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ABSTRACT

Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs by ex-
pressing preferences among alternatives in rule heads. Intuitively, the ordered disjunction
of A and B, written as A×B, means ”A is preferred, but if A is not possible, then at least
B”. The original LPOD semantics can produce counterintuitive solutions in some cases.
In [1], a new logical semantics for LPODs is proposed, introducing an additional truth value
to indicate failure to satisfy preferences. We implement this new semantics by translating
LPODs into standard Answer Set Programs (ASP), allowing us to use answer set solvers
to find the most preferred answer sets. We show that our implementation’s performance
is comparable to existing systems.

SUBJECT AREA: Programming Language Semantics

KEYWORDS: Logic Programs with Ordered Disjunction, Answer Set Programming,
many-valued semantics



ΠΕΡΙΛΗΨΗ

Τα Λογικά Προγράμματα με Διατεταγμένη Διάζευξη (LPODs) επεκτείνουν τα κλασικά λο-
γικά προγράμματα με την έκφραση προτιμήσεων μεταξύ εναλλακτικών στις κεφαλές των
κανόνων. Διαισθητικά, η διατεταγμένη διάζευξη τουA με τοB, που συμβολίζεταιA×B, ση-
μαίνει "τοA είναι προτιμότερο, αλλά αν τοA δεν είναι δυνατό, τότε τουλάχιστονB". Η αρχική
σημασιολογία των LPODs παράγει μη διαισθητικές λύσεις σε μερικές περιπτώσεις. Στο [1],
προτείνεται μια νέα λογική σημασιολογία για τα LPODs, εισάγοντας μια επιπρόσθετη τιμή
αλήθειας που δηλώνει την αποτυχία ικανοποίησης των προτιμήσεων. Υλοποιούμε αυτή τη
νέα σημασιολογία μεταφράζοντας τα LPODs σε Answer Set Programs (ASP), επιτρέπο-
ντάς μας να χρησιμοποιήσουμε answer set solvers για να βρούμε τα προτιμότερα answer
sets. Δείχνουμε ότι η απόδοση της υλοποίησής μας μπορεί να συγκριθεί με υπάρχοντα
συστήματα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογία Γλωσσών Προγραμματισμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λογικά Προγράμματα με Διατεταγμένη Διάζευξη, Answer Set Pro-
gramming, πολύτιμη σημασιολογία
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Implementing a Logical Semantics of LPOD using ASP

1. INTRODUCTION

Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs [2] by
expressing preferences among alternatives in rule heads. Specifically, they allow rule
heads to be formulas of the form C1 × . . . × Cn, where × is a propositional connective
called “ordered disjunction” and Ci’s are literals. Intuitively, C1 × . . . × Cn means “C1 is
preferred; but if C1 is not possible, then C2 suffices; . . . if all C1, . . . , Cn−1 are not possible,
then Cn suffices”. LPODs were introduced in [3].

The original semantics [3, 4] rely on a two-phase procedure, starting with generating the
candidate answer sets of a LPOD and then filtering them in order to obtain the most pre-
ferred ones. The filtering step involved computing the degree of satisfaction for each of its
ordered disjunctive rules. However, there are cases where following this semantics could
lead to undesirable results.

In [1], a new many-valued logical semantics for LPODs is introduced. It is purely model-
theoretic and does not rely on degrees of satisfaction. Instead, it incorporates an additional
truth value to select the most preferred models based on a preferential ordering, ensuring
that top preferences fail only if they are impossible to satisfy. This approach overcomes
the shortcomings of the traditional LPOD semantics. However, there has been no imple-
mentation of this semantics so far.

In this thesis we implement this many-valued semantics for LPODs. We show that the
new semantics can be translated into standard Answer Set Programs (ASP). Even though
the answer sets of the translated logic program are two-valued, the additional truth value
can be computed by introducing extra predicates. We utilize this as we experiment with
four translations, each based on an existing LPOD system that implements the traditional
semantics.

We implemented a transpiler1, written in Haskell, that automatically generates the ASP
encodings for a given LPOD. We use clingo and asprin as the ASP solvers to compute
and identify the most preferred answer sets. We evaluated the performance of our imple-
mentations of this new semantics, comparing them both against each other and against
other existing LPOD systems implementing the original semantics. The experimental res-
ults indicate that the performance of our implementations is comparable to the existing
systems, therefore the new LPOD semantics can indeed be implemented efficiently.

Chapter 2 provides the necessary background on the syntax and semantics of LPODs.
Chapter 3 reviews related work. Chapter 4 presents known ways to compute LPOD an-
swer sets. Chapter 5 demonstrates a way for the ASP encodings to generate the F ∗

values for three-valued answer sets and introduces the four translations from LPOD to
ASP. Chapter 6 presents the experiments and compares our implementations with each
other as well as with other existing systems. Chapter 7 concludes by discussing potential
directions for future research.

1https://github.com/grnkl/lpod2asp

G. Nikolaou 9
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Implementing a Logical Semantics of LPOD using ASP

2. LOGIC PROGRAMS WITH ORDERED DISJUNCTION

2.1 Syntax and Original Semantics

Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs [2] by
expressing preferences among alternatives in rule heads.

Definition 1. A (propositional) LPOD is a set of rules of the form:

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

where the Ci , Aj , and Bl are ground literals.

Intuitively, C1 × . . .×Cn means “C1 is preferred; but if C1 is not possible, then C2 suffices;
. . . if all C1, . . . , Cn−1 are not possible, then Cn suffices”.

We will call a rule regular if it has only one head atom, otherwise (if n > 1), we will call it
ordered disjunctive.

An interpretation of an LPOD is a set of literals. An interpretation I is called consistent if
there does not exist any atom A such that both A and ¬A belong to I.

Definition 2. An interpretationM is a model of an LPOD P if and only if for every rule

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

if {A1, . . . , Am} ⊆M and {B1, . . . , Bk} ∩M = ∅ then there exists Ci ∈M .

Brewka [3] introduced a two-phase procedure to obtain the preferred answer sets of an
LPOD. In the first phase, the candidate answer sets of the LPOD are produced. In the
second phase, the most preferred ones are extracted by filtering the candidate answer
sets.

Definitions 3, 4 and 5 are associated with the first step, i.e. producing the answer sets of
the LPOD.

Definition 3. For an LPOD rule C1 × . . . × Cn ← A1, . . . , Am, not B1, . . . , not Bk, its k-th
option (k ∈ {1, . . . , n}) is defined as:

Ci ← A1, . . . , Am, not B1, . . . , not Bk, not C1, . . . , not Ci−1.

A split program of an LPOD P is obtained from P by replacing each ordered disjunctive
rule in P by one of its options.
Example 1. The LPOD program (from [3])

a× b ← not c, b× c ← not d

has the following split programs:
a← not c a← not c
b← not d c← not d, not b

b← not c, not a b← not c, not a
b← not d c← not d, not b

G. Nikolaou 10
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Definition 4. Let P be an LPOD. The ×-reduct of a rule R of P of the form:

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

with respect to a set of literals I, is denoted by RI
× and is defined as follows:

RI
× = {Ci← A1, . . . , Am | Ci ∈ I and I ∩ {C1, . . . , Ci−1, B1, . . . , Bk} = ∅}

The ×-reduct of P with respect to I is denoted by P I
× and is the union of the reducts RI

×
for all R in P .

Definition 5. A setM of literals is an answer set of an LPOD P ifM is a consistent model
of P andM is the least model of PM

× .

In the second phase, the ”most preferred” answer sets are produced using the concept of
the the degree of satisfaction of a rule in an answer set:

Definition 6. LetM be an answer set of an LPOD P . Then,M satisfies the rule:

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

• to degree 1 if Aj /∈M , for some j, or Bi ∈M , for some i,

• to degree l, 1 ≤ l ≤ n, if all Aj ∈M , no Bi ∈M , and l = min{r | Cr ∈M}

When an LPOD P contains m ordered disjunctive rules, the satisfaction degree list of a
candidate answer set M of P is (d1, . . . , dm) where di is the degree to which M satisfies
the i-th ordered disjunctive rule.

