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ABSTRACT

In recent years, due to significant advancements in computational power, the machine

learning community is experimenting with increasingly complex algorithms that are de

signed to detect patterns in data. Under these circumstances, modern machine learning

frameworks are expected to be expressive, so as to provide tools for defining arbitrarily

complicated neural architectures. At the same time, in order for such models to be train

able, each underlying framework needs to implement certain optimization algorithms that

rely on computing the derivatives of functions, through a process called Automatic Dif

ferentiation. What’s more, the majority of popular frameworks is exploiting parallel data

processing, in order to accelerate the training and inference procedures of machine learn

ing algorithms.

TensorFlow, in particular, is a framework that operates based on the dataflow computa

tional model, which is an alternative programming paradigm that is designed to parallelize

computations, so that they can run efficiently in distributed execution environments. How

ever, this inherent design pattern differs fundamentally from traditional, imperative style

programming. As a result, efficiency has come at the expense of ease of use, and the

framework has attempted to bridge this gap by introducing various features that aim to

adapt dataflow constructs into imperative execution. In spite of these efforts to provide

expressiveness, as of version 2.16, the framework officially [14] lacks support for recurs

ive function definitions. Recursion is generally regarded as a powerful programming ab

straction and is supported in most high level programming languages. For that reason, we

believe that TensorFlow, as a machine learning framework, could benefit from supporting

such a common feature that programmers are familiar with.

This thesis aims to propose a systematic way of handling recursive function definitions in

TensorFlow, in a manner that is compatible and consistent with the dataflow computational

model, upon which the framework is based. A significant portion of this work addresses

the problem of implementing Automatic Differentiation on such functions, so that they can

be used in practical situations, for machine learning.

SUBJECT AREA: Dataflow Computational Model

KEYWORDS: dataflow, tensorflow, recursive functions, automatic differentiation,

static dataflow graphs



ΠΕΡΙΛΗΨΗ

Τα τελευταία έτη, λόγω αξιοσημείωτης προόδου σε υπολογιστικές δυνατότητες, η κοινό

τητα της μηχανικής μάθησης πειραματίζεται με ολοένα και πιο περίπλοκους αλγορίθμους

που έχουν σκοπό την αναγνώριση μοτίβων σε δεδομένα. Υπο αυτές τις συνθήκες, οι σύγ

χρονες βιβλιοθήκες μηχανικής μάθησης οφείλουν να παρέχουν εκφραστικότητα, προσφέ

ροντας εργαλεία τα οποία καθιστούν εφικτή την υλοποίηση οποιασδήποτε πολύπλοκης

νευρωνικής αρχιτεκτονικής. Ταυτόχρονα, προκειμένου η οποιαδήποτε δομή να είναι εκ

παιδεύσιμη, η εκάστοτε βιβλιοθήκη πρέπει να υλοποιεί ορισμένους αλγορίθμους βελτι

στοποίησης, οι οποίοι, κατά κανόνα, βασίζονται στον υπολογισμό παραγώγων, μέσω μίας

διαδικασίας που ονομάζεται Αυτόματη Παραγώγιση. Επιπλέον, οι περισσότερες βιβλιο

θήκες αξιοποιούν την παράλληλη επεξεργασία δεδομένων, με σκοπό να επιταχύνουν τις

διαδικασίες εκπαίδευσης και συμπερασμού στη μηχανική μάθηση.

Το TensorFlow, συγκεκριμένα, είναι μια βιβλιοθήκη η οποία λειτουργεί βάσει του υπολο

γιστικού μοντέλου dataflow, που είναι ένα εναλλακτικό μοντέλο, το οποίο διευκολύνει την

παραλληλοποίηση υπολογισμών, με σκοπό την ταχύτερη διεκπεραίωση σε κατανεμημένα

υπολογιστικά συστήματα. Παρ'όλ'αυτά, η εγγενής φύση αυτού του μοντέλου διαφέρει ρι

ζικά απο το παραδοσιακό μοντέλο του προστακτικού προγραμματισμού. Ως εκ τούτου, η

ευκολία χρήσης θυσιάζεται χάριν της απόδοσης, ενώ έχουν γίνει σημαντικές προσπάθειες

κάλυψης αυτού του χάσματος, με την εισαγωγή μηχανισμών που επιχειρούν την ενσωμά

τωση των δομών dataflow σε προστακτική εκτέλεση. Όμως, παρά τις διάφορες προσπά

θειες βελτίωσης της εκφραστικότητας, η βιβλιοθήκη επίσημα δεν υποστηρίζει αναδρομι

κούς ορισμούς συναρτήσεων, εως και στην έκδοση 2.16. Η αναδρομή, γενικώς, θεωρείται

μια εξαιρετικά εύελικτη προγραμματιστική τεχνική, ενω οι περισσότερες γλώσσες προ

γραμματισμού υψηλού επιπέδου την υποστηρίζουν. Για τον λόγο αυτό πιστεύουμε οτι το

TensorFlow, μπορεί να επωφεληθεί εισάγοντας μια τόσο διαδεδομένη λειτουργικότητα στο

μοντέλο της.

