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ABSTRACT

In this work, we propose an efficient technique for view-based query rewriting for know-
ledge graphs represented in relational databases. Specifically, we investigate how query
rewriting using views can be reduced to the problem ofMaximizing a Nondecreasing Sub-
modular Set Function Subject to a Knapsack Constraint (MNssfKc problem). We show
that if we employ the linear cost model for evaluating the execution cost of a query, we
can reduce the problem of query rewriting using views to the MNssfKc problem. It should
be noted that the latter reduction allows to solve the MNssfKc and thus the view material-
ization problem in polynomial time in the size of the query with an (1− e−1) approximation
of the optimal solution.

SUBJECT AREA: Databases

KEYWORDS: Knowledge graph, RDF graph, Query rewriting, View selection, Knap-
sack problem



ΠΕΡΙΛΗΨΗ

Σε αυτή την πτυχιακή εργασία, προτείνουμε μια αποδοτική τεχνική για την αναδιατύπωση
ερωτημάτων βασισμένη σε όψεις για γραφήματα γνώσης που αναπαρίστανται σε σχεσια-
κές βάσεις δεδομένων. Συγκεκριμένα, διερευνούμε πώς η αναδιατύπωση ερωτημάτων
χρησιμοποιώντας όψεις μπορεί να μειωθεί στο πρόβλημα της Μέγιστης Υποκανονικής
Συνάρτησης με Περιορισμό Σακιδίου (MNssfKc problem). Δείχνουμε ότι αν χρησιμοποιή-
σουμε το γραμμικό μοντέλο κόστους για την αξιολόγηση του κόστους εκτέλεσης ενός ερω-
τήματος, μπορούμε να μειώσουμε το πρόβλημα της αναδιατύπωσης ερωτημάτων χρησι-
μοποιώντας όψεις στο MNssfKc πρόβλημα. Θα πρέπει να σημειωθεί ότι η συγκεκριμένη
μείωση επιτρέπει την επίλυση του MNssfKc και συνεπώς του προβλήματος σε πολυωνυ-
μικό χρόνο σε σχέση με το μέγεθος του ερωτήματος, με προσέγγιση (1−e−1) της βέλτιστης
λύσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βάσεις Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Γράφοι γνώσης, Γράφοι RDF, Επανεγγραφή ερωτημάτων,
Eπιλογή όψεων, πρόβλημα Knapsack
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Tractable View-Based Query Rewriting for Knowledge Graphs

1. INTRODUCTION

1.1 Introduction

Knowledge Graphs (KGs) are powerful tools for data integration [4, 24], information re-
trieval [8], and numerous other domains [7], widely used in industrial applications. KGs
provide a structured and interconnected representation of information, enabling efficient
data retrieval and insightful data analysis. Prominent KGs include DBpedia [21], Yago [26],
Google’s Knowledge Graph [25], and Microsoft’s Satori [21]. These KGs support a wide
range of applications, from enhancing search engine capabilities to enabling advanced
semantic web technologies and improving data integration platforms.

Knowledge Graphs consist of interconnected entities, stored as triples of the form (s, p, o),
where s represents the subject, p represents the predicate, and o represents the object.
These triples can be categorized into three main types: (entity, relation, entity), which de-
notes relationships between entities; (entity, property, value), which describes properties
of entities; and (entity, type, class), which classifies entities into types. This structured
format allows for rich semantic queries, enabling users to explore complex relationships
and derive meaningful insights from the data.

Efficient query answering techniques are critical for ensuring the scalability and perform-
ance of KG-driven software systems. One key technique for enhancing query performance
is viewmaterialization. Viewmaterialization involves selecting specific views tomaterialize
based on query patterns and cost constraints. A view is essentially a stored query, while
a materialized view is the result set of the stored query on a specific database instance.
By partially materializing recurring computations in our query patterns, we can later ex-
ploit thesematerializations (precomputations) to efficiently answer upcoming queries, thus
reducing query execution time and resource consumption.

In their previous work [15], the authors studied the problem of view selection over KG data-
bases. They examined various view selection techniques that focus on identifying recur-
ring computations within a query workload and materializing these computations for future
reuse. Their study involved creating a summary of the initial query workload by employ-
ing graph-pattern mining techniques, which helped in identifying common substructures
within the queries. Additionally, they explored the relationship between the view selection
process and the knapsack problem, a classic optimization problem. Their methodology
allowed them to solve the view selection problem on the query workload of DBpedia, which
consists of more than a million queries. It should be noted that this was the first attempt
to study the problem of view materialization on such a large scale, providing valuable in-
sights into the practical challenges and potential solutions for view selection in large-scale
KGs.