Definition 7. For a candidate answer set M of LPOD P , let M i(P ) denote the set of
ordered disjunctive rules satisfied by M to degree i. For candidate answer sets M1 and
M2 of P , four preference relations have been introduced:

1. Cardinality-Preferred: M1 is cardinality-preferred toM2 if there is a i ≥ 1 such that
|M i

1(P )| > |M i
2(P )|, and |M

j
1 (P )| = |M

j
2 (P )| for all j < i. [4]

2. Inclusion-Preferred: M1 is inclusion-preferred to M2 if there is a i ≥ 1 such that
M i

2(P ) ⊂M i
1(P ), andM

j
1 (P ) =M j

2 (P ) for all j < i. [3]

3. Pareto-Preferred: M1 is Pareto-preferred toM2 if there is a rule that is satisfied to a
lower degree inM1 than inM2, and there is no rule that is satisfied to a lower degree
inM2 than inM1. [4]

4. Penalty-Sum-Preferred: M1 is penalty-sum-preferred toM2 if the sum of the satis-
faction degrees of all rules is smaller inM1 than inM2. [5]

Example 2. Consider the ”cars” program:

mercedes × bmw.
gas_mercedes × diesel_mercedes ← mercedes.
¬gas_mercedes.

G. Nikolaou 11
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which reads ”I prefer to buy a Mercedes than a BMW. If a Mercedes is available, I prefer
a gas model to a diesel one. A gas model of Mercedes is not available”. This LPOD
has two candidate answer sets: M1 = {mercedes, diesel_mercedes,¬gas_mercedes} and
M2 = {bmw,¬gas_mercedes}. M1 satisfies the first rule with degree 1, the second rule with
degree 2, and the third rule with degree 1. M2 satisfies the first rule with degree 2, the
second rule with degree 1 (since its body evaluates to false), and the third rule with degree
1. According to the preference statements in Definition 7, the program’s answer sets are
either incomparable or both (equally) preferred.

Example 3. (From [4]) Assume that we want to book accommodation for a conference.
We prefer a 3-star hotel over a 2-star hotel. We also prefer our hotel to be in walking
distance from the conference venue:

walking × ¬walking.
3-stars × 2-stars.

Also assume that the only 3-star hotel (say hotel1) is not in walking distance, and the only
2-star hotel (say hotel2) is in walking distance. The answer sets representing these two
options are incomparable according to the four preference criteria, because hotel1 satisfies
the first rule to degree 2 and the second rule to degree 1, while hotel2 satisfies the first
rule to degree 1 and the second rule to degree 2.

Now assume we learn that there is also a 4-star hotel that, however, is not an option due to
financial reasons. We make the following (seemingly ”innocent”) change to the program:

walking × ¬walking.
4-stars × 3-stars × 2-stars.
¬4-stars.

In the new program, hotel1 satisfies the first rule to degree 2 and the second rule to de-
gree 2, while hotel2 satisfies the first rule to degree 1 and the second rule to degree 3.
Now, hotel2 is preferred to hotel1, according to the cardinality-preference and inclusion-
preference criteria. On the other hand, under the Pareto-preference and the penalty-sum-
preference criteria, the answer sets remain incomparable.

This example is used in [4] to demonstrate how the inclusion-preference criterion is af-
fected by the presence of unsatisfiable better options. We realize that using the ”degree
of satisfaction of rules” semantics, an apparently insignificant modification to the program
can have a significant impact on the final preferred answer set.

2.2 Redefining the Answer Sets of LPODs using Three-Valued Semantics

In [1], a third truth value F ∗ is introduced to define the semantics of LPODs. Intuitively,
F ∗ means ”impossible to make true,” while F means ”false by default.” In the ordered
disjunction C1 × C2, we accept C2 only if C1 is impossible to make true, meaning that
attempting to make C1 true would cause the interpretation to become inconsistent.

Example 4. Consider the program:

wine × beer.
¬wine.

G. Nikolaou 12
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Under traditional semantics, the most preferred (and only) answer set of this program is
{beer,¬wine}, but according to the three-valued approach, the most preferred answer
set is {(wine, F ∗), (beer, T ), (¬wine, T )}. Notice that {(wine, F ), (beer, T ), (¬wine, T )} is
an inconsistent interpretation of the program, hence wine receives the value F ∗ (it’s not
possible to make it equal to T ). The semantics of ”×” is defined as follows:

Let u, v ∈ {F, F ∗, T}. Then:

u× v =

{
v, if u = F ∗

u, otherwise

The intuitive meaning of this definition is that we return v only if it is impossible to satisfy
u; otherwise we return u.

The new definition of the answer sets of LPODs presented in [1] is based on a three-
valued logic and enables us to figure out the most preferred answer sets using a purely
model-theoretic approach.

Definition 8. Let Σ be a nonempty set of propositional literals. The set of well-formed
formulas is inductively defined as follows:

• Every element of Σ is a well-formed formula,

• The 0-place connective F ∗ is a well-formed formula,

• If ϕ1 and ϕ2 are well-formed formulas, then (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), ( not ϕ1), (ϕ1 ← ϕ2),
and (ϕ1 × ϕ2), are well-formed formulas.

The meaning of formulas is defined over the set of truth values {F, F ∗, T} which are
ordered as F < F ∗ < T . For v1, v2 in {F, F ∗, T}, we write v1 ≤ v2 iff either v1 < v2 or
v1 = v2.

Definition 9. A (three-valued) interpretation I is a function from Σ to the set {F, F ∗, T}.
We can extend I to apply to formulas, as follows:

I(F ∗) = F ∗

I( not ϕ) =

{
T, if I(ϕ) ≤ F ∗

F, otherwise

I(ϕ← ψ) =

{
T, if I(ϕ) ≥ I(ψ)
F, otherwise

I(ϕ1 ∧ ϕ2) = min{I(ϕ1), I(ϕ2)}
I(ϕ1 ∨ ϕ2) = max{I(ϕ1), I(ϕ2)}

I(ϕ1 × ϕ2) =

{
I(ϕ2), if I(ϕ1) = F ∗

I(ϕ1), otherwise

Notice that the meanings of ”∧”, ”∨” and ”×” are associative, therefore writing I(ϕ1 ∨ · · · ∨
ϕn), I(ϕ1 ∧ · · · ∧ ϕn), and I(ϕ1 × · · · × ϕn) (without using parentheses) is unambiguous.

Definition 10. An interpretation I is a model of an LPOD P if every rule of P evaluates to
T under I. An interpretation I of P is called consistent if there do not exist literals A and
¬A in P such that I(A) = I(¬A) = T .

G. Nikolaou 13
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Definition 11. Let P be an LPOD. The ×-reduct of a rule R of P of the form:

C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , not Bk

with respect to an interpretation I, is denoted by RI
× and is defined as follows:

• If I(Bi) = T for some i, 1 ≤ i ≤ k, then RI
× is the empty set.

• If I(Bi) ̸= T for all i, 1 ≤ i ≤ k, then RI
× is the set that contains the rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

where r is the least index such that I(C1) = · · · = I(Cr−1) = F ∗ and either r = n or
I(Cr) ̸= F ∗.

The ×-reduct of P with respect to I is denoted by P I
× and is the union of the reducts RI

×
for all R in P .

The main difference between Definitions 4 and 11 are the rules Ci ← F ∗, A1, . . . , Am in-
cluded in the reduct of Definition 11. These rules enable F ∗ to be produced for Ci when
I(A1) = · · · = I(Am) = T . Otherwise there would be no way for the value F ∗ to be
produced by the reduct.

Definition 12. Let P be an LPOD and M an interpretation of P . We say that M is a
(three-valued) answer set of P ifM is consistent and it is the ≤-least model of PM

× .

The preference relation over the answer sets of LPODs is defined next. Intuitively, the
most preferred answer sets of LPODs are those that are more likely to satisfy the top
choices in ordered disjunctions. Minimizing with respect to F ∗ values will accomplish this.

Definition 13. Let P be an LPOD and let M1,M2 be answer sets of P . Let M∗
1 and M∗

2

be the sets of literals in M1 and M2 respectively that have the value F ∗. We say that M1

is preferred toM2, writtenM1 ⊏M2, ifM∗
1 ⊂M∗

2 .

Definition 14. An answer set of an LPOD P is calledmost preferred if it is minimal among
all the answer sets of P with respect to the ⊏ relation.

Let’s reconsider some of the previous examples under the new semantics.

Example 5. The ”cars” program from Example 2 has two answer sets, namely:

M1 = {(mercedes, T ), (bmw, F ), (gas_mercedes, F ∗),
(diesel_mercedes, T ), (¬gas_mercedes, T )}

M2 = {(mercedes, F ∗), (bmw, T ), (gas_mercedes, F ∗),
(diesel_mercedes, F ∗), (¬gas_mercedes, T )}

According to the ⊏ ordering, the most preferred answer set isM1.