Η παρούσα πτυχιακή έχει στόχο να παρουσιάσει ένα συστηματικό τρόπο διαχείρισης ανα

δρομικών ορισμών συναρτήσεων στο TensorFlow, με ένα τρόπο συμβατό αλλά και συνεπή

με το υπολογιστικό μοντέλο dataflow, επι του οποίου το TensorFlow βασίζεται. Ένα μεγάλο

μέρος της εργασίας αναφέρεται στο πρόβλημα υλοποίησης αλγορίθμουΑυτόματης Παρα

γώγισης για τέτοιες συναρτήσεις, ώστε αυτές να μπορούν να εφαρμοστούν σε πρακτικές

περιστάσεις, στα πλαίσια μηχανικής μάθησης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μοντέλο Ροής Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: dataflow, tensorflow, αναδρομικές συναρτήσεις, αυτόματη

παραγώγιση, στατικοί dataflow γράφοι
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An Automatic Differentiation Algorithm for Recursive Functions and its Implementation in TensorFlow

1. INTRODUCTION

1.1 Background

The majority of traditional, imperative programming languages, implement the notion of a

function, under some form. Functions introduce a highly convenient abstraction layer, as

they allow programmers to define local computations that can be composed and reused in

a blackboxmanner. Even though this feature is elegant from a programmer’s perspective,

its implementation is not as simple. In order to localize each function call, most high level

languages utilize a call stack: During runtime, whenever a function call is encountered,

a new stack frame is pushed onto the call stack. Each of these frames introduces a

unique context of local variables, so that they can be distinguished between previous and

subsequent calls. Conversely, when a function call exits, its frame is removed from the

top of the stack, and the next topmost frame corresponds to the context from which the

call was made. An important benefit of this classical implementation is that it allows for

function definitions to be recursive, which is particularly useful in situations where some

computation can be expressed as a combination of subcomputations, that have similar

structure.

In contrast to imperative languages, modernmachine learning frameworks, such asTensor

Flow, operate in a completely different way. Because of the fact that performance is crit

ical in machine learning applications, such frameworks follow the dataflow programming

paradigm [2]. In dataflow, each computation is represented as a directed graph, where

nodes represent primitive operations and edges indicate the flow of data between opera

tions. Each individual node/operation will execute the moment it has received data from all

of its inedges. Naturally, the output of the operation will be forwarded along the outedges,

onto the next nodes, until a certain ’sink’ node is reached, indicating that the computation

has finished. The advantage of this model is that it enables operations to be executed out

of order and in parallel, which can greatly reduce the total execution time.

In the context of graph execution, functions can be thought of as independent subgraphs

that can be appropriately connected with each other, in order to form a larger computation.

In order to support userdefined functions, an important decision to be made is whether

the invocation of functions will be dynamic or static [9]. The dynamic approach suggests

that whenever a node that represents a function call is about to execute, it gets replaced

with the actual function subgraph, which effectively causes the graph to expand at runtime.

The static approach, however, proposes that each function body subgraph shall exist only

once, but may execute several times, under different contexts. In the latter case, the

independence of contexts is achieved by wrapping the flowing data with special tags, that

specify the context in each case.

One crucial feature involving functions in machine learning, isAutomatic Differentiation [8],

which is a mechanism for calculating the derivatives of functions. The process of train

ing any kind of model, essentially, comes down to minimizing a mathematical function

with respect to its input variables. As a result, the calculation of derivatives is necessary,

as it determines how each variable needs to be changed in order for the function to be

minimized. This mechanism works by creating a ’backward’ graph, which composes the

partial gradients, using the chain rule of differentiation [7]. For each operation in the ori

ginal graph, a corresponding gradient operation is added on the backward graph, which

takes as input not only the partial gradients, computed along the backward path, but also,

optionally, the inputs and outputs of the original operation.

G. Vasilakopoulos 11
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The subject of this thesis, was to extend TensorFlow [1] with an algorithm for automatic

differentiation which is applicable in static dataflow graphs and works for recursive func

tion definitions. This work is heavily based upon previous work, made by my supervisor,

Calliope Kostopoulou, as part of her undergraduate thesis [5].