In this work, we propose an efficient technique for query rewriting for knowledge graphs
represented in a relational store. Specifically, we investigate how query rewriting using
views can be reduced to the problem of Maximizing a Nondecreasing Submodular Set
Function Subject to a Knapsack Constraint (MNssfKc problem). By employing the linear
cost model for evaluating the execution cost of a query, we demonstrate that the query
rewriting problem can be effectively reduced to the MNssfKc problem. This reduction is
significant as it allows us to solve the MNssfKc problem, and thus the view materialization
problem, in polynomial time with an (1− e−1) approximation of the optimal solution.

Our approach leverages advanced optimization techniques to ensure that the query re-

K. Charmantaris 10
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writing process is both efficient and scalable. By transforming the problem into a well-
understood mathematical framework, we can apply existing algorithms and theoretical
results to achieve high-performance query rewriting. This is particularly important for mod-
ern knowledge graphs, which are characterized by their large scale and complexity. Ef-
fective query rewriting can significantly reduce the computational burden on KG-driven
systems, enabling them to handle large volumes of queries with improved response times
and reduced resource utilization.

The contributions of this thesis are twofold. First, we provide a theoretical framework for
reducing the query rewriting problem to the MNssfKc problem, offering a novel perspect-
ive on the relationship between query rewriting and submodular function maximization.
Second, we present practical algorithms for implementing this reduction, demonstrating
their effectiveness through theoretical analysis and empirical evaluation. These contribu-
tions advance the state-of-the-art in query optimization for knowledge graphs, providing a
robust foundation for future research and practical applications in this field.

In summary, our work addresses a critical need in the field of knowledge graph manage-
ment by providing efficient techniques for view-based query rewriting. By leveraging the
power of submodular function optimization, we offer a scalable solution that enhances the
performance of KG-driven systems, making them more capable of handling the demands
of modern data-intensive applications.

K. Charmantaris 11
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2. PRELIMINARIES

We present some preliminary definitions to formalize the view selection problem on a KG.

2.1 Knowledge Graphs

We first provide a proper definition of a KG and its corresponding queries.

2.2 Knowledge Graph

A knowledge graph G is a set of tripes of the form (s, p, o), where s stands for subject, p
for predicate, and o for object.Triples (s, p, o) are of three kinds: (entity, relation, entity), or
(entity, property, value), or (entity, type, class).

2.3 Conjunctive Query

For

(i) X being a set of variables disjoint from the constants appearing in a graphG (entities,
relations, properties, values, and classes);

(ii) t1, t2, . . . , tn being triple patterns, i.e., extensions of triples that may contain variables
in the subject, predicate, or object position,

(iii) x⃗ being a vector of variables also appearing in the t1, t2, . . . , tn triple patterns,

a conjunctive query Q on G has the corresponding form:

Q: q(x⃗)← t1, t2, . . . , tn.

q(x⃗) is called the head of the query, while the set t1, t2, . . . , tn of triple patterns is its body.
The variables in the head are called distinguished variables, while variables appearing
only in the body are called undistinguished variables.

2.4 Query answering

A solution to a conjunctive query Q is a mapping m : vars(Q)→ C from the variables in Q
to the constants in G such that the substitution of variables would yield a subgraph of G.
The substitutions of distinguished variables constitute the answers to the query.

2.5 View Selection

We now provide some definitions related to the view-selection problem.

K. Charmantaris 12
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2.6 Materialized View

A view is a stored query, while a materialized view is the result set of the stored query on
a specific database instance.

2.7 Query Rewriting

Two queries are equivalent if they have the same answer set for every possible data-
base. A query Q′ is a rewriting of Q that uses the views V = {V1, . . . , Vm} if Q and Q′

are equivalent and Q′ contains one or more occurrences of materialized views in V. A
rewriting function Rwrt(Q,V) takes as input the query Q and rewrites it to an equivalent
queryQ′ = Rwrt(Q,V) using views from V. A rewriting function Rwrt is optimal when there
exists no other rewriting Q′′ of Q such that Costϵ(Q′′) < Costϵ(Q′), with Costϵ being the
function that maps a query to its estimated execution cost.

2.8 Linear Cost Model

In our work, we employ the linear cost model for evaluating the execution cost of a query.
The linear cost model assumes that the cost of evaluating a query Q, i.e. Costϵ(Q), is
proportional to the size of the relational tables appearing in Q. The linear cost model is
manifested in [10] while its linear independence property is crucial for most of the proofs
in this paper.

2.9 Rewriting Benefit

The degree of benefit of a rewriting function to a query Q w.r.t. to a set of views V is
defined as

(2.1)Bnft(Q,V) = Costϵ(Q)− Costϵ(Rwrt(Q,V)).

We also denote with Bnft(Q,V) the benefit of a set of views V to a query workload Q. It is
obvious that the benefit depends on the adopted cost model.

