/ghost

the QCD Feynman rules that we presented in subsection 1.2.1. Doing so, the gluon
propagator takes the following form

6Anti-quarks have only an anti-color index (0, j), and colorless particles have (0, 0).
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a bk j1
i1

i2
j2 i1

j1 i2
j2

Πµν = i
(
δi2j1δ

i1
j2 −

1
Nc

δi1j1δ
i2
j2

)( −gµν
k2 + iε

+ (1− ξ)kµkν
(k2 + iε)2

)
,

and thus it has two different color flows. The SU(N) gluon is separated into a U(N)
gluon (first flow) and an unphysical U(1) gluon (second flow). The second flow does
not transfer color (neutral), and couples only to gluons interactions with quarks, due to
the anti-symmetry of the three-gluon, four-gluon, and anti-ghost-ghost-gluon vertices.
The quark propagator remains unchanged, while the ghost propagator becomes

a bk j1
i1

i2
j2

Π =
iδi2j1δ

i1
j2

k2 + iε
,

having only one color flow7. The three-gluon vertex, the anti-ghost-ghost-gluon vertex,
and the anti-quark-quark-gluon vertex have two color flows each

a b

c

p1 p2

p3

i1 j1 i2
j2

i3j3

i1j1 i2
j2

i3j3

V µνρ
ggg = i

gs√
2
(
δi2j1δ

i3
j2δ

i1
j3 − δ

i3
j1δ

i1
j2δ

i2
j3

)
[gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ] ,

a b

c

p1 p2

p3

i1
j1 i2

j2

i3j3

i1
j1 i2

j2

i3j3

7One could argue here that, an extra neutral flow should exist for the ghost propagator. From
the mathematical point of view, due to the contraction with the taij matrices, this is correct but the
interaction vertices of the ghost fields do not allow for such a propagator to couple to any field of the
theory. That’s why we keep only the color flow that transfers color.
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V µ
gcc̄ = i

gs√
2
(
δi2j1δ

i3
j2δ

i1
j3 − δ

i3
j1δ

i1
j2δ

i2
j3

)
pµ1 ,

i j

µ, a

p1 p2

p3

j1i1

i2j2

j1i1

j2 i2

V µ
gqq̄ = i

gs√
2

(
δi2j1δ

i1
j2 −

1
Nc

δi1j1δ
i2
j2

)
γµ,

while the four-gluon vertex consists of six color flows

a b

j1 i1 j2
i2

i4 j4 i3 j3

j1i1 j2
i2

j3
i3j4

i4

j1
i1 j2

i2

j3
i3j4i4

j1
i1 j2

i2

j3
i3j4i4

i1
j1

i4
j4

j3
i3

j2
i2 j1

i1 j2
i2

i3j3
j4

i4

cd
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V µνρσ
gggg = i

g2
s

2
[(
δi4j1δ

i1
j2δ

i2
j3δ

i3
j4 + δi2j1δ

i3
j2δ

i4
j3δ

i1
j4

)
(2gµρgνσ − gµσgνρ − gµνgρσ)

+
(
δi4j1δ

i3
j2δ

i1
j3δ

i2
j4 + δi3j1δ

i4
j2δ

i2
j3δ

i1
j4

)
(2gµνgρσ − gµρgνσ − gµσgνρ)

+
(
δi3j1δ

i1
j2δ

i4
j3δ

i2
j4 + δi2j1δ

i4
j2δ

i1
j3δ

i3
j4

)
(2gµσgνρ − gµνgρσ − gµρgνσ)

]
.

2.3 Dyson-Schwinger Recursion in HELAC

2.3.1 The Tree-level case
At tree-level, the computational cost for evaluating scattering amplitudes grows very
fast with the number of external particles when using the standard Feynman diagram
representation for the scattering amplitudes. An alternative way for computing scat-
tering amplitudes that reduces the computational cost is using recursive algorithms
based on the Dyson-Schwinger equations [93–95]. These equations express recursively
an n-point Green’s function in terms of 1-, 2-, ..., (n− 1)-point functions, are valid to
all orders in perturbation theory, and contain complete information about the fields
and their interactions, regardless of the number of external particles.

The first package to follow this alternate approach was HELAC [42, 87], which uses
off-shell sub-amplitudes (currents) as building blocks for the recursion, reorganized to
minimize the amount of computation that needs to be repeated. The calculation is
organized by decomposing the scattering amplitude in color-stripped amplitudes using
the color-flow representation and constructing the color-stripped amplitude for each
term of the color basis (configuration). Let’s briefly describe the algorithm imple-
mented in HELAC. Consider, within the SM, a scattering process containing n external
particles, all taken to be incoming, with momenta p1, p2, . . . , pn. The off-shell sub-
amplitude J(f, P, {δ}) constructed by a subset I ⊂ {1, . . . , n} of the external particles,
and describing a particle bearing flavor f , color {δ} and momentum P µ,

P µ =
∑
i∈I

pµi , (2.30)

is defined as the sum of all Feynman sub-diagrams that combine the particles of I in
order to produce the particle at hand

J(f, P, {δ}) = I
P

. (2.31)

In Eq. (2.31), the blue blob is a visual representation of all potential sub-diagrams. If
the Feynman rules do not allow for the particles from the set I to generate the particle
at hand, the sub-amplitude J(f, P, {δ}) vanishes. Although omitted within the above
notation, the sub-amplitude can contain open (not contracted) Lorentz indices in the
case that it describes a boson field, thus in general we can write

J(f, P, {δ}) =


Ψ(P )δii′ , for a fermion field
Ψ̄(P )δj

′

j , for an anti-fermion field
Aµ(P )δij′δi

′
j , for a boson field

, (2.32)
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with the color structure omitted for colorless particles. If the set I contains only one
of the external particles then the sub-amplitude is equal to the wave function of that
particle, meaning

Ψ(pi) =

uλ(pi), for p0
i ≥ 0

υλ(−pi), for p0
i ≤ 0

, Ψ̄(pi) =

ūλ(pi), for p0
i ≥ 0

ῡλ(−pi), for p0
i ≤ 0

,

and Aµ(pi) =

ε
µ
λ(pi), for p0

i ≥ 0
εµλ(−pi)∗, for p0

i ≤ 0
with λ = ±1, 0.

(2.33)

Note that here p0
i ≤ 0 means that the particle is in practice outgoing, as the outgoing

momenta are turned into incoming by the transformation pi → −pi. Internally in
HELAC, all calculations are performed in the light-cone representation of four-vectors,
using the chiral representation for the Dirac matrices, and the explicit form of the wave
functions used therein can be found in the appendix of [42].

Within the SM, where the fundamental particles can interact only through three-
and four-vertices, the Dyson-Schwinger equations for recursively constructing the sub-
amplitude J(f, P, {δ}) take the following general form

I
P

= P +
Pi+Pj=P∑
{i},{j}

P
Pi

Pj

{i}

{j}
+

Pi+Pj+Pk=P∑
{i},{j},{k}

P
Pi

Pk

{i}

{k}

{j} Pj

J(f, P, {δ}) =
n∑
i=1

δPpiJ(pi, fi, {δi})

+
Pi+Pj=P∑
{i},{j},{δ}

V3Π′(P )J(fi, Pi, {δi})J(fj, Pj, {δj})ε(Pi, Pj) (2.34)

+
Pi+Pj+Pk=P∑
{i},{j},{k},{δ}

V4Π′(P )J(fi, Pi, {δi})J(fj, Pj, {δj})J(fk, Pk, {δk})ε(Pi, Pj + Pk)

In this context, the first term corresponds to the case where the set I contains only one
of the external particles. The second term sums over all possible ways8 of splitting,
via a three-vertex, the particles of the set I into two subsets of particles {i} and
{j}, where the two subsets are again split into more subsets in all possible ways using
three- and four-vertices, with this procedure going on till arriving at subsets containing
only one of the external particles. The third term sums over all possible ways of
splitting, via a four-vertex, the particles of the set I into three subsets {i}, {j} and
{k}, each one of which is again split into all possible ways using three- and four-
vertices till arriving at subsets consisting only one of the external particles. In the
equation above, V3 and V4 denote any three- and four-vertex of the SM, respectively,

8Taking into account all possible color connections.
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and Π′(P ) corresponds to the propagator of the sub-amplitude J(f, P, {δ}) that is
split, and J(fi, Pi, {δi}), J(fj, Pj, {δj}) and J(fk, Pk, {δk}) are the sub-amplitudes of
the subsets {i}, {j} and {k}, respectively. For QCD processes, within HELAC, the
vertices and propagators defined in Section 2.2 are used. The symbol ε(Pi, Pj) is a sign
factor taking the values ±1, which considers the anti-symmetry of the sub-amplitude
when two identical fermions are interchanged.

A very convenient notion, that dictates a natural path on the recursive construction
of sub-amplitudes, is that of the level of a sub-amplitude, lb. The level of a sub-
amplitude is defined as the number of external particles that are included in it. In
this notion, the external particles can be viewed as level-1 sub-amplitudes, and the
recursive construction goes as follows: one starts by using level-1 sub-amplitudes in
order to compute the level-2 ones applying Eq. (2.34), then applying the same equations
computes level-3 sub-amplitudes from the level-2 and level-1 ones, and so on up to the
level of the sub-amplitude at hand. This procedure is more efficient than computing
Feynman diagrams since it avoids the repeated computation of identical parts that
contribute to different diagrams because each sub-amplitude is computed only once.

The last sub-amplitude of the recursion is the one carrying n − 1 of the external
particles and is constructed in such a way that to correspond to the n-th particle9,
let us denote this particle with the subscript i. This sub-amplitude is unique, and its
propagator Π′(−pi) is removed by the expression in Eq. (2.34), due to its momentum
being on-shell10. Thus we will denote this "amputated" sub-amplitude with the sub-
script 0. Then the total color-stripped amplitude can be constructed by multiplying
this sub-amplitude with the wave function of the particle (field) i

A(0)
n = J0(fi,−pi, {δ})J(fi, pi, {δ}) =


Aµ0(−pi)Aµ(pi), for boson
Ψ̄0(−pi)Ψ(pi), for fermion
Ψ̄(pi)Ψ0(−pi), for anti-fermion

. (2.35)

For solving the recursive Dyson-Schwinger equations a binary representation is used
for the external particles [96], where the i−th particle acquires the unique integer ID,
idi = 2i−1. In this framework, the momentum of a sub-amplitude (Eq. (2.30)) is
assigned a binary vector ~m = {m̃1, . . . , m̃n}, with its components being equal to 0 or
1 in such a manner that

P µ =
n∑
i=1

m̃ip
µ
i (2.36)

and the sub-amplitude itself receives a unique integer ID, defined as the sum of all the
ids of the external particles that is constructed by

m =
n∑
i=1

2i−1m̃i with 0 ≤ m ≤ 2n − 1. (2.37)

9Any of the external particles can be chosen as the n-th particle, which is the endpoint of the
recursion.

10Only the propagator of the last step of the recursion is removed. All the other propagators
produced in previous steps of the recursion are obviously kept explicitly.
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For example, for n = 6 the external particles and the sub-amplitude with momentum
pµ235 = pµ2 + pµ3 + pµ5 are interpreted by the IDs

{1, 2, 3, 4, 5, 6} → {1, 2, 4, 8, 16, 32} and J(f, p235, {δ})→ J(f, 22, {δ}). (2.38)

In the same context, the level of the sub-amplitude can be defined by the following
expression

lb =
n∑
i=1

m̃i, (2.39)

and the sign factor ε(Pi1 , Pi2)→ ε(mi1 ,mi2) via the equation

ε(mi1 ,mi2) = (−1)χ(mi1 ,mi2 ) with χ(mi1 ,mi2) =
2∑
i=n

m̂i1i

i−1∑
j=1

m̂i2j

 , (2.40)

where hated components are set to 0 if the corresponding external particle is a boson.
Within HELAC, particle 1 is always chosen as the endpoint of the recursion. This

results in all sub-amplitudes to obtain ID values from the set of even integers between
2 and 2n − 2. Furthermore, the color-stripped amplitude is always computed by

A(0)
n = J0(f1, 2n − 2, {δ})J(f1, 1, {δ}). (2.41)

The computation of the amplitude happens in two phases. In the first phase, called
initialization phase, the program builds a skeleton of the color-stripped amplitude
for each color configuration, meaning it constructs recursively all the relevant sub-
amplitudes that contribute to the process at hand and stores the information in a file.
In the second phase, called computation phase, the program numerically calculates
the amplitude for each provided phase space point, summed over all possible chirality
configurations of the external particles11.

2.3.2 The One-loop case
At one-loop level, there do not exist programs that implement an algorithm that uses
direct Dyson-Schwinger recursion for the construction of a scattering amplitude. This
mainly happens due to the fact that for computing a one-loop amplitude it is op-
timal to collect contributions that contain the same loop-assignment structure and
reduce them, at the integrand level, to the corresponding master integrals. This is
difficult to be combined with a direct Dyson-Schwinger recursion, as the latter would
in general combine in a single configuration different Feynman diagrams with differ-
ent loop-assignment structures. For this reason, a hybrid approach between Feynman
diagrams and Dyson-Schwinger recursion is applied by HELAC-1LOOP [88, 97] in order
to construct the 4-dimensional part of the numerators that contribute to a one-loop
scattering amplitude. The main idea of the algorithm is that an n−particle one-loop
diagram, keeping information about its loop structure, can be uniquely corresponded
to an (n + 2)-particle tree-level diagram, where the latter can be constructed using
HELAC. Let us mention here that, HELAC-1LOOP is a completely automated framework
for the calculation of one-loop n-particle scattering amplitudes, but in this subsection,

11Or for a specific chirality configuration if specified otherwise.
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Figure 2.1: Some inequivalent topologies for n = 6. From left to right, we have depicted the
topologies {1, 2, 4, 8, 16, 32}, {1, 2, 12, 16, 32}, {3, 4, 24, 32}, {1, 14, 48}, {7, 56} and {63}. The
rest of the topologies that are not depicted here are topologically (in terms of the number of
blobs) the same as these ones, meaning they are hexagon-, pentagon-, box-, triangle-, bubble-,
and tadpole-topologies, but have a different assignment on the external particles coming on
the blobs.

because we haven’t yet discussed the OPP method used internally for the reduction of
the numerators into master integrals, we focus only on the algorithmic approach used
therein for the construction of the numerators that contribute to a given amplitude
(initialization phase).

Having as input the number (n) and the flavor (fi, . . . , fn) of the external particles,
together with the allowed flavors for the loop particles, HELAC-1LOOP generates all
possible color configurations of the external particles and constructs for each of them
the numerators that contribute to the color-stripped amplitudes, storing color-wised
the information in the skeleton. In the first step of the construction of the color-
stripped amplitudes, HELAC-1LOOP generates all topologically inequivalent partitions
of the external particles into all possible number of sets (blobs) attached to the loop,
the so-called one-loop blob-topologies. A blob is interpreted as the sum of all possible
tree-level sub-amplitudes that can be constructed including the external particles that
are contained in the ID number defining the blob, and its level is equal to the number
of particles that it consists of. In practice, this means that blobs are constructed
by a Dyson-Schwinger recursion like the one applied at tree-level. Blobs can contain
propagators but they do not depend on the loop momentum. Thus a blob-topology
is actually a sum of Feynman graphs with the same loop-assignment structure. For
a better understanding of the concept of blobs, consider as an example the following
level-4 blob, constructed from the particles {1, 2, 4, 8} (the black line corresponds to
the loop line where the blob is attached)
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The dots count for the extra sub-amplitudes coming from all inequivalent permutations
of the external particles in the 6 depicted sub-graphs. In this example, the total number
of sub-amplitudes taken as one contribution from the level-4 blob is 26, of which, 3 are
of the first, 4 are of the second, 3 are of the third, 4 are of the fourth, 12 are of the
fifth, and 3 are of the sixth sub-graph type.
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Figure 2.2: Cutting a propagator from the one-loop amplitude with n external particles
results to a (n+ 2)-particle tree-level amplitude, which can be calculated by HELAC. The two
cut particles have flavors f̄ and f , respectively, and obtain the usual HELAC notation, meaning
2n and 2(n+1), respectively.

Concerning the one-loop blob-topologies, in an n-particle process there will con-
tribute topologies with n, n − 1, n − 2, . . . , 1 blobs attached on the loop. For a better
understanding and visualization of the one-loop blob-topologies we quote in Figure 2.1
a typical collection of possible contributions to a 6-particle process. By convention
in HELAC-1LOOP, the loop momentum in blob-topologies flows counterclockwise, and
the propagator bearing momentum k̄2 (with k̄ denoting the 4-dimensional part of the
loop momentum) is the one between the blob that contains the particle 1 and the last
blob. As the last blob is defined the first blob encountered after the blob that contains
the particle 1, moving counterclockwise on the loop, e.g. in the hexagonal topology
of Figure 2.1, the last blob is the one with ID number 32. Thus the numbering of
the blobs in the blob-topologies always starts from the blob containing the particle 1
and continues following a clockwise flow on the loop, as we can see in the examples of
Figure 2.1.

After the generation of the blob-topologies, the loop-particles of each topology are
dressed with flavor and color, in all possible ways, using SM Feynman rules and the
color-flow representation12. In this way, all the configurations that contribute to the
partial amplitudes are constructed. This procedure is equivalent to drawing all one-
loop Feynman diagrams and then collecting them in sub-classes that are characterized
by a common loop-assignment structure. For the construction of each numerator, the
corresponding configuration is cut on the propagator that connects the last blob and
the blob containing the particle 1. The two extra external particles arising from the
cut, obtain the number IDs 2n and 2n+1, respectively, and their flavor is defined by
the flavor of the cut loop-particle, f , with the particle 2n+1 bearing flavor f and the
particle 2n bearing flavor f̄ (see Figure 2.2). The cut also results in the addition, to the
existing color connection, of two more color lines if the cut-propagator is a gluon/ghost
or one more color line if it is a quark/anti-quark, with the extra lines corresponding
to the two extra particles. Afterward, the color connection of the cut configuration is
relabeled accordingly by tracking again the flow of color (see [97]).

Having created an n+2 tree-level configuration with a specified flavor and color for
the n+ 2 particles, and with fixed loop-assignment structure and flavors for the loop-
particles, HELAC-1LOOP constructs and stores as a sequence of sub-amplitudes all the
information needed for the computation of the corresponding numerator. The sequence
of sub-amplitudes respects the loop-assignment structure of the configuration, meaning

12The one-loop color dressing is done by tracking at each vertex the flow of color. For more details,
we refer to [97].
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that it starts from the particle 2n and combines it with the last blob in order to create
the next sub-amplitude that describes the corresponding loop-particle. Then, the latter
sub-amplitude is subsequently combined with the next blob (penultimate) in order to
create the sub-amplitude of the corresponding loop-particle, and this procedure goes
on till arriving at the (first) blob which is combined (except for the particle 1) with
the previous sub-amplitude and the particle 2n+1, in such a way that the particle 1 to
be always the last particle of the recursion. At each step, Dyson-Schwinger recursion
is applied to the blobs, creating sub-amplitudes containing only external particles.

For a given set of momenta (including the loop momentum13) and polarizations
of the external particles (including the cut-particles), a numerator is computed by
multiplying the last sub-amplitude of the recursion, identified by the ID number 2n+2−
2, with the wave function of the particle 1. This is part of the computation phase of
HELAC-1LOOP, where also the reduction to master integrals and the actual computation
of the scattering amplitude is done. For the computation of the last sub-amplitude, no
denominators are used for the sub-amplitudes of the internal loop propagators, and the
wave functions for the two extra particles are suitably chosen in such a way that the
contraction originally contained in the loop is reproduced. Working in the Feynman
gauge, the wave functions of fermions (ν(i)(p), ν̄(i)(p)) and gauge bosons (eµ(i)) for the
two extra particles are defined so that to satisfy the following relations

2∑
i=1

ν̄(i)(p)ν(i)(p) = /p+m and
4∑
i=1

eµ(i)e
ν
(i) = gµν . (2.42)

Ghost particles are also included in this procedure, and in that case, the sum should
be equal to 1. Thus for computing the 4-dimensional part of a one-loop n-particle
numerator using the HELAC-1LOOP algorithm, we need to take a sum of four (two) [one]
tree-level (n + 2)-particle amplitudes, which differ only on the wave functions of the
extra two gluons (quarks/anti-quarks) [ghosts] resulted by the cut propagator, with
the latter being defined for each term of the sum so that Eq. (2.42) to be fulfilled.
This is taken into account in the computation phase.

Within the initialization phase of HELAC-1LOOP, in the skeleton beside the con-
struction and storage of the one-loop 4-dimensional numerators that contribute to the
process at hand, there are also constructed and stored, using the tree-level Dyson-
Schwinger recursion algorithm, the UV and R2 counter-terms. The UV counter-terms,
as discussed in Subsection 1.2.2, are necessary in order to renormalize the one-loop
scattering amplitude. The R2 counter-terms are needed for the computation of the
rational part of the amplitude resulting from the explicit ε-dimensional part of the
numerators, and these can be produced using appropriate Feynman rules within a
tree-like computation [99–102].

13In HELAC-1LOOP the value of the loop-momentum is specified by CutTools [98], which is reducing
the numerator into a set of master integrals using the OPP method. The cut-particle 2n acquires
momentum k̄ and the cut-particle 2n+1 acquires momentum −k̄.
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2.4 Amplitude Reduction

2.4.1 The One-loop Paradigm
According to our notation established in Eqs. (2.3)-(2.4), the general form of a one-loop
n-particle color-stripped amplitude is

A(1)
n =

∫ µ(4−d)ddk

(2π)d A(1)
n =

∑
I⊆T

∫ µ(4−d)ddk

(2π)d
NI(k, p1, ..., pn−1, γ

µ, {εµ})∏
j∈I Dj

, (2.43)

with the inverse propagator defined as in Eq. (2.5) but for kj → k, due to having
only one loop momentum. A surprisingly long time ago [103–107], as a consequence
of Lorentz invariance it was proven that, for d→ 4 any one-loop scattering amplitude
can be cast into the following form

A(1)
n =

∑
i0<i1<i2<i3

d(i0, i1, i2, i3)Fi0i1i2i3 +
∑

i0<i1<i2

c(i0, i1, i2)Fi0i1i2

+
∑
i0<i1

b(i0, i1)Fi0i1 +
∑
i0

a(i0)Fi0 +R +O(ε)
(2.44)

where Fi0i1i2i3 (boxes), Fi0i1i2 (triangles), Fi0i1 (bubbles), and Fi0 (tadpoles) refer to the
well-known scalar one-loop master integrals [108–111] with four, three, two, and one
external particles, respectively,

Fi0...in−1 =
∫ ddk

(2π)d
1

Di0Di1 . . . Din−1

. (2.45)

In expression (2.44) the coefficients of the master integrals are rational functions of
the external momenta, polarization vectors, and masses and are independent of the
dimensional regulator. Of the same form but with extra ε dependence is the so-called
rational part [46, 112] of the amplitude, denoted above as R. The rest of the amplitude
can be computed using generalized unitarity cuts and is thus called cut-constructible
part [46, 47, 112–116]. We comment here that in Eq. (2.44) the ε dependence of the
amplitude comes from the master integrals and R.