1.2 Motivation

1.2.1 Improved Expressiveness

After the release of TF 2.0, the framework is promoting the function as the main abstrac

tion at the user level, because of its intuitive nature. Users are no longer required to ex

plicitly define computational graphs. Instead, they may define functions, using a special

decorator that traces the execution of a Python function and automatically creates an ap

propriate dataflow graph. In spite of that transition, however, recursive function definitions

are still not supported by TensorFlow. While, in older versions, recursion was suppor

ted through dynamic graph expansion at runtime, as of version 2.16, the protocol is to

trace function bodies repeatedly, until no other function call remains. Under this policy,

recursive functions cause the tracing procedures to crash, by falling into endless loops. In

general, recursion is regarded as a highly powerful programming technique and several

deep learning architectures utilize it, especially in cases of hierarchically structured data

[6]. For that reason, it could be valuable to provide a mechanism that can handle recursion

and automatic differentiation efficiently.

1.2.2 Improved Performance

With the introduction of TensorFlow Eager as the default mode of operation, the frame

work gradually shifts away from (staged) graph execution, and adopts imperative features.

While it is true that staged execution is more difficult to program and to debug, it has signi

ficant benefits in terms of parallelization. Dataflow’s declarative nature allows for the main

graph to be partitioned into multiple subgraphs that can be deployed in distributed, het

erogenous systems and execute in parallel without any conflicts. Therefore, we believe

that an implementation of recursive functions in the staged context can leverage these

benefits and outperform a potential implementation in imperative mode, where there is

significant overhead in going back and forth into the Python interpreter. Additionally, our

approach on recursion using static dataflow graphs guarantees that the graph structure

will be known prior to the execution, which allows for better partitioning of the graph, when

compared to the dynamic approach. Furthermore, our approach on automatic differen

tiation provides an efficient way to calculate gradients of user defined functions, without

having to recompute function values, during the gradient evaluation. Note that this applies

to all userdefined functions and not just recursive ones.

1.3 Structure of Thesis

The rest of the thesis is organized as follows:

Chapter 2 describes the framework’s modes of operation in detail. Both staged and im

perative modes are examined, as well as the mechanisms for automatic differentiation in

G. Vasilakopoulos 12
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both cases.

Chapter 3 describes our approach in transforming graphs in order to support static recur

sion.

Chapter 4 describes the main algorithm for transforming gradient calls for recursive func

tions, in order to implement automatic differentiation.

Chapter 5 contains technical details related to the implementation of our approach. These

details mostly concern TensorFlow’s core and infrastructure.

Chapter 6 presents several performance results regarding our implementation

Chapter 7 proposes ideas that could possibly extend our current work and provides some

final conclusions.

G. Vasilakopoulos 13
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2. COMPUTATIONS IN TENSORFLOW

TensorFlow is an opensource framework, designed for implementing largescale machine

learning applications. It is highly flexible and it can be used to express a wide variety

of training and inference algorithms for deep learning models. It was first released by

Google in 2015 and its modes of operation have changed significantly over the course of

its lifespan.

2.1 Staged Execution

Originally, TensorFlow [1] was based completely upon the dataflow computational model.

It provided a high level API which allowed users to define their computations as dataflow

graphs and make several configurations, such as graph optimizations and partitioning on

multiple devices. This purely declarative mode of operation is commonly referred to as

staged execution mode and it is still supported today.

2.1.1 Graph Execution Model

In staged execution, each computation is expressed as a directed graph. Each node may

have zero or more inputs and zero or more outputs and it represents the instantiation of an

operation. Each possible operation has a name and represents an abstract computation,

such as ’matrix addition’ or ’matrix multiplication’. The values that flow along the edges of

the graph are tensors, meaning, arrays of arbitrary dimensionality.

a = tf.constant(3.0)
b = tf.constant(4.0)

a_squared = tf.multiply(a,a)
b_squared = tf.multiply(b,b)

sum_of_squares = tf.add(a_squared , b_squared)

result = tf.sqrt(sum_of_mults)

Figure 2.1: The Pythagorean Equation
√
a2 + b2 expressed in TensorFlow code

There also exists a special type of edges called control dependencies. Such edges do

not carry any data, but simply impose a strict order of execution between the connected

operations. In graphs, control dependencies are represented using dashed arrows.

After a graph is constructed, it undergoes several optimization procedures and it eventu

ally gets partitioned so that it can be deployed on multiple, possibly heterogenous devices,

including CPUs, GPUs and TPUs. Each operation’s implementation on a particular type

of device is called a kernel and it is the actual algorithm that computes the operation,

by leveraging potential devicespecific properties. In distributed runtime, there is a main

process called master process that handles the graph’s preprocessing, prior to execu

tion. It applies a certain nodeplacement algorithm and, eventually, it sends the generated

subgraphs to several worker processes, that may run on different devices. Each worker

process is responsible for executing nodes/operations that belong in their own subgraph.