Levy et al. [14] prove that for the conjunctive queries Q and W , there is a rewriting of Q
using W iff π∅(Q) ⊑ π∅(W ) i.e., the projection of Q onto the empty set of columns is con-
tained in the projection of W onto the empty set of columns (the projections π∅(Q), π∅(W )
are actually Boolean conjunctive queries). Additionally, they provide the methodology for
finding the rewritings of Q based on every containment mapping σ : π∅(W ) → π∅(Q) with
W ∈ V . Given a query Q, a set of views V, and their corresponding materializations, a
query optimizer that utilizes the existing view materializations has to:

(i) identify the available rewritings of Q;

(ii) determine the rewriting Q′ that is less costly w.r.t. the adopted cost model;

(iii) decide whether it is beneficial to execute Q′ instead of Q.

K. Charmantaris 13
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3. SYSTEM ARCHITECTURE

In this chapter we present the architecture of our overall system and its corresponding
modules. Figure 3.1 displays the overall architecture of our system for answering queries
using views. It should be noted that for the problem of query rewriting, only the Query
Containment Module is used, but we will present every module of our subsystem for com-
pleteness purposes. Our system constitutes of the following modules:

3.1 Query Summarizer Module

The query summarizer is responsible for the compact representation of a set of queries.
Its main function is that, given a workload of, even millions, queries, it creates a compact
representation of the workload by eliminating non-frequent query patterns and adjusting
the multiplicities of frequent ones. The later allows for the resolution of various tasks much
faster and efficiently, without sacrificing performance. The summaries are created using
frequent-pattern mining techniques, which reduce a set of queries to a set of patterns
with their corresponding multiplicities. It should be noted that the summarizer normalizes
multiplicities in such a way that ensures the same pattern appears in the summary with
a multiplicity exactly as many times as it does in the original query workload. The later
guarantees that the benefit of a view to the summary equals the view’s benefit on the cor-
responding query workload. A dedicated description of our query summarizer is presented
in [15].

3.2 View Selection Module

The view selection module is responsible for, given the summary of a query workloadQ, to
select the most beneficial views for the corresponding query workload. The view selection
module operates in the following steps: I. It translates frequent patterns in the summary
to their corresponding equivalent candidate view V ; II. For each candidate, it selects the
most beneficial one to the summary of the workloadQ; III. Since the view V is not selected
in isolation, but will augment an existing set of views V, we need to take into account the
preexisting views in V when making our selection. The selection is performed by reduction
to the MNssfKc problem. A dedicated description of our query summarizer is presented
in [15].

3.3 Query Containment Module

Query containment is a fundamental operation used to expedite query processing in view
materialisation and query caching techniques. Our query containment module is bases on
the mv-index structure that allows for fast containment checking between a single query
and an arbitrary number of stored views. I.e, provided the query ofQ and the set of view in
V, the containment module performs fast containment checking in order to find the views
such that there exists an homomorphism (query containment) from the body of the view to
the corresponding query. For the special class of f -graph queries, containment checking
is performed in polynomial time. The query containment module can find the correspond-
ing containments in microseconds or less for the containment test against hundreds of

K. Charmantaris 14
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Figure 3.1: Frequent Graph-Pattern Mining with Template Databases
thousands of queries that are indexed within our structure. A dedicated description of our
query containment module is presented in [17].
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4. QUERY REWRITING WITH QUALITY GUARANTEES

In this section we examine the problem of view-based query rewriting.

Definition 1. Given the conjunctive query of Q, where tis are the triples in Q:

Q : q(x⃗)←
n∧

i=1

ti (4.1)

and the set of views VQ ∈ V such that there exists an homomorphism from all V ∈ VQ to V,
find the rewriting Q′ of Q using the views in VQ that minimizes it’s corresponding execution
cost.

In our work, we employ the linear cost model for evaluating the execution cost of a query.
It should be noted that our work focuses on the overall size of the relations and properties
appearing in Q. For example, a triple (? x, r, ? y) has a size that is equivalent to the triples
appearing in our knowledge graph with r as their predicate.

4.1 MNssfKc Problem

Wewill reduce query rewriting to the problem ofMaximizing a Nondecreasing Submodular
Set Function Subject to a Knapsack Constraint (MNssfKc problem) presented in [27], i.e.,
wewill identify the parameters of theMNssfKc problem to solve the view selection problem.
The latter is a NP-problem, but there exists a (1−e−1)-approximation polynomial algorithm
for solving it.

Problem 1 (MNssfKc [27]). Let I = {1, . . . , n}; i ∈ I and b be nonnegative integers; and
f(·) be a nonnegative, nondecreasing, submodular, polynomially computable set func-
tion1. MNssfKc is the following optimization problem:

(4.2)max
S ⊆I

{
f(S) :

∑
i∈S

ci ⩽ b

}
.

4.2 Reduction

We first identify the parameters of the reduction from the problem of query rewriting to the
MNssfKc problem.