For the reduction to the set of scalar one-loop master integrals, several methods can
be applied besides the standard Passarino-Veltman reduction [106, 117, 118]. Some of
them are applied at the integral level, like the IBP reduction [48, 49] and the (gen-
eralized) unitarity cut method [46, 47, 112–116, 119, 120]. The most successful ones
that led to the automation of one-loop amplitude reduction are the ones applied at the
integrand level. Such methods are the OPP method [91, 92], the 4-dimensional numer-
ical unitarity14 [122], the d-dimensional numerical unitarity [123–125], etc [126, 127].
Within the methods of [123–127] the reduction happens at d-dimensions, meaning that
the integrand is constructed in d−dimensions working with tree-amplitudes in higher
dimensions15, and the expression in Eq. (2.44) is modified such that the rational part

14This method in practice applies an OPP approach to the reduction of the amplitude but as a
basis for the decomposition of the loop momentum is using the van Neerven-Vermaseren basis [107]
instead of the basis used within OPP [91, 121].

15For these computations the wave functions, polarization vectors, and Clifford algebra, are extended
in higher dimensions.
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is included in the extra master integrals and the coefficients of the reduction

A(1)
n =

∑
i0<i1<i2<i3<i4

e∗i0i1i2i3i4 Fi0i1i2i3i4 +
∑

i0<i1<i2<i3

d∗i0i1i2i3 Fi0i1i2i3

+
∑

i0<i1<i2

c∗i0i1i2 Fi0i1i2 +
∑
i0<i1

b∗i0i1 Fi0i1 +
∑
i0

a∗i0 Fi0 +O(ε).
(2.46)

The difference between the relations (2.44) and (2.46) is that in the latter, master
integrals with five external particles (pentagons) are also included while the rational
terms are excluded, and the coefficients of the master integrals depend now on the
dimensional regulator.

Let’s focus now on the OPP method. The main idea of this method is that the
4-dimensional part of any one-loop numerator is decomposed as

N̄I(k̄) =
I∑

i0<i1<i2<i3

[
d(i0, i1, i2, i3) + d̃(k̄, i0, i1, i2, i3)

] I∏
i 6=i0,i1,i2,i3

D̄i

+
I∑

i0<i1<i2

[
c(i0, i1, i2) + c̃(k̄, i0, i1, i2)

] I∏
i 6=i0,i1,i2

D̄i

+
I∑

i0<i1

[
b(i0, i1) + b̃(k̄, i0, i1)

] I∏
i 6=i0,i1

D̄i

+
I∑
i0

[
a(i0) + ã(k̄, i0)

] I∏
i 6=i0

D̄i,

(2.47)

where with a bar we denote the quantities living in 4 dimensions. In this expression
the coefficients d(i0, i1, i2, i3), c(i0, i1, i2), b(i0, i1) and a(i0) are the same with the ones
appearing in Eq. (2.44), while the tilted coefficients (which are still k̄-depended) vanish
upon integration on ddk and are known as spurious terms. The explicit form of the
spurious terms was proven in [91] by decomposing k̄ into a basis of massless momenta

k̄µ = −pµ0 + (k̄ + p0) · `2

(`1 · `2) `µ1 + (k̄ + p0) · `1

(`1 · `2) `µ2 −
(k̄ + p0) · `4

4(`1 · `2) `µ3 −
(k̄ + p0) · `3

4(`1 · `2) `µ4 , (2.48)

where for a symmetric treatment of the inverse propagators a non-vanishing momentum
pµ0 is introduced (this does not change the result due to translation invariance, see Eq.
(1.14)), and the momenta {`1, `2, `3, `4} are defined via the relations

`µ1 = Kµ
1 − a1K

µ
2

1− a1a2
, `µ2 = Kµ

2 − a2K
µ
1

1− a1a2
, `µ3 = ū−(`1)γµu−(`2), `µ4 = ū−(`2)γµu−(`1),

with

Kµ
i = pµi − p

µ
0 , ai = K2

i /γ, and γ = 2(`1 · `2) = K1 ·K2 ±
√

(K1 ·K2)2 −K2
1K

2
2 .

In the definition of γ, the minus (plus) sign is used when p1 ·p2 > 0 (p1 ·p2 < 0). As we
see, the first two elements of the basis (`1, `2) are linear combinations of two external
momenta of the sub-diagram identified by the considered set of inverse propagators, and
the rest two (`3, `4) are chosen to be orthogonal to them by using spinor techniques.
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If the sub-diagram has less than two independent external momenta, `2 or/and `1
are substituted by arbitrary reference vectors. Without giving exact expressions for
their form (one can find them in [91]) we state that for each term of the sums in
Eq. (2.47) the spurious terms ã(k̄, i0) are composed of four terms, b̃(k̄, i0, i1) from
eight, c̃(k̄, i0, i1, i2) from six, and d̃(k̄, i0, i1, i2, i3) from one. For example, in the case
of a 6-point one-loop scattering amplitude where 56 master integrals contribute to its
computation there exist 56× (19 + 4) = 1288 unknown coefficients (spurious and not)
in the decomposition of Eq. (2.47).

The existence of the decomposition of Eq. (2.47) implies that the problem of
computing a one-loop amplitude is reduced to the algebraic problem of determining
the coefficients of the master integrals and spurious terms, plus the calculation of the
rational part of the amplitude. Within OPP, the coefficients are determined by solving
iteratively systems of equations, by evaluating the LHS and the RHS of Eq. (2.47) at
values of k̄ that are solutions of

D̄i(k̄) = 0, for i = 0, ...,M − 1, and M = 4, ..., 1. (2.49)

Using a top-down approach (from more to fewer propagators) the system of equa-
tions becomes triangular, namely one starts with the determination of the coefficients
{d(i0, i1, i2, i3), d̃(k̄, i0, i1, i2, i3)} by finding two solutions of the loop momentum that
satisfy Di0 = Di1 = Di2 = Di3 = 0. For these solutions, all the other coefficients
do not appear in the system of equations. Then having determined {d(i0, i1, i2, i3),
d̃(k̄, i0, i1, i2, i3)}, one continues for the determination of {c(i0, i1, i2), c̃(k̄, i0, i1, i2)} by
finding seven loop momenta that satisfy Di0 = Di1 = Di2 = 0. At this step the coeffi-
cients {b(i0, i1), b̃(k̄, i0, i1), a(i0), ã(k̄, i0)} do not appear in the system of equations and
{d(i0, i1, i2, i3), d̃(k̄, i0, i1, i2, i3)} are not considered anymore unknowns. This procedure
ends up with the determination of {a(i0), ã(k̄, i0)}16.

Within the OPP reduction framework, the rational terms of the amplitude come
from two sources of different origin [91, 99], which is to say

R = R1 +R2. (2.50)

The first source denoted, as R1, originates from the mismatch in the cancellation of
the d−dimensional denominators of Eq. (2.43) with the 4-dimensional ones of Eq.
(2.47). This mismatch is compensated by introducing in the coefficients of Eq. (2.47)
a µ11 = (k∗)2 dependence (k∗ being the ε-dimensional part of the loop momentum)
through the mass shift

m2
i → m2

i − µ11. (2.51)

Due to vanishing because of Lorentz invariance, the spurious terms remain spurious
under this change, while for the coefficients b, c, one can prove that change as

b(i0, i1;µ2) = b(i0, i1) + µ11b
(2)(i0, i1)

c(i0, i1, i2;µ2) = c(i0, i1, i2) + µ11c
(2)(i0, i1, i2).

(2.52)

16In practice for the determination of a(i0) one needs only two (not five) solutions of loop momenta.
Also when working with an amplitude where the particles that appear in the loop are massless, the
tadpole coefficients do not need to be computed at all, and for computing b(i0, i1) one needs four
instead of nine solutions.
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Furthermore, by using Eq. (2.51) in Eq. (2.47) its first line in d-dimensions takes the
form

D(n)(k̄2, µ11) ≡
n−1∑

i0<i1<i2<i3

[
d(i0, i1, i2, i3;µ11) + d̃(k̄, i0, i1, i2, i3;µ11)

] n−1∏
i 6=i0,i1,i2,i3

Di,

(2.53)
and the following expansion holds true

D(n)(k̄2, µ11) =
n∑
j=2

µj−2
11 d(2j−4)(k̄), (2.54)

where the last coefficient is independent of k̄, namely d(2n−4)(k̄) ≡ d(2n−4). For the
calculation of the µ11 parts of the coefficients, once the 4-dimensional coefficients have
been determined, one simply redoes the fits for different values of µ11. Finally, the R1
term is computed via the following expression

R1 = d(2n−4)

(2π)4 R1,1 +
n−1∑

i0<i1<i2

c(2)(i0, i1, i2)
(2π)4 R1,2 +

m−1∑
i0<i1

b(2)(i0, i1)
(2π)4 R1,3 (2.55)

where R1,1, R1,2 and R1,3 are the following extra integrals

R1,1 ≡
∫
ddk

µ2
11

Di0Di1Di2Di3

= −iπ
2

6 +O(ε)

R1,2 ≡
∫
ddk

µ11

Di0Di1Di2

= −iπ
2

2 +O(ε)

R1,3 ≡
∫
ddk

µ11

Di0Di1

= −iπ
2

2

(
m2
i0 +m2

i1 −
(pi0 − pi1)2

3

)
+O(ε)

, (2.56)

generated by the µ11 dependence of the OPP coefficients. The OPP reduction, meaning
the computation of the OPP coefficients of Eq. (2.47) and the R1 rational term of Eq.
(2.55), is automated within CutTools [98], where a specific choice for the solutions of
the loop momenta that satisfy Eq. (2.49) is chosen according to [91].

Concerning the second source of rational terms, denoted as R2 in (2.50), this term
originates from the explicit dependence of the numerator on ε. Given a numerator, one
can recognize the R2 term by performing the algebraic manipulations in d dimensions
and isolating the terms depending on ε17

NI(k) = N̄I(k̄) +N∗I (k̄, µ11, ε) (2.57)

resulting from the ε components of

kµ = k̄µ + k∗µ

γµ = γ̄µ + γ∗µ

gµν = ḡµν + g∗µν

. (2.58)

17With a star we denote ε-dimensional part of an expression.
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R2 is then defined via the following equation in the ’t Hooft-Veltman (HV) scheme

R2 =
∫ ddk

(2π)4
N∗I (k̄, µ11, ε)∏

j∈I Dj

. (2.59)

A practical way to compute R2 is determining appropriate tree-level Feynman rules
(effective vertices like counter-terms) by computing, using Eq. (2.58), the R2 part
coming from all possible one-particle irreducible amplitudes of the theory at hand, up
to four external legs. The fact that four external legs are enough to account for the R2
is guaranteed by the UV nature of the rational terms [128]. The tree-level Feynman
rules for the computation of the R2 term in QCD and SM can be found in [99–102].

The OPP method together with the other methods quoted at the beginning of this
subsection, led to the, once and for all, solution of the problem of amplitude reduction
at one-loop level and thus the calculation of scattering amplitudes and cross sections for
many processes at NLO (NLO revolution). By now several highly automated packages
such as HELAC-NLO [88], Recola [89, 90], MadGraph5_AMC@NLO [129, 130], OpenLoops
[131, 132], GoSam [133, 134] and other public or private tools exist for the computation
of one-loop scattering amplitudes within the SM.

2.4.2 Multi-loop Techniques
Due to increased complexity, the reduction of any multi-loop scattering amplitude into a
set of master integrals is currently not automated as in the one-loop case. Although not
automated, much progress has been done in the last years leading to the computation
of many two- and three-loop scattering amplitudes, where the current frontier stands
at four- and five-particle processes, respectively [135, 136]. The methods used for
these computations can be categorized into two categories according to the level of the
amplitude at which the reduction happens.

In the first category, the reduction happens at the integral level, using IBP identities
[48, 49, 54]. Notwithstanding that the concept of this method is clear, the computa-
tional cost of solving IBP identities increases very fast with the multiplicity of the
amplitude making the reduction for processes with five and more particles impossi-
ble without the use of computer clusters with many cores and high capacity of RAM
memory. For this reason, many methods have been developed in order to facilitate the
solution or generation of the IBP identities or to optimize the form of the amplitude
before the reduction [65, 66, 68–75, 137–140]. The reduction at the integral level has
produced in last years several state-of-the-art results for two-loop (see [141–157]) and
three-loop (see [158–163]) scattering amplitudes.

In the second category the reduction happens at the integrand level, where the
scattering amplitude is decomposed into a basis of master integrands, that integrate
to master integrals, and surface terms, that integrate to zero [164]. The basis is con-
structed case by case according to the process at hand, and the coefficients of the
decomposition are computed using a generalization of the one-loop d-dimensional gen-
eralized numerical unitarity [164–166]. This method has been applied for the numerical
and analytical computation of frontier scattering amplitudes up to two-loops [166–175],
and is implemented (for specific processes and kinematic regions) in a publicly available
package, called Caravel [176].
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It is worth mentioning also that in recent years, progress has been made towards the
extension at two-loops of the one-loop methods applied for the 4-dimensional integrand
reduction into tensor integrals [177], and towards the computation of the rational terms
originating by the explicit ε-dependence of the two-loop numerators [178–180].
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Chapter 3

Feynman Integrals

In this chapter we review the concept of Feynman Integrals, considering their basic
properties and two of their parametric representations. Furthermore, we tackle the
computation of Feynman Integrals using the method of differential equations and a
variant of it, the simplified differential equations approach. For a more in-depth dis-
cussion, we refer the interested reader to standard textbooks and reviews [181–186].

3.1 Introduction to Feynman Integrals
As we have seen in the previous chapter, the task of computing a scattering amplitude
includes the calculation of scalar Feynman integrals (FIs). To each FI one can asso-
ciate a Feynman graph (and vice-versa), defined as a directed and connected graph
constructed by external half-edges (external legs), and internal edges (propagators),
connected via vertices that respect momentum conservation and that do not have a
limitation on the number of edges that can connect. Each independent cycle of the
graph is called a loop and it introduces an arbitrary loop momentum. The external
legs bear momenta being linear combinations of the momenta of the external particles
of the process at hand, with the total momentum of the external legs to be conserved.
The propagators are assigned a mass and a momentum that is a linear combination of
external and loop momenta.

For the calculation of FIs, it is convenient to group them into integral families
according to the topology of the loop Feynman diagrams and the kinematics of the
process at hand. Roughly speaking, the integral family is the set of all the FIs with
a given propagator structure, allowing for arbitrary integer powers of the propagators.
This includes also cases with fewer propagators, i.e. sub-graphs, when the integer
powers are equal to zero. More specifically, an integral family of FIs with L loops and
E+ 1 external legs (E independent momenta pj1) associated to a Feynman graph with
ntop propagators, is defined through the relation

Gα1...αN (s, ε) =
∫  L∏

j=1
eγEε

ddkj
iπd/2

 ∏N
j=ntop+1D

−αj
j ({k}, {p},mj)∏ntop

j=1 D
αj
j ({k}, {p},mj)

, (3.1)

1Considering a scattering process with n external particles, E = min(4, n − 1) of them are inde-
pendent due to four-momentum conservation and the 4-dimensional nature of space-time.
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where s = {sij} ∪ {m2} is the set of kinematic invariant scales of the family, as these
are defined in section 1.1,

sij = sji = (pi+pj)2 with j > i, and {m2} : set of internal/external masses, (3.2)

αj are arbitrary integers of which αntop+1, . . . , αN are non-positive, and N is the number
of scalar products containing loop momenta (i.e. ki · kj and ki · pj),

N = L(L+ 1)
2 + L · E, (3.3)

and is equal to the number of linear independent propagators of the family, which are
of the form2 (similar to Eqs. (2.5) and (2.6))

Dj =
(

L∑
i=1

b
(j)
i ki +

n−1∑
i=1

b
′(j)
i pi

)2

−m2
j + iε, with b

(j)
i , b

′(j)
i = 0,±1. (3.4)

Starting from L > 1, there exists a set of propagators (N −ntop in the number) coming
from irreducible scalar products, meaning scalar products of loop momenta that can
not be expressed as a linear combination of the ntop propagators of the family3. These
propagators are usually called auxiliary propagators and can appear only to the numer-
ator of a FI, thus their corresponding integer powers are non-positive. The auxiliary
propagators are not uniquely fixed, but they are constrained only by the requirement
that together with the ntop propagators they form a linearly independent basis, in terms
of which can be expressed all the scalar products involving loop momenta.

As we have already discussed in the previous chapters, in order to regularize IR
and UV divergences, FIs are defined and computed within the scheme of dimensional
regularization (DR), where we have d = 4−2ε space-time dimensions (1 time dimension
and d− 1 space dimensions). In this framework, assuming that all the propagators are
quadratic, Gα1...αN is a homogeneous function of external momenta and internal masses
of degree deg = L · d− 2∑N

i=1 αi, and satisfy the scaling relation

Gα1...αN (s · λ, ε) = λdeg/2Gα1...αN (s, ε). (3.5)

Within DR, if a FI is scaleless it vanishes. Moreover, it can be shown that a FI can
have at most poles of multiplicity 2l in the complex ε−plane, but no branch cuts, i.e.
it is a meromorphic function of ε. This is a very important property of FIs as it allows
us to write a Laurent expansion around (the point of interest) ε = 0

Gα1...αN (s, ε) =
∑
i≥i0

εiG(i)
α1...αN

(s), (3.6)

and focus our interest on the determination of the coefficients of the expansion. If
i0 < 0 then Gα1...αN is divergent in 4 dimensions.

2In the following, we will not write the dependence of the propagators on the +iε prescription
explicitly anymore, except for the cases where it is important for our discussion.

3Let us comment here that the definition of irreducible scalar products in this chapter does not
include the scalar products of loop momenta with four-vectors transverse to the external momenta
(defined in chapter 2). In fact, these kinds of scalar products do not exist at the integral level as they
integrate to zero.
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Although an integral family contains an infinite number of FIs, the IBP identities
(discussed in subsection 2.1.2) imply the existence of a finite basis of independent
integrals, the master integrals (MIs) of the family. There exists a freedom in the choice
of this basis, and any FI of the family can be expressed as a linear combination of MIs
with some algebraic coefficients of the kinematic invariant scales and ε. A useful notion
for the organization of FIs is this of the integral sector, defined as any possible set T
of the ntop propagators of the family. In general, one integral family has 2ntop sectors
but due to IBP relations and symmetry relations, only some of them contain integrals
contributing to the MIs of the family. The sector containing all the ntop propagators
is called top-sector while all the other sectors, which have fewer propagators are called
lower-sectors.

3.2 Representations of Feynman Integrals
Except for the straightforward form of FIs in the momentum-space (Eq. (3.1)), which
is directly connected with the concept of Feynman graphs, other alternative represen-
tations of FIs exist. Each of them is optimal for the evaluation or the study of different
properties of the FIs. For the purposes of this thesis, we will focus on two parametric
representations, the Feynman and the Baikov representation.

3.2.1 Feynman Representation
The Feynman representation of FIs is obtained by trading the integration over the
loop momenta with integrations over the so-called Feynman parameters, xj [186–188].
Assuming the case where the FI doesn’t contain auxiliary propagators, this happens
by first converting the product of propagators into sums using Feynman’s trick4

n∏
j=1

1
D
αj
j

= Γ(α)∏n
j=1 Γ(αj)

∫ ∞
0

 n∏
j=1

dxj x
αj−1
j

 δ
(
1−∑n

j=1 xj
)

(∑n
j=1 xjDj

)α with α ≡
n∑
j=1

αj, (3.7)

The sum of propagators appearing in the denominator above can be expressed as

n∑
j=1

xjDj =
l∑

r,s=1
Mrskr · ks − 2

l∑
r=1

ks ·Qr + J + iε (3.8)

with M an L × L matrix with scalar entries and Q a L-component vector with four-
vectors as entries. Then, one can perform the integrations over the loop momenta using
shifts for each loop momentum and translation invariance of d-dimensional integrals
(Eq. (1.14)). This procedure leads to the following form for a FI with n propagators
(where none of them is auxiliary)

G = (−1)αeLγEεΓ(α− Ld/2)∏n
j=1 Γ(αj)

∫ ∞
0

 n∏
j=1

dxj x
αj−1
j

 δ
1−

n∑
j=1

xj

 Uα−(L+1)d/2

Fα−Ld/2
, (3.9)

4Although broadly known as Feynman’s trick it was actually Schwinger the one who invented it.
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where U and F are given by the expressions

U = det(M) and F = U ×
(
QM−1Q− J − iε

)
, (3.10)

and are known as the first and second Symanzik polynomial, respectively. U is a
homogeneous polynomial in Feynman parameters of degree l, it is linear in each xj,
and each of its monomials has +1 as coefficient. Thus the first Symanzik polynomial
does not vanish inside the integration region, except maybe on its boundary. The
second Symanzik polynomial is a homogeneous polynomial in xj’s of degree L+ 1, and
contains also kinematic invariants beside Feynman parameters. F can vanish within
the integration region as the coefficients of its monomials do not have all of them the
same sign, resulting in divergences after integration. The location of these singularities
can be found from the Landau equations [44, 189]. Requiring the invariants appearing
in the monomials of F to be such that all the monomials have the same sign, defines
the Euclidean region of a FI, where all the external invariants (pi + · · ·+ pj)2 ≤ 0 and
all the internal masses are positive. In the Euclidean region, the FI is free of branch
cuts and evaluates to real numbers. For a family of FIs, the Euclidean region is defined
via the F polynomial of the top sector (the integral with ntop propagators).