G. Vasilakopoulos 14
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Nodes that have no pending input dependencies are placed in a ready queue, mean

ing that they are available for execution. Every other node is placed in a waiting queue.

Whenever a node receives a new input, it is reevaluated for placement in the ready queue.

The ready queue itself is processed in some order, depending on the underlying device

capabilities.

Figure 2.2: Graph of the Pythagorean Equation

2.1.2 Control Flow Operators

So far, operators have been described as simple computational abstractions that perform

tensor operations. However, in order to provide support for complex dynamic control flow

constructs [18], such as conditional statements, several operators with special semantics

[17] have been introduced:

• Switch: The Switch operator is used to branch the execution into different subgraphs,

according to the truth value of a certain boolean input. More specifically, it expects two

inputs: The first input contains data that needs to be propagated to the appropriate

subgraph and the second input expects a predicate that will determine the branch to be

taken. Naturally, the Switch operator has two outputs, one corresponding to a predicate

value of ’True’, and another of ’False’.

To be more precise, the taken branch of the switch operator will forward actual tensor

data, while the other, non taken branch will forward ’dummy’ data that will be propagated

instantly across the nontaken subgraph. This mechanism is generally known as dead

ness propagation and its primary purpose is to signal the operations of the nontaken

branch that they should not expect any incoming inputs.

Figure 2.3: The Switch Operator

• Merge: The Merge operator usually goes in pair with the Switch operator and its pur

pose is to reconnect the two branches back into a single branch. In general, the Merge

operator may expect one or more inputs, out of which only one will propagate actual

data, while the others will forward a dead signal.
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Figure 2.4: The Merge Operator

2.1.3 Tagging & Context Switching Operators

TensorFlow also supports the definition of iterative constructs (i.e. while loops), at a

graph level. This poses a significant challenge, regarding the handling of flowing data:

by allowing certain parts of the graph to execute multiple times, possibly simultaneously,

it is necessary to enforce a mechanism that differentiates data between iterations. Oth

erwise, a node in the loop body subgraph could yield incorrect results, by executing its

kernel on data that belong to different iterations.

TensorFlow addresses this challenge by introducing data frames (otherwise known as

tags [9]). Frames can be thought of as special metadata that uniquely identify the context

under which the accompanied data correspond to. Under this regime, in order to enforce

consistency, each node is expected to perform operations on data that belong in the

same context. The actual value of a frame is just an integer that represents the loop

iteration number, as it suffices in order to specify the context. Also, frames can be

nested, in order to support nested loops1.

Figure 2.5: A generic loop in graph mode

1Two frames that are nested into each other are said to have a ’parentchild’ relationship.
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The tagging semantics described above are enforced through the following context

switching operators [17]:

• Enter: The Enter operator is used in iterative constructs in order to create new contexts

of operation. Essentially, it wraps received data inside of new frames and it propagates

the framed data. The newly added frame is the current frame, while the previous frame,

that corresponds to the previous loop context, is the parent frame.

• NextIteration: Similarly, the NextIteration operator also forwards its input into a new,

uniquely identifiable context. Its purpose is to update the value of the current frame, by

effectively incrementing the loop iteration number.

• Exit: Finally, the Exit operator is responsible for revoking the operations of Enter: It

pops the current frame and forwards the data under the previous (parent) context.

2.1.4 Functions

In staged execution mode, a defined function has its own graph definition2, which is, es

sentially, the function body. The main difference between a function’s graph and the main

graph of execution is that the former contains special Argument and Return Value nodes

which are placeholders for the function’s input/output. In addition, the function’s name is

registered as an operation, which means that an invocation of the function from the main

graph will be initially represented by a single node. Consequently, it is not allowed to

define a function with the name of an existing operation, such as ’Merge’, for example.

Figure 2.6: Body of function Pyth(a, b) =
√
a2 + b2

Before the execution of the graph, a certain graph optimizer, known as function optimizer

inlines each function call operator until all of them are replaced. Of course, this means that

a recursive function would lead to infinite inlining. Although this optimizer can be disabled

by the user, the existence of function call operators during graph execution will lead to the

expansion of the graph at runtime (dynamic invocation) and this is considered deprecated

behaviour.