I. For the set VQ := {V1, . . . , Vn} such that |VQ|= n, we define an arbitrary bijection
Bi : VQ ↔ {1, . . . , n} and set I := {1, 2, . . . , n}.

II. For each i ∈ {1, . . . , n} we define ci = Costϵ(Bi−1(i)) to be the corresponding view’s
size, depicting the cost of storing the specific view.

III. Each subset S ⊆ I is mapped via the Bi−1 function to a subset of the candidate views
V ′
Q ⊆ VQ (by mapping each i ∈ S to Bi−1(i) ∈ V ′

Q). For the specific VQ’, we define f(S)
to be the benefit of the materialized views in VQ’ to the rewriting ofQ, i.e., Bnft(Q,V ′

Q).
1∗A set function is (i) submodular if f(S)+f(T ) ⩾ f(S∪T )+f(S∩T ) for all S, T ∈ I, and (ii) nondecreasing

if f(S) ⩽ f(T ) for all S ⊆ T .

K. Charmantaris 16
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IV. Finally, b is the initial execution-cost of the query, i.e., the overall size of the triples
appearing in the query.

To complete our reduction, it remains to define the Bnft(·, ·) function which obviously de-
pends on the query rewriting algorithm. Our query rewriting algorithm, which is sound and
complete for set (and not multiset) semantics, is based on the following observations: For
some V ∈ V ′

Q, of the form of:
V (x⃗′)← t′1, t

′
2, . . . , t

′
k (4.3)

we say that the view V covers a set of query triples in the body of the query of Q in
Formula 4.1, denoted with Cov(Q,V), when:

• there exists a homomorphisms h from the body of V to the body of Q ;

• for each variable y appearing in the body but not in the head of V , it’s corresponding
mapping h(y) needs to be either:

(a) an existentially quantified variable that does not appear in any triple in the body
of Q outside Cov(Q,V)

(b) or a constant.

In that case, the benefit of the views in V ′
Q to the query of Q equals the cost that we would

have if we had to read all the covered triples by a set of views V ′
Q, minus the cost of reading

instead all the corresponding views in V.

Bnft(Q,V) = Costϵ(
∪
V ∈V

Cov(Q, V ))−
∑
V ∈V

Costϵ(V ) (4.4)

In order to solve the previous problem, we first need to prove the submodularity of the
benefit function.

Proof. To prove submodularity, for the set of views V1, V2, it suffices to show that:

Bnft(Q,V1 ∪ V2) + Bnft(Q,V1 ∩ V2) ≤ Bnft(Q,V1) + Bnft(Q,V2) (4.5)

Let’s assume the following notation: V∩ = V1 ∩V2, V ′
1 = V1 \ V∩, and V ′

2 = V2 \ V∩. The left
hand size of Inequality 4.5 is rewritten as follows:

Bnft(Q,V1 ∪ V ′
2) + Bnft(Q,V∩) (4.6)

since V1 ∪ V2 = V1 ∪ V ′
2 applies. By expanding Formula 4.6 , based on the definition of

benefit in Formula 4.4 we have that

Costϵ(
∪

V ∈V1∪V ′
2

Cov(Q,V ))−
∑

V ∈V1∪V ′
2

Costϵ(V ) + Costϵ(
∪

V ∈V∩

Cov(Q,V ))−
∑
V ∈V∩

Costϵ(V ) (4.7)

The latter, based on the properties of the
∑

aggregate becomes:

Costϵ(
∪

V ∈V1∪V ′
2

Cov(Q,V ))−
∑
V ∈V1

Costϵ(V ) + Costϵ(
∪

V ∈V∩

Cov(Q,V ))−
∑
V ∈V2

Costϵ(V ) (4.8)

K. Charmantaris 17
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Finally, based on the properties of the union operator, we have that:

Costϵ(
∪

V ∈V1∪V ′
2

Cov(Q,V )) + Costϵ(
∪

V ∈V∩

Cov(Q,V )) ≤

Costϵ(
∪

V ∈V1

Cov(Q,V )) + Costϵ(
∪

V ∈V ′
2

Cov(Q,V )) + Costϵ(
∪

V ∈V∩

Cov(Q,V )) =

Costϵ(
∪

V ∈V1

Cov(Q,V )) + Costϵ(
∪

V ∈V2

Cov(Q,V )) (4.9)

By following the inequalities and equalities it is straightforward that the Inequality 4.6
applies as we wanted to show.

The submodularity property of the benefit function, allows the reduction of the query re-
writing problem to the MNssfKc problem as already stated. The later allows to employ an
approximate solution for the query rewriting problem that operates in polynomial time in
the size of the query and guarantees a (1−e−1) approximation of the optimal solution.

4.2.1 MNssfKc-Based Query Rewriting Algorithm

Based on the Theory of MNssfKc, we propose a (1 − e−1)-approximation polynomial al-
gorithm for solving it.