G. Nikolaou 14
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Example 6. Consider the ”hotels” program from Example 3. Assuming that there are no
3-star hotels in walking distance and and that there are no 2-star hotels outside of walking
distance, we get two incomparable answer sets:

M1 = {(walking, T ), (¬walking, F ), (3-stars, F ∗), (2-stars, T )}
M2 = {(walking, F ∗), (¬walking, T ), (3-stars, T ), (2-stars, F )}

Consider now the modified program containing the unsatisfiable better option of a 4-star
hotel). Under the same assumption as above, we get the answer sets:

M ′
1 = {(walking, T ), (¬walking, F ), (3-stars, F ∗), (2-stars, T ),

(4-stars, F ∗), (¬4-stars, T )}
M ′

2 = {(walking, F ∗), (¬walking, T ), (3-stars, T ), (2-stars, F ),
(4-stars, F ∗), (¬4-stars, T )}

Under the new approach, these two answer sets are also incomparable.

Additionally, a result is given in [1] that illustrates the relationship between the answer sets
of LPODs produced using the original and the new approach.

Definition 15. Let I be a three-valued interpretation of LPOD P . We define collapse(I)
to be the set of literals L in P such that I(L) = T .

Lemma1. LetP be an LPODandM be a three-valued answer set ofP . Then, collapse(M)
is an answer set of P according to Definition 5.

Lemma 2. Let N be an answer set of P according to Definition 5. There exists a unique
three-valued interpretationM such thatN = collapse(M) andM is a three-valued answer
set of P .

It has been shown that this interpretation M can be reconstructed from N and P . Let F
be the set containing the propositional atoms that have the value F ∗. Then, M can be
defined as

M(A) =


F A ̸∈ N and A ̸∈ F
F ∗ A ̸∈ N and A ∈ F
T A ∈ N

The set F can be defined as the limit of the sequence {F i}i<ω where:

F0 = ∅
Fn+1 = {Cj |(C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , not Bk) ∈ P

{A1, . . . , Am} ⊆ N ∪ Fn, {C1, . . . , Cj, B1, . . . , Bk} ∩N = ∅}
F = ∪n<ωFn

Therefore, there is a bijection between the answer sets produced by the approach pro-
posed in [1] and the original ones. The only difference between a three-valued answer
set and the corresponding two-valued one is that some literals of the former have an F ∗

value instead of an F . These F ∗ values are the ones that enable us to determine the most
preferred answer sets.

G. Nikolaou 15
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3. RELATED WORK

Brewka et al. in [6] demonstrated how LPODs can be implemented using answer set
solvers for non-disjunctive programs. Their system psmodels involves the execution of
two programs, a generator of candidate answer sets and a tester program that decides
whether a given candidate answer set is maximally preferred or uses the generator to
produce an more preferred one, in case it isn’t. Similar to their generator program, our
third translation encodes all split programs into a single ASP.

Cabalar implements the translation of LPODs into regular logic programs in [7] using DLV
as a backend. This implementation also uses a generator and a tester program, but the
encoding of generating candidate answer sets is different. The encoding is similar to the
one in our final translation.

Lee and Yang presented a translation from LPOD to ASP in [8] using assumption pro-
grams. The reduction from LPOD to ASP is a one-pass approach where preferred answer
sets are computed by calling an answer set solver once, generating all candidate answer
sets, and then applying preference criteria in a single execution, unlike other implement-
ations, which require multiple calls to the answer set solver. Our first translation, similar
to theirs, uses a weak constraint to ensure all candidate answer sets are generated by
the answer set solver. Since this approach increases the complexity of the computation,
we present an alternative second implementation which, while still utilizing assumption
programs, uses asprin in order to identify the most preferred answer sets.

Our final implementation is most similar to Lee and Yang’s lpod2asprin [9], which uses
Cabalar’s method for generating candidate answer sets as well as asprin for calculating
the satisfaction degrees in each answer set in order to find the most preferred ones. We
also use Cabalar’s method in our final implementation along with asprin, applying the
subset preference criterion to the sets of atoms that take the F ∗ value in each candidate
answer set.

G. Nikolaou 16
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4. COMPUTING LPOD ANSWER SETS

In this chapter we explore different approaches in generating candidate answer sets for
LPODs, each based on existing ideas.

The first approach uses the concept of assumption programs, as introduced by Lee and
Yang in [8]. The next approach adopts the concept of split programs, used by Brewka in
[3]. The final approach utilizes Cabalar’s method [7].

4.1 Generating LPOD Answer Sets using Assumption Programs

Consider an LPOD with m ordered disjunctive rules. For each rule i (i ∈ {1, . . . ,m})

C1
i × · · · × C

ni
i ← A1

i , . . . , A
mi
i , not B1

i , . . . , not B
ki
i

its xi-th assumption, denoted by Oi(xi), is defined as the set of ASP rules

bodyi ← A1
i , . . . , A

mi
i , not B1

i , . . . , not B
ki
i

⊥ ← x = 0, bodyi

⊥ ← x > 0, not bodyi

Cj
i ← bodyi, x = j (for 1 ≤ j ≤ ni)
⊥ ← bodyi, x ̸= j, not C1

i , . . . , not C
j−1
i , Cj

i (for 1 ≤ j ≤ ni)

where bodyi is an auxiliary atom for each ordered disjunctive rule i, that does not appear
in P , and ⊥ denotes an empty rule head.

The first three rules guarantee that the body of rule i is false iff x = 0. The next rule
represents Cj

i being true when x = j and the last rule ensures that all C1
i , . . . , C

j−1
i are

false under the same assumption (x = j).

An assumption program of an LPOD is obtained by replacing each of its ordered dis-
junctive rules by one of its assumptions. In an LPOD with m ordered disjunctive rules, if
each ordered disjunctive rule i is replaced by its xi-th assumption, we call (x1, . . . , xm) the
assumption degree list of the assumption program.

The following proposition from [8] states that assumption programs can produce the can-
didate answer sets.

Proposition 1. For any LPOD P and any set S of atoms, S is a candidate answer set of P
iff S ∪ {bodyi | S satisfies the body of ordered disjunctive rule i} is an answer set of some
assumption program of P .

Example 1 (Continued) The LPOD

a× b ← not c, b× c ← not d

has the following assumptions:
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O1(X1) : body1 ← not c O2(X2) : body2 ← not d
⊥ ← X1 = 0, body1 ⊥ ← X2 = 0, body2
⊥ ← X1 > 0, not body1 ⊥ ← X2 > 0, not body2
a ← body1, X1 = 1 b ← body2, X2 = 1
b ← body1, X1 = 2 c ← body2, X2 = 2
⊥ ← body1, X1 ̸= 1, a ⊥ ← body2, X2 ̸= 1, b
⊥ ← body1, X1 ̸= 2, not a, b ⊥ ← body2, X2 ̸= 2, not b, c

where X1 and X2 are variables that range over {0, 1, 2}. Therefore, it has 9 assumption
programs. It is easy to verify that assumption programs O1(1) ∪ O2(1), O1(2) ∪ O2(1) and
O1(0) ∪ O2(2) produce the answer sets {a, b}, {b} and {c} respectively, which are exactly
the candidate answer sets of the LPOD.

4.2 Generating LPOD Answer Sets using Split Programs

Recall the definition of split programs from Chapter 3. Brewka [3, Definition 3] defines the
answer sets of an LPOD as the answer sets obtained from its split programs. Formally:

Proposition 2. Let P be an LPOD. A set of literalsA is an answer set of P if it is an answer
set of a split program P ′ of P .

Example 1 (Continued) The LPOD P

a× b ← not c, b× c ← not d

has four split programs:

a← not c a← not c
b← not d c← not d, not b

b← not c, not a b← not c, not a
b← not d c← not d, not b

Each of these split programs has the following answer sets respectively:

{a, b} {c}

{b} {b}, {c}

These are the candidate answer sets of the LPOD P .

4.3 Generating LPOD Answer Sets using Cabalar’s method

In [7], Cabalar proposed the following translation for LPOD rules C1 × · · · × Cn ← Body:

Ci ∨ not Ci ← Body, not C1, . . . , not Ci−1 for i ∈ {1, . . . , n}
⊥ ← Body, not C1, . . . , not Cn
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where Body denotes the rules body and ⊥ denotes an empty rule head.