In order to generalize Eq. (3.9) so that to include auxiliary propagators one needs
to compute the derivative instead of the integral for the corresponding Feynman pa-
rameters [190, 191]. For us to be consistent with the notation of the previous section,
let us assume dealing with a FI with ntop propagators and N − ntop auxiliary propa-
gators, Gα1...αN . Then, keeping the same definition for the Symanzik polynomials but
including to them also the auxiliary propagators (taking the sum in Eq (3.7) till N),
the Feynman representation of Gα1...αN reads

Gα1...αN =(−1)ᾱeLγEεΓ(α− Ld/2)∏ntop
j=1 Γ(αj)

∫ ∞
0

ntop∏
j=1

dxj x
αj−1
j

 δ
1−

ntop∑
j=1

xj


×

 N∏
j=ntop+1

∂αj

∂x
αj
j

 Uα−(L+1)d/2

Fα−Ld/2

∣∣∣∣∣∣
xtop+1=···=xN=0

,

(3.11)

where
ᾱ =

ntop∑
j=1

αj and α =
N∑
j=1

αj . (3.12)

A beneficial property of the delta function appearing in Eqs. (3.9)-(3.11) is that,
according to Cheng-Wu theorem5 [192], one can choose not to keep all the Feynman
parameters appearing in its argument but only a subset of them and the result of the
integration to be the same. This means that one can do the following trade

δ

1−
n∑
j=1

xj

 −→ δ

1−
n∑
j=1

ajxj

 , (3.13)

with aj ≥ 0 and at least one aj 6= 0.
5This hold true for all the functions satisfying

∫
dxjf({xj}) =

∫
dx′

jf({x′
j}), for x′

j = cxj , with c
being a constant.
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The Feynman representation is the most widely used parametric representation of
FIs, as it has been applied for both analytic and numerical computations. The analytic
computations are obtained by direct integration over Feynman parameters (see for
example [193–197]), where the package HyperInt [195] can be used to facilitate the
integrations whenever possible. Let us mention that the integrations in the Feynman
parameters are not always doable and this has led to the development of other methods
for the analytic computation of FIs, such as the method of differential equations that
we are going to discuss in the next section. For the numerical computations the method
of sector decomposition [128, 198] is used, where the integration region is decomposed
into sectors with simple singularity structure, the integrals are expanded on ε and
the integration of their finite coefficients is done numerically. The method of sector
decomposition is implemented within the public codes pySecDec [199, 200] and FIESTA
[201]. Although these packages are able to provide high precision results for several
multi-loop and multi-scale FIs in the Euclidean region, this is not the case of phase-
space points for kinematic regions of physical interest from the scattering point of view
(physical regions), which are relevant for phenomenological applications.

Another important application of Feynman’s representation for the modern com-
putation of FIs, through the method of differential equations, is its adaption for the
determination of boundary conditions of MIs to asymptotic limits, using the method
of expansion by regions [202–207]. The core principle of this method is that one can
compute the asymptotic value of a FI to a limit where some of its variables are small,
by partitioning the space of loop momenta into distinct regions, Taylor expanding the
integrand within each region with respect to the variables that are deemed to be small
(in that particular region), and performing the integrations of the expanded integrand
across the entire domain of loop momenta. The scaleless integrals generated by this
procedure should be set to zero. This corresponds to the application of expansion by
regions in the standard momentum representation of FIs. The same method can be
applied in the Feynman representation, where the regions are specified by the scaling
of the Feynman parameters in terms of the powers of the small variables. A geometric
approach for the identification of the regions that contribute to an asymptotic limit
of a FI, together with the Feynman parametric form of the integral in each region
was first formulated in [204] and implemented in the MATHEMATICA script asy.m. The
last version of asy.m is shipped along with FIESTA [201], while also another public
implementation is included in the last version of pySecDec [200, 208].

3.2.2 Baikov Representation
In the Baikov representation of FIs [45, 209, 210], the integration over the loop momenta
is traded for integrations over the propagators (including the auxiliary ones) of the
integral. For obtaining the Baikov representation, let us denote as q̃i = ki with i =
1, . . . , L the loop momenta, q̃L+i = pi with i = 1, . . . , E the independent external
momenta, M = L + E and s̃ij = q̃i · q̃j. Using these definitions we can write the
propagators Dα in the general form

Dα =
L∑
i=1

M∑
j=i

Aijα s̃ij + fα =
L∑
i=1

L∑
j=i

Aijαki · kj +
L∑
i=1

M∑
j=L+1

Aijαki · pj−L + fα , (3.14)
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where fα is a function depending on external kinematics and internal masses, Aijα is a
matrix associated with the topology of the graph and whose elements are taken from
the set {−2,−1, 0, 1, 2}, and α = 1, . . . , N . The pair (ij) in Aijα can be seen as a single
index which has N different values as i = 1, . . . , L and j = i, . . . ,M [211], and hence
we can view Aijα as a N ×N matrix. Using this we can solve the last equation for s̃ij

s̃ij =
N∑
α=1

Aαij(Dα − fα) , (3.15)

with Aαij the inverse matrix of Aijα .
We start deriving the Baikov representation by first writing a FI as an integral in the

scalar products s̃ij. Starting from the innermost integral we write kµ1 = kµ1‖+kµ1⊥, with
kµ1‖ the projection of kµ1 on the hyperplane spanned by the momenta kµ2 , . . . , kµL, p

µ
1 , . . . , p

µ
E

(M − 1 components) and kµ1⊥ the transverse component to this hyperplane. Then we
continue writing kµ2 = kµ2‖ + kµ2⊥, where k

µ
2‖ is the projection of kµ2 on the hyperplane

spanned by kµ3 , . . . , kµL, p
µ
1 , . . . , p

µ
E (M − 2 components) and kµ2⊥ is the transverse com-

ponent to this hyperplane, and so on for the rest loop momenta. Therefore for the
integration measure of Eq. (3.1) we can write

ddk1d
dk2 . . . d

dkL = dM−1k1‖d
d−M+1k1⊥d

M−2k2‖d
d−M+2k2⊥ . . . d

M−LkL‖d
d−M+LkL⊥ .

(3.16)
For each loop momentum projection kµl‖ we can write

kµl‖ = α
(l)
i q̃

µ
i ⇒ kl‖ · q̃j = α

(l)
i q̃i · q̃j = α

(l)
i s̃ij ⇒ α

(l)
i = ζlj s̃

−1
ij for i, j > l , (3.17)

with ζlj = kl‖ · q̃j = s̃lj and j = l + 1, . . . ,M6. For the innermost loop momentum, we
want to make a change of integration variables from dM−1k1‖ to ds̃12ds̃13 . . . ds̃1M . From
vector analysis, we know that under a change of integration variables, the integration
measure of kµ1‖ transforms as

dM−1k1‖ =
∣∣∣∣∣det

(
∂kµ1‖
∂s̃1i

)∣∣∣∣∣ ds̃12ds̃13 . . . ds̃1M with i = 2, . . . ,M, (3.18)

where for the Jacobian determinant from Eq. (3.17) we have∣∣∣∣∣det
(
∂kµ1‖
∂s̃1i

)∣∣∣∣∣ = det(s̃−1
ij q̃

µ
i ) = (det(s̃ij))−1 det(q̃µi ) = 1√

G(q̃2, . . . , q̃n)
, (3.19)

with G(q̃1, . . . , q̃n) = det(q̃i · q̃j) for i, j = 1, . . . ,M the Gram determinant (from the
geometrical point of view, G1/2(q̃1, . . . , q̃n) is the volume of the parallelogram formed
by q̃1, . . . , q̃n), and where above we used that

(det(q̃µi ))2 = det(q̃µi ) det(q̃jµ) = det(q̃µi q̃jµ) = G⇒ det(q̃µi ) = G1/2(q̃2, . . . , q̃n) . (3.20)

The same procedure can be followed to change the integration variables of all the loop
momentum projections kl‖ to their corresponding scalar products. Thus for the volume

6This results from ζlj = kl‖ · q̃j = (kl − kl⊥) · q̃j
j>l−−→ ζlj = kl · q̃j = s̃lj .
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elements dM−iki‖ we obtain

dM−1k1‖ = ds̃12ds̃13 . . . ds̃1M

G1/2(k2, . . . , kL, p1, . . . , pE) ,

dM−2k2‖ = ds̃23ds̃24 . . . ds̃2M

G1/2(k3, . . . , kL, p1, . . . , pE) ,

...

dM−LkL‖ =ds̃LL+1ds̃LL+2 . . . ds̃LM
G1/2(p1, . . . , pE) .

(3.21)

Concerning the volume elements of the transverse components kµl⊥, noticing that
the integrand of Eq. (3.1) depends on the orthogonal directions only through k2

l⊥,
allows us to integrate over the angular part of the orthogonal space resulting to

dnkl⊥ = 1
2Ωnk

n−2
l⊥ dk2

l⊥ , (3.22)

with Ωn = 2πn/2/Γ(n/2) the n−dimensional solid angle. Also, using the equation
s̃ll ≡ k2

ll = k2
l‖+k2

l⊥ we can make the replacement dk2
l⊥ = dsll. Geometrically, kl⊥ can be

seen as the height of the parallelogram with the base formed by kl+1, . . . , kL, p1, . . . , pE
and the extra vector kµl , which is equal to the volume of the whole parallelogram divided
by the area of its base. Therefore we have

dd−M+1k1⊥ =1
2Ωd−M+1

(
G(k1, . . . , kL, p1, . . . , pE)
G(k2, . . . , kL, p1, . . . , pE)

)(d−M−1)/2

ds̃11 ,

dd−M+2k2⊥ =1
2Ωd−M+2

(
G(k2, . . . , kL, p1, . . . , pE)
G(k3, . . . , kL, p1, . . . , pE)

)(d−M)/2

ds̃22 ,

...

dd−M+LkL⊥ =1
2Ωd−M+L

(
G(kL, p1, . . . , pE)
G(p1, . . . , pE)

)(d−M+L−2)/2

ds̃LL .

(3.23)

Replacing Eqs. (3.21) and (3.23) in the relation of the integration measurement, Eq.
(3.16), all the Gram determinants except fromG(k1, . . . , kL, p1, . . . , pE) andG(p1, . . . , pE)
cancel each other out, and the FI takes the form

Gα1...αN = eLγEεπ−
L(L−1)

4 −LE2∏L
i=1 Γ

(
d−M+i

2

) G(p1, . . . , pE)
E+1−d

2

∫ L∏
i=1

M∏
j=i

ds̃ij
G(k1, . . . , kL, p1, . . . , pE) d−M−1

2

Dα1
1 . . . DαN

N

Finally, using Eq. (3.15) we change the integration variables from s̃ij’s to the propa-
gators xα = Dα (Baikov variables). The Jacobian of this transformation is equal to
det(Aαij) and hence we obtain the following form for the (full) Baikov representation of
a FI

Gα1...αN = eLγEεCL
N

[G(p1, . . . , pE)]
d−E−1

2

∫ dx1 . . . dxN
xα1

1 . . . xαNN

[
PL
N(x1 − f1, . . . , xN − fN)

] d−M−1
2

(3.24)
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with

CL
N = π−

L(L−1)
4 −LE2∏L

i=1 Γ
(
d−M+i

2

) det(Aαij), (3.25)

and

PL
N(x1−f1, . . . , xN−fN) = G(k1, . . . , kL, p1, . . . , pE)|

s̃ij=
∑N

α=1 A
α
ij(xα−fα) & s̃ji=s̃ij

. (3.26)

The integration region in the Baikov variables has a complicated shape and is usually
defined by the assumption (see [212] for a nice discussion of the integration limits)

PL
N(x1 − f1, ..., xN − fN) ≥ 0, (3.27)

which means that the Baikov polynomial vanishes in the boundaries.
An alternative form of the Baikov representation, known as loop-by-loop, was pre-

sented in [213]. This form results by instead of projecting one loop momentum ki to
the rest loop momenta {kj} with j > i and all the (E in total) external momenta as
done in the full Baikov approach, by projecting each loop momentum ki over the space
spanned by its "external" momenta, where the definition of "external" momenta of ki,
in general, contains a subset of the E external momenta and possibly a subset of the
loop momenta {kj} with j > i. Therefore the application of the loop-by-loop approach
will result in a Baikov representation with fewer Baikov variables than following the
standard (full) Baikov approach. For obtaining the (full or loop-by-loop) Baikov repre-
sentation of a FI the publicly available Mathematica script Baikov.m, from [213], can
be used.

The Baikov representation of FIs has attracted much interest during the last years,
due to its very natural definition of cuts in d-dimensions. The n−cut of a FI in Baikov
representation is defined as follows [213]

Gn×cut
α1,...,αN

≡ eLγEεCL
N

G(d−E−1)/2

(
N∏

a=n+1

∫
dxa

)(
n∏
c=1

∮
xc=0

dxc

)
(PL

N)(d−M−1)/2

xα1
1 . . . xαNN

, (3.28)

where the Baikov variables {xa : a = 1, . . . , N} have been divided into two subsets,
containing n cut propagators, to whom we have replaced the integrals in the corre-
sponding Baikov variable with contour integrals around zero, and (N − n) uncut ones.
This definition of cuts differs from the definition of the unitarity cuts that we saw
in the previous Chapter, due to the lack of the θ-function of energy. Computing the
maximal cut (we cannot cut the auxiliary propagators) of a FI can give information for
its leading singularities and the class of functions that appear in the un-cut FI. More-
over, the Baikov representation has found application also in the integral reduction
into MIs, through its use for the generation of syzygy equations [62–65, 67, 214–216]
and its adaption for the method of intersection numbers [76–80].

3.3 Feynman Integral Computations
As already discussed in the previous section, FIs can be possibly computed using their
parametric representations. Nevertheless, their increased complexity when many loops
and many scales are involved drives (in many cases) their analytic computation through
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direct integrations impossible, and their numerical calculation, through the method of
sector decomposition, insufficient in terms of precision for the physical regions of phe-
nomenological interest. The bottlenecks of these methods are detoured in the modern
way of computing FIs through the method of differential equations (DE) [51, 217–220],
where the integrals are usually computed analytically in the Euclidean region and af-
terward they are extended in the physical regions using proper analytic continuation
techniques. In this section, we will give a brief introduction to the DE method and to
a variant of it, known as simplified differential equations approach (SDE) [221].

3.3.1 Differential Equations Method and their Canonical Form
The DE method is applied within the concept of integral families and computes the
MIs, and thus (through IBP) all the integrals of the family. Let us denote the MIs as
Gi(s, ε), with i = 1, . . . I, I the number of MIs and G ≡ {G1, . . . GI} a chosen basis.
The DE method relies on the fact that the MIs are functions of external momenta
and internal masses and hence we can differentiate them with respect to the kinematic
invariants, s = {sij}∪{m2}. The differentiation of the MIs results in a combination of
FIs with different propagator exponents, which belong to the same family, and therefore
using IBP relations can be re-expressed in terms of the MIs. This procedure gives rise
to a linear system of differential equations for the MIs of the form7

∂

∂sk
Gi(s, ε) = Aijsk(s, ε)Gj(s, ε)⇒ ∂skG = AskG (3.29)

where sk ∈ s, and Ask are the partial derivative matrices. One can solve this system
of DEs in a Laurent expansion around ε = 0 after first finding appropriate boundary
conditions for the MI, which can be done using asymptotic expansion by regions [202–
207] or by imposing the regularity of MIs at the pseudo-thresholds of the DE (regularity
conditions [222, 223]) or using other methods [224, 225]. The MIs of each sector receive
contributions to their DE only from lower sectors, thus the system of DEs can be solved
in a bottom-up approach. From the possibility of interchanging the order of taking
partial derivatives of a function, we find that Ask satisfy the (Schwarz) integrability
condition

∂s1As2 − ∂s2As1 = As2As1 −As1As2 , (3.30)

the verification of which is a standard cross-check that the DEs were derived correctly.
In order to take derivatives with respect to the external kinematical invariants, one
needs to replace them with derivatives with respect to the external momenta8, using
the relations [51, 220, 226]

∂

∂(pi · pj)
G = G̃−1

kj

(
pk ·

∂

∂pi

)
G and ∂

∂(p2
i )
G = 1

2G̃
−1
ki

(
pk ·

∂

∂pi

)
G, (3.31)

with G̃kj = pi · pj the gram matrix and G̃−1
kj its inverse.

7Summation over repeated indices is assumed.
8The derivatives with respect to internal masses do not need to be changed as these masses appear

explicitly in the propagators and do not correlate to the external kinematics.
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As mentioned previously, the basis of MIs is not unique and therefore one can make
a change to the basis of the following form

G→ G′ = TG. (3.32)

Under this transformation, it is easy to see that the partial derivative matrices change
as

Ask → A′sk = TAsk T
−1 + T∂skT

−1. (3.33)

A groundbreaking idea that has led to numerous computations of FIs during the last
years, is that of the canonical form of differential equations, introduced in [227]. Ac-
cording to this idea, for a suitable choice of basis of MIs9 (suitable choice of T) the DE
can obtain the form

∂

∂sk
G′(s, ε) = εA′sk(s)G

′(s, ε) (3.34)

where ε has been factorized out of the partial derivative matrices and hence this DE can
be solved iteratively in ε. Moreover, in this case, the integrability condition becomes

∂s1A′s2 − ∂s2A′s1 = A′s2A
′
s1 −A′s1A

′
s2 = 0. (3.35)

In [227] it was conjectured that, in order to obtain a DE of canonical form, the ba-
sis of MIs should be chosen such that it contains only functions with uniform de-
gree of transcendentality (UT). The transcendentality of a function f , T (f), is de-
fined as the number of iterated integrations needed to define the function f , and the
transcendentality of a product of functions is equal to the sum of their transcenden-
talities, meaning T (f1f2) = T (f1) + T (f2). The algebraic factors have degree zero
(T (Algebraic Factors) = 0) and within the framework of DR, ε is assigned T (ε) = −1.
For example,

T (log(x)) = 1, and T (Lin) = T (πn) = T (ζ(n)) = n. (3.36)

In addition, if a function is UT and its transcendentality is reduced by one degree
by taking a derivative, meaning T (∂f) = T (f) − 1, then this function is called pure
[227]. This implies that the coefficients of the transcendental functions in f cannot
be anything more than pure numbers, because if they were algebraic coefficients, upon
differentiation would generate additional terms with transcendentality equal to T (f).

In the case where all the MIs of the family are expressible in terms of multiple
poly-logarithms10 [228, 229], given a pure basis of MIs results in a canonical DE of the
form

dG′ = ε
∑
a

Madlog(Wa(s))G′, (3.37)

which is ε-factorized and the partial derivative matrices have been replaced by a sum
of residue matrices, Ma, containing only rational numbers as elements. Wa(s) are
known as the letters of the DE, and their set {Wa} forms the so-called alphabet. The
letters can include square roots of the kinematic invariants and in order to obtain a
Fuchsian form for the canonical DE one needs to rationalize these square roots. Despite

9In general, as a MI can be chosen a combination of FIs. In the following, we may use the
terminology basis elements when referring to MIs.

10This is the case for all the families that we will study within this thesis.
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the fact that an algorithmic approach for rationalizing square roots was proposed in
[230] and implemented in the package RationalizeRoots [231], in general, the task
of rationalization is not always feasible. For example, the alphabet of the massless
two-loop five-leg families with one off-shell leg contains a number of square roots where
all of them can not be simultaneously rationalized [225, 232].

In [227, 233] it was conjectured that FIs with constant leading singularities tend
to be pure. Although there doesn’t exist a general method for obtaining a pure basis
of MIs (or even proving its existence) for any given family of FIs, there exist several
different methods and public packages the combination of which can lead to a canonical
DE of the form of Eq. (3.37). Some of these methods, such as the Magnus exponential
method [234], the method proposed in [235], Lee’s algorithm (implemented in epsilon
[236], Fuchsia [237] and Libra [238]), Meyer’s algorithm (utilized in CANONICA [239])
and the algorithm implemented in Initial [240] (which has as a starting point a pure
MI on the top sector), perform transformations on the DEs in order to bring them into
a canonical form. Other methods rely on the construction of MIs with constant leading
singularities, such as the construction of dlog integrands implemented in DlogBasis
[241] using a four-dimensional analysis or the Baikov representation [242, 243], or (for
multi-loop problems) performing a loop-by-loop analysis for the leading singularities
using lower loop pure combinations of MIs as building blocks [244, 245]. Moreover, a
method utilizing the intersection theory was recently proposed in [246, 247], while also
other intuitive approaches exist [225, 232].

For complex integral families with many legs, scales, loops, and massive particles
running on them, the augmentation of the difficulty of finding a canonical DE (Eq.
(3.34)), the problem of rationalization of the square roots appearing in the alphabet of
the DEs, or in the definition of the pure basis elements, and the extension of the func-
tional space of the solution to functions beyond the multiple poly-logarithms (whose
numerical evaluation is well established), stands the analytical solution of their cor-
responding DEs in some cases not efficient (or impossible). In order to surpass these
problems, in the last years there have been developed some numerical methods for
solving DEs11. The most noticables of them are the multi-dimensional series expan-
sion method [248] implemented in DiffExp [249] and SeaSyde [250], and the auxiliary
mass flow method [251–253] implemented in AMFlow [254]. In the latter, an auxiliary
mass term, η, is introduced in some propagators of the studied family, and a DE is
constructed with respect to η, fixing the kinematic invariants, s, to a specific phase-
space point. The DE is solved using numerical methods [255, 256] for η → i0− using
boundary conditions at η → ∞, which can be computed iteratively. The last feature
makes this method a systematic and efficient way for computing MIs, with its only
bottleneck being the IBP reduction for the construction of the DE in η.

3.3.2 Multiple (Goncharov) Poly-Logarithms
As it has been demonstrated in the previous subsection through the canonical form
of DE, the occurrence of iterated integrals is inherent in the DEs that FIs satisfy.
Multiple poly-logarithms, also known as Goncharov poly-logarithms (GPLs), can be
considered the most notable (and most studied) class of iterated integrals that emerge

11These methods are usually called semi-numerical in order to be distinguished from the numerical
methods that do not utilize the DE method.
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from computations involving FIs. GPLs can be defined recursively, for n ≥ 0, via the
iterated integral [228, 229]

G(a1, . . . , an; z) =
∫ z

0

dt

t− a1
G(a2, . . . , an; t) with G(z) ≡ G(; z) = 1, (3.38)

where ai (letters) and z (argument) are complex variables. The vector ~a = (a1, . . . , an)
is called the vector of singularities (alphabet) of the GPL, and its length n is called
the weight of the GPL, corresponding to the number of logarithmic integrations in Eq.
(3.38). In the relation above, for an = 0 the integral is divergent and needs to be
regularised. This is usually done by including the following special definition in the
definition of GPLs

G(~0n; z) = 1
n! log

n(z) with ~0n = (
n terms︷ ︸︸ ︷

0, · · · , 0). (3.39)

Although there doesn’t exist proof for that, GPLs are generally considered to be
transcendental functions. The definition through the relations (3.38)-(3.39) shows that
GPLs define a general class of functions that include the well-known logarithm and
classical poly-logarithm as special cases

G(~an; z) = 1
n! log

n
(

1− z

a

)
and G(~0n−1, a; z) = −Lin

(
z

a

)
, with ~an = (

n terms︷ ︸︸ ︷
a, · · · , a).