Our algorithm works as follows: For the set of views VQ that can be used to rewrite the
query Q, our algorithm works in two stages. Let’s assume that Q′ is the current state of
rewriting for the query Q.

• In the first stage, we start by considering all rewritings Q′ of Q that employ two or
fewer views.

• In the second stage, starting from all the previously-identified rewritings, we find the
view V that can be used to rewrite Q′ and maximizes the Bnft(Q,V )

Costϵ(V )
ratio. It should be

noted that each time Q′ is rewritten by employing, in a greedy fashion, the algorithm
needs to update the corresponding benefit and cost functions for all remaining views.

Example 1. Let’s assume that we have the query in Fig. ]4.2 defined as:

q(x1, x5)←(x2, orange, x1), (x2, orange, x3), (x3, green, x4), (x4, green, x1),

(x4, purple, x5), (x4, cyan, x6), (x7, purple, x6), (x8, orange, x7)

and the corresponding views:

V1(x1, x2, x3)←(x2, orange, x1), (x2, orange, x3) (4.10)
V2(x4, x6, x7, x8)←(x4, cyan, x6), (x7, purple, x6), (x8, orange, x7) (4.11)

V3(x3, x6)←(x3, green, x4), (x4, cyan, x6) (4.12)
V4(x1, x4, x5)←(x4, green, x1), (x4, purple, x5) (4.13)

with initial benefit-to-cost ratios

Bnft(Q, V1)

Costϵ(V1)
= 0.8;

Bnft(Q, V2)

Costϵ(V2)
= 0.5;

Bnft(Q, V3)

Costϵ(V3)
= 0.5;

Bnft(Q, V4)

Costϵ(V4)
= 0.0. (4.14)
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x1

x2
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x8

x7

x6

x5

Figure 4.1: Initial Query Q Figure 4.2: Views for Rewriting VQ

Figure 4.3: Rewriting Q′ Figure 4.4: Rewriting Q′′ Figure 4.5: Rewriting Q′′′

Initially, our algorithm chooses for the rewriting the view that maximises the benefit-to-cost
ratio and the initial query is rewritten to:

q′(x1, x5)←V1(x1, x2, x3), (x3, green, x4), (x4, green, x1),

(x4, purple, x5), (x4, cyan, x6), (x7, purple, x6), (x8, orange, x7)

while displayed in Fig. 4.3. The corresponding rewriting does not change the benefit-to-
cost ratio for any of the remaining views, while the benefit-to-cost ratio for V1 becomes 0,
since the view cannot be further reused for the rewriting.

In the next step, the query of q′ is further rewritten to employ view V2 as part of its rewriting:

q′′(x1, x5)←V1(x1, x2, x3), (x3, green, x4), (x4, green, x1),

(x4, purple, x5), V2(x4, x6, x7, x8)

while displayed in Fig. 4.4. By employing the view V2 in the rewriting, the benefit of the
view V3 is reduced, since the cover the same edge, and its benefit-to-cost ratio becomes
0.2. The final rewriting of the query is

q′′′(x1, x5)←V1(x1, x2, x3), V3(x3, x6), (x4, green, x1),

(x4, purple, x5), V2(x4, x6, x7, x8)

and displayed in Fig. 4.5.

K. Charmantaris 19



Tractable View-Based Query Rewriting for Knowledge Graphs

5. EXPERIMENTAL EVALUATION

The aim of our evaluation section is to examine the performance of the query-rewriting
strategy based on a view-selection process, part of existing work [16, 15]. For our test-
ing scenarios, our application takes as input a knowledge graph G; a query workload Q,
corresponding to past queries; a query workload QT corresponding to future queries; and
produces the views V that will be materialized for future query execution. The rewritings
w.r.t. the views in V are later tested w.r.t. to the query workloadQT . The knowledge graph
G is stored as a set of triples within a relational column store. We selected MonetDb as
the underlying database.

5.1 Hardware and memory

We deployed our implementation on a server of 2 Intel(R) Xeon(R) CPUs @2.2GHz each
with 10 cores/20 threads per CPU and 128GB of main memory. The data are stored in a
MonetDb v11.37.11 database running on the same server.

5.2 Implementation Setup

We have implemented our algorithm in Java 8 using the Apache Jena 3.6.0 open source
Semantic Web framework [11] to parse SPARQL query workloads. For efficiently, com-
puting containment mappings from a set of views V to an examined query Q, we have
employed the mv-index structure introduced in our previous work [17].

5.3 Benchmark

For benchmarking ourmethodology, we employed theDbPedia semantic knowledge graph [3]
that has 189,511,679 triples and its corresponding size on disk is 133.93GB. The corres-
ponding real-world query workload [1], originating from queries on the DbPedia knowledge
graph, contains 1,287,711 queries. We have randomly partitioned the query workload into
the DbPedia training query workload Q, containing 1,277,711 queries that will be used for
selecting the appropriate views for materialization and the DbPedia testing query work-
load QT , containing 1000 queries that will be used for testing the efficiency of the selected
materialized views. We proceed with each step of the view-selection process.