Lee and Yang in [9] encoded the above translation in ASP as:

body ← Body

{Ci} ← body, not C1, . . . , not Ci−1 for i ∈ {1, . . . , n− 1}
Cn ← body, not C1, . . . , not Cn−1

where Body denotes the rules body and body is an auxiliary atom not appearing in the
LPOD.

Example 1 (Continued) The LPOD P

a× b ← not c, b× c ← not d

is translated to the following ASP:

body1 ← not c body2 ← not d
{a} ← body1 {b} ← body2
b ← body1, not a c ← body2, not b

that has three candidate answer sets, namely {a, b}, {b}, {c}.

Notice that the ASP translations in the above sections produce two-valued answer sets,
corresponding to the original LPOD semantics. In order to obtain the three-valued ones,
we need additional rules that produce the necessary F ∗ values.
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5. TRANSLATING LPOD INTO ASP UNDER NEW SEMANTICS

The purpose of this chapter is to implement the proposed three-valued semantics for
LPODs. In traditional approaches, implementation of LPOD semantics relied on answer
set solvers. They involved translating LPODs into standard answer set programs, for an-
swer set solvers to produce the most preferred answer sets. Following a similar approach,
we present four implementations, based on the ideas in Chapter 4.

First, we must demonstrate a way for the ASP encodings to generate the F ∗ values for a
three-valued answer set M of a LPOD P . Recall the discussion after Lemma 2 and how
the set F of the atoms that have the F ∗ value can be defined as the limit of a particular
sequence.

This sequence can be encoded using the predicates isFstar/1 and isTFstar/1. For each
atom A in LPOD P , isFstar(A) holds when M(A) = F ∗ and isTFstar(A) holds when
M(A) = T orM(A) = F ∗. We now define the set of ASP rules that produce the necessary
F ∗ values in the LPOD answer sets.

Definition 16. Let P be an LPOD. We use the following set of rules to produce the F ∗

values in the answer sets of P :

For each ordered disjunctive rule C1× . . .×Cn ← A1, . . . , Am, not B1, . . . , not Bk in P and
for i ∈ {1, . . . , n}, the rules:

body ← A1, . . . , Am, not B1, . . . , not Bk (5.1)
isFstar(Ci)← isTFstar(body), isFstar(C1), . . . , isFstar(Ci−1), not Ci (5.2)

isFstar(body)← not body, isTFstar(A1), . . . , isTFstar(Am), not B1, . . . , not Bk (5.3)

where body is an auxiliary atom not appearing in P .

For each regular rule C ← A1, . . . , Am, not B1, . . . , not Bk in P , the rule:

isFstar(C)← not C, isTFstar(A1), . . . , isTFstar(Am), not B1, . . . , not Bk (5.4)

For each atom A in P as well as the auxiliary body atoms, the rules:

isTFstar(A)← isFstar(A) (5.5)
isTFstar(A)← A (5.6)

Rules (5.2) produce the F ∗ value for the i-th atom in the rule’s head if it cannot be satis-
fied and all previous head atoms also take the F ∗ value. Rule (5.3) produces the F ∗ value
for the auxiliary body atom if the rule’s body is not satisfied but none of the body literals
evaluate to F (at least one evaluates to F ∗ and the others may take the T value as well).
Rule (5.4) produces the F ∗ value for regular rule heads and it is similar to rule (5.3). Rules
(5.5) and (5.6) define the isTFstar predicate.

We can now present our four implementations of the three-valued semantics. The first two
implementations adopt the concept of assumption programs. The third implementation
uses split programs and the final one utilizes Cabalar’s method for generating answer
sets.
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5.1 Translating LPOD into ASPusingAssumption Programs andWeakConstraints

Our first implementation is based on Lee and Yang’s [8] translation of LPODs into ASP
using assumption programs and a weak constraint. The purpose of the weak constraint
is to produce all candidate answer sets in a single execution. The ASP encoding contains
rules to compare the answer sets and identify the most preferred ones.

Definition 17. Let P be an LPOD with m ordered disjunctive rules. The translation of P
contains the following rules:

1. Two rules for declaring and computing all assumption programs:

{ap(X1, . . . , Xm) : X1 = 0..n1, . . . , Xm = 0..nm}. (5.7)
:∼ ap(X1, . . . , Xm). [−1, (X1, . . . , Xm)] (5.8)

where X1, . . . , Xm are variables and (X1, . . . , Xm) represents the assumption degree list
of the corresponding assumption program. Rule (5.8) is a weak constraint which ensures
that all assumption programs will be considered, therefore all candidate answer sets will
be computed in order to extract the most preferred ones.

2. For each regular rule C ← Body in P , the rule:

C(X1, . . . , Xm)← ap(X1, . . . , Xm), Body(X1, . . . , Xm). (5.9)

where Body denotes the rule’s body and Body(X1, . . . , Xm) is obtained by replacing each
atom A in Body with A(X1, . . . , Xm).

3. For each ordered disjunctive rule C1
i × . . .× C

ni
i ← Bodyi in P , the rules:

bodyi(X1, . . . , Xm)← ap(X1, . . . , Xm), Bodyi(X1, . . . , Xm). (5.10)
⊥ ← ap(X1, . . . , Xm), Xi = 0, bodyi(X1, . . . , Xm). (5.11)
⊥ ← ap(X1, . . . , Xm), Xi > 0, not bodyi(X1, . . . , Xm). (5.12)

And for 1 ≤ r ≤ ni, the rules:

Cr
i (X1, . . . , Xm)← bodyi(X1, . . . , Xm), Xi = r. (5.13)

⊥ ← bodyi(X1, . . . , Xm), Xi ̸= r, (5.14)
not C1

i (X1, . . . , Xm), . . . , not C
r−1
i (X1, . . . , Xm), C

r
i (X1, . . . , Xm).

4. For each ordered disjunctive rule C1
i × . . . × C

ni
i ← A1

i , . . . , A
ai
i , not B

1
i , . . . , not B

bi
i in

P and for j ∈ {1, . . . , n}, the rules:

isFstar(Cj
i (X1, . . . , Xm))← ap(X1, . . . , Xm), isTFstar(bodyi(X1, . . . , Xm)), (5.15)

isFstar(C1
i (X1, . . . , Xm)), . . . , isFstar(C

j−1
i (X1, . . . , Xm)), not C

j
i (X1, . . . , Xm).

isFstar(bodyi(X1, . . . , Xm))← ap(X1, . . . , Xm), not bodyi(X1, . . . , Xm), (5.16)
isTFstar(A1

i (X1, . . . , Xm)), . . . , isTFstar(A
ai
i (X1, . . . , Xm)),

not B1
i (X1, . . . , Xm), . . . , not B

bi
i (X1, . . . , Xm).
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5. For each regular rule C ← A1, . . . , Aa, not B1, . . . , not Bb in P , the rule:

isFstar(C(X1, . . . , Xm))← ap(X1, . . . , Xm), not C(X1, . . . , Xm),

isTFstar(A1(X1, . . . , Xm)), . . . , isTFstar(Aa(X1, . . . , Xm)), (5.17)
not B1(X1, . . . , Xm), . . . , not Bb(X1, . . . , Xm).

6. For each atom A in P as well as the auxiliary bodyi atoms, the rules:

isTFstar(A(X1, . . . , Xm))← isFstar(A(X1, . . . , Xm)). (5.18)
isTFstar(A(X1, . . . , Xm))← A(X1, . . . , Xm). (5.19)

Rules (5.10)-(5.14) for each ordered disjunctive rule in the LPOD correspond to its as-
sumption (and are also found in [8]). The rules (5.15)-(5.19) from Definition 16 produce
the necessary F ∗ values.