If the rightmost index (an), of the vector ~a is not equal to zero (these GPLs are called
GPLs without trailing zeros), then the GPL remains unchanged when all its arguments
are scaled by a complex number k (except zero)

G(k~a; kz) = G(~a; z) (3.40)

If ai/z /∈ (0, 1), GPLs are real-valued functions. As can be seen from Eq. (3.38), GPLs
are not well defined whenever any of a1, . . . , an lies precisely along the integration path
that is the straight line in complex space connecting the origin and its argument z,
i.e. if ai/z ∈ (0, 1). There is a discontinuity whenever ai crosses this straight line and
this exactly defines all the branch cuts of the GPLs. Therefore whenever ai/z ∈ (0, 1),
GPLs become complex-valued functions and an infinitesimal imaginary perturbation
in z (or equivalently in ai because of Eq. (3.40)) is required such as to make the GPLs
well-defined and correctly capture their imaginary part [257, 258].

An important property of GPLs is that they satisfy a graded shuffle algebra [184,
259, 260]. This means that a product of GPLs with weight n1 and n2 can be expressed
as a sum of GPLs with weight n1 + n2 (shuffle product)

G(a1, . . . , an1 ; z)G(an1+1, . . . , an1+n2 ; z) =
∑

σ∈Σ(n1,n2)
G(aσ(1), . . . , aσ(n1+n2); z), (3.41)

where Σ(n1, n2) denotes the set of all shuffles of n1 + n2. The fact that the shuffle
algebra is graded means that the product of Eq. (3.41) preserves the weight of the
GPLs, while at the same time preserving the ordering inside the vectors (a1, . . . , an1)
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and (an1+1, . . . , an1+n2). As an example consider the following product

G(a1, a2; z)G(a3, a4; z) = G(a1, a2, a3, a4; z) + G(a1, a3, a2, a4; z) + G(a1, a3, a4, a2; z)
+ G(a3, a1, a2, a4; z) + G(a3, a1, a4, a2; z) + G(a3, a4, a1, a2; z).

The shuffle product can be also used to remove trailing zeros from GPLs, apart from
objects of the form G(~0n; z). For example,

G(0, a, 0, 0, z) = G(0, 0, z)G(0, a, z)− 2G(0, z)G(0, 0, a, z) + 3G(0, 0, 0, a, z).

The numerical evaluation of GPLs has been intensively studied and fast algorithms
exist nowadays [257], which have been implemented in GiNaC [257, 261] (a computer
algebra program based on C++) and HandyG [262] (a Fortran-based package). Let
us mention that, when one needs to add a small imaginary part to the kinematic
variables for the analytic continuation to regions where GPLs are complex-valued the
computation may be more time-consuming, while also the efficiency of the evaluation
depends on the requested precision. Moreover for the manipulation of GPLs, using
the properties described in this subsection and much more (see [184, 186, 259, 260]
for more properties and details), the Mathematica package PolyLogTools [263] exist,
alongside with the Maple package HyperInt [195].

In the integral families studied within this thesis, we are not going to face special
functions beyond GPLs. Let us comment though that there is a wide range of FIs where
such functions appear and that for the study and understanding of these functions, a
lot of effort has been put in by the community, during the last years. For a nice review
of this topic, we refer to [264].

3.3.3 Simplified Differential Equations Approach
The simplified differential equations approach (SDE) [221] is a variant of the standard
DE method, applicable when at least one of the external momenta is off-shell, where for
a given integral family a system of DEs with respect to one variable only is derived12,
in a systematic and simplified way. Consider a family with E + 1 external momenta,
and let us define the degree of off-shellness of this family, noff, as the number of off-shell
external momenta. Then within this approach, the external momenta are parametrized
in terms of a dimensionless parameter x and a set of E + 1 momenta with a degree of
off-shellness noff − 1, in such a way that to capture the degree of off-shellness of the
initial external momenta. For example, having a set of 5 external momenta

{q1, q2, q3, q4, q5} with q2
1 = m2 and q2

2 = · · · = q2
5 = 0,

one possible SDE-parametrization, in terms of {x, p1, p2, p3, p4, p5} with p2
1 = · · · =

p2
5 = 0, is the following13 [9]

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1, and q5 → xp2,

12And not with respect to all the kinematic invariants of the problem as in the standard approach.
13We use the notation pi...j = pi + · · ·+ pj .
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where the off-shellness of q1 is captured due to the fact that (p123 − xp12)2 6= 0. The
parameterization is not unique (x could be introduced to less or more than two of
the external momenta above14) and different parametrizations are optimal for differ-
ent problems. For example, in combining the SDE approach with a pure basis of MIs
containing square roots, the rationalization of these square roots with respect to x is
something that one needs to take into account in order to choose a viable parametriza-
tion.

Having introduced x in the propagators of the family through the SDE-parametrization,
the MIs depend now explicitly on x, and we can take derivatives of them with respect
to x and derive a system of DE on x using IBP relations

∂

∂x
G(S, x, ε) = A(S, x, ε)G(S, x, ε), (3.42)

where S = {Sij} ∪ {m2}15 is the set of kinematic invariants and masses created by the
external momenta of the SDE parametrization (the ones with degree of off-shellness
noff − 1) and the independent propagator masses. In order to solve Eq. (3.42) one has
to compute the boundary conditions of the MIs at x → 016. Some of the advantages
of this method compared to the standard DEs method are the followings:
• The easier derivation of a system of DEs, due to the fact that from the differ-

entiation with respect only to x fewer FIs are produced for reduction to MIs,
compared to the standard approach.

• The need of solving only one system of DEs, and not a system of DEs for each
kinematic variable.

• The rationalization of square roots with respect to x, for some cases where in
the standard approach the rationalization with respect to all the variables is not
possible, leading to analytic solutions in terms of GPLs [9, 267].

• When a pure basis of MIs is provided and an analytic reduction is a bottleneck,
a semi-numerical reduction can be applied by putting prime numbers to all the
invariants except x, and afterward determining the letters of the DE using other
methods (such as the study of maximally cut DEs).

• By taking the x→ 1 limit (which we will see later) one can obtain also the solution
for the MIs of the same family but with one external off-shell momentum less.

The combination of the SDE approach with the method of the canonical form of DEs
leads to an algorithmic way of computing multi-loop and multi-scale integral families.
Assuming studying an integral family for which we have a pure basis of MIs, let us
denote it g, Eq. (3.42) takes the form

∂

∂x
g = ε

lmax∑
i=1

Mi

x− li

g, (3.43)

14As momenta where x has been introduced we count only the ones where the momentum is
parametrized as xpi. In this example we have only two such momenta, q4 → xp1 and q5 → xp2.

15(Sij = (pSDE
i + pSDE

j )2 with j > i.
16See [221, 265, 266] for methods of computing boundaries when SDE is not applied in a canonical

DE.
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where the purely numerical matrices Mi correspond to each individual letter li =
li(S)17, and lmax is the size of the alphabet. The above system of DEs can be solved
iteratively in a Laurent expansion around ε = 0, finding appropriate boundary condi-
tions for the MIs. The solution depends on the power of ε where the series expansion
is truncated, and in general, has the following form (assuming summation over dummy
indices)

g =ε0b(0)
0 + ε

(
GiMib(0)

0 + b(1)
0

)
+ ε2

(
GijMiMjb(0)

0 + GiMib(1)
0 + b(2)

0

)
+ ε3

(
GijkMiMjMkb(0)

0 + GijMiMjb(1)
0 + GiMib(2)

0 + b(3)
0

)
+ ε4

(
GijklMiMjMkMlb(0)

0 + GijkMiMjMkb(1)
0 + GijMiMjb(2)

0

+GiMib(3)
0 + b(4)

0

)
+O(ε5)

, (3.44)

where b(i)
0 are the boundaries in the limit x→ 0, of the pure basis elements expanded

around ε = 0, with i indicating the corresponding weight. b(i)
0 consist of ζ(i), logarithms

and GPLs of weight i which have as arguments rational functions of the kinematic
invariants S. The notation Gijkl ≡ G(li, lj, lk, ll;x) for the GPLs is used above for space
convenience. The solution is normalized so that each coefficient of εk is multiplied with
GPLs of transcendental weight k, and the pure basis elements have a uniform degree
of transcendentality equal to zero. For problems with L loops, we need to obtain a
solution for up to order ε2L, while the extension of Eq. (3.44) to higher orders is trivial.

In practical applications, it is common before starting to compute all the boundary
conditions of an integral family one by one, first to look at the existing literature for
integral sectors that are shared with other families18 which have been already calculated
and their results are accessible. If this is the case, then the boundary conditions for
these integral sectors can be obtained from the pre-computed results. The rest of the
boundary conditions can be computed using the resummation matrix method [4, 9],
which utilizes the residue matrix of the letter l1 = 0, M1, together with some input
from the method of expansion by regions. Let us briefly describe now how this method
works. Taking the limit x→ 0 to the canonical DE of Eq. (3.43) results in

∂

∂x
g0 = ε

M1

x
g0 +O(x0), (3.45)

the solution of which is (b = ∑k
i=0 ε

ib(i)
0 )

g0 = eεM1log(x)b. (3.46)

Because M1 is a square matrix we can always find its Jordan decomposition, M1 =
SDS−1, which allows us to write Eq. (3.46)as

g0 = R0b with R0 = SeεDlog(x)S−1, (3.47)
17Here we use a different definition for the letters, which in the standard notation would have been

defined as x− li. This different notation is directly connected with the notation of letters in the GPLs.
18For example, the non-planar double-box families share many integral sectors with the planar ones.



56 Chapter 3. Feynman Integrals

where R0 is the resummation matrix at x = 0, which correctly resums all the log(x)
dependence of the basis element. In the most general case, R0 is of the form

R0 =
nmax∑
i

xniε

R0i +
jmax∑
j

εj logj(x)R(j)
0i0

 , (3.48)

with R0i and R(j)
0i0 being matrices of rational numbers, ni being the eigenvalues of the

matrix D, and nmax being the total number of eigenvalues. The logarithmic terms in
R appear when the matrix D is non-diagonal, and jmax depends on the position of the
non-zero elements on the right of the diagonal.

On the other hand, we can use IBP reduction to express the pure basis elements
(g) in terms of a set of MIs (G) through the relation

g = TG. (3.49)

In G we can apply expansion by region methods [202–207] in order to obtain infor-
mation for their asymptotic behavior. In this way, for each MI (Gi) in the asymptotic
limit x→ 0 we obtain a sum over region-integrals

Gx→0
i =

∑
j

xbj+ajεG
(bj+ajε)
i,region , (3.50)

where aj and bj are integer numbers indicating the contributing regions (xbj+aj) to Gi

when x → 0, and G
(bj+ajε)
i,region is the form that Gi obtains in the corresponding region

(region-integral). All these can be computed using public codes such as FIESTA [201]
and pySecDec [200]. Combining Eqs. (3.47), (3.49) and (3.50), we obtain the following
powerful formula, which allows for the determination of all the boundaries at x→ 0

R0b = lim
x→0

TG|O(x0+ajε) , (3.51)

where in the rhs we expand around x = 0, keeping terms only of order x0+ajε (lead-
ing regions), which are the only ones captured from the resummation matrix19. It is
important to observe here that the lhs of Eq. (3.51) comprises pure functions with co-
efficients that are rational numbers (there is no dependence on the kinematic variables
S). Therefore the same should hold true for the rhs, and thus we can determine the T
matrix using IBP identities where we keep analytical the dependence on the variables
x and ε, while we use (prime) numbers for the kinematic variables S. Let’s call this
way of computing the T matrix semi-numerical. For complicated problems where the
analytic IBP reduction is non-trivial, this technique leads to a significant reduction in
complexity and CPU time.

Concerning the determination of the boundaries using Eq. (3.51), first of all, when
the lhs contains logarithmic terms since such terms do not appear in the rhs we put
the coefficient of these terms to zero

R(j)
0i0b = 0, for i = 1, . . . , nmax and j = 1, . . . jmax. (3.52)

19The resummation matrix method is "blind" in the sub-leading regions.
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The last equation gives rise to a set of linear relations among elements of the array b.
Additionally, from powers of xniε that appear only on the lhs of Eq. (3.51), more linear
relations are produced by vanishing their coefficients

R0ib = 0, for ni 6= aj. (3.53)

The relations obtained from Eqs. (3.52) and (3.53) are linear relations between the
boundary conditions of different pure basis elements with rational numbers as coeffi-
cients, and therefore we shall call them pure relations. These relations contribute to
determining a substantial portion of the components of the boundary array b, and in
some cases all of them. Finally, the application of this procedure (known boundaries
from other families plus pure relations) may leave some elements of b undetermined,
for the calculation of which one can use again Eq. (3.51) after computing first the
region-integrals of Eq. (3.50) that contribute to them. In this case, if the T matrix has
been computed semi-numerically then when implementing the region-integrals in Eq.
(3.50) it is necessary to replace the rational factors of their transcendental functions
with the same numerical values of S for which the T matrix was evaluated. Let us
mention here that, for problems where this approach leads to a large number of region-
integrals to be computed, one can apply the expansion by regions directly to the pure
basis elements of which the boundary condition has not been determined [268]. This
may significantly reduce the number of region-integrals to be computed while at the
same time overpassing the need for an IBP reduction of the basis elements.

As we have already commented, one extra feature of the SDE approach is that by
taking the limit of x approaching 1 in the solution, we can easily derive the solution
for the same family involving one external massive momentum less (the one the off-
shellness of which we captured with the introduction of x). This is again done utilizing
the resummation matrix method but this time at x = 1 and making some further
manipulations. More specifically, we start by rewriting the solution of Eq. (3.44) as
an expansion in log(1− x) [266]

g =
∑
n≥0

εn
n∑
i=0

1
i!c

(n)
i logi(1− x), (3.54)

with the coefficients c(n)
i being finite in the limit x→ 1. This form is obtained by trans-

porting the letter l2 = 1 of all the GPLs to the right by employing shuffle properties.
Having done this, we define the regular part of g at x = 1 as

greg =
∑
n≥0

εnc(n)
0 . (3.55)

and through it, the truncated part of g by setting x = 1 to the regular part [266]

gtrunc = greg
∣∣∣
x=1

. (3.56)

In the next step, from the residue matrix of the letter l2 = 1, M2, we define the
resummation matrix at x = 1, following exactly the same procedure as we did for the
resummation matrix at x = 0, meaning

R1 = S1e
εD1 log(1−x)S−1

1 with M1 = S1D1S−1
1 . (3.57)
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R1 contains terms of the form (1 − x)aiε, where ai represents the eigenvalues of M1.
Setting these terms to zero, we obtain the following purely numerical matrix

R10 = R1|(1−x)aiε→0 . (3.58)

Then we determine the limit x→ 1 of Eq. (3.44) by the acting with the above matrix
on the truncated part of the bases elements

gx→1 = R10gtrunc (3.59)

The family with one off-shell external momentum less, the solution of which we
obtain by Eq. (3.59), has always a fewer number of MIs (Nnoff−1), than the one we
started from (Nnoff). Thus as a last step, one needs to distinguish from the Nnoff

basis elements gx→1, Nnoff−1 of them that are independent and can be chosen as basis
elements of the family with the reduced (by one) degree of off-shellness. This can be
done using IBP identities, but before doing so one can take advantage of an intriguing
characteristic of R10, which simplifies the IBP reduction procedure or even skips it.
Remarkably, R10 is an idempotent matrix and thus possesses the following properties

1. R10 = R2
10.

2. Trace
(
R10

)
= Rank

(
R10

)
.

3. It is singular (except if it is equal to the identity matrix I).

4. Its eigenvalues are either 0 or 1.

5. The matrix I−R10 is also idempotent.

By multiplying Eq. (3.59) from the left with R10, the first of these properties, implies

R10gx→1 = R2
10gtrunc = R10gtrunc ⇒ R10gx→1 = gx→1. (3.60)

Solving this relation as an equation for each row provides us with the means to de-
termine linearly independent basis elements for the family with Nnoff−1 MIs. It is
important to comment here though that, the outcome of this method, as it concerns
the number of linearly independent basis elements that are identified, depends on the
choice of the SDE-parametrization. Our findings thus far indicate that the selection of
a parametrization where x is introduced to two of the external momenta is the most
optimal for applying this method, as in all the studied cases has resulted in a number
of linearly independent basis elements that matched the Nnoff−1 MIs, skipping in this
way the IBP reduction. This correspondence can also be confirmed by calculating the
rank of R10, which should be equal to Nnoff −Nnoff−1 in order for the IBP reduction to
be skipped.
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Chapter 4

Two-Loop Amplitude Construction
using HELAC

In this chapter, we present in detail the algorithm for the construction of two-loop scat-
tering amplitudes within HELAC-2LOOP (initialization phase), an under-construction
package for automated computations of two-loop scattering amplitudes. More specif-
ically, we will start by stretching the basic steps of the algorithm and after that, we
will focus on its new features with respect to the existing HELAC framework, explaining
the logic behind each step1. Furthermore, we provide a concrete schematic example of
the construction of a two-loop numerator to the amplitude of a specific process, and
present/discuss our results for the construction of the two-loop amplitudes of several
processes. This chapter is based on novel work presented in the conference proceedings
[1–3].

4.1 Introduction to the Algorithm
Similar to the one-loop case, the computation of a scattering amplitude at the two-
loop level involves gathering Feynman diagrams according to their loop-assignment
structure, in order for the reduction to master integrals to be facilitated. For this
reason, as in HELAC-1LOOP [88, 97], we follow a hybrid approach between Feynman
diagrams and Dyson-Schwinger recursion for the construction of scattering amplitudes
within HELAC-2LOOP. Our algorithm is based on the observation that any n-particle
two-loop topology can be consistently matched to an (n+2)-particle one-loop topology,
allowing for the application of the algorithm developed in HELAC-1LOOP after making
some appropriate modifications. In this section, we will provide a brief overview of the
steps involved in this algorithm, which are also summarized schematically in Figure
4.1. In Subsequent sections, we will delve into some of these steps in more detail and
present a concrete example to illustrate how the algorithm works in practice.

For a given process at hand, described by a specific number of external particles,
n, and their flavors, {f1, . . . , fn}, one starts by choosing one of the three master blob-
topologies that exist at two loops, denoted as theta-, infinity- and dumbbell-topologies.
Of course, all three of them are eventually taken into account for the correct computa-
tion of all the numerator contributions to the scattering amplitude. Then, this step is
followed by the production of all potential flavors that can be acquired by the first set

1In some cases, it may seem that we depth into too many details as it regards the algorithm but
this is done in order for this chapter to be a reference for future users who want to get involved with
HELAC-2LOOP.
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of cut-particles, meaning the n+1 (fn+1) and n+2 (fn+2 = f̄n+1) particles described by
the binary numbers 2n and 2n+1, respectively. In the next step for each flavor combina-
tion of the n+2 particles, one generates all the possible (n+2)-particle color-states2 in
the color-flow representation, (ng +nqq̄)! in total3. After that for every (n+ 2)-particle
color-state we generate all the independent two-loop n-particle blob-topologies belong-
ing to the chosen master blob-topology. These topologies are subsequently cut and
uniquely corresponded to (n+ 2)-particle one-loop blob-topologies4, which are dressed
with all feasible flavors and colors allowed by SM Feynman rules and color conservation.

Afterward, the constructed one-loop configurations are cut resulting in tree-level
configurations with n + 4 particles. The second set of cut-particles arising from the
last cut obtains the usual binary numbering, meaning 2n+2 for the n + 3 particle and
2n+3 for the n+ 4 one, and their flavor is defined by the flavor of the cut loop-particle,
floop, with the n + 3 particle bearing flavor fn+3 = f̄loop and the n + 4 one bearing
flavor fn+4 = floop. The cutting process also introduces additional color lines to the
existing color connection, leading from an (n+ 2)-particle color-state to an n+ 4 one.
If the cut-propagator is a gluon/ghost, two more color lines are added, while if it
is a quark/anti-quark, only one more color line is added, with the extra color lines
corresponding to the two extra particles. After the introduction of the extra color
lines, the color and anti-color indices of all the particles are appropriately reassigned
according to the flow of color before the cut (see [88, 97]).

In the next step, for every (n + 4)-particle tree-level configuration a sequence of
sub-amplitudes is constructed, which respects the loop-assignment structure of the
configuration. This means that one starts from the particle 2n+2 and combines it with
the last blob5 in order to create the next sub-amplitude that describes the corresponding
loop-particle. Then, the latter sub-amplitude is subsequently combined with the next
blob (penultimate) in order to create the sub-amplitude of the corresponding loop-
particle, and this procedure goes on till arriving at the (first) blob which is combined
(except for particle 1) with the previous sub-amplitude and the particle 2n+3, in such
a way that the particle 1 to be always the last particle of the recursion. At every
point of this procedure, Dyson-Schwinger recursion is applied to the higher-level blobs
that contain only external particles (i.e. binary numbers from the set {2, . . . , 2n−1}),
creating extra sub-amplitudes contributing to the configuration. The careful reader
will have by now observed that this step of the algorithm is exactly the same as the
one applied in the one-loop case, which we discussed in subsection 2.3.26. The only
new feature that differs with respect to the one-loop case is that, when the first cut is
done, information about the structure of the cut loop-line is explicitly kept, and when
one arrives at the blob containing the particle 2n+1, this information is used in order
to create the sub-amplitudes corresponding to the loop-particles of this loop-line.