Figure 2.7: Graph of Computation Pyth(3, 4)− 1

2The difference between a graph and a graph definition is subtle: A graph definition can be thought of

as a recipe to build graphs. Surprisingly, though, converting a graph back into a graph definition happens

very often in the TensorFlow core
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Figure 2.8: After inlining function Pyth

2.1.5 Automatic Differentiation

Many optimization algorithms in machine learning, such as stochastic gradient descent,

rely on computing the gradient of a cost function with respect to its inputs. For that reason,

TensorFlow provides builtin support for automatic gradient computation. According to the

original TensorFlow paper [1], this mechanism works by extending the TensorFlow graph

as follows:

• When TensorFlow needs to compute the gradient of a tensor C with respect to some

tensor I on which C depends, it first detects the path between the node whose output is

C and the node whose input is I.

• It then traverses this path in a backward manner, adding nodes to the graph that com

pose partial derivatives along the backward path, according to the chain rule.

• Each newly added node computes the ”gradient function” for the corresponding opera

tion in the forward path.

An important detail to consider is that this algorithm assumes that, for each operation,

the corresponding gradient operation is also registered internally. While the gradients of

primitive operators are registered by default, in the case of function operators, the user

has to manually register a gradient function. Additionally, each operation is assumed to

be a blackbox abstraction that is completely independent from its gradient counterpart.

This is somewhat problematic for userdefined functions, as it means that the function

subgraph may not forward intermediate results to the gradient subgraph. Consequently,

this necessitates the recomputation of the function output, fromwithin the gradient function

subgraph.

TensorFlow also provides an API [15] that derives the gradient graph of a function, by

extending its original graph with backward paths that compose gradients. This API could

be used in order to automatically define the gradient of a function and then register it.

Figure 2.9: A generic function graph
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Figure 2.10: Extended Gradient Graph

In Figure 2.10, the function’s original graph has been augmented with a backward path

that composes gradients, using the provided API. Naturally, the original graph that cal

culates the value of the function is referred to as the forward path, while the subgraph

that calculates the gradients is called the backward path. The input node labeled as dy

represents the initial gradient weight, that is given as input from previous layers. If there

are no previous layers (i.e. y is the terminal output), then a value of 1 is given to dy [15].

Each node in the forward path has a corresponding node in the backward path that cal

culates it gradient. It is evident that the Extended Gradient Graph calculates the value of

the function internally, through the forward path.

It is worth noting how the number of inputs and outputs changes when the graph is exten

ded: if a function has n inputs and m outputs, after its graph is extended, it will possess n

+ m inputs, out of which n of them will be the original arguments and m of them (one for

each output) will correspond to gradient inputs from previous layers. Similarly, the outputs

will be n + m, out of which m will be the original outputs and the other n will be the gradient

outputs for each argument.

2.2 Tensorflow Eager

In spite of its significant benefits regarding parallelization, the staged execution mode

proved to be difficult to use and counterintuitive to programmers. For that reason, Tensor

Flow Eager [3] was introduced. TensorFlow Eager introduces imperative execution, which

is the main mode of operation in other popular machine learning frameworks, such as Py

Torch [10] or Chainer [16]

2.2.1 Basic Features

TensorFlow Eager is characterized as a multistage domain specific language, as it fea

tures both imperative execution and staged execution, although imperative execution is

G. Vasilakopoulos 19



An Automatic Differentiation Algorithm for Recursive Functions and its Implementation in TensorFlow

enabled by default. The main difference between the two modes lies in the way that the

kernels of operations are dispatched. In imperative mode, library functions construct op

erations and execute their kernels immediately, whereas in staged mode, the functions

would return a symbolic representation of values to be computed later, instead of actual

values.

Additionally, in order to make it easier to define dataflow graphs, a special decorator called

function is introduced. This decorator is, essentially, a Just In Time compiler that traces
the execution of Python functions and records all tensor operations into a dataflow graph. It

is worth noting that this tracing process fully unrolls Python control flow constructs such as

ifelse statements and while loops, potentially creating large graphs. In order to introduce

control flow at the graph level, users have to resort to functions such as tf.cond, which are
purely symbolic. This behaviour is similar for function calls as well: all calls are expected

to fully unroll during the tracing process, and, as a result, recursive functions cause the

tracing process to unfold indefinitely.

2.2.2 Functionalized Control Flow

Upon the release of TensorFlow version 2.0, the framework changed the way it handles

control flow constructs in staged execution. Instead of building statements using the ori

ginal control flow operators (Switch, Merge, Enter, etc), it uses functional statements. For

ifelse statements, this means that both branches of the statement are treated as functions

that should be called according to the predicate input. The behaviour for while statements

is similar. In spite of this change, however, the framework still supports the original control

flow operators and users may optionally disable the use of functional statements.