Up to this point, the translation can produce the (three-valued) candidate answer sets of
the LPOD. In order to be able to compare them, we need rules that define the preference
relation of Definition 13. Namely, we need rules that produce theM∗ set of each candidate
answer setM and also define the subset relation between theseM∗ sets:

7. For all atoms A that appear in rule heads:

isFstar(X1, ..., Xm, A)← isFstar(A(X1, ..., Xm)). (5.20)

As well as:

count_intersection((X1, . . . , Xm), (Y1, . . . , Ym), Cnt)← ap(X1, . . . , Xm), (5.21)
ap(Y1, . . . , Ym), Cnt =#count{A : isFstar(X1, . . . , Xm, A), isFstar(Y1, . . . , Ym, A)}.

count_set((X1, . . . , Xm), C)← ap(X1, . . . , Xm), C =#count{A : isFstar(X1, . . . , Xm, A)}.
(5.22)

subset(S1, S2)← count_intersection(S1, S2, CI), count_set(S1, C1), (5.23)
count_set(S2, C2), CI = C1, C1 < C2.

pAS(X1, . . . , Xm)← ap(X1, . . . , Xm), {subset(P, (X1, . . . , Xm))} 0. (5.24)

Rules (5.20)-(5.23) define the ⊏ relation utilizing the following equivalence: ”A ⊆ B ⇐⇒
|A| = |A ∩ B|”. Rules (5.21) and (5.22) are used to count the number of F ∗ atoms in
the intersection of two answer sets and an answer set respectively. Rule (5.23) basically
requires |M∗

1 | = |M∗
1 ∩M∗

2 | and |M∗
1 | < |M∗

2 | for answer setsM1,M2 in order for ”M1 ⊏M2”
to hold. Rule (5.24) defines the answer set corresponding to the assumption program with
assumption degree list (X1, . . . , Xm) to be the most preferred one if it is minimal among
all candidate answer sets with respect to the ⊏ relation.

Example 1 (Continued) The LPOD

a× b ← not c, b× c ← not d

is translated into the following ASP (in the input language of clingo):
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{ap(X1,X2): X1 = 0..2, X2 = 0..2}.
#minimize {-1,(X1,X2):ap(X1,X2)}.

% a * b <- not c.
body_1(X1,X2) :- ap(X1,X2), not c(X1,X2).
:- ap(X1,X2), X1 = 0, body_1(X1,X2).
:- ap(X1,X2), X1 > 0, not body_1(X1,X2).

a(X1,X2) :- body_1(X1,X2), X1 = 1.
b(X1,X2) :- body_1(X1,X2), X1 = 2.
:- body_1(X1,X2), X1 != 1, a(X1,X2).
:- body_1(X1,X2), X1 != 2, not a(X1,X2), b(X1,X2).

isFstar(a(X1,X2)) :- ap(X1,X2), isTFstar(body_1(X1,X2)), not a(X1,X2).
isFstar(b(X1,X2)) :- ap(X1,X2), isTFstar(body_1(X1,X2)), isFstar(a(X1,X2)),

not b(X1,X2).
isFstar(body_1(X1,X2)) :- ap(X1,X2), not body_1(X1,X2), not c(X1,X2).

% b * c <- not d.
body_2(X1,X2) :- ap(X1,X2), not d(X1,X2).
:- ap(X1,X2), X2 = 0, body_2(X1,X2).
:- ap(X1,X2), X2 > 0, not body_2(X1,X2).

b(X1,X2) :- body_2(X1,X2), X2 = 1.
c(X1,X2) :- body_2(X1,X2), X2 = 2.
:- body_2(X1,X2), X2 != 1, b(X1,X2).
:- body_2(X1,X2), X2 != 2, not b(X1,X2), c(X1,X2).

isFstar(b(X1,X2)) :- ap(X1,X2), isTFstar(body_2(X1,X2)), not b(X1,X2).
isFstar(c(X1,X2)) :- ap(X1,X2), isTFstar(body_2(X1,X2)), isFstar(b(X1,X2)),

not c(X1,X2).
isFstar(body_2(X1,X2)) :- ap(X1,X2), not body_2(X1,X2), not d(X1,X2).

% isTFstar rules
isTFstar(a(X1,X2)) :- isFstar(a(X1,X2)).
isTFstar(a(X1,X2)) :- a(X1,X2).
isTFstar(b(X1,X2)) :- isFstar(b(X1,X2)).
isTFstar(b(X1,X2)) :- b(X1,X2).
isTFstar(c(X1,X2)) :- isFstar(c(X1,X2)).
isTFstar(c(X1,X2)) :- c(X1,X2).
isTFstar(d(X1,X2)) :- isFstar(d(X1,X2)).
isTFstar(d(X1,X2)) :- d(X1,X2).

isTFstar(body_1(X1,X2)) :- isFstar(body_1(X1,X2)).
isTFstar(body_1(X1,X2)) :- body_1(X1,X2).
isTFstar(body_2(X1,X2)) :- isFstar(body_2(X1,X2)).
isTFstar(body_2(X1,X2)) :- body_2(X1,X2).

% make M* sets
isFstar(X1,X2, a) :- isFstar(a(X1,X2)).
isFstar(X1,X2, b) :- isFstar(b(X1,X2)).
isFstar(X1,X2, c) :- isFstar(c(X1,X2)).
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% preference rules
count_intersection((X1,X2),(Y1,Y2), Cnt) :- ap(X1,X2), ap(Y1,Y2),

Cnt = #count{A : isFstar(X1,X2,A), isFstar(Y1,Y2,A)}.
count_set((X1,X2), Cnt) :- ap(X1,X2), Cnt = #count{A : isFstar(X1,X2,A)}.
subset(S1,S2) :- count_intersection(S1,S2,CI), count_set(S1,C1), count_set(S2,C2),

CI = C1, C1 < C2.
pAS(X1,X2) :- ap(X1,X2), {subset(P,(X1,X2))}0.

The optimal answer set of the translation contains the following atoms:

ap(0,2) body_2(0,2) isTFstar(body_2(0,2)) c(0,2) isTFstar(c(0,2)) isFstar(b(0,2))
isTFstar(b(0,2))

ap(1,1) body_1(1,1) isTFstar(body_1(1,1)) body_2(1,1) isTFstar(body_2(1,1)) a(1,1)
isTFstar(a(1,1)) b(1,1) isTFstar(b(1,1))

ap(2,1) body_1(2,1) isTFstar(body_1(2,1)) body_2(2,1) isTFstar(body_2(2,1))
isFstar(a(2,1)) isTFstar(a(2,1)) b(2,1) isTFstar(b(2,1))

isFstar(0,2,b) isFstar(2,1,a)

count_set((0,2),1) count_set((1,1),0) count_set((2,1),1)

count_intersection((0,2),(0,2),1) count_intersection((1,1),(0,2),0)
count_intersection((2,1),(0,2),0) count_intersection((0,2),(1,1),0)
count_intersection((1,1),(1,1),0) count_intersection((2,1),(1,1),0)
count_intersection((0,2),(2,1),0) count_intersection((1,1),(2,1),0)
count_intersection((2,1),(2,1),1)

subset((1,1),(0,2)) subset((1,1),(2,1))

pAS(1,1)

Assumption programs with degree lists (0, 2), (1, 1), (2, 1) correspond to the answer sets
{(a, F ), (b, F ∗), (c, T ), (d, F )}, {(a, T ), (b, T ), (c, F ), (d, F )}, {(a, F ∗), (b, T ), (c, F ), (d, F )} re-
spectively, which are exactly the candidate answer sets of the LPOD. The auxiliary body
atoms are produced, as well as atoms related to the preference relation between can-
didate answer sets. The presence of the pAS(1, 1) atom suggests that the answer set
corresponding to the assumption program (1, 1), namely {(a, T ), (b, T ), (c, F ), (d, F )}, is
the most preferred answer set of the LPOD.

5.2 Translating LPOD into ASP using Assumption Programs and asprin

As Lee and Yang point out in [8], using a translation that computes all assumption pro-
grams makes the size of the resulting program exponential to the number of ordered dis-
junctive rules. And since assumption programs are independent of one another, we could
consider computing them separately. They also mention asprin [10] as a potential tool for
expressing and computing preferences over answer sets.

Rule (5.7) of the translation generates a set of ap(x1, . . . , xm) atoms, each of which cor-
responds to a distinct assumption program characterized by its assumption degree list
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(x1, . . . , xm). Rule (5.8) is a weak constraint that maximizes the number of ap/m atoms by
adding a negative penalty of -1 for each ap atom in the translation program’s answer set,
i.e. for each assumption program considered in the translation. Rule (5.7) enables the
clingo solver to produce several answer sets, but rule (5.8) restricts the optimal answer
sets to only one, that is the one that includes all candidate answer sets of the translated
LPOD. We realize that this approach undoubtedly leads to many unnecessary computa-
tions.