Subsequently, for each configuration, the projection of the (n+4)-particle color-state
2As a color-state here we define a combination of Kronecker’s deltas like the ones in Eq. (2.27).
3Assuming that in the n+2 particles are included ng gluons and nqq̄ sets of quarks and anti-quarks.
4At this point the external one-loop process is fixed as we have specific flavors and colors for the

n+ 2 particles.
5Same as in HELAC-1LOOP, the last blob of the configuration corresponds to the first one encountered

moving counterclockwise (on the one-loop blob-topology) from the blob containing the particle 1.
6With the replacements 2n → 2n+2 and 2n+1 → 2n+3.
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Figure 4.1: A schematic summary of the algorithm implemented in HELAC-2LOOP, for the
construction of two-loop scattering amplitudes.
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1)Thetas: k1
k3 k2

A

B

≡ {{k1}, {k2}, {k3}, {A}, {B}}

2)Infinities: k1
k2
≡ {{k1}, {k2}}

3)Dumbbells: k1 k2

A B

C

≡ {{k1}, {k2}, {C}, {A}, {B}}

Figure 4.2: The three master blob-topologies contributing to two-loop scattering amplitudes.
The sub-lists represent the incoming blobs to the corresponding loop-lines (k1, k2, k3), the
internal line (C), and the vertex points (A,B). We observe that theta-topologies are genuinely
two-loop topologies, while infinities and dumbbells correspond to one-loop squared topologies.

to an n-particle color-state7 and the identification of the powers of Nc coming from this
projection are done. The projection happens through the contraction of the (n + 4)-
particle color-state with the Kronecker delta functions δjn+1

in+2 δ
jn+2
in+1 δ

jn+3
in+4 δ

jn+4
in+3 , which in

practice apply the constraint that the color (anti-color) index of the one cut-particle
should be equal to the anti-color (color) index of the other cut-particle of the same set
of cut-particles. In the last step, for every configuration, the topological information,
together with the sub-amplitude structure, the n-particle color-state, and the powers
of Nc, are stored in the skeleton.

The execution of the above-described algorithm, concludes the initialization phase
of HELAC-2LOOP and results in the completion of the skeleton, which contains all the
configurations contributing to the two-loop scattering amplitude of the process at hand.
Aimed at the study of QCD corrections, the current implementation works and has been
validated for processes containing only (massless) quarks, ghosts, and gluons running
within the loops, and for up to five external particles. Although not tested, after some
small modifications concerning the capacity of some arrays, the implementation should
work, without taking into account possible efficiency and memory constraints of the
used machine, for any number of external particles.

7This projection is unequivocal in the sense that each (n + 4)-particle color-state is projected to
one only n-particle color-state, but obviously different (n+ 4)-particle color-states could be projected
to the same n-particle color-state.
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4.2 Blob-Topology Generation
As we already mentioned, at two loops the scattering amplitude receives contributions
from three different graph topologies, which according to their shape we name theta,
infinity, and dumbbell. Within the HELAC framework, this means that we need to con-
struct the corresponding three master blob-topologies which we describe via a list rep-
resentation as depicted in Figure 4.2. As can be seen from this figure, for the theta- and
the dumbbell-topologies we use a five-list format, with the sub-lists {k1}, . . . , {k3}, {C}
describing the blobs attached to the momentum-lines k1, . . . , k3, C, respectively, and
with the sub-lists {A}, {B} expressing the blobs attached to the vertices A and B.
For the infinity-topologies we use a two-list format, with each sub-list {k1}, {k2} con-
taining the blobs attached to the corresponding loop-line. We comment here that due
to the fact that in the SM there exist only three-particle and four-particle vertices, it
is not possible for blobs to be attached in the vertex of the infinity-topologies where
the loop-lines k1 and k2 are connected. In Figure 4.3 we quote some examples of two-
loop blob-topologies for underlining the notation and the interpretation of the used list
representation.

For obtaining the two-loop blob-topologies we have created two generators, one im-
plemented in Mathematica (named BlobMod) and one implemented in FORTRAN (named
GENTOOLS), each of which is using a different approach for the generation of the blob-
topologies. More specifically

• BlobMod starts by putting external particles (level-1 blobs) in the sub-lists, taking
into account all possible combinations. In this way, all the high-sector topologies
are created and represented by lists of sub-lists. Then in order to create the lower-
sector topologies, if there exist lists containing sub-lists with two or more blobs
within a sub-list, it takes for every list all the possible combinations of summing
at most two neighboring blobs of the same sub-list8. This step is repeated till
arriving at topologies where at most one blob is included in their sub-lists (lowest-
sector topologies). In all the steps of the generation, an ordering on the size of
sub-lists together with graph symmetries, are applied for the removal of identical
topologies.

• GENTOOLS generates the blob-topologies exactly in the opposite way of BlobMod,
meaning that it starts by putting higher-level blobs in the sub-lists in all possible
ways and then takes all possible splittings of them into lower-level blobs till it
arrives at topologies consisting only of level-1 blobs (high-sector topologies). In
order to avoid double countings and remove identical blob-topologies, an ordering
is kept on the size of the sub-lists, and graph symmetries are also applied.

Graphs are symmetric in combined or individual mirror transformations on the
vertical9 and the horizontal axis. Remarkably, all the symmetries of the graphs can be
translated into symmetries of the lists using one or both of the following two actions

1. Swap of two sub-lists, e.g. {{k1}, {k2}} → {{k2}, {k1}}.

2. Reversion of the elements of a sub-list, e.g. {1, 2, 4} → {4, 2, 1}.
8Vertices {A} and {B} can receive at most one blob, of any level though.
9For the theta-topologies, this symmetry is interpreted as symmetry under the interchange of the

three loop lines.
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Figure 4.3: In theta-topologies the blobs in the sub-lists {k1} and {k3} are listed starting from
the point B and ending at A, while in {k2} starting from A and ending at B. In infinity-
and dumbbell-topologies the blobs in {k1} and {k2} are listed using a bottom-up approach,
and the blobs in {C} (dumbbells only) are listed starting from the point A and ending at B.

In particular, using these actions, the graph symmetries of the theta-topologies can be
expressed as10

{{k1}, {k2}, {k3}, {A}, {B}} = {R[{k1}], R[{k2}], R[{k3}], {B}, {A}}
= {R[{k1}], R[{k3}], R[{k2}], {B}, {A}}
= {R[{k2}], R[{k1}], R[{k3}], {B}, {A}}
= {R[{k2}], R[{k3}], R[{k1}], {B}, {A}}
= {R[{k3}], R[{k1}], R[{k2}], {B}, {A}}
= {R[{k3}], R[{k2}], R[{k1}], {B}, {A}}
= {{k1}, {k3}, {k2}, {A}, {B}}
= {{k2}, {k1}, {k3}, {A}, {B}}
= {{k2}, {k3}, {k1}, {A}, {B}}
= {{k3}, {k1}, {k2}, {A}, {B}}
= {{k3}, {k2}, {k1}, {A}, {B}}

, (4.1)

the graph symmetries of the dumbbell-topologies can be written as

{{k1}, {k2}, {C}, {A}, {B}} = {R[{k2}], R[{k1}], R[{C}], {B}, {A}}
= {R[{k1}], R[{k2}], {C}, {A}, {B}}
= {R[{k2}], {k1}, R[{C}], {B}, {A}}
= {{k2}, R[{k1}], R[{C}], {B}, {A}}
= {{k1}, R[{k2}], {C}, {A}, {B}}
= {{k2}, {k1}, R[{C}], {B}, {A}}
= {R[{k1}], {k2}, {C}, {A}, {B}}

, (4.2)

10Where we use the abbreviation R[{ki}] ≡ Reverse[{ki}].
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Figure 4.4: Three examples (two thetas in lhs and one dumbbell in rhs) of reordering of the
sub-lists in order for the blob containing the particle 1 to be included in a desired sub-list.

and finally, the graph symmetries of the infinity-topologies can be formulated as

{{k1}, {k2}} = {R[{k1}], R[{k2}]} = {R[{k1}], {k2}} = {{k1}, R[{k2}]}
= {R[{k2}], {k1}} = {{k2}, R[{k1}]} = {R[{k2}], R[{k1}]}
= {{k2}, {k1}}

. (4.3)

The ordering that we apply (in all the master topologies) for the sub-lists during
the generation of the blob-topologies is the following

L1 ≥ L2 ≥ L3 ≥ LC ≥ 0, 0 ≤ LA ≤ 1, and 0 ≤ LB ≤ 1, (4.4)

where we denote with {L1, L2, L3} the size (length) of the sub-lists {{k1}, {k2}, {k3}}
and with {LA, LB, LC} the size of the sub-lists {{A}, {B}, {C}}. After the genera-
tion11, wherever is needed, we reorder the sub-lists of the blob-topologies so that the
blob containing the particle 1 to be always included in the sub-lists (see Figure 4.4 for
examples):

• Thetas: {k1}, {k2} or {B}. Thus when this blob is in {k3} we swap {k3} with
{k2}, while when it is in {A} we swap {A} with {B} and reverse the blobs of
{k1}, {k2} and {k3}.

• Infinities: {k1}. Thus when this blob is in {k2} we swap it with {k1}.

• Dumbbells: {k1}, {A} or {C}. Thus when this blob is in {k2} or {B} we swap
{k2} with {k1} and {B} with {A} and we reverse the order of blobs in {C}.

Moreover, after the reordering of the blob-topologies the following extra filters are
applied in order to remove tadpole, snail, self-energy, and scaleless graphs (assuming
that the loop particles are massless):

• Thetas: remove graphs with i) nbl = 1, and ii) nbl = 2 with the level of one of
the blobs equal to 1.

11This is done for purposes of efficiency throughout the step where the Dyson-Schwinger recursion
is applied to the blobs.
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Figure 4.5: Schematic example of how the algorithm in GENTOOLS works. Starting from the
leftmost higher-sector blob-topology the ones on rhs (lower-sector) are created, where six of
them are identical (due to graph symmetries) to the rest ones and thus are removed.

• Infinities and Dumbbells: remove graphs with i) Lk1 = 0 (Lk2 = 0), and ii)
Lk1 = 1 (Lk2 = 1) with the level of the blob in {k1} ({k2}) being equal to 1.

where nbl is the number of blobs of the topology, defined as

nbl =


L1 + L2 + L3 + LA + LB, for theta-topologies
L1 + L2, for infinity-topologies
L1 + L2 + LA + LB + LC , for dumbbell-topologies

. (4.5)

To ensure that we have accounted for all necessary topologies and have not included
any unnecessary ones, we performed an exhaustive comparison of the blob-topologies
generated by both methods. Additionally, we compared these results with the graph
topologies generated by QGRAF [81] for up to six external particles. In all cases we found
complete agreement, confirming the consistency of our approach. As anticipated due
to be functioning in a low-level programming language (FORTRAN), the computational
efficiency of GENTOOLS surpasses that of BlobMod, making it the preferred generator
implemented in HELAC-2LOOP. To provide a clearer illustration of the procedure outlined
earlier, Figure 4.5 presents a schematic example of how GENTOOLS generates higher-level
topologies from a lower-sector topology, specifically for a theta-topology. This visual
aid enhances the understanding of the process.

Similar to Feynman graphs, blob-topologies are associated with symmetry factors.
In the framework of HELAC-2LOOP, these symmetry factors are considered during the
computational phase. A comprehensive summary of the symmetry factors correspond-
ing to blob-topologies is provided in Appendix A.
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Figure 4.6: A graphical representation of the cutting procedure in a generic theta-topology.
In lhs we have the two-loop blob-topology and in rhs the resulted one-loop one. The orange
part in rhs corresponds to the structure that is stored as extra information when computing
the one-loop blobs B(1)

L1+1 and B
(1)
L1+L2+2. In lhs the cut is represented with a red dashed

double line, while the red (green) arrows on both sides (lhs) indicate the flavor (momentum)
flow. The blobs B1, . . . , BL1+L2+L3+LA+LB and the flavors F1, . . . , FL1+L2+L3+3 are the ones
stored in the last line of the numerators in the skeleton.

4.3 Cut - Dress - Cut
As previously stated, after creating the two-loop blob-topologies we cut them, reorder
them, and dress with flavor and color the yielded one-loop blob-topologies. The prop-
agator in a two-loop blob-topology, where we apply the first cut depends on which
master topology the given blob-topology belongs to. Afterward, we cut the one-loop
blob-topologies and obtain tree-level configurations, where, after the reassignment of
the colors/anti-color indices of the n+4 particles, Dyson-Schwinger recursion is applied
respecting their (two-loop) loop-assignment structure. In this section, we will focus on
the way that the first cut is committed and we will briefly elaborate the dressing pro-
cedure, which is the same as in the one-loop case, and justify the reason why this
happens at one-loop level and not directly at two-loop.

4.3.1 From Two-Loop to One-Loop: Theta-Topologies
The general form of a theta-topology corresponds to the one illustrated on the lhs of
Figure 4.6, where we use Bi, with i = 1, . . . , L1 + L2 + L3 + LA + LB, to represent
the blobs, and Fi, with i = 1, . . . , L1 + L2 + L3 + 3, to denote the flavors of the
loop particles. In our approach, we consistently perform a cut in the first propagator
of the k3 loop-line ascending from the vertex B, specifically meaning the propagator
carrying flavor FL1+L2+3 in Figure 4.6. This leads to the formation of a one-loop blob-
topology characterized by a set of blobs, denoted as B(1)

1 , . . . , B
(1)
L1+L2+2, and a set of
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Figure 4.7: Visual depiction of the re-ordering of the blobs of a one-loop blob-topology,
originating from a theta-topology. The lhs of this figure is identical to the rhs of Figure 4.6.
After the reordering (rhs) the blob containing the particle 1 is b(1)

1 , and the second cut which
drives us to the tree-level configuration is performed in the propagator with flavor f (1)

1 (the
cut in this picture is represented with the two orange dashed lined).

flavors for the loop particles, denoted as F (1)
1 , . . . , F

(1)
L1+L2+2, which are connected to the

corresponding two-loop counterparts.
It is crucial during this transition from the two-loop to the one-loop blob-topology

that the information pertaining to the structure of the cut loop-line12 (depicted in
orange in Figure 4.6) to be explicitly preserved, and its blobs together with the resulted
cut-particles to be included in the definition of the following one-loop blobs

B
(1)
L1+1 = 2n+1 +BL1+L2+1 + · · ·+BL1+L2+L3 +BL1+L2+L3+LA

B
(1)
L1+L2+2 = 2n +BL1+L2+L3+LA+LB

. (4.6)

The rest of the one-loop blobs and flavors, are defined algorithmically by the two-loop
ones through the relations

For 1 ≤ i ≤ L1: B(1)
i = Bi, F

(1)
1 = F1 and F (i)

L1+L2+3−i = Fi+1

For 1 ≤ i ≤ L2: B(1)
L1+1+i = BL1+i and F (1)

L2+3−i = FL1+1+i (till L2 + 1)
. (4.7)

Subsequently, as already discussed, the one-loop blob-topology is re-ordered before
being dressed with flavor and color, in order for the particle one to be included in first
blob of the one-loop topology. In figure 4.7 we present an schematic illustration of how
this reordering is done. Assuming that the particle 1 is placed in the blob B

(1)
i2 , the

blobs, b(1)
i , and the flavors, f (1)

i , of the reordered topology are determined from the
12Meaning the order of the blobs.
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Figure 4.8: A graphical illustration of the cutting process in a generic infinity-topology. On
the lhs we have the two-loop infinity-topology, while on the rhs we see the resulting one-
loop blob-topology. The orange section on the rhs represents the additional structure that
is stored when computing the one-loop blob B(1)
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dashed double lines, and the red (green) arrows indicate the flow of flavors (momenta). The
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unordered ones using the prescription (for 1 ≤ i ≤ L1 + L2 + 2)

For i = 1: b(1)
1 = B

(1)
i2 and f (1)

i2 = F
(1)
1

For i+ i2 − 1 ≤ L1 + L2 + 2: b(1)
i = B

(1)
i+i2−1 and f (1)

i+i2−1 = F
(1)
i

Else: b(1)
i = B

(1)
i2+i−L1−L2−3 and f (1)

i2+i−L1−L2−3 = F
(1)
i

. (4.8)

4.3.2 From Two-Loop to One-Loop: Infinity-Topologies
The typical structure of an infinity-topology is represented by the lhs of Figure 4.8. In
this drawing, we make use of the symbols B1, . . . , BL1+L2 to represent the blobs, and
F1, . . . , FL1+L2+2 to indicate the flavors associated with the loop particles. The first cut
in an infinity-topology occurs at the first propagator of the k2 loop-line, specifically,
the propagator associated with flavor FL1+2 in Figure 4.8. As a result of this cut, a
one-loop blob-topology is formed, which is described by the set of blobs B(1)

1 , . . . , B
(1)
L1+1

and the set of loop-particle flavors F (1)
1 , . . . , F

(1)
L1+1.

Once again, in this master blob-topology, details in the structure of the cut loop-
line (depicted in orange in Figure 4.8) are explicitly stored, and one-loop blobs and
flavors are related to the infinity ones via the equations

For 1 ≤ i ≤ L1: B(1)
i = Bi, and F (1)

L1+2−i = Fi+1

Else: B(1)
L1+1 = 2n + 2n+1 +BL1+1 + · · ·+BL1+L2 , and F (1)

1 = F1
, (4.9)

where, due to the fact that within SM only gluons interact via a four-particle vertex,
we have F (1)

1 = F1 = gluon.
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figure.

Afterward, the one-loop blob-topology is re-ordered so that the blob containing
the particle 1 is the first blob of the topology (see Figure 4.9). By assuming that
particle 1 is located in blob B

(1)
i2 , we can determine the blobs b(1)

i and flavors f (1)
i of

the reordered topology based on the unordered ones. This can be achieved using the
following prescription for 1 ≤ i ≤ L1 + 1

For i = 1: b(1)
1 = B

(1)
i2 and f (1)

i2 = F
(1)
1

For i+ i2 − 1 ≤ L1 + 1: b(1)
i = B

(1)
i+i2−1 and f (1)

i+i2−1 = F
(1)
i

Else: b(1)
i = B

(1)
i2+i−L1−2 and f (1)

i2+i−L1−2 = F
(1)
i

. (4.10)

4.3.3 From Two-Loop to One-Loop: Dumbbell-Topologies
The lhs of Figure 4.10 showcases the general structure of a dumbbell-topology. As
in the other master blob-topologies, we use B1, . . . , BL1+L2+LA+LB+LC to denote the
blobs, and F1, . . . , FL1+L2+LC+3 to indicate the flavors of the loop particles. The first
cut in the dumbbell-topologies is performed (as in the infinity-topologies) in the first
propagator of the k2 loop-line, meaning the one carrying flavor FL1+2 in Figure 4.10.
The obtained one-loop topology is characterized by the blobs, B(1)

1 , . . . , B
(1)
L1+1, and the

flavors, F (1)
1 , . . . , F

(1)
L1+1, which are related to the uncut ones through

For 1 ≤ i ≤ L1: B(1)
i = Bi, and F (1)

L1+2−i = Fi+1

Else: B(1)
L1+1 = 2n + 2n+1 +BL1+1 + · · ·+BL1+L2+LA+LB+LC and F (1)

1 = F1
. (4.11)

The difference in the dumbbell-topologies with respect to the other master blob-
topologies is that except for the structure of the cut k2 loop-line one needs to explicitly
preserve the structure of the whole formation drawn in orange in Figure 4.10, which
consists also of the C momentum line and the vertex B. Furthermore, the re-ordering
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Figure 4.10: Graphical illustration of the cutting procedure in a typical dumbbell-topology.
On the lhs is depicted the dumbbell topology and on the ths, we have the yielded one-loop
blob-topology. The grey arrows indicate to which propagators of the C momentum line
the pointed flavors correspond to. The orange section in the rhs denotes the structure that
is retained as extra information during the computation of the blob B
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Schwinger recursion. In lhs the cut is represented with a red dashed double line, while
the red (green) arrows on both sides (lhs) represent the flavor (momentum) flow. The blobs
B1, . . . , BL1+L2+LA+LB+LC and the flavors F1, . . . , FL1+L2+LC+3 correspond to the ones stored
in the last line of the numerators in the skeleton.

procedure of the blobs after the first cut in the dumbbell-topologies is the same as in
the case of the infinity ones, thus for it, we refer to the previous subsection and Figure
4.9.

4.3.4 Flavor/Color Dressing
Regarding the flavor and color dressing of the blob-topologies, which is performed at
the one-loop level, the procedure closely resembles the one of HELAC-1LOOP [88, 97].
In particular, for a given one-loop blob-topology, we first employ quantum number
conservation to identify the flavors and color/anti-color indices of the blobs. Then by
assigning a flavor, a color, and an anti-color index to the first propagator13, and utilizing
QCD Feynman rules as well as color conservation (track of color-flow) at each vertex,
we are able to determine the flavor and color/anti-color indices of every propagator in
the topology.

Besides the propagators of the one-loop topology, we also dress with flavor the prop-
agators of the structure resulting from the first cut and store this information for later
use when the Dyson-Schwinger recursion is applied on the higher-level blobs. These
propagators are drawn with orange color in Figures 4.6, 4.8, and 4.10. To obtain all
viable and contributing configurations, we iterate through all possible values of flavors
and color/anti-color indices for the first propagator using three nested do-loops. Sub-
sequently, as discussed in detail in the introduction, and as is done in HELAC-1LOOP
[88, 97], the one-loop configurations constructed with this procedure are cut in the
propagator indicated in Figures 4.7 and 4.9, and the color/anti-color indices are re-
assigned, tracking the color flow of the one-loop topology, in order to incorporate the
color lines introduced by the two extra particles resulted by the second cut.

13In the one-loop blob-topologies of the Figures 4.7 and 4.9, the first propagator corresponds to the
one having flavor f (1)

1 .
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Figure 4.11: Example of two different color configurations that are identical for HELAC. Using
odd i, we assign the color indices ci to the loop particles, while even i correspond to the anti-
color indices. Moving from the lower propagator of the k1 loop-line, we encounter {c1, c2}, and
as we ascend, we have {c3, c4} and {c5, c6} for the subsequent propagators. The color indices
{c7, c8} are associated with the propagator of the k2 loop-line, while {c9, c10} correspond
to the propagator of the k3 loop-line. The color factor CF arises from the contraction of
the conventional color factor (in the fundamental representation) with a taij matrix for each
loop and external gluon. In CF it is important to note that the repeated ci indices are left
uncontracted (if they were contracted they will result to δi2j1δ

i1
j2
). This is done because by

examining the Kronecker’s deltas present in CF , one can trace the flow of color from the
external particles through the loop particles and back to the external ones.

In this way of flavor-color dressing, we receive uniquely defined tree-level config-
urations with four extra particles, which correctly take into account all numerator
contributions of the process at hand, when the Dyson-Schwinger recursion is applied.