2.2.3 Gradient Tape

TensorFlow Eager supports automatic differentiation in imperative mode, through an ab

straction called a tape. Each defined tape may watch a particular value by recording

operations that take this value as input. Upon the first forward pass, every intermediate

value that is related to the watched value is registered within the tape for later reference,

during the backward pass. If a function, defined for staged execution (though the function
decorator) is found, then this poses no problem, as long as the corresponding gradient

function is also registered. Therefore, the tape is compatible in cases where imperative

code and staged code are mixed up. Finally, the process of calculating a gradient using

a tape is also a differentiable operation, meaning that tapes can be nested in order to

compute higher order derivatives:

x = tf.constant(3.0)
with tf.GradientTape() as t1:

with tf.GradientTape() as t2:
t1.watch(x)
t2.watch(x)
y = x * x

dy_dx = t2.gradient(y, x) # 6.0
d2y_dx2 = t1.gradient(dy_dx, x) # 2.0
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3. RECURSION IN TENSORFLOW

This chapter presents our approach on implementing recursive function definitions in Tensor

Flow graphs. This approach is based on transforming the graph prior to execution in a way

such that each function subgraph may run several times, under the different contexts of

recursive calls. Under these circumstances, each output is redirected to the appropriate

call site.

3.1 Tagging in Recursion

In order to allow for multiple executions of certain parts of a graph, possibly simultaneously,

it is necessary to introduce data tags [9], similar to the ones that are used in iterative graph

constructs. As mentioned in Chapter 2, the three existing context switching operators

(Enter, NextIteration, Exit) are responsible for updating frames of incoming data, so that

they are distinguishable between different iterations. Furthermore, it is essential to enforce

that every other operator in the graph may only execute its kernel using data of the same

context/tag.

The tagging mechanism that is described below is based upon an algorithm for trans

forming firstorder functional programs into intentional ones, which are easily deployable

in dataflow architectures. It was originally proposed by A. Yaghi as a subject for his PhD

dissertation in 1984 and a formal description of it can be found in [12]

Whereas in iteration, the tags are expressed using a single integer, which represents the

iteration number, in recursion, the tags are expressed as integer lists. In order to handle

the management of these new tags, we introduce two special control flow operators:

• Call: The Call operator is placed as a guard to all locations where a function is called. It

receives as input the function’s argument, as supplied from the call site and it forwards

it to the function body subgraph, while updating the tag. Each Call node in the graph

also maintains two attributes: a reference to the function that is called and an identifier

that is unique between all Call nodes of the graph. At runtime, tags of incoming data

are updated by prepending the Call node’s unique identifier into the integer list. This

ensures that data derived by different, overlapping calls to the same function won’t get

mixed up during the execution.

• Return: The Return operator is placed in the exit points of a function. It collects the

function’s output value and it forwards it back to the ’caller graph’, all while updating the

tags appropriately. The Return operator maintains as an attribute the unique ID of the

corresponding Call node, so that the Call and the Return nodes are matched with each

other. The tags of incoming data are updated by removing the first element of the integer

list, provided that it matches the internal ID of the Return node. If these two values don’t

match, then the incoming data is dropped completely.

Notice how the integer list, behaves similarly to the call stack of imperative languages:

The size of the list increases as the function call depth increases and, if we traverse the

list from start to end, we iterate from the most recent (inner) call site to the outmost one.

This means that a given list corresponds to a specific sequence of call sites and, therefore,

identifies a unique context.
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Figure 3.1: Tag changes between Call and Return nodes

3.2 Inline Placement

Now that we have a mechanism for creating unique contexts, we can describe the al

gorithm for transforming the graph. First of all, it is necessary to identify all of the functions

that are called through the main graph, either directly, or indirectly, through other functions.

Since these functions will need to be computed statically, it is required to insert a copy of

their subgraphs within the main graph. Once the body of every function has been placed,

then all of the function call operators within the main graph can be replaced with pairs

of Call/Return nodes that have distinct (incremental) identifier values, as inscribed by the

Call operator’s semantics.

All that remains is to make appropriate connections so that:

• The Call nodes forward their input to the respective function bodies.

• The function bodies forward their output to the Return operators.

Every function body that has been newly placed in the main graph contains a special

argumentplaceholder node that represents the function’s inputs. In order to connect mul

tiple Call nodes with a single function body, it suffices to convert the argument placeholders

into Merge nodes. The semantics of the Merge operator are convenient in this case, as

they provide precisely the desired functionality: When a single Call node is executed,

the function argument is forwarded to the Merge node, which will execute immediately,

effectively forwarding the argument to the function body.