In our next approach, we alter the translation so it generates one candidate answer set at
a time and then we utilize asprin in order to express the ⊏ relation, which enables us to
distinguish the most preferred answer sets. Specifically, we change rule (5.7) to:

{ap(X1, . . . , Xm) : X1 = 0..n1, . . . , Xm = 0..nm} = 1. (5.25)

and we omit rule (5.8). Rule (5.25) ensures all models the solver produces contain exactly
one assumption program and therefore one candidate answer set of the translated LPOD.
And since rules (5.20)-(5.24) were used to compare candidate answer sets produced in
the same model of the translation, we also don’t need them anymore. Instead, since we
use asprin that compares candidate answer sets across models of the translation, we
need new rules that produce theM∗ sets for each answer set:

For all atoms that appear in rule heads:

mstar(A)← isFstar(A(X1, ..., Xm)). (5.26)

The predicatemstar/1 representing the set of atoms that get theF ∗ value in an assumption
program without denoting its assumption degree list facilitates the comparison of different
candidate answers by asprin based on theirM∗ sets.

Definition 18. Rules (5.25), (5.9)-(5.19) and (5.26) constitute the base program of the
translation of an LPOD with m ordered disjunctive rules. In order to compare the answer
sets, we use the asprin rules:

#preference(p, subset){mstar(X)}. (5.27)
#optimize(p). (5.28)

In rule (5.27) the preference statement p defines a subset preference over themstar atoms.
Rule (5.28) instructs asprin to compute answer sets that are optimal with respect to p.

Example 1 (Continued) The LPOD

a× b ← not c, b× c ← not d

is translated into the following ASP:

{ap(X1,X2): X1 = 0..2, X2 = 0..2} = 1.

% a * b <- not c.
body_1(X1,X2) :- ap(X1,X2), not c(X1,X2).
:- ap(X1,X2), X1 = 0, body_1(X1,X2).
:- ap(X1,X2), X1 > 0, not body_1(X1,X2).

a(X1,X2) :- body_1(X1,X2), X1 = 1.
b(X1,X2) :- body_1(X1,X2), X1 = 2.
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:- body_1(X1,X2), X1 != 1, a(X1,X2).
:- body_1(X1,X2), X1 != 2, not a(X1,X2), b(X1,X2).

isFstar(a(X1,X2)) :- ap(X1,X2), isTFstar(body_1(X1,X2)), not a(X1,X2).
isFstar(b(X1,X2)) :- ap(X1,X2), isTFstar(body_1(X1,X2)), isFstar(a(X1,X2)),

not b(X1,X2).
isFstar(body_1(X1,X2)) :- ap(X1,X2), not body_1(X1,X2), not c(X1,X2).

% b * c <- not d.
body_2(X1,X2) :- ap(X1,X2), not d(X1,X2).
:- ap(X1,X2), X2 = 0, body_2(X1,X2).
:- ap(X1,X2), X2 > 0, not body_2(X1,X2).

b(X1,X2) :- body_2(X1,X2), X2 = 1.
c(X1,X2) :- body_2(X1,X2), X2 = 2.
:- body_2(X1,X2), X2 != 1, b(X1,X2).
:- body_2(X1,X2), X2 != 2, not b(X1,X2), c(X1,X2).

isFstar(b(X1,X2)) :- ap(X1,X2), isTFstar(body_2(X1,X2)), not b(X1,X2).
isFstar(c(X1,X2)) :- ap(X1,X2), isTFstar(body_2(X1,X2)), isFstar(b(X1,X2)),

not c(X1,X2).
isFstar(body_2(X1,X2)) :- ap(X1,X2), not body_2(X1,X2), not d(X1,X2).

% isTFstar rules
isTFstar(a(X1,X2)) :- isFstar(a(X1,X2)).
isTFstar(a(X1,X2)) :- a(X1,X2).
isTFstar(b(X1,X2)) :- isFstar(b(X1,X2)).
isTFstar(b(X1,X2)) :- b(X1,X2).
isTFstar(c(X1,X2)) :- isFstar(c(X1,X2)).
isTFstar(c(X1,X2)) :- c(X1,X2).
isTFstar(d(X1,X2)) :- isFstar(d(X1,X2)).
isTFstar(d(X1,X2)) :- d(X1,X2).
isTFstar(body_1(X1,X2)) :- isFstar(body_1(X1,X2)).
isTFstar(body_1(X1,X2)) :- body_1(X1,X2).
isTFstar(body_2(X1,X2)) :- isFstar(body_2(X1,X2)).
isTFstar(body_2(X1,X2)) :- body_2(X1,X2).

% make M* set
mstar(a) :- isFstar(a(X1,X2)).
mstar(b) :- isFstar(b(X1,X2)).
mstar(c) :- isFstar(c(X1,X2)).

Asprin produces the following two candidate answer sets:

Answer Set 1

ap(2,1) body_1(2,1) b(2,1) isTFstar(body_1(2,1)) isTFstar(body_2(2,1))
isTFstar(b(2,1)) isTFstar(a(2,1)) isFstar(a(2,1)) body_2(2,1) mstar(a)

Answer Set 2 (declared ”optimum”)

ap(1,1) body_1(1,1) a(1,1) b(1,1) isTFstar(body_1(1,1)) isTFstar(b(1,1))
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isTFstar(body_2(1,1)) isTFstar(a(1,1)) body_2(1,1)

Notice that not all candidate answer sets of the LPOD are produced by asprin (in this
case, the answer set corresponding to assumption program (0, 2) is missing). This is due
to asprin’s process to find the most preferred answer sets. The execution begins by calling
clingo once, to produce an initial model X and then checks if there is another model Y
that is more preferred to X according to the specified preference criterion. If such model
Y exists, X is replaced by Y . This process is continued until there is no such Y , therefore
the currentX is considered one of the ”most preferred” models. To find all most ”preferred
answer” sets, asprin repeats the above procedure, each time with a new initial model.

In the program of Example 1, the clingo model which includes ap(0, 2) is not produced by
asprin, since it produces the model including ap(1, 1) first, which is preferred to the former,
according to the ⊏ relation. Notice that when the translation isn’t solved with asprin, but
just with clingo (only the base part is considered), then all candidate answer sets are pro-
duced. Running just clingo on the translation of Example 1, we get:

Answer Set 1

body_2(2,1) ap(2,1) body_1(2,1) isTFstar(body_1(2,1)) isFstar(a(2,1)) b(2,1)
isTFstar(body_2(2,1)) mstar(a) isTFstar(b(2,1)) isTFstar(a(2,1))

Answer Set 2

body_2(1,1) ap(1,1) body_1(1,1) isTFstar(body_1(1,1)) a(1,1) b(1,1)
isTFstar(body_2(1,1)) isTFstar(b(1,1)) isTFstar(a(1,1))

Answer Set 3

body_2(0,2) ap(0,2) c(0,2) isFstar(b(0,2)) isTFstar(body_2(0,2)) mstar(b)
isTFstar(c(0,2)) isTFstar(b(0,2))

Notice that the clingo answer set containing ap(0, 2) is produced after the answer set cor-
responding to the most preferred answer set of the LPOD, according to the ⊏ relation.

5.3 Translating LPOD into ASP using Split Programs and asprin

In [6], LPODs are implemented using psmodels, which is a modification of smodels that
allows computing preferred answer sets under the LPOD semantics. The implementation
involves the execution of two programs, a generator that produces candidate answer sets,
as well as a tester that checks whether a given candidate answer set is the most preferred
under the specified preference relation, and produces a more preferred answer set if it is
not. Brewka et al. in [6] define LPOD answer sets based on the notion of a split program.

Our next translation is based on the approach in [6]. Instead of the ap atoms corresponding
to assumption programs, in this translation there exist op(i, k) atoms indicating that the k-th
option of the i-th ordered disjunctive rule is used.

In this approach, as with our previous approach, we have a base program to generate
candidate answer sets (each corresponding to one of the LPOD’s split programs). We
use asprin again to extract the most preferred ones.
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Definition 19. Let P be an LPOD with m ordered disjunctive rules. The translation of P
contains the following rules:

1. Every regular rule C ← A1, . . . , Aa, not B1, . . . , not Bb in P .

2. For each ordered disjunctive rule C1
i × . . .×C

ni
i ← A1, . . . , Aa, not B1, . . . , not Bb in P ,

the rules:

{op(i,Xi) : Xi = 0, . . . , ni} = 1 (5.29)
bodyi ← A1, . . . , Aa, not B1, . . . , not Bb (5.30)

← op(i, 0), bodyi (5.31)
← op(i,Xi), Xi > 0, not bodyi (5.32)

And for 1 ≤ k ≤ ni, the rules:

Ck
i ← op(i, k), not C1

i , . . . , not C
k−1
i , bodyi (5.33)

← Ck
i , not op(i, k), not C

1
i , . . . , not C

k−1
i , bodyi (5.34)

where Xi is a variable and bodyi is an auxiliary atom not appearing in P .