5.4 Effectiveness of the Query-Rewriting of Views

We now examine the quality of the selected views by rewriting the queries within the
testing-query workload QT containing 1000 queries. We will consider the following para-
meterization for our problem: minSup value of 500; available storage capacities of 100,
1000, 5000, 10,000, 15,000, 20,000 records; the view selection process described in [15]
and the query rewriting methodology described in Chapter 4. We should point out that for
the view-selection methodology we also employ the linear cost model assumption and not
a more complicated cost estimation function.
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Figure 5.1: Benefited Queries (%)
Figure 5.1 illustrates the percentage of the queries that are benefited from our query-
rewriting methodology. The x-axis represents the available storage for materialization–
measured in terms of records used for materialization–, while the y-axis the percentage
of benefited queries.

Figure 5.2 illustrates the overall execution time for the queries in the testing workload QT ;
for varying capacities for materialization. The x-axis in Figure 5.2 illustrates the available
storage for materialization , while the y-axis illustrates the overall execution time for the
testing workload QT w.r.t. the suggested query-rewriting methodology. We observe that
the query workload is insignificantly benefited for more than 1000 records of available
storage.

Figure 5.3 illustrates the reduction in execution time exclusively for the queries in QT that
are benefited from the materialization. We should note that the y-axis in Figure 5.3 is in
logarithmic scale.

The experimental section practically demonstrates the significant improvement of query
performance using the rewriting techniques we proposed. Specifically, we observe that, on
average, there is a several orders of magnitude improvement in the execution of queries.
These improvements are not only theoretical but are validated through extensive testing
and benchmarking. By employing these rewriting techniques, we are able to optimize
the query process, leading to faster and more efficient data retrieval. The results clearly
indicate that our approach can handle complex query workloads effectively, making it a
valuable contribution to the field of query optimization. This substantial enhancement
in query performance underscores the practical applicability and potential impact of our
proposed methods in real-world scenarios.
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Figure 5.2: Execution times: QT

Figure 5.3: Execution times: benefited QT
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6. RELATED WORK

Query rewriting and view materialization play crucial roles in multiple-query optimization,
a field dedicated to improving the efficiency of database systems by optimizing the execu-
tion of several queries at once. Early research in this area introduced fundamental tech-
niques for reducing computational costs by reusing common subexpressions across quer-
ies. Subsequent developments advanced these methods by creating efficient algorithms
and addressing the challenges of materialized view selection and maintenance. These
studies also explored automation in view selection and the exploitation of similar subex-
pressions to further optimize query processing. More recent contributions have refined
these techniques to address scalability issues in large-scale systems, enhancing both
theoretical understanding and practical applications. Collectively, this body of work has
significantly advanced the field, laying the groundwork for current approaches to query
optimization and view management.

6.1 Query Rewriting and View Materialization in Multiple-Query Optimization

Query rewriting and viewmaterialization have been extensively explored within the context
of multiple-query optimization, which aims to improve the efficiency of database systems
by optimizing the execution of multiple queries simultaneously. Early foundational work
by Sellis (1988) in ”Multiple-query optimization” [23] proposed multiple-query optimiza-
tion techniques that laid the groundwork for subsequent research in this area. Sellis’s
approach involved identifying common subexpressions among multiple queries and com-
puting them once, which significantly reduces the overall computation cost and improves
system performance.

Roy et al. (2000) in ”Efficient and extensible algorithms for multi query optimization” [22]
expanded on this by presenting efficient and extensible algorithms that further optimized
multiple queries, demonstrating significant performance improvements. Their work intro-
duced new heuristics for query decomposition and rewriting, which could adapt to various
types of database systems, making it a versatile solution for multi-query optimization.

Mistry et al. (2001) focused on ”Materialized view selection and maintenance using multi-
query optimization” [19] addressing the challenge of choosing which views to materialize
for optimal query performance. This study highlighted the importance of balancing the
maintenance cost of materialized views with the query performance benefits they offer.
Their proposed algorithms aimed to find an optimal set of views that minimized the total
cost, including both the query execution and view maintenance costs.

Agarwal et al. (2000) in ”Automated selection of materialized views and indexes for SQL
databases” [2] automated the selection of materialized views and indexes in SQL data-
bases, providing a comprehensive solution for optimizing database performance through
strategic view materialization and indexing. This work is notable for its practical approach,
incorporating real-world constraints and performance metrics to guide the selection pro-
cess, making it highly applicable to commercial database systems.

Zhou et al. (2007) introduced techniques in ”Efficient exploitation of similar subexpres-
sions for query processing” [30] for efficiently exploiting similar subexpressions in query
processing, thereby reducing redundancy and improving execution times. Their approach
involved detecting overlapping subqueries and optimizing their execution through shared
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computation, which is particularly effective in environments with high query load and com-
plex query structures.