The function bodies also contain special placeholder nodes that represent the output val

ues. These nodes also need to be transformed in order to forward their outputs to multiple

Return nodes. According to Return node semantics, each Return node receives outputs

from all call sites of that function, but only keeps the one that matches its internal identi

fier. Therefore, the outputplaceholder nodes need to be transformed into identity nodes,

meaning nodes that do not perform any actual computation, but simply forward their input

to multiple nodes. By transforming such nodes into identity nodes and connecting their

outputs to the Return nodes, the transformation is complete.

3.3 Transforming the Fibonacci Function

To demonstrate this transformation in practice, consider the computation Fib(4) + Fib(7),
where Fib is the Fibonacci sequence, defined recursively as:

Fib(n) = if (n <= 1) then 1 else Fib(n-1) + Fib(n-2)
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Figure 3.2: Main Graph after inlining Fib

As shown in Figure 3.2, the subgraph of the Fib function is defined using control flow

operators. The nodes labeled as ’n’ and ’Retval’ are placeholder nodes that correspond to

input and output respectively, while nodes labeled as ’Fib’ are function call operators that

refer to the function itself.

In the transformed graph, as shown in Figure 3.3, all four ’Fib’ function calls have been

converted to pairs of Call/Return nodes. All Call nodes forward their inputs to the newly

created Merge node, so that for each call of Fib, the input is fed into the function subgraph.

Additionally, the Identity node at the end of the function body forwards its input to all Return

nodes, so that in each case, the data will return to the call site of origin, according to the

identifier.

Figure 3.3: Transformed Graph
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3.4 Functions with Multiple Arguments/Outputs

When handling functions that take more than one input and/or produce more than one

output, there is a small technicality that needs to be addressed, during the transformation

process:

Consider a function that takes x inputs and produces y outputs. In the main graph, every

call operator of this function will take x inputs and will forward y distinct outputs. At the

same time, the function subgraph will have x argument placeholders and y output place

holders. This means that each of the x inputs needs to be redirected into the appropriate

argument placeholder node (to be converted into a Merge node) and each of the y output

placeholders (to be converted into Identity nodes) needs to forward its output back to the

call site.

The solution is to replace every call operator with x Call nodes and y Return nodes. As

such, each function argument will be forwarded, through a Call operator, into a Merge

node that is dedicated for that argument, throughout all call sites of that function. Similarly,

each distinct function output will be connected with a dedicated Identity node. As for the

internal IDs, all of the x Call and y Return nodes must share the same internal ID, in order

to handle context management correctly. An interesting benefit of this approach is that it

enables partial function invocation, by supplying arguments asynchronously. Furthermore,

if a certain output depends only on a small subset of the inputs, then this output will be

returned even if the rest of the inputs are not supplied.

Figure 3.4: A function with 3 arguments and 4 outputs
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4. AUTOMATIC DIFFERENTIATION OF RECURSIVE FUNCTIONS

Our approach on automatic differentiation demonstrates that in order to compute outputs

and gradients of possibly recursive functions, it suffices to include and reuse a single

instance of the Extended Gradient Graph within the main graph. A collateral benefit of

this proposed fusion is that intermediate results produced during the forward phase can

be shared with the backward phase, effectively eliminating the need to reevaluate the

forward phase during gradient calculation.

4.1 Intuition

By examining how a function graph is extended into a gradient graph, we can make two

important observations:

• If a function is recursive, then its extended graph will also be recursive, as the backward

path will contain calls to the gradient function itself.

• If we disregard the original function and treat the extended graph as a new, atomic

function, then all calls to the original function can be represented as partial calls to the

new function, where only the original input arguments are provided.

Based on this, it is possible to exploit the static transformation, described in the previous

section, in order to redirect every function and gradient call into a single instance of the

Extended Graph. Furthermore, in cases where the gradient is evaluated right after the

function value, these two calls may be combined, in order to avoid recomputing values.

4.2 Algorithm

The mechanism for transforming gradient calls is, essentially, an extension of the static

graph transformation, described in Section 3.1.

Initially, all functions that will be called during execution are identified and are placed within

the graph. If the gradient of a certain function is also identified, then only the Extended

Graph of the function is placed, instead of the function subgraph.

For each function, the function call operators and the gradient call operators are organized

into pairs, so that both the function value and the gradient are computed in a single pass

of the extended graph. If certain function calls cannot be matched with another gradient

call, then this is not a problem, as they can be computed by partially invoking the extended

graph, by only supplying the function’s original arguments. That is because the forward

path of the Extended Graph can be fully executed and produce outputs, even if the rest of

the arguments, that concern the backward pass, are not supplied (Section 3.4).