3. For each ordered disjunctive rule C1
i × . . . × C

ni
i ← A1

i , . . . , A
ai
i , not B

1
i , . . . , not B

bi
i in

P and for j ∈ {1, . . . , ni}, the rules:

isFstar(Cj
i )← isTFstar(bodyi), isFstar(C

1
i ), . . . , isFstar(C

j−1
i ), not Cj

i (5.35)
isFstar(bodyi)← not bodyi, isTFstar(A

1
i ), . . . , isTFstar(A

ai
i ), not B

1
i , . . . , not B

bi
i

(5.36)

4. For each regular rule C ← A1, . . . , Aa, not B1, . . . , not Bb in P , the rule:

isFstar(C)← not C, isTFstar(A1), . . . , isTFstar(Aa), not B1, . . . , not Bb (5.37)

5. For each atom A in P as well as the auxiliary bodyi atoms, the rules:

isTFstar(A)← isFstar(A) (5.38)
isTFstar(A)← A (5.39)

6. In order to find the most preferred answer sets, the rules:

For all atoms A that appear in rule heads:

mstar(A)← isFstar(A) (5.40)

As well as the asprin preference rules (same as before):

#preference(p, subset){mstar(X)}. (5.41)
#optimize(p). (5.42)

Example 1 (Continued) The LPOD

a× b ← not c, b× c ← not d

is translated to the following ASP:
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% a * b <- not c.
{op(1,X1) : X1 = 0..2} = 1.
body_1 :- not c.
:- op(1,0), body_1.
:- op(1,X1), X1 > 0, not body_1.

a :- body_1, op(1,1).
b :- body_1, op(1,2), not a.
:- body_1, not op(1,1), a.
:- body_1, not op(1,2), not a, b.

isFstar(a) :- isTFstar(body_1), not a.
isFstar(b) :- isTFstar(body_1), isFstar(a), not b.
isFstar(body_1) :- not body_1, not c.

% b * c <- not d.
{op(2,X2) : X2 = 0..2} = 1.
body_2 :- not d.
:- op(2,0), body_2.
:- op(2,X2), X2 > 0, not body_2.

b :- body_2, op(2,1).
c :- body_2, op(2,2), not b.
:- body_2, not op(2,1), b.
:- body_2, not op(2,2), not b, c.

isFstar(b) :- isTFstar(body_2), not b.
isFstar(c) :- isTFstar(body_2), isFstar(b), not c.
isFstar(body_2) :- not body_2, not d.

% isTFstar rules
isTFstar(a) :- isFstar(a).
isTFstar(a) :- a.
isTFstar(b) :- isFstar(b).
isTFstar(b) :- b.
isTFstar(c) :- isFstar(c).
isTFstar(c) :- c.
isTFstar(d) :- isFstar(d).
isTFstar(d) :- d.

isTFstar(body_1) :- isFstar(body_1).
isTFstar(body_1) :- body_1.
isTFstar(body_2) :- isFstar(body_2).
isTFstar(body_2) :- body_2.

% make M* set
mstar(a) :- isFstar(a).
mstar(b) :- isFstar(b).
mstar(c) :- isFstar(c).

Asprin produces the following two candidate answer sets:
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Answer Set 1

op(1,0) op(2,2) c isTFstar(body_2) isTFstar(c) isTFstar(b) isFstar(b)
body_2 mstar(b)

Answer Set 2 (declared ”optimum”)

op(1,1) op(2,1) body_1 a b isTFstar(body_1) isTFstar(body_2) isTFstar(b)
isTFstar(a) body_2

Running just clingo on the translation of Example 1, we get:

Answer Set 1

isTFstar(body_2) body_2 c op(2,2) isFstar(b) mstar(b) isTFstar(c)
isTFstar(b) op(1,0)

Answer Set 2

isTFstar(body_2) body_2 b op(2,1) body_1 op(1,2) isTFstar(body_1)
isFstar(a) mstar(a) isTFstar(b) isTFstar(a)

Answer Set 3

isTFstar(body_2) body_2 b op(2,1) body_1 a op(1,1) isTFstar(body_1)
isTFstar(b) isTFstar(a)

Notice that in this example, the mstar atoms may seem redundant. However, instructing
asprin to compute the subset minimal answer sets M with respect to the isFstar predic-
ate wouldn’t necessarily be correct, since we could end up with bodyi atoms in M∗ sets.
The potential existence of auxiliary atoms in theM∗ sets prevents us from relying on this
preference relation.

5.4 Translating LPOD into ASP using Cabalar’s method and asprin

Our final approach is based on Lee and Yang’s [8] ASP encoding of Cabalar’s [7] method
of generating candidate asnwer sets. The apparent difference between the previous ap-
proaches and this one is the absence of predicates such as ap and op that declare which
head atom in each ordered disjunctive rule satisfies it. Instead of using a choice rule for
such predicates in order to generate the candidate answer sets, choice rules are used for
generating the true atoms in the heads of ordered disjunctive rules.

Definition 20. Let P be an LPOD with m ordered disjunctive rules. The translation of P
contains the following rules:
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1. Every regular rule C ← A1, . . . , Aa, not B1, . . . , not Bb in P .

2. For each ordered disjunctive rule C1
i × . . .×C

ni
i ← A1, . . . , Aa, not B1, . . . , not Bb in P ,

the rules:

bodyi ← A1, . . . , Aa, not B1, . . . , not Bb (5.43)

For 1 ≤ k ≤ ni − 1:

{Ck
i } ← bodyi, not C

1
i , . . . , not C

k−1
i (5.44)

And the rule:

Cni
i ← bodyi, not C

1
i , . . . , not C

ni−1
i (5.45)

where body is an auxiliary atom not appearing in P .

3. For each ordered disjunctive rule C1
i × . . . × C

ni
i ← A1

i , . . . , A
ai
i , not B

1
i , . . . , not B

bi
i in

P and for j ∈ {1, . . . , ni}, the rules:

isFstar(Cj
i )← isTFstar(bodyi), isFstar(C

1
i ), . . . , isFstar(C

j−1
i ), not Cj

i (5.46)
isFstar(bodyi)← not bodyi, isTFstar(A

1
i ), . . . , isTFstar(A

ai
i ), not B

1
i , . . . , not B

bi
i

(5.47)

4. For each regular rule C ← A1, . . . , Aa, not B1, . . . , not Bb in P , the rule:

isFstar(C)← not C, isTFstar(A1), . . . , isTFstar(Aa), not B1, . . . , not Bb (5.48)

5. For each atom A in P as well as the auxiliary body atoms, the rules:

isTFstar(A)← isFstar(A) (5.49)
isTFstar(A)← A (5.50)

6. In order to find the most preferred answer sets, the rules:

For all atoms A that appear in rule heads:

mstar(A)← isFstar(A) (5.51)

As well as the asprin preference rules (same as before):

#preference(p, subset){mstar(X)}. (5.52)
#optimize(p). (5.53)

Example 1 (Continued) The LPOD

a× b ← not c, b× c ← not d

is translated to the following ASP:
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% a * b <- not c.
body_1 :- not c.
{a} :- body_1.
b :- body_1, not a.

isFstar(a) :- isTFstar(body_1), not a.
isFstar(b) :- isTFstar(body_1), isFstar(a), not b.
isFstar(body_1) :- not body_1, not c.

% b * c <- not d.
body_2 :- not d.
{b} :- body_2.
c :- body_2, not b.

isFstar(b) :- isTFstar(body_2), not b.
isFstar(c) :- isTFstar(body_2), isFstar(b), not c.
isFstar(body_2) :- not body_2, not d.

% isTFstar rules
isTFstar(a) :- isFstar(a).
isTFstar(a) :- a.
isTFstar(b) :- isFstar(b).
isTFstar(b) :- b.
isTFstar(c) :- isFstar(c).
isTFstar(c) :- c.
isTFstar(d) :- isFstar(d).
isTFstar(d) :- d.

isTFstar(body_1) :- isFstar(body_1).
isTFstar(body_1) :- body_1.
isTFstar(body_2) :- isFstar(body_2).
isTFstar(body_2) :- body_2.