Chirkova, Halevy, and Suciu (2002) provided a formal perspective in ”A formal perspective
on the view selection problem” [5] establishing theoretical foundations that guide practical
view selection strategies. They explored the complexity of the view selection problem
and proposed approximation algorithms that offer near-optimal solutions with provable
performance guarantees, bridging the gap between theory and practice.

More recently, Kathuria and Sudarshan (2017) in ”Efficient and provable multi-query op-
timization” [13] developed efficient and provable multi-query optimization methods that
ensure both correctness and performance gains. Their work introduced new optimiza-
tion techniques that are not only efficient but also come with formal correctness proofs,
enhancing the reliability of multi-query optimization in critical applications.

Jindal et al. (2018) explored subexpression selection at datacenter scale in ”Selecting
subexpressions to materialize at datacenter scale” [12] addressing the challenges of op-
timizing query processing in large-scale distributed systems. Their study focused on the
unique requirements of datacenter environments, such as scalability and fault tolerance,
and proposed novel techniques for selecting and materializing subexpressions to improve
query performance across distributed nodes.

6.2 Semantic Web and Graph Data Systems

In the domain of the Semantic Web and graph data systems, view materialization and
query rewriting techniques have been pivotal for optimizing RDF (Resource Description
Framework) databases and SPARQL queries. Dritsou et al. (2011) proposed optimization
strategies for query shortcuts in ”Optimizing query shortcuts in RDF databases” [6] which
enhance query performance by precomputing and reusing frequently accessed query res-
ults. Their approach leverages the hierarchical nature of RDF data to identify and mater-
ialize query shortcuts that can be reused across multiple queries, significantly reducing
query evaluation time.

Goasdoué et al. (2011) tackled view selection in semantic web databases in ”View selec-
tion in semantic web databases” [9] focusing on efficient view materialization to support
complex query workloads. This work addressed the challenge of selecting views in a
dynamic environment where query patterns may change over time, proposing adaptive
algorithms that can adjust the set of materialized views based on evolving query work-
loads.

Papailiou et al. (2015) developed graph-aware, workload-adaptive SPARQL query cach-
ing techniques in ”Graph-aware, workload-adaptive SPARQL query caching” [20] that dy-
namically adapt to query patterns, significantly improving query response times in graph
databases. Their system continuously monitors query patterns and adapts the caching
strategy accordingly, ensuring that frequently queried subgraphs are cached and reused,
which improves overall system performance.

Wang, Ntarmos, and Triantafillou (2017) introducedGraphCache in ”GraphCache: A cach-
ing system for graph queries” [29] a caching system specifically designed for graph quer-
ies, which leverages the structure of graph data to enhance caching efficiency. Their
system is designed to handle the unique challenges of graph data, such as the need to
cache not just individual query results but also intermediate query states and subgraphs,
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which are critical for efficient graph query processing.

Their earlier work in 2016, ”Indexing query graphs to speedup graph query processing” [28]
also addressed indexing query graphs to speed up graph query processing, providing
methods for indexing that facilitate faster query evaluation. By creating specialized in-
dexes that capture the structural properties of query graphs, their techniques enable rapid
identification and retrieval of relevant subgraphs, which accelerates query execution.

Meimaris et al. (2017) extended characteristic sets for graph indexing in ”Extended char-
acteristic sets: Graph indexing for SPARQL query optimization” [18] offering advanced
techniques for SPARQL query optimization by capturing and utilizing the structural prop-
erties of graph data. Their work introduced novel indexing structures that enhance the
performance of SPARQL queries by reducing the number of joins and intermediate res-
ults, which are typically expensive in graph query processing.

6.3 Connections and Contributions

The body of work in multiple-query optimization and the Semantic Web demonstrates
the broad applicability and critical importance of query rewriting and view materialization
across different data management paradigms. Our work builds on these foundational
principles by addressing the problem of view-based query rewriting within the context of
knowledge graphs represented in relational databases. By leveraging the reduction of
query rewriting to the problem of Maximizing a Nondecreasing Submodular Set Function
Subject to a Knapsack Constraint (MNssfKc), we provide a novel approach that offers
polynomial-time solutions with provable approximation guarantees.

The integration of techniques from multiple-query optimization and graph data systems
into a unified framework for knowledge graph query rewriting represents a significant ad-
vancement. This work not only bridges the gap between these research areas but also
introduces new possibilities for efficient query processing in complex data environments.
By effectively combining these methodologies, we are able to address several longstand-
ing challenges in the field of knowledge graph management, particularly those related to
query performance and scalability.

Our proposed technique extends the state-of-the-art by providing a scalable and theor-
etically grounded solution to the view materialization problem. The reduction of query
rewriting to the MNssfKc problem allows for the application of well-established optimiza-
tion algorithms, ensuring that our approach is both efficient and reliable.