Afterwards, each pair of function/gradient calls is converted using Call and Return oper

ators. Specifically, each argument of the function call is redirected into the corresponding

argumentplaceholder of the extended graph and each gradient input of the gradient call

is redirected into the appropriate placeholders of the extended graph1.

1Note that the placeholders will eventually be converted into Merge/Identity nodes, as the graph trans

formation dictates
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Figure 4.1: A pair of function/gradient calls

Figure 4.2: After transforming

An important detail to note is that when converting gradient calls into Call/Return nodes,

the original arguments of the function are intentionally neglected, as they are redund

ant. Notice how in the example displayed in Figures 4.1 and 4.2, the inputs x1, x2, x3 of

Foo_Grad are not converted into Call nodes, since their values will be transported accord

ingly through the Extended Graph.

4.3 Transforming the Exponent Function

In order to better comprehend this procedure, we will closely examine the transformation

of the function xn, defined recursively as follows:

Exp(x,n) = if(n == 0) then 1 else x * Exp(x,n-1)

In most use cases of Automatic Differentiation, especially in algorithms such as Stochastic

Gradient Descent, the program maintains a set of trainable parameters that are iteratively

updated, until some stopping condition is satisfied. In each of these iterations, both the

objective function and its gradient are evaluated upon the same set of trainable paramet

ers. Therefore, in our example, if we assume that the objective function is Exp(x, n0), for
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some fixed n0, then, for each iteration, the computational graph will include the following

set of nodes:

Figure 4.3: Segment of Main Graph at each iteration

In the above figure it is worth mentioning that the gradient of Exp returns output only for

the x parameter, since n cannot be differentiated upon, as it is a discrete variable.

According to the definition of the Exp function, its computational graph uses a Switch/Merge

conditional construct and has the following (recursive) structure:

Figure 4.4: Exp’s Subgraph

By applying the algorithm for extending the subgraph of Exp with backpropagation paths,

we get the following graph:

Figure 4.5: Exp’s Extended Subgraph (simplified)
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In order to get a better understanding of Exp’s Extended Subgraph, we can make the

following observations:

• The graph has been augmented with a backpropagation path that starts at node dy

and ends at node dx. This backpropagation path contains a SwitchMerge conditional

construct that is identical to the one that is present in the forward subgraph. Its purpose

is to direct the gradient calculation according to the predicate value of n == 0, hence
the input from the Eq operator.

• Each branch of the newly inserted Switch operator represents the inverse path of the

branch taken during the forward pass. Notice how the two Switch operators are in sync

with each other, meaning that if n == 0, then the ’True’ branches get executed, effect
ively returning y = 1 and dx = 0. Conversely, if n != 0, then the ’False’ branches are

taken.

• The Extended Subgraph of Exp is recursive, since the call to Exp_Grad refers to the

subgraph itself.

• Both calls to Exp and Exp_Grad receive the same input arguments (n) and (x), just like

in the Main Graph.

The next step of the transformation procedure is to emplace the Extended Graph within the

Main Graph, replace all Exp and Exp_Grad nodes with Call/Return operators and connect

them appropriately with input/output placeholders. Finally, the last step is to convert input

placeholders into Merge nodes and output placeholders into Identity nodes.

Figure 4.6: Transformed Graph
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In Figure 4.6, the final version of the Main Graph is displayed. The edges colored in green

are newly added edges that connect Call/Return nodes with Input/Output placeholders

respectively. As explained in the previous section, the arguments (x) and (n) of Exp_Grad

are dropped, and only the (dy) argument is supplied in the place of Exp_Grad.

Notice how the Extended Graph can be considered as a function that takes 3 input argu

ments: (n), (x), (dy) and returns two: (dx) and (y). Also, there are exactly two call sites of

this recursive function, throughout the entire Main Graph, as indicated by the internal IDs

of Call/Return nodes. The ID of 0 corresponds to the recursive call site, while the ID of 1

corresponds to the outer call site.

In order to observe the asynchronous nature of this structure, let’s see what happens if

we supply x = 3 and n0 = 1:

• The call {x = 3, n = 1, dy = 1} is made, through the Call1 nodes of the Main Graph.

• In the Extended Graph, the (x) and (n) data flow towards the corresponding Call0 nodes.

• A partial, recursive function call is made, with arguments {x = 3, n = 0}, through the
corresponding Call0 nodes.

• Eventually, the (y) output is returned through Return0, but since it was a partial call, the

input for (dy) is still pending, for the inner call.

• The newly computed (y) output is further processed in order to compute the (y) output

of the outer call, which is to be returned in the outer call site, in Return