4.3.5 Comments on Two-Loop Color-Flow Dressing
One might wonder why the flavor and color dressing procedure, in our approach in
HELAC-2LOOP, is performed at the one-loop level after the first cut, rather than at the
two-loop level. As it regards the flavor dressing, this could be equivalently done at the
level of two-loop blob-topologies14. Concerning the color dressing, the reason why we
dress the blob-topologies at one-loop level instead of at two-loop is that at two-loop
different color-configurations are identified as identical from the HELAC color dressing
algorithm and thus it generates only one of them.

14In practice, this is what is done by dressing with flavor the orange structure resulted by the first
cut.
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Figure 4.12: The two color configurations resulting from cutting in k3 loop-line the two
configurations of Figure 4.11. The resulted, from the cut, extra color-lines are reassigned
with the color (anti-color) indices {i3, i4} ({j3, j4}). The lhs of this figure corresponds to
the upper configuration of Figure 4.11, while the rhs to the lower one. These two one-loop
configurations have now different color/anti-color indices for the external and loop particles.
From these one can go back to the two-loop ones by applying the constrain that the color
(anti-color) index of the one cut-particle is equal the anti-color (color) index of the other
cut-particle.

Let us provide a concrete example in order to illustrate this concept. Consider
the two-point graph shown on the lhs of Figure 4.11, where all particles (both loop
and external) are gluons and the color-state of the external particles is given by δi2j1δ

i1
j2 .

Among the various configurations (12 in total) that contribute to this color-state, we
choose the two configurations depicted on the rhs of Figure 4.11. From the rhs of Figure
4.11 one can observe that, although the two configurations are different in terms of
flow of color (this is clear from the flow of the drawn color lines), all their propagators
have the same color and anti-color indices. This is the main problem of HELAC color
dressing algorithm as each combination of color/anti-color indices of the propagators is
generated only once (per color-state), and (if it survives the color-conservation filters)
it corresponds to one only configuration. Thus directly applied at two-loop level, HELAC
would have generated only one of the two configurations.

This is a new feature starting from two-loop level due to the existence of the two
vertices, A and B, that connect only loop-particles, where at each of them (knowing
the color/anti-color indices of the external particles and the incoming propagator) the
color can flow in different directions, and hence can lead into different configurations
that have the same color/anti-color indices for all their loop and external particles.
This contrasts with the one-loop level, where knowing the color/anti-color indices of
the external particles and the incoming propagator, the color at each vertex can flow
only to one direction. This means that at one-loop, each contributing configuration
corresponds to a distinct combination of color/anti-color indices of the loop particles,
and thus can be correctly considered by the current algorithm of HELAC.

Cutting in the k3 loop-line the two two-loop color configurations of Figure 4.11, re-
sults to the two one-loop color configurations of Figure 4.12, which can be corresponded
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Figure 4.13: Figure consisting of the graphs of gluonic box and double-box, as well as, a table
containing the prefactors of the color-states of these graphs.

back to the two-loop ones by contracting their color factors15 with the deltas δj4i3 δ
j3
i4 .

As can observed by Figure 4.12, the two one-loop color configurations have different
color/anti-color indices for their loop particles and correspond to different color-states.
Therefore by generating in HELAC-2LOOP all the (n+2)-particle color-states and do the
color dressing after the first cut (at one-loop level) using the existing algorithm, we are
able to produce all the contributing two-loop color configurations for any process at
hand.

It is also noteworthy to comment on the behavior of the color-flow representation
when moving from one-loop to two-loop problems. To illustrate this, we provide a table
in Figure 4.13 showing the coefficients of the color-states for the gluonic box (upper
left) and double-box (upper right) topologies. A comparison of the coefficients reveals
an increase in the complexity of the color-flow representation when moving from one
to two loops. Specifically, there is an expansion in the number of nonzero color states
(from 13 in the box to 21 in the double-box) and the multiplicity of their prefactors
(from 2 to 6). This expansion results in a greater number of color configurations.
Additionally, it is intriguing to note that starting from two loops, the same color-state
(e.g., δi4j1δ

i1
j2δ

i2
j3δ

i3
j4) can contribute to different color orders, such as leading color (N2

c )
and sub-sub-leading color (2).

15These are the red strings of Kronecker’s deltas under the graphs of Figure 4.12. Herein we have
contracted all the repeated indices related to the loop particles.
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Figure 4.14: In this figure, we present a schematic example of the construction of a two-loop
numerator within HELAC-2LOOP. We start with the theta-topology {{1, 2}, {12}, {}, {}, {}},
and the external particles being all gluons as our input. We also specify the flavor of the
first set of cut particles as gluon, and the (n+ 2)-particle state as δi2j1δ

i3
j2
δi4j3δ

i1
j4
δi6j5δ

i5
j6
. From the

various possible flavors that the first propagator can have, we select the gluon flavor for our
example here. After applying the HELAC-2LOOP algorithm we obtain one numerator which
includes the two depicted graphs with the color factor N2

c δ
i2
j1
δi3j2δ

i4
j3
δi1j4 .

4.4 An Example of Numerator Construction
After having provided clarification and justification for certain aspects of the algorithm
applied within HELAC-2LOOP that distinguish it from the existing HELAC framework, we
will now examine a schematic example in order to illustrate the process of constructing
a numerator and how it is stored in the skeleton.

Among the various options available for blob-topologies, flavors of external and cut
particles, and (n+2)-particle color states, our focus is on the specific scenario depicted
in the upper left section of Figure 4.14. In this case, we have as a starting point the
flavor of the external and the first set of cut particles being gluon, the (n+ 2)-particle
color-state δi2j1δ

i3
j2δ

i4
j3δ

i1
j4δ

i6
j5δ

i5
j6 , and the theta-like blob-topology {{1, 2}, {12}, {}, {}, {}}.

In the next step, we cut in the k3 loop-line the configuration at hand and we dress
with flavor and color/anti-color the loop propagators of the corresponding one-loop
configuration (see the first line of Figure 4.14). From all the possible flavors that the
first propagator can have, in this example, we keep only the gluon case.

Subsequently, we perform the second cut in the propagator connecting the blobs 1
and 16. As previously explained, it is our convention to always perform the cut in the
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Figure 4.15: Form, as is stored in the skeleton, of the numerator constructed in Figure 4.14.

propagator of the one-loop blob-topology, ensuring that particle 1 remains the final
point of the recursion. Then, in the resulting tree-level configuration we assign the
extra color lines introduced by the cut propagator, and by tracking the color flow we
rearrange the (n+ 2)-particle color-state δi2j1δ

i3
j2δ

i4
j3δ

i1
j4δ

i6
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j6 , into the (n+ 4)-particle one
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i1
j8 . Afterwards, we apply a Dyson-Schwinger recursion on the tree-

level configuration, respecting the loop-assignment structure of the topology, which
results in the two configurations depicted in the middle line of Figure 4.14, due to the
two possible splittings (via SM vertices) of the level-2 blob 12. These correspond to
the two graphs depicted in the last section of the same figure with the color factor
CF = N2

c δ
i2
j1δ

i3
j2δ

i4
j3δ

i1
j4 , identified by reducing via contraction with the product of deltas

δj7i8 δ
j8
i7 δ

j5
i6 δ

j6
i5 the (n + 4)-particle color-state to an n-particle one. In the end, the sub-

amplitude structure of the two configurations together with the topological information
and the powers of Nc are stored as one numerator to the skeleton of the process at
hand.

In Figure 4.15, we provide the representation of the numerator constructed in our
example as stored in the skeleton. Similar to HELAC-1LOOP, the numerators are or-
ganized in the skeleton based on their color-state. For each color-state (24 in our
example), there is a corresponding list of numerators labeled as "nums" in Figure 4.15.
The structure of each numerator follows the same format as in HELAC-1LOOP in all but
the last line. Consequently, from the first line to the second-to-last line, there is a
sequence of sub-amplitudes accompanied by instructions for their computation. Let us
provide a concise explanation of the meaning of each number within a line. Using the
first line as our reference, the first number signifies the type of vertex employed for the
creation of the output sub-amplitude, the second number represents its ID number, the
third number corresponds to its flavor, and the fourth number denotes the rank of the
sub-amplitude in the list of constructed sub-amplitudes16. The fifth and sixth num-
bers enumerate the possible methods of constructing the output sub-amplitude using
existing sub-amplitudes. For instance, in the third and fourth lines, the sub-amplitude

16The n + 4 particles are also counted as sub-amplitudes in this ranking thus the ranking of the
output sub-amplitudes starts from 9 in our example.
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with ID = 92 can be obtained through two distinct approaches, combining the blobs
80 and 12 via a three-vertex or blobs 80, 4 and 8 via a four-vertex, thus the fifth num-
ber takes values from 1 till 2 and the sixth number is equal to 2. Following this, the
seventh (tenth) [thirteenth] number corresponds to the ID number of the first (second)
[third]17 incoming sub-amplitude, the eighth (eleventh) [fourteenth] number represents
its flavor, and the ninth (twelfth) [fifteenth] number denotes its ranking in the list of
sub-amplitudes. Subsequently, the sixteenth number indicates the helicity index of the
sub-amplitude (taking the values 1 or 2 for fermions and 0 otherwise), the seventeenth
number is equal to the sign factor that takes into account the anti-symmetry of the
sub-amplitude (defined in Eq. (2.40)), and the last (eighteenth) number specifies the
color connection associated with the vertex.

Concerning the last line, the first element is the number of propagators of the blob-
topology, and the second element is a number, let’s denote it mb, which signifies the
master blob-topology to which the numerator corresponds to. The possible values of
mb are the following ones

mb =


1, Theta-topology
2, Infinity-topology
3, Dumbbell-topology

. (4.12)

Then, the third element corresponds to a unique ID per blob-topology, IDtopo, defined
using a prime number decomposition according to the number of particles included in
each sub-list of the blob-topology. More precisely, the definition of IDtopo is established
through the relation

IDtopo =


(2)L1(3)L2(5)L3(7)LA(11)LB , Theta-topology
(2)L1(3)L2 , Infinity-topology
(2)L1(3)L2(5)LC (7)LA(11)LB , Dumbbell-topology

. (4.13)

After the third element, the blobs of the topology are stored, followed by the flavor of
its propagators. The ordering of the blobs and flavors for each master blob-topology is
as follows:

• Theta-topology: Blobs and flavors are stored starting from the k1 loop-line as-
cending from vertex B to A, then continuing with the k2 loop-line moving from A
to B, and concluding with the k3 loop-line going from B to A. The last recorded
blobs correspond to those of A and B, in that particular order.

• Infinity-topology: The storage of blobs and flavors starts from the k1 loop-line
using a bottom-up approach, and then is followed by the k2 loop-line where again
a bottom-up approach is used.

• Dumbbell-topology: Blobs and flavors are stored starting from the k1 loop-line
using a bottom-up approach, then continuing with the k2 loop-line using again
a bottom-up approach, and concluding with the C momentum-line moving from
vertex A to B. The last stored blobs are the ones of A and B (in this order).

17If there is not third incoming sub-amplitude (three-vertex case), the thirteenth, fourteenth, and
fifteenth numbers are left empty, e.g. 0.
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Having stored the blobs and the propagator flavors of the blob-topology, the rest of the
elements till the penultimate one, if not used, are left empty (0). Then the penultimate
element corresponds to an estimation of the rank of the numerator (powers of the loop
momenta ki), and the last number is the prefactor of the n-particle color state (N2

c = 9
in our example) arising from the projection of the (n+ 4)-particle one.

4.5 Results and Discussion
In order to get an idea of the complexity and the structure of the skeleton at two-loop
level we present in Table 4.1 information about the skeleton of some QCD processes
at two-loop, using HELAC-2LOOP, and at one-loop, using HELAC-1LOOP [88]. These pro-
cesses consist of gluons (g) and quarks/anti-quarks (q, q̄) as external and loop particles,
with ghosts/anti-ghosts (c, c̄) being also included in the loop, and some of them are
studied at leading-color approximation, while others at full-color. Let us discuss now
the results presented in Table 4.1.

Process # Loop-Flavors Color Size Crea.Time Nums
gg → gg 2 {g, c, c̄} Lead. 8.9 MB 15.017s 4560
gg → gg 2 {g, q, q̄, c, c̄} Full 110.6 MB 6m 54.574s 89392
gg → qq̄ 2 {g, q, q̄, c, c̄} Full 16.1 MB 3m 14.509s 13856
gg → ggg 2 {g, c, c̄} Lead. 300.0 MB 21m 42.609s 81480
gg → gg 1 {g, q, q̄, c, c̄} Full 537.8 kB 2.386s 768
gg → ggg 1 {g, q, q̄, c, c̄} Full 15.1 MB 8m 53.349s 11496
gg → gggg 1 {g, c, c̄} Lead. 394.0 MB 104m 14.95s 19680

Table 4.1: Table containing information for the skeleton of some QCD processes at one-
and two-loop. Therein, the column # refers to the number of loops, Loop-Flavors denotes
the flavor of the particles included in the loops, and Color indicates the color order, with
Lead. and Full referring to leading- and full-color approximation, respectively. The columns
Size and Crea.Time, indicate the size of the skeleton and the real-time consumed for
its construction, respectively. The last column (Nums) signifies the number of separate
contributions (numerators) to the amplitude. These results have been obtained running 1-
core in my personal laptop (i7 processor, 8-core, 24GB RAM).

In the context of the two-loop results, the table above reveals that increasing the
number of particles or transitioning from leading-color to full-color leads to an incre-
ment in the number of numerators (contributions) and the size of the skeleton. This
corresponds to an escalation in the complexity of the amplitude, as anticipated. Ad-
ditionally, it is worth noting that the construction of the skeleton can sometimes have
lengthy timings. However, it is important to emphasize that the skeleton only needs
to be created once per process and can then be utilized in its existing form during the
computational phase. Furthermore, when comparing the full-color two-loop process of
gg → gg (second line) with the leading-color two-loop process of gg → ggg (forth line),
it becomes apparent that despite the latter having a smaller number of numerators,
the former is constructed much faster. This is attributed to the simpler sub-amplitude
structure present in the former process, as evidenced by the size of the skeleton.
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Upon comparing the full-color gg → gg process at one-loop (fifth line) with its
two-loop counterpart, a notable increase in the number of numerators becomes ap-
parent. Moving from one loop to two loops results in a significant augmentation in
the complexity of computing scattering amplitudes, as reflected by the approximately
115-fold increase in the number of numerators in the two-loop case compared to the
one-loop case. It is important to note, however, that the large number of numerators
at full-color in the two-loop results may be somewhat misleading, as many of these
numerators, within the same or different color-states, are either identical or differ by
a constant factor. For instance, in the case of the gluonic double-box illustrated in
Figure 4.13, the skeleton contains 64 different numerators (2(n+2)), which could poten-
tially be consolidated into only 21 distinct contributions, corresponding to the number
of non-zero color-states, with the coefficients of the color-state being included in the
last element of the last line of a skeleton numerator. At first glance, this naive and
simple reorganization appears to reduce the number of numerators by a factor of three.
Therefore, there is still room for further organization and optimization of the skele-
ton in order to enhance the efficiency of the computational phase in HELAC-2LOOP, an
aspect that is currently being developed.

One other interesting fact is derived from the Table 4.1, by setting side by side the
full-color one-loop gg → ggg process (sixth line) with the full-color two-loop gg → qq̄
process (third line). More specifically, despite the fact that the two processes are of the
same complexity, in terms of the number of numerators and sub-amplitudes (indicated
by the size of the skeleton), the skeleton construction time for the latter process is
approximately three times faster than that of the former. This improvement is a result
of optimizing various aspects of the existing code through extensive profiling. These
optimizations are not limited to the two-loop case but will also be implemented in
the one-loop scenario. Additionally, ongoing efforts are being made to explore further
optimizations and potential parallelization across multiple cores. These measures aim
to enhance the efficiency of the initialization phase in HELAC-2LOOP.

To validate the correctness of the numerators stored in the skeletons of the processes
quoted in Table 4.1, we conducted numerical calculations, in four dimensions and at the
integrand level18, for various numerators, and we cross-checked them with other public
packages such as FeynArts [82], FeynCalc [84], and FORM [83]. For completeness, our
computations encompassed multiple topologies from each master blob-topology and
included all possible QCD flavors ({g, q, q̄, c, c̄}) for the loop particles. For all cases
studied, we found a perfect agreement (in quadruple precission) between our results
and those obtained from these packages. For obtaining such numerical computations
one should provide in HELAC-2LOOP as input, values for the momenta and the polariza-
tions of the external particles together with values for the momenta of the four extra
particles19 resulted from the two cuts performed to the two-loop blob-topologies. The
latter are acquired as the loop momenta of the cut propagators. The polarizations
of the extra particles, as in the one-loop case, are chosen appropriately in order to
reproduce the contractions originally present in the cut propagators, as described by
Eq. (2.42).

18After properly modifying some parts of the computational phase algorithm.
19Two momenta should be provided, due to the fact that the two particles yielded from one cut

have equal and opposite momentum.
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As an illustration, we present the following numerators for configurations involving
only gluons as both loop and external particles

1. N{{1,2},{12},{},{},{}} = 17052219.315419123 + 64639250.888367772i

2. N{{1,2},{4,8},{},{},{}} = −12231870819598.090 + 5124375444085.5430i

3. N{{1,2},{4},{8},{},{}} = −1268111397619.5310 + 195312105699.88257i

4. N{{2,1},{8},{},{4},{}} = −49731029299.352333 + 15599344.440385548i .

These numerators were computed in the helicity state −− → −−, using for the
external and loop momenta the values p1 = (250, 0, 0, 250), p2 = (250, 0, 0,−250),
p3 = (250, 49,−176,−171), k1 = (0.2, 0.3, 0.5, 0.7), and k3 = (0.9, 0.11, 0.13, 0.15). The
first numerator corresponds to the configuration discussed in the previous section (Fig-
ure 4.15). The second numerator corresponds to the double-box topology, the third
numerator corresponds to the non-planar double-box, and the fourth numerator corre-
sponds to a topology containing a blob in the vertex A.
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Chapter 5

Three-loop Integral Families Rele-
vant for Z/H+jet production

In this chapter, we present the analytic computation of the ladder-box and the two
tennis-court Feynman integral families, relevant for 2 → 2 scattering processes in-
volving one massive external particle and massless particles running on the loops,
utilizing the simplified differential equations approach. Our results are expressed in
terms of real-valued multiple poly-logarithms of up to transcendental weight six for
both Euclidean and physical kinematics, being thus well-suited for phenomenological
applications. Furthermore, we present analytic results for two non-planar ladder-box-
like families, computed using the standard differential equations method. This chapter
is based on novel work presented in the articles [4, 6] and the conference proceedings
[5, 7].

5.1 Introduction
The ever-increasing accuracy of the experimental measurements obtained by the cur-
rent and future runs of LHC, High Luminosity LHC (HL-LHC), and potential new
collider experiments, creates a significant demand for equally high-precision theoreti-
cal predictions for their interpretation. From a theoretical perspective, achieving high-
precision predictions involves the use of perturbative Quantum Field Theory, par-
ticularly the use of perturbative QCD for processes concerning strong interactions.
Enhancing prediction accuracy entails computing higher-order corrections in the ex-
pansion around the coupling constant of the strong interactions. As explored in pre-
vious chapters, this computation involves various aspects, including the calculation of
multi-loop FIs.

According to estimates, the upcoming High Luminosity upgrade of the LHC is
expected to necessitate the computation of numerous scattering processes at next-to-
next-to-next-to-leading-order (N3LO) in order to reach a percent level of precision [136].
At this order of perturbative expansion, the calculation of three-loop FIs becomes
indispensable, which is a highly challenging task. Notably, all families of FIs with
massless internal and external particles have been computed [241, 269–271] and have
been applied for the evaluation of three-loop 2→ 2 scattering amplitudes for processes
such as qq̄ → γγ [158], qq̄ → qq̄ (with the initial and final state quarks potentially
differing in flavor) [159], gg → γγ [160], gg → gg [161] and qq̄ → gg [162], all of which
are of great phenomenological interest.
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The next natural progression is to extend these results to processes involving a sin-
gle massive external particle, such as a vector boson decaying into 3-jets or gg → H+jet
via gluon fusion. This extension requires the computation of all four-point integral fam-
ilies involving one massive external particle and massless propagators. Several years
ago, progress was made in this direction, by calculating the planar ladder-box topol-
ogy, which involves massless propagators and one off-shell leg [272]. In this calculation
a basis of 85 MIs was obtained, and a canonical DE [227] was derived using Magnus
series expansions [234]. In this chapter, we re-calculate this integral family finding
a basis of 83 MIs, and we progress even further by conducting a complete analytical
computation of the two additional planar three-loop topologies, commonly referred to
as the tennis-court topologies. In our computation, we make use of the SDE approach
[221] in combination with pure bases of MIs for the studied families, and the solutions
are expressed in terms of GPLs [228, 229] in all physical regions of phase-space. Fur-
thermore, we comment for the two tennis-court families on the adjacency conditions
that were discovered in [273, 274] regarding the symbol of two-loop and three-loop four-
point MIs with one off-shell leg, as these can be represented within the SDE approach.
Additionally we compute in terms of GPLs two non-planar ladder-box-like families,
using the standard differential equations method [7]. The latter two families have been
first calculated in [275]. Our results have been recently used for the computation of
planar three-loop QCD helicity amplitudes for V+jet production [163]. We conclude
with a discussion of our results.

5.2 Planar Three-Loop Families with One Off-Shell
Leg

5.2.1 Integral families
We begin this section by defining the integral families that will be addressed in this
chapter. To keep the discussion concise, we will refer to the ladder-box topology as F1
and denote the two tennis-court topologies as F2 and F3, as illustrated in Figure 5.1.
We define the corresponding integral families through the following expressions1

GF1
a1···a15 ≡

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k1 + q123)−2a11 (k2 + q123)−2a12

(k1 + q12)2a1 (k2 + q12)2a2 (k3 + q12)2a3 (k1 − k2)2a4

× (k2 + q1)−2a13 (k3 + q1)−2a14 (k1 − k3)−2a15

(k2 − k3)2a5 (k3 + q123)2a6 k2a7
1 k2a8

2 k2a9
3 (k1 + q1)2a10

(5.1)

GF2
a1···a15 ≡

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k1 + q123)−2a11 k−2a12

2

(k1 + q12)2a1 (k2 + q12)2a2 (k2 + q123)2a3 (k3 + q123)2a4

× (k2 + q1)−2a13 (k3 + q1)−2a14 (k3 + q12)−2a15

k2a5
3 k2a6

1 (k1 + q1)2a7 (k1 − k2)2a8 (k1 − k3)2a9 (k3 − k2)2a10
(5.2)

1Where we use the abbreviation q12 = q1 + q2 and q123 = q1 + q2 + q3.
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q4q1

q2 q3
q2 q1

q3 q4

q1 q4

q2 q3

Figure 5.1: The F1 (top), F2 (bottom left) and F3 (bottom right) top-sector diagrams. The
double line represents the massive particle and all external momenta are taken to be incoming.