Furthermore, our work has practical implications for improving the performance of know-
ledge graph query systems. By optimizing the selection andmaterialization of views based
on recurring query patterns, we can significantly reduce query execution times and re-
source consumption. This is particularly important for industrial applications where large
volumes of data and high query throughput are common. The ability to precompute and
reuse query results not only enhances system efficiency but also improves the user ex-
perience by providing faster and more reliable query responses.

In addition to its practical benefits, our approach contributes to the theoretical understand-
ing of query optimization in knowledge graphs. By framing the view materialization prob-
lem within the context of submodular function optimization, we provide new insights into
the nature of query rewriting and its relationship to other optimization problems. This
theoretical perspective opens up new avenues for future research, encouraging the ex-
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ploration of additional cost models and optimization techniques that could further enhance
the performance and applicability of our methods.

Moreover, our work highlights the importance of interdisciplinary approaches in advancing
the field of data management. By drawing on concepts from multiple-query optimization,
graph theory, and submodular function optimization, we demonstrate the value of integ-
rating diverse methodologies to solve complex problems. This interdisciplinary approach
not only enriches the field but also fosters collaboration and innovation, paving the way
for future breakthroughs in knowledge graph management and query optimization.

In summary, our contributions to the field are multifaceted. We provide a novel, efficient,
and scalable solution to the view-based query rewriting problem in knowledge graphs,
grounded in both theoretical rigor and practical applicability. Our work bridges the gap
between multiple-query optimization and graph data systems, offering new possibilities
for efficient query processing in large-scale and complex data environments. Through
this integration of techniques and perspectives, we advance the state-of-the-art and lay
the foundation for future research and development in the field of knowledge graph query
optimization.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we presented a novel and efficient technique for view-based query rewrit-
ing specifically designed for knowledge graphs represented in relational databases. Our
approach addresses the unique challenges posed by the complexity and scale of modern
knowledge graphs, which are increasingly prevalent in various industrial applications such
as search engines, semantic web technologies, and data integration platforms.

In this thesis, we presented a novel and efficient technique for view-based query rewrit-
ing specifically designed for knowledge graphs represented in relational databases. Our
approach addresses the unique challenges posed by the complexity and scale of modern
knowledge graphs, which are increasingly prevalent in various industrial applications such
as search engines, semantic web technologies, and data integration platforms.

Our theoretical analysis demonstrates the potential of this approach to significantly en-
hance query performance by minimizing execution costs through optimal view material-
ization. This is particularly beneficial for applications involving large-scale and complex
knowledge graphs, where traditional query processing techniques may fall short due to
high computational demands.

In our future work, we intend to perform extensive experimental evaluations based on our
theoretical findings. These experiments will be designed to validate the practical effect-
iveness of our approach in reducing the overall execution cost of queries in real-world
scenarios. We plan to implement our technique in a prototype system and benchmark its
performance against existing state-of-the-art methods. This will involve:

• Dataset and Query Selection: We will select a diverse set of knowledge graph data-
sets and a range of query workloads that reflect common use cases in industrial
applications.

• Implementation and Optimization: We will implement our view-based query rewrit-
ing technique within a relational database management system, ensuring that the
algorithms are optimized for practical use.

• Performance Metrics: We will evaluate our approach using various performance
metrics, including query execution time, resource utilization, and scalability. Com-
parisons with baselinemethodswill bemade to highlight the improvements achieved.

• Scalability Analysis: We will investigate the scalability of our approach by varying
the size and complexity of the knowledge graphs and the corresponding query work-
loads, ensuring that our technique can handle large-scale data efficiently.

• Extended Cost Models: While our current work focuses on the linear cost model,
future research will explore the applicability of our reduction technique to other cost
models, such as logarithmic or polynomial cost functions, to broaden the scope of
our approach.

• Integration with Other Optimization Techniques: We aim to explore the integration
of our view-based query rewriting technique with other optimization strategies, such
as indexing and caching, to further enhance query performance.

• User Feedback and Adaptation: Incorporating user feedback into the optimization
process to dynamically adjust viewmaterialization strategies based on evolving query
patterns and user requirements.
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By pursuing these future research directions, we aim to establish a comprehensive frame-
work for efficient query processing in knowledge graphs, ultimately contributing to the ad-
vancement of data management technologies and their application in various industrial
domains. The insights gained from our experimental results will provide valuable guid-
ance for further refinement and adoption of our techniques in practical settings.

In conclusion, this thesis makes significant strides in addressing the challenges of view-
based query rewriting for knowledge graphs represented in relational databases. Our
novel approach not only advances the theoretical understanding of the problem but also
paves the way for practical implementations that can enhance the performance of complex
query workloads in modern data-driven applications.
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