% make M* set
mstar(a) :- isFstar(a).
mstar(b) :- isFstar(b).
mstar(c) :- isFstar(c).

Asprin produces the following two candidate answer sets:

Answer Set 1

c isTFstar(body_2) isTFstar(c) isTFstar(b) isFstar(b) body_2 mstar(b)

Answer Set 2 (declared ”optimum”)

body_1 a b isTFstar(body_1) isTFstar(body_2) isTFstar(b) isTFstar(a) body_2

Running just clingo on the translation of Example 1, we get:
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Answer Set 1

isTFstar(body_2) body_2 c isFstar(b) mstar(b) isTFstar(c) isTFstar(b)

Answer Set 2

isTFstar(body_2) body_2 b body_1 isTFstar(body_1) isFstar(a) mstar(a)
isTFstar(b) isTFstar(a)

Answer Set 3

isTFstar(body_2) body_2 b body_1 a isTFstar(body_1) isTFstar(b) isTFstar(a)

The answer sets are almost identical with the ones of the previous approach, excluding
the op atoms. Again, the issue with using isFstar in asprin’s preference relation may not
seem obvious in this example, but it is indeed existent as long as we consider the auxiliary
body atoms.
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6. EXPERIMENTS

In this chapter, we present a performance comparison between the aforementioned trans-
lation approaches as well as with other systems, that implement the original LPOD se-
mantics.

In order to demonstrate the superiority of the asprin-based approaches compared to the
one using weak constraints, we conduct several tests using LPODs of differing character-
istics, such the total number of rules, the number of ordered disjunctive rules (OD Rules),
the number of atoms, and the number of candidate and preferred answer sets. The exper-
iments were conducted on a Linux machine equipped with an 8-core CPU clocked at 3.8
GHz and 16 GB of RAM. For the experiments, we used asprin 3.1.1 and clingo 5.4.0. The
characteristics of the test programs and the execution times (in seconds) of our proposed
translations are displayed in the following table:

Table 6.1: Execution time (in seconds) comparison between our proposed translations.

# Atoms / Rules /
ODRules / MaxOD

Answer Sets /
Preferred

t1 t2 t3 t4

P1 8 / 5 / 1 / 2 1 / 1 0.001 0.056 0.052 0.058
P2 23 / 30 / 2 / 2 3 / 1 0.019 0.071 0.062 0.064
P3 108 / 10 / 1 / 2 1 / 1 0.084 0.179 0.114 0.119
P4 22 / 30 / 3 / 3 2 / 1 0.301 0.085 0.063 0.061
P5 35 / 1 / 1 / 34 34 / 1 2.393 0.080 0.105 0.102
P6 94 / 200 / 3 / 2 2 / 1 4.126 4.386 0.768 0.787
P7 10 / 5 / 5 / 2 24 / 1 17.040 0.072 0.063 0.060
P8 11 / 6 / 5 / 2 31 / 5 20.214 0.087 0.072 0.065
P9 11 / 6 / 5 / 2 24 / 2 20.217 0.076 0.065 0.060

The above results highlight the performance difference between the first approach and the
others, with the execution times varying considerably. As expected, the most influential
parameters are the number of ordered disjunctive rules (m) and the number of candidate
and preferred answer sets. Higher values for m lead to a substantially larger translation
of the LPOD. Also, clingomust compute all candidate answer sets and compare them in a
one-pass execution, therefore a LPOD with multiple candidate and preferred answer sets
increases the complexity of this computation. On the other hand, the number of atoms in
a LPOD seem to influence the first two implementations equally, that is the implementa-
tions using assumption programs. The other two implementations, using split programs
and Cabalar’s method for generating answer sets respectively, appear to have similar
performance in the tests of Table 6.1.

In order to effectively compare our last two translations as well as test their performance
against existing systems, we conduct new experiments using primarily more computa-
tionally intensive test programs, that were randomly generated. These programs vary in
number of atoms, total and ordered disjunctive rules, and maximum disjunction lengths.
Table 6.2 displays the characteristics of each test. All executions with psmodels and
lpods2asprin were performed under the inclusion preference relation.

Overall, the implementation using Cabalar’s method for generating answer sets seems to
be the best of our approaches, since it performs better than the one utilizing split programs
in the experiments of Table 6.2, which involves more resource-heavy programs.
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Table 6.2: Execution time (in seconds) comparison between existing LPOD systems and two of our
translations.

# Atoms / Rules /
ODRules / MaxOD

Answer Sets /
Preferred

psmodels lpod2asprin t3 t4

P10 13 / 5 / 2 / 8 1 / 1 0.001 0.060 0.055 0.055
P11 231 / 5 / 2 / 200 1 / 1 0.004 0.344 6.325 6.139
P12 36 / 18 / 18 / 2 512 / 512 0.042 42.878 4.655 2.906
P13 41 / 82 / 61 / 34 9603 / 1 176.415 0.518 0.781 0.590
P14 36 / 27 / 18 / 2 19683 / 512 2.984 78.591 9.906 6.434
P15 39 / 20 / 19 / 2 524287 / 19 96.097 0.812 0.360 0.328
P16 41 / 21 / 20 / 2 1048575 / 20 209.807 1.043 0.413 0.367

For programs with fewer candidate answer sets (such as P10, P11), psmodels clearly
outperforms both lpods2asprin and our implementations, taking only a few milliseconds
to finish their execution. The advantage is probably due to the optimizations made within
psmodels specifically for LPODs, as opposed to the other systems that rely on general-
purpose solvers (asprin, clingo). However, psmodels performs worse as the number of
candidate answer sets increases, like in the case of P13. This decline is most likely caused
by the generator’s need for producing multiple suboptimal models, which results in many
calls being made to the tester for validating the minimality of each produced model. On
the other hand, the performance of lpods2asprin and our implementations is not affected,
probably due to asprin’s multi-shot answer set solving technique.

In several tests, the performance of our implementations and lpod2asprin is similar. How-
ever, lpods2asprin seems to perform better when there are ordered disjunctive rules with
lots of options. In P11, for example, the maximum order disjunction involves most of the
program’s atoms. The extra rules that are required in our implemntations for computing
the F ∗ values seem to be responsible for the performance impact in this case. On the
other hand, our implementation performs better on programs that have many candidate
and preferred answers sets, such as P12 and P14. We presume that lpods2asprin’s per-
formance is affected by the more complex processing required to find out the degrees of
satisfaction.
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7. CONCLUSION AND FUTURE WORK

This thesis presents four translations of LPODs under the three-valued semantics intro-
duced in [1]. The first two translations use assumption programs based on Lee and Yang’s
work in [8]. The third translation utilizes split programs, as Brewka et. al did in [6]. The
final translation is based on Cabalar’s [7] method for generating answer sets and our im-
plementation is similar to the one in [9]. Several experiments were conducted in order to
effectively compare our four translations as well as test their performance against existing
LPOD systems. The results indicate that our final implementation has comparable per-
formance to existing systems based on traditional semantics, while clearly outperforming
them in computationally intensive programs, such as LPODs with numerous candidate
and preferred answer sets. Therefore, the three-valued semantics can be implemented
without any major additional computational burden.

Potential improvements for our implementations include optimizing the generation of rules
that produce the F ∗ value in the translation process. Since the F ∗ value can be assigned
to certain atoms –those in the heads of ordered disjunctive rules and those in the heads
of regular rules whose bodies contain literals that can take the F ∗ value– the isTFstar
rules do not need to be included in the translations for all atoms of the program, but only
for those that could take the F* value. Consequently, the isTFstar(A) atoms that appear
in rule bodies could be replaced by simply A for all atoms A that cannot take the F ∗ value.

To address the performance decrease in our implementations for programs with large
ordered disjunctions, it would be interesting to explore ways of splitting large ordered dis-
junctions into smaller ones and examine whether doing so enhances the performance of
the implementation.

Furthermore, a key area for future research is the definition and implementation of first-
order LPODs. Although the semantics in [1] are for propositional LPODs, we could per-
haps define the semantics of first-order LPODs using the ground instantiation of the pro-
gram. It would also be interesting to see if the implementation could be expanded to handle
first-order LPODs, i.e. implementing first-order LPODs using first-order ASP programs.
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ABBREVIATIONS - ACRONYMS

LPOD Logic Program(ming) with Ordered Disjunction

ASP Answer Set Program(ming)
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