GF3
a1···a15 ≡

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k1 + q12)−2a11 k−2a12

2

(k1 + q1)2a1 (k2 + q1)2a2 (k2 + q12)2a3 (k3 + q12)2a4

× (k2 + q123)−2a13 k−2a14
3 (k3 + q1)−2a15

(k3 + q123)2a5 (k1 + q123)2a6 k2a7
1 (k1 − k2)2a8 (k1 − k3)2a9 (k3 − k2)2a10

(5.3)

with ai being integers. For i = 11, . . . , 15 we have ai ≤ 0, corresponding to auxiliary
propagators coming from irreducible scalar products. The external momenta (q2

1 =
q2

3 = q2
4 = 0 and q2

2 = m2) obey momentum conservation (∑4
i=1 qi = 0) and the

following kinematics

S12 = (q1 + q2)2. S23 = (q2 + q3)2, and S13 = m2 − S12 − S23. (5.4)

In order to obtain analytic solutions for these families we utilize the SDE approach
[221], where the external momenta are parametrized in terms of a dimensionless pa-
rameter, x, with respect to which the DEs are derived. In this case, we choose the
following parametrization

q1 = xp1, q2 = p1 + p2 − xp1, q3 = p3, and q4 = p4, (5.5)

where the new momenta pi are all massless (p2
i = 0). By employing this parametriza-

tion, we establish the following mapping for the kinematic invariants between the two
momentum configurations

S12 = s12, S23 = s23x, and m2 = s12(1− x), (5.6)

with s12 = (p1 + p2)2, s23 = (p2 + p3)2.



84 Chapter 5. Three-loop Integral Families Relevant for Z/H+jet production

Performing IBP reduction to MIs using modern public packages such as FIRE6 [58]
and KIRA2 [60], we found for the F1 family a set of 83 MIs (3 at the top-sector2) in
contrast with [272], where a set of 85 MIs was presented. The two extra MIs contained
in the set of 85 MIs were found to be equal from IBP identities with two other integrals
of the same set, namely T7 = T8 and T45 = T46 of [272]. These relations can also be
verified by checking the solutions for the corresponding basis elements, as presented in
[272]. For the F2 and F3 families, using the same IBP packages, we identified a minimal
set of 117 MIs (3 at the top-sector) and 166 MIs (4 at the top-sector), respectively.

5.2.2 Scattering kinematics
When addressing the analytical solution of multi-loop FIs in dimensional regularization
with the DE method, it is customary to solve them in the Euclidean region, where all
MIs of the family are devoid of branch cuts. Subsequently, the obtained results are
analytically continued to the physical regions of phase-space. This approach aligns
with the methodology we will adopt in our study. By analyzing the second Symanzik
polynomial [187] associated with the top-sector integrals of the families F1, F2, and
F3 in their Feynman parameter representation, we can identify the Euclidean region in
terms of the following specific conditions for the kinematic variables S12, S23 and m2

S12 < 0, S23 < 0, and m2 < 0. (5.7)

Using basic relativistic kinematics, one can show that for 2 → 2 scattering processes
involving one massive particle, there exist three physical regions. For ease of reference,
we will denote these regions as the s-, t-, and u-channels, respectively

s - channel : m2 > 0, S12 ≥ m2, S23 ≤ 0, and S13 ≤ 0
t - channel : m2 > 0, S12 ≤ 0, S23 ≥ m2, and S13 ≤ 0
u - channel : m2 > 0, S12 ≤ 0, S23 ≤ 0, and S13 ≥ m2.

(5.8)

Since we are going to use the SDE approach for solving Eqs. (5.2) and (5.3), it is
desirable to express the inequalities of each phase-space region in terms of the variables
x, s12, and s23. The mapping provided by Eq. (5.6) enables us to achieve this, however,
for reasons that will become apparent later on, we introduce the ratio y = s23/s12 and
utilize the variables x, y, and s12. Our methodology will thus involve computing all
MIs in terms of real-valued GPLs in the Euclidean region

0 < x < 1, s12 < 0, and 0 < y < 1, (5.9)

and afterwards, using fibration bases techniques implemented in PolyLogTools [263]
and HyperInt [195], analytically continue our solutions to the physical regions

s - channel : 0 < x < 1, s12 > 0, and − 1 ≤ y ≤ 0
t - channel : 1 < x, s12 < 0, and y ≤ −1
u - channel : 1 < x, s12 < 0, and y ≥ 0.

(5.10)

2By top-sector we mean the FIs with ai = 1 for i = 1, . . . , 10 and ai = 0 for i = 11, . . . , 15 in Eqs.
(5.1), (5.2) and (5.3).
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5.3 Canonical Differential Equation
Despite the fact that nowadays exist several automated packages and methods for the
construction of a pure basis that satisfies a canonical DE, as we have seen in Chapter
3, finding a pure basis for a generic integral family in practice is still a non-trivial task,
assuming that such a basis even exists. In our study here for the planar massless three-
loop families with one off-shell external leg, for the F1 family, we adopted the pure
basis presented within [272], where this family was studied for the first time, while in
order to construct pure bases for the families F2 and F3 we used a combined approach,
attacking the problem with the different techniques.

One of the methods we employed was the Magnus exponential method [234], applied
to the matrices of the DEs derived by differentiating with respect to the Mandelstam
variables of Eq. (5.4), which we used for a few lower-sector MIs (up to seven prop-
agators). For some intermediate-sector MIs (up to nine propagators) we used the
Mathematica package DlogBasis [241] combined with the SDE parametrization in or-
der to identify appropriate candidates as pure basis elements. More specifically, as we
know DlogBasis in order to find FIs of d-log form relies on the spinor-helicity formal-
ism, which can not be applied when we deal with off-shell external momenta. When
one deals with such problems the standard way to proceed is the decomposition of the
external massive momentum in terms of two (arbitrary) massless momenta, or the use
of the Baikov representation [242, 243]. Another possible way is the use of the SDE
notation for the propagators where by definition the external momenta that appear
in them for problems with one external massive particle are massless3 and hence the
spinor-helicity parametrization is applicable. Thus while the command [241]

SetParametrization[SpinorHelicityParametrization[{k1, k2, k3}, {a, b, c}, {q1, q2, q3}]],

doesn’t work when one uses the standard notation for the propagators with massive ex-
ternal momenta, it correctly works when one uses the SDE notation for the propagators
and the external momenta (Eq. (5.5))

SetParametrization[SpinorHelicityParametrization[{k1, k2, k3}, {a, b, c}, {p1, p2, p3}]].

The last but most extensively used approach that we applied for the completion of
the pure basis is the loop-by-loop Building-Blocks method [245]. In our study apart
from the standard approach of utilizing one-loop pure basis elements (massless boxes,
triangles and bubbles with up to three external massive particles) as building blocks we
also used pure basis elements from the massless planar double-box families with up to
three external off-shell legs [243, 272, 276]. In intermediate steps we checked that the
chosen basis elements were indeed pure by semi-numerical (keeping only x analytic)
derivations of the DE. For sectors with multiple MIs where it is difficult to understand
which of the chosen basis elements is not UT, a hint was given to us by the C++ version
of Fuchsia [237].

3The same approach can be used for 2-mass problems introducing an extra y parameter beyond x
in order to catch the off-shellness of both masses.
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Having at hand pure bases for all the families, by differentiating with respect to x
we were able to obtain the following DE in canonical form

∂

∂x
g = ε

( 4∑
i=1

Mi

x− li

)
g, (5.11)

where g is the pure basis and Mi are the residue matrices associated with each letter
li. The kinematic dependence is encapsulated within the letters li, while the matrices
Mi solely contain rational numbers. We have identified an alphabet consisting of four
distinct letters

l1 = 0, l2 = 1, l3 = 1
1 + y

, and l4 = −1
y
. (5.12)

It is important to note that in this context, we adopt the definition of the alphabet
letters as given in [4, 266], which differs from the standard notation [184, 259, 260].
Typically, the d log form of a system of canonical DEs is expressed as dg(~x, ε) =
ε (∑iMid logWi(~x))g(~x, ε), where the alphabet Wi(~x) consists of rational or algebraic
functions of the independent variables. The standard d log form is equivalent to Eq.
(5.11) when Wi(~x) = x − li. It is also worth mentioning that in all cases where both
the standard approach, which involves differentiation with respect to all kinematic
invariants, and the SDE approach have been utilized, we have observed a reduction in
the number of logarithmic singularities in the canonical SDE. For instance, in the case
of the ladder topology, the corresponding canonical DE presented in [272] exhibited
six logarithmic singularities, which corresponds to six Wi(~x) functions in the standard
d log notation. However, when employing the SDE approach, we obtain a canonical
DE in terms of x characterized by only four Wi(~x) functions. This decrease in the
number of poles in the canonical DE is a consequence of our focus on differentiation
with respect to x, while explicitly handling the s12 and y dependencies of the MIs
through boundary terms. Additionally, the fact that all three-loop planar families with
one off-shell leg share the same alphabet is also an intriguing observation.

The simplicity of the alphabet in Eq. (5.12) with respect to x allows for a straight-
forward solution of Eq. (5.11) in terms of GPLs. The solution can be expressed in a
concise form up to weight six as follows:

g = ε0b(0)
0 + ε

(∑
GiMib(0)

0 + b(1)
0

)
+ ε2

(∑
GijMiMjb(0)

0 +
∑
GiMib(1)

0 + b(2)
0

)
+ ε3

(∑
GijkMiMjMkb(0)

0 +
∑
GijMiMjb(1)

0 +
∑
GiMib(2)

0 + b(3)
0

)
+ . . .

+ ε6
(∑
GijklmnMiMjMkMlMmMnb(0)

0 +
∑
GijklmMiMjMkMlMmb(1)

0

+
∑
GijklMiMjMkMlb(2)

0 +
∑
GijkMiMjMkb(3)

0 +
∑
GijMiMjb(4)

0

+
∑
GiMib(5)

0 + b(6)
0

)
.

(5.13)

Here, the GPLs are represented by Gab... ≡ G(la, lb, . . . ;x). The terms b(i)
0 correspond

to the boundary terms in the x → 0 limit that require determination, with the sub-
script i denoting the associated weight. These terms consist of Zeta functions ζ(i) and
logarithms log(−s12), log(y) of weight i. Our results are organized in a manner where
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each coefficient of εi carries a transcendental weight of i. By assigning weight −1 to ε,
the expression in Eq. (5.13) maintains a uniform degree of transcedentality equal to
zero.

5.4 Boundary Conditions
In order to evaluate the required boundary terms b(i)

0 for each pure basis element in
Eq. (5.13), we utilize the resummation matrix method at x = 0, as described in subsec-
tion 3.3.3. Additionally, we introduce a novel approach of utilizing the resummation
matrices that significantly simplifies the entire procedure. Our initial step involves
exploiting the canonical SDE in the limit x→ 0 and defining the resummation matrix

R = SeεD log(x)S−1, (5.14)

where the matrices S, D are derived from the Jordan decomposition4 of the residue
matrix corresponding to the letter l1 = 0, M1 = SDS−1. On the other hand, through
IBP reduction, the elements of the pure basis can be related to a set of MIs, say G,
via a transformation matrix, meaning

g = TG. (5.15)

Moreover, by employing the expansion by regions technique [206] implemented in asy
code bundled with FIESTA4 [279], we can acquire insights into the asymptotic behavior
of MIs in terms of which we express the pure basis (Eq. (5.15)) in the limit x→ 0,

Gx→0
i =

∑
j

xbj+ajεG
(bj+ajε)
i,region , (5.16)

with aj and bj being integer numbers, and G
(bj+ajε)
i,region being the region-integrals of the

individual members, Gi, of the basis G of MIs in Eq. (5.15). Based on this analysis,
we can establish the following powerful relation

Rb = lim
x→0

TG|O(x0+ajε) , (5.17)

where the rhs implies that, apart from the terms xaiε coming from Eq. (5.16), we
expand around x = 0, keeping only terms of order x0. Eq. (5.17) allows us in principle
to determine all the boundary terms b = ∑6

i=0 ε
ib(i)

0 .
More specifically, Eq. (5.17) produces two types of relations. The first type, re-

ferred to as pure relations in [4], takes the form of linear equations with numerical
rational coefficients involving boundary conditions b. The second type consists of lin-
ear equations that involve both boundary terms b and region-integrals in the Feynman
parameter representation. Applying these relations to families F1, F2, and F3 requires
the calculation of several challenging region-integrals with many Feynman parameters
to be integrated. To overcome this challenge, we utilize the fact that the limit of our
solution in Eq. (5.13) in x→ 1 [4] corresponds to the fully massless integral families [4],

4For an earlier use of the Jordan decomposition method see [277, 278].
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which are already known from [270]. Our approach involves exploiting the pure rela-
tions between boundary conditions b, computing a minimal set of region-integrals, and
constructing the complete solution by explicitly retaining the undetermined boundary
terms in the final result. Subsequently, we determine the x → 1 limit using the tech-
niques we described in subsection 3.3.3 and use the known analytic results from [270]
to fix any remaining unknown boundaries.

As an illustration of this approach, we will now demonstrate the computation of the
boundary terms for the F3 family, assuming that we have already solved the families
F1 and F2. We begin by constructing equation (5.17) and determining the so-called
pure relations. These relations typically determine the boundary terms for the top-
sector basis elements, which are the most challenging to compute due to containing
complex region-integrals. Specifically, for the F3 family, the pure relations for the four
top-sector basis elements are:

b163 =− 371b1
132 −

8b2
11 + 12b4

11 −
637b5

33 + 32b10 + 64b11
3 + 37b12

6 − 15b13 + 3b15
22 − 15b18

+ 12b19 −
9b22

4 − 9b23
2 + 3b24 −

15b25
22 − b26

22 + 12b29 + 8b30 − 6b31 + 75b35
11 + 6b36

− 84b38
11 + 9b43 + 36b52 − 18b53 − 21b54 + 6b57 −

6b77
11 − b81 − 12b87 + 3b88 − 2b123

− 6b130 + 2b137 + 6b144 − 2b152 − 2b159, (5.18)

b164 =− 745b1
264 −

13b2
66 + 6b4

11 −
359b5

22 + 92b10
3 + 52b11

3 + 31b12
6 − 89b13

6 + 51b15
22

− 97b18
6 + 12b19 −

9b22
8 − 9b23

2 + 3b24 −
15b25

44 + 5b26
22 + 10b29 + 20b30

3 − 6b31 (5.19)

+ 75b35
22 + 5b36 −

42b38
11 + 9b43 + 36b52 − 18b53 −

33b54
2 + 6b57 −

3b77
11 − b81

− 12b87 + 3b88 − 2b123 − 6b130 + 2b137 + 4b144 − 3b152 − 3b159,

b165 =0, (5.20)

b166 =− 1531b1
4752 −

128b2
297 + 47b4

33 −
1891b5

396 + 74b10
9 + 20b11

3 + 7b12
3 − 127b13

36 − 415b15
264

+ 13b16
8 + 10b17

3 − 47b18
36 − 2b19 + 5b20

6 − 21b22
16 − 11b23

6 + 5b24
12 −

35b25
132 −

6b26
11

+ 16b29
3 + 32b30

9 − 10b31
3 + 581b35

132 + 29b36
18 − 197b38

33 + 3b43
2 − 14b49

3 + 7b52 (5.21)

− 5b53 −
89b54

12 + 13b57
3 − 8b60

3 − b61
6 + 2b62 −

7b77
33 −

b81
6 + 3b83 −

b84
2 −

13b87
6

+ 7b88
12 −

2b89
3 + 5b97

6 − b108
3 − 2b123

3 − b130 + 2b137
3 + 2b144 −

4b152
3 − 2b159

3 .
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Analogous relations are derived for a total of 109 basis elements, leaving the following
basis elements undetermined{

b1, b2, b4, b5, b7, b10, b11, b12, b13, b15, b16, b17, b18, b19, b20, b22,

b23, b24, b25, b26, b29, b30, b31, b35, b36, b38, b43, b49, b50, b52, b53, (5.22)
b54, b57, b59, b60, b61, b62, b77, b81, b83, b84, b85, b87, b88, b89, b97,

b108, b116, b123, b130, b135, b137, b144, b151, b152, b157, b159
}
.

Among the listed boundary terms, the majority of them can be inferred from either
family F1 or family F2. As a result, the only genuinely unknown boundary terms are:{

b108, b123, b135, b144, b157, b159
}
. (5.23)

Furthermore, b108 can be computed through a direct integration of the region-integrals
that appear in its resulting relation coming from Eq. (5.17),

b108 =− 2b19 + 3b21

4 + s2
12ε

5G
(−2ε)
111101012000000 + 4s12ε

4G
(−ε)
1022010110−10000

− 3s2
12ε

4G
(−ε)
112201001000000 + 6s12ε

5G
(0)
011101012000000. (5.24)

From the above relation we observe that the boundary term b108 comprises four region-
integrals, with the most challenging having seven propagators, i.e requiring the inte-
gration of seven Feynman parameters, in general a non-trivial task, but in this case
achievable. Hence, we are left with the following five undetermined boundary terms{

b123, b135, b144, b157, b159
}
. (5.25)

Continuing with this approach to determine the remaining undetermined boundary
terms would require computing several highly non-trivial region-integrals, involving the
direct integration of up to nine Feynman parameters. Performing such computations
can be extremely difficult, even if the result of the integration is rather simple. In order
to obtain the remaining boundary terms, we exploit a feature of the SDE approach,
which is that by taking the x→ 1 limit of our results, we retrieve the solution for the
families with all the external momenta massless [270], as can be seen from Eqs. (5.5)
and (5.6). Our approach entails the following steps:

1. Construct the solution of Eq. (5.13) using a simple ansatz for the unknown
boundary conditions, i.e. bi = ∑6

k=0 a(i, k)εk.

2. Construct the resummation matrix from the residue matrix corresponding to the
letter l2 = 1, M2, and using the shuffle properties of GPLs extract the part of
the solution in Eq. (5.13) which is regular at x = 1. These two ingredients allow
us to obtain the x→ 1 limit of Eq. (5.13) [4].

3. Map the x → 1 limit of the F3 family, Eq. (5.3), i.e. the massless tennis-court
family, to the same family defined in [270].

4. Map the pure basis for the massless tennis-court of [270] to the pure basis that
can be obtained from the x→ 1 limit of the pure basis of F3 using the techniques
we described in subsection 3.3.3 [4].
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Figure 5.2: Integrating out in G32 the bubble sub-integral we obtain a two-loop integral with
5 propagators, where the one related with the bubble sub-integral has its power shifted by ε.

The correspondence between our results and those of [270] reveals that the variable
y = s23/s12 introduced earlier is equivalent to the dimensionless parameter x employed
therein5. For the F2 family, the corresponding relation is y = 1/x. This illustrates the
motivation behind our introduction of the variable y in the first place. The above steps
allow us to fix all remaining boundary terms of the F3 family in a purely analytical
way.

It is worth mentioning at this point the strategy we employed for the computation
of some soft (x−3ε) region-integrals containing bubble sub-graphs, which were necessary
for the determination of the boundary conditions of the F1 family. These integrals can
be written as a two-loop integral with a bubble insertion. The strategy relies on the
Feynman representation of the integrals under consideration, as well as a technique of
integrating out bubble sub-integrals. As explained in [270], one can always integrate
out bubble sub-integrals and obtain a lower loop integral with some powers shifted by
ε. More specifically we have

∫ ddk

iπd/2
1

k2a1(k + p)2a2
= Γ(a− d/2)Γ(d/2− a1)Γ(d/2− a2)

Γ(a1)Γ(a2)Γ(d− a) (p2)d/2−a. (5.26)

where a = a1 + a2. In the specific cases appearing to the boundary conditions of the
F1 family, where a1 = 2 and a2 = 1, the integration of the bubble sub-integral leads to
a two-loop integral with a propagator power shifted from 1 to 1 + ε. Here, we provide
a detailed explanation of the computation of the required region for the integral G32 of
the F1 family. The computation of other region-integrals involving bubble insertions
can be performed following the same procedure. In our notation (Eq. (5.1) after
applying the SDE parametrization of Eq. (5.5)), G32 is expressed as

∫ ddk1d
dk2d

dk3

(iπd/2)3
e3εγE

k2
2(k1 + k2)2(k2 + k3)2(k1 + p12)2(k1 + xp1)2(k3 + p123)4 , (5.27)

and thus its bubble sub-integral is
∫ ddk3

iπd/2
1

(k2 + k3)2(k3 + p123)4 . (5.28)

5Not to be confused with the SDE parameter x.
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By performing the shift k3 → k − p123, we can rewrite it as shown in Eq. (5.26).
Consequently, we are left with a two-loop integral containing five propagators (see
Figure 5.2). The distinctive feature, in this case, is that one propagator is raised to
the power of 1 + ε. When investigating the regions that contribute to the x → 0
limit of this integral, we find two regions, namely (x0, x−3ε), which are the same as
for the full three-loop integral. Our focus lies on the x−3ε region, which is notably
less complicated compared to the region resulting from the analysis of the complete
three-loop integral. After carrying out the necessary integrations, we may assemble the
final result by multiplying the outcome of the bubble integration, namely Eq. (5.26)
for a1 = 2 and a2 = 1, with the result of the two-loop region, and expand it up to the
desired power in the dimensional regulator.

Very interesting is the fact that by observing the boundary conditions of the three
planar families we found that the following general ansatz for all the boundary condi-
tions can be constructed

bi = c(i, 0) + ε log(y)c(i, 1) + ε2
(1

2 log2(y)c(i, 2, 2) + 1
6π

2c(i, 2, 1)
)

+ ε3
(1

6 log3(y)c(i, 3, 2) + 1
6π

2 log(y)c(i, 3, 1) + ζ(3)c(i, 3, 3)
)

+ ε4
(
ζ(3) log(y)c(i, 4, 4) + 1

24 log4(y)c(i, 4, 3) + 1
12π

2 log2(y)c(i, 4, 2) + 1
90π

4c(i, 4, 1)
)

+ ε5
(1

2ζ(3) log2(y)c(i, 5, 5) + 1
120 log5(y)c(i, 5, 3) + 1

36π
2 log3(y)c(i, 5, 2) (5.29)

+ 1
90π

4 log(y)c(i, 5, 1) + ζ(5)c(i, 5, 6) + 1
6π

2ζ(3)c(i, 5, 4)
)

+ ε6
(1

6ζ(3) log3(y)c(i, 6, 6) + log(y)
(1

6π
2ζ(3)c(i, 6, 5) + ζ(5)c(i, 6, 8)

)
+ 1

720 log6(y)c(i, 6, 4)

+ 1
144π

2 log4(y)c(i, 6, 3) + 1
180π

4 log2(y)c(i, 6, 2) + ζ(3)2c(i, 6, 7) + 1
945π

6c(i, 6, 1)
)
,

where we have multiplied by (−s12)(3ε) and expanded up to ε6 to make the ansatz
more compact, and the coefficients c are purely rational numbers. Certainly, this
represents the most general form that adheres to the scaling properties and universal
transcendentality of the boundary conditions. In the scenario where the same alphabet
applies to one or more non-planar families, it is plausible to consider obtaining the
boundary terms by numerically fitting this ansatz for the remaining integral families.
The PSLQ algorithm [280] could be employed for this purpose.

5.5 Results

5.5.1 Analytic continuation
As previously mentioned, our results are presented in the form of GPLs up to weight
six, allowing for precise numerical computations using automated tools such as GinaC
[257] and HandyG [262]. The weight W=1, . . . , 6, corresponds to the number of letters
li in G(li, . . . ;x). For the evaluations to be fast and efficient the GPLs should not
contain letters li along the integration path connecting the origin and the argument x,
i.e. li /∈ (0, x). While this condition holds true in the Euclidean region, it is no longer
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valid in the physical regions. To overcome this problem, we employed fibration-basis
techniques [195, 263] for changing appropriately the arguments of GPLs at each physical
region and making them real-valued. We followed this procedure using HyperInt [195],
aiming to obtain results expressed in terms of real-valued GPLs that can be efficiently
and accurately evaluated numerically. This renders our solutions highly suitable for
various phenomenological applications.

Regions Letters Argument Letters Argument
Euclidean {0, 1,−1/y, 1/(1 + y)} x − −
s-channel {0, 1,−1/y, 1/(1 + y)} x − −
t-channel {0, 1, 1 + y,−y} 1/x {0, 1} −1/y
u-channel {0, 1, 1 + y,−y} 1/x {0,−1} y

Table 5.1: Structure of GPLs appearing in each of the 4 kinematic regions.

In order to make more clear the form of our solutions, we present in table 5.1 the
arguments and the letters of the GPLs in the Euclidean and each of the physical regions
after using HyperInt. Due to the fact that our GPLs depend on the variables {x, y},
their analytic continuation resulted into two auxiliary variables {δx, δy}, which can be
equal to ±16. For verifying the correct sign of the auxiliary variables at each physical
region we computed numerically with FIESTA4 [279] some lower-sector MIs, which in-
clude all the GPLs appearing to our results, and we compared them with the numerical
values we obtained from the analytic continued results for every possible combination
of signs. It is worth noting that before employing fibration-basis techniques, no GPLs
with arguments depending on y are present. However, when casting each GPL in a
fibration basis, which includes real-valued GPLs along with explicit imaginary terms,
GPLs with y-dependent arguments emerge as well.

In table 5.2 we provide an analysis regarding the number of GPLs that appear in
each transcendental weight, for every kinematic region. In the same table we quote
also the total number of GPLs and the timing (in seconds) required for their numerical
evaluation using GinaC. For all families except F1, the GPLs are identical in each
region. However, the F1 family differs in the Euclidean region and the s-channel,
where it contains 42 fewer GPLs, all of them of weight 6. The number of GPLs is
the same for the Euclidean and the s-channel due to the fact that the GPLs of the
Euclidean region are already real valued in the s-channel and thus their is no need of
using fibration-basis techniques for them.

5.5.2 Numerical checks
For the validation of our results we have performed various numerical checks in the
Euclidean and the physical regions. More specifically, for the Euclidean region we
performed a numerical comparison of every MI in each family with pySecDec [199] and
FIESTA4 [279], for the phase-space point

s12 → −7, y → 3/7, and x→ 1/4. (5.30)
6In HyperInt the analytic continuation is performed along a straight path and the result can

be ambiguous when this line contains a point where the function is not analytic, thus the auxiliary
variables appear to distinguish the branches above and below the real axis
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Regions W = 1 W = 2 W = 3 W = 4 W = 5 W = 6 Total Timings
Euclidean 4 14 50 124 367 734 1293 39.0225769
s-channel 4 14 50 124 367 734 1293 39.2172529
t-channel 6 18 58 155 419 603 1259 62.0567800
u-channel 5 16 54 147 403 572 1197 55.1049640

Table 5.2: Number of GPLs per transcendental weight and per kinematic region, and timings
(in seconds) for the numerical evaluation of the total of GPLs appearing in all the families.
The quoted timings are obtained using the Ginsh command of PolyLogTools, running 1-core
in a personal laptop (i7 processor, 8-core, 25GB RAM). The phase-space points that were
used are the ones of Eq. (5.30) for the Euclidean region and the ones of Eqs. (5.31), (5.32)
and (5.33) for the corresponding physical regions.

We found that our results exhibited perfect agreement within the numerical accuracy
provided by these programs.

Regarding our results for physical regions, obtaining numerical results for all MIs
using pySecDec or FIESTA4 can be rather challenging, and in some cases even impos-
sible. To that end, in order to check that the analytic continuation was correct, we
determined a specific set of low-sector MIs (with up to 7 propagators), which contained
the total set of GPLs at each region and we numerically compared them with pySecDec
and Fiesta for the phase-space points

s-channel : s12 → 2, y → −1/2, and x→ 1/4 (5.31)
t-channel : s12 → −2, y → −3/2, and x→ 5/3 (5.32)
u-channel : s12 → −2, y → 3/2, and x→ 5/3. (5.33)

By carefully selecting the appropriate branch of the analytic continuation, i.e. fixing
the values of the auxiliary functions {δ(1/x), δ(−1/y), δ(y)} obtained from HyperInt,
we achieved perfect agreement for every MI that we examined.

5.5.3 Analytic checks
For the MIs of family F1 we verified the correctness of our results by cross-checking
them with the analytic results of [272]. For the MIs of families F2 and F3 we performed
analytic checks at the limit x→ 1 against the results of [270] in the Euclidean region.
While the limit x→ 1 was utilized to determine certain boundary terms, ensuring that
all MIs of families F2 and F3 accurately reproduce the results of [270] in this limit
represents a non-trivial confirmation of our calculations.

5.5.4 Ancillary files
The results obtained in our study are accessible in Mathematica readable format, and
they can be found at the GitHub repository: Planar3loops1mass.git. The repository
contains several files, including

• The file input.m, which includes essential information for the studied families,
such as the propagators described in Eqs. (5.1), (5.2), and (5.3), along with their

https://github.com/nsyrrakos/Planar3loops1mass.git
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p′2p′1

P p′3

Figure 5.3: The ladder-box (F1) family using the notation followed in [274]. The double line
represents the massive particle and all the external momenta are assumed to be incoming.

corresponding kinematic properties. Additionally, the file contains the mapping
specified in Eq. (5.6) and the alphabet presented in Eq. (5.12), which remains
the same for all the integral families.

• The directories Fi, with i = 1, 2, 3, which contain:

– Fibasis.m: the pure basis.
– FiDE.m: the canonical DE.
– FiBounds.m: boundary terms for solving the canonical DE in the Euclidean

region.
– FiE.m: the solution in the Euclidean region.
– Fis.m: the solution in the s-channel.
– Fit.m: the solution in the t-channel.
– Fiu.m: the solution in the u-channel.

5.6 Adjacency Conditions in the SDE Approach
In this section, we provide insights into the interpretation of the adjacency conditions
identified in [273, 274] within the context of the SDE approach. To accomplish this,
firstly, we establish a connection between the conventional DE method and the SDE
approach.

For the standard DE method we are going to use the notation used in [274] (see
figure 5.3). In this article, the Lorentz invariants are defined as follows

z1 = 2p′1 · p′2
P 2 , z2 = 2p′2 · p′3

P 2 and z3 = 1− z1 − z2. (5.34)

The alphabet of this family (using the standard notation [184, 259, 260]), as it is derived
by applying the standard DE method, is

{z1, z2, z3, 1− z1, 1− z2, 1− z3} → {z1, z2, 1− z1 − z2, 1− z1, 1− z2, z1 + z2}, (5.35)
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and the pure basis of MIs, g, satisfies the DE

dg = ε

(
Az1d log(z1) + Az2d log(z2) + A1−z1−z2d log(1− z1 − z2)

+ A1−z1d log(1− z1) + A1−z2d log(1− z2) + Az1+z2d log(z1 + z2)
)
g
. (5.36)

The C2 adjacency conditions [274] dictate that the letters {1−zi, 1−zj} for i, j = 1, 2, 3
and i 6= j should never appear next to each other in a symbol, or equivalently (in terms
of the residue matrices of the DE), that the residue matrices of the DE should satisfy
the following conditions

A1−z1A1−z2 = 0, A1−z1Az1+z2 = 0 and A1−z2Az1+z2 = 0. (5.37)

As we have already discussed, in our treatment of the massless three-loop planar
families with one off-shell leg, we use the notation as is depicted in Figure 5.1, while
the kinematic invariants are defined as in Eq. (5.6) with the extra introduction of the
ratio y = s23/s12. The pure basis elements satisfy the DE of Eq. (5.11), which in more
detail can be expressed in the form

d
dxG = ε

(
M0

x
+ M1

x− 1 + M−1/y

x+ 1/y + M1/(1+y)

x− 1/(1 + y)

)
G. (5.38)

From Figures 5.1 and 5.3 (using also Eq. (5.5)) we observe that the momenta in
the two different notations are related via the transformation

P → p1 + p2 − xp1, p′1 → xp1, p′2 → p4, and p′3 → p3. (5.39)

Thus replacing Eq. (5.39) in Eq. (5.34) we find that the transformation that takes us
from the {z1, z2} invariants to the {x, y} ones, is

z1 = xy

1− x and z2 = 1
1− x, (5.40)

while the reverse transformation reads

x = z2 − 1
z2

and y = z1

z2 − 1 . (5.41)

In addition, using Eq. (5.40) the alphabet in Eq. (5.35) can be written in terms of
{x, y} as (keeping the same ordering for the letters){

xy

1− x,
1

1− x,
−x(1 + y)

1− x ,−
(1 + y

1− x

)(
x− 1

1 + y

)
,
−x

1− x,
(

y

1− x

)(
x+ 1

y

)}
.

(5.42)
Having established the connection between the standard DE method and the SDE

approach, via the information stated above, we can see now how the adjacency condi-
tions are interpreted within the latter. More specifically, expressing the letters in Eq.
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(5.36) via the relation of Eq. (5.42) and differentiating with respect to x we obtain

d
dxG = ε

(
A1−z2 + Az1 + A1−z1−z2

x
+ Az1+z2

x+ 1/y + A1−z1

x− 1/(1 + y)

−Az1 + Az2 + A1−z1−z2 + A1−z1 + A1−z2 + Az1+z2

x− 1

)
G

. (5.43)

Comparing Eqs. (5.38) and (5.43), we find that following relations arise among the
residue matrices of the standard DE method and the SDE approach

A1−z1 = M1/(1+y)

Az1+z2 = M−1/y

Az2 = −M0 −M1 −M1/(1+y) −M1/(1+y)

A1−z2 = M0 −Az1 −A1−z1−z2

. (5.44)

From Eq. (5.44) we see that the matrices {A1−z1 ,Az1+z2} are completely determined by
the residue matrices of SDE, while A1−z2 remains unknown. Thus the only adjacency
relation that can be passed from the DE method to the SDE residue matrices is the

A1−z1Az1+z2 = 0⇒M1/(1+y)M−1/y = 0. (5.45)

Having the residue matrices {M1/(1+y),M−1/y} for the families F1, F2, and F3 we
checked and we found out that indeed the above relation holds true for all of them7.

Assuming that (as in the SDE approach) the alphabet of the two tennis-court
families is the same as the one of the ladder-box family, one could naively expect that
the rest of the adjacency conditions should be valid for the two tennis-court families,
as in the ladder-box family. It turns out that this is not the case. Recently the
two tennis-court families were computed (together with two non-planar ladder-box-
like families depicted in Figure 5.4), using the standard DE method [275]. Therein
it was impressively observed that although the tennis-court families indeed share the
same alphabet8 with the ladder-box family, they did not satisfy all the C2 adjacency
conditions. More specifically, for the F3 family, while it was found that the condition

A1−z2Az1+z2 = 0, (5.46)

is satisfied, it was also discovered the following violation in the adjacency conditions

A1−z1A1−z2 6= 0. (5.47)

5.7 Towards the Non-Planar Families
A natural next step is the calculation in physical kinematics (possibly expressed in
terms of GPLs) of the fifteen distinct non-planar massless three-loop FI families with
one off-shell leg, which are relevant for making full color phenomenological predictions.

7For the F1 family this was obvious, as the adjacency conditions have been already studied for this
family.

8As the alphabet is defined in the standard DE method.
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q1

q2

q3 q4

q4

q3

q2 q1

Figure 5.4: The NPL1 (top) and NPL2 (bottom) top-sector diagrams. The double line
represents the massive particle and all external momenta are taken to be incoming.

The starting point in this direction is the analysis of the four ladder-box-like families
illustrated in Figures 5.4 and 5.5. In fact, there has been already drought attention to
these families in the last year, and two of them, the ones pictured in Figure 5.4, have
been already computed in Euclidean kinematics using the standard DE method [275],
with the results being expressed in terms of GPLs. Independently from this work, we
have also computed these families using the standard DE method and a different UT
basis. We briefly summarize our results in this chapter. As in the planar case, we
define the NPL1 and NPL2 integral families through the following expressions

GNPL1
a1···a15 ≡

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k2 − q1)−2a11 (k3 − q1)−2a12

(k1)2a1 (k2)2a2 (k3)2a3 (k1 − q1)2a4 (k1 − q12)2a5

× (k1 − k2)−2a13 (k1 − k2 − q123)−2a14 (k2 − q12)−2a15

(k3 − q12)2a6 (k2 − k3)2a7 (k2 − k3 − q3)2a8 (k2 − q123)2a9 (k1 − k3)2a10

(5.48)

GNPL2
a1···a15 ≡

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k2 − q3)−2a11 (k3 − q3)−2a12

(k1)2a1 (k2)2a2 (k3)2a3 (k1 − q3)2a4 (k1 + q12)2a5

× (k1 − k2)−2a13 (k1 − k2 − q1)−2a14 (k2 + q12)−2a15

(k3 + q12)2a6 (k2 − k3)2a7 (k2 − k3 + q2)2a8 (k2 + q1)2a9 (k1 − k3)2a10

(5.49)

with ai being integers, and ai ≤ 0 for i = 11, . . . , 15. The kinematics are identical to
the ones of the planar case (see Eq. (5.4)).

Using FIRE6 [58] and KIRA2 [60] for the IBP reduction, we found for family NPL1
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(NPL2) a set of 114 (150) MIs, with 4 (4) of them at the top-sector. Studying inde-
pendently these two families and constructing pure bases9 (g) using the techniques we
described in section 5.3, we observed that, as in the case of standard DE method, in
the SDE approach the family NPL1 shares the same alphabet with the planar families,
while NPL2 family extends this alphabet by the following two more letters

l5 = 1 + y

y
and l6 = y

1 + y
. (5.50)

Having a canonical DE in the SDE approach, we constructed a system of DEs in the
following massless invariants

x̃ = S12/m
2, ỹ = S13/m

2 and z̃ = S23/m
2, (5.51)

in order to apply the standard DE method. The canonical DEs have the following form

dg = εAg = ε
∑
i

Bid log(αi)g, (5.52)

with the matrices Bi consisting of rational numbers and the letters of the DE (argu-
ments αi of the dlog forms) being

{x̃, z̃, 1− x̃, 1− z̃, 1− x̃− z̃, x̃+ z̃, 1− 2x̃+ x̃2 − z̃, x̃− x̃2 − z̃}. (5.53)

The last two letters of the above alphabet appear only in NPL2 family, and although
they contain a second-order polynomial in x̃, one can obtain an analytic solution for
this family in terms of GPLs by first integrating over z̃ and then over x̃. In order to
arrive at an analytic solution it is essential to establish boundary conditions for the MIs,
which due to their involved analytic structure (branch points at {z̃ = 0, z̃ = 1− x̃, x̃ =
0}) goes beyond the standard regularity constraints. For this reason, we pursued a
more universal strategy, investigating the solution of the DEs across all physical and
unphysical limits [241, 245]. More specifically, the d log form of Eq.(5.52) allows us to
write its solution at the limit αi = 0 as

eεBi log(αi) g|αi=0 = Ci g|αi=0 . (5.54)

where the matrices Ci contain terms of the form αniεi , with ni being the eigenval-
ues of Bi. We proceed by enforcing the condition that the unphysical singularities
{z̃ = −x̃, z̃ = 1, x̃ = 1}, meaning terms involving αniεi with ni 6= 0, must vanish at
g|αi=0. This imposition serves as another means of enforcing the conventional regu-
larity conditions. Moreover, for the physical singularities z̃ = 0, z̃ = 1− x̃, x̃ = 0, we
impose that terms involving αniεi with ni > 0 must also vanish at g|αi=0. This choice
is justified by the absence of UV divergencies in the UT basis and we verified using
expansion-by-regions [202–207] that for the specific limits, the scaling in powers of ε
never carries a positive sign. This methodology enables us to determine all necessary
boundary conditions, yielding analytic results for the two non-planar families of Figure

9Interesting is the fact that, while the techniques we used for the construction of the pure bases
are similar to the ones used in [275] our pure basis elements are different from the ones chosen therein.
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q2 q3
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Figure 5.5: The NPL3 (top) and NPL4 (bottom) top-sector diagrams. The double line
represents the massive particle and all external momenta are taken to be incoming.

5.4 in terms of GPLs up to transcendental weight six. We have cross checked our find-
ings against [275], finding perfect agreement. Our results are provided in the ancillary
files attached to the arxiv submission of [7].

Concluding we would like to make some comments on the two non-planar families
depicted in Figure 5.5, where the first of them, NPL3, consists of 173 MIs, 68 of which
are new (in the sense that they are not included in the previously studied families),
while the second, NPL4, is described by a set of 121 MIs, 9 of which are new. Interesting
is the fact that, for the construction of a pure basis for the NPL4 family one comes
across with a pure basis element which contains the following square root

root =
√
m2S12S23S13, (5.55)

something that is unprecedented for 2→ 2 particle kinematics with one external mas-
sive particle and massless loop particles, as for the corresponding families at two-loop
and one-loop there do not exist square roots nether in the definition of the basis ele-
ments nether in the alphabet. Although this square root is rationalizable, allowing for
a solution of the relevant canonical differential equations in terms of GPLs, special care
has to be taken when considering the analytic continuation to physical regions of phase
space. Furthermore, we would like to mention that the most complicated non-planar
family, which is a tennis-court-like family, contains 371 MIs, with 19 of them at the
top sector, posing a significant challenge in finding a UT basis for this family. Thus
the computation of the non-planar massless three-loop families with one off-shell leg
holds significant interest not only from a phenomenological perspective but also from a
mathematical standpoint due to the new intricate features appearing in their structure.
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Chapter 6

Epilogue

This thesis journeyed through the intricate realm of NNLO and N3LO QCD compu-
tations. For the former we presented the algorithm implemented within HELAC-2LOOP
for the recursive construction of two-loop scattering amplitudes for any process at
hand, while for the latter we presented the analytic computation of some 2→ 2 three-
loop Feynman integral families, relevant for processes like e+e− → γ∗ → 3jets and
pp→ H/Z+jet.

Despite the importance of these results, further work and extensions need to be
elaborated in the future on both directions. Current experimental data require NNLO
accuracy for many 2 → 3 QCD processes, and for conducting these computations us-
ing HELAC-2LOOP, a numerical and applicable at the integrand level, method for the
reduction of a generic two-loop scattering amplitude into a basis of two-loop FIs (sub-
sequently to be reduced to MIs using IBPs) is a necessity. Presently, in collaboration
with the research group led by the supervisor of this thesis, investigations are underway
to explore the feasibility and implementation of such an integrand reduction approach.
Furthermore, while for the moment the complete list of all the MIs relevant for two-loop
scattering amplitudes is unknown, the development of efficient libraries and routines,
akin to pentagon functions, for their computation is imperative for the automation of
NNLO QCD computation.

Regarding the N3LO corrections, the extension of the accuracy for 2→ 2 processes
at this level will be important for comparisons with the results of LHC and future
collider experiments. Beyond planar families, there exist 15 non-planar families that
need to be computed in order to complete the 4−point 3−loop massless MIs with
one external massive leg, while the number of families and MIs grows even larger by
considering more massive external particles. Beyond the phenomenological interest of
these families, of great interest is also their mathematical structure.

Concluding, the growing complexity of the NNLO and N3LO computations, consti-
tutes a great challenge for the already existing techniques and necessitates the develop-
ment of novel methods and techniques. The key that would lead to the discovery and
efficient implementation of such methods is the combination of a better understanding
of the mathematical aspects of scattering amplitudes alongside with the adoption of
new technologies and developments from Computer Science.
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Appendix A

Symmetry Factors

The symmetry factors used for the blob-topologies, within HELAC-2LOOP, are the fol-
lowings (topologies that are not included have weight W = 1):

1) :

i)L1 ≥ 1, LA = 1, L2 = L3 = 0, and LB = 0, 1
ii)L1 ≥ 1, LB = 1, L2 = L3 = 0, and LA = 0, 1

−→ W = 1/2.

2) : i)L1 = L2 = L3 = 0, and LA = LB = 1 −→ W = 1/6.

3) : i)L1 ≥ 2, and L2 = L3 = LA = LB = 0 −→ W = 1/2.

4) : i)L1 = L2 = L3 = 1, and LA = LB = 0 −→ W = 1/2.

5) :

i)L1 = 1, and L2 ≥ 2
ii)L2 = 1, and L1 ≥ 2

−→ W = 1/2.

6) : i)L1 = L2 = 1 −→ W = 1/4.

7) : i)L1 = 1, and LA = 1 −→ W = 1/4

8) :

i)L1 ≥ 2, and L2 = 1
ii)L2 ≥ 2, and L1 = 1

−→ W = 1/2 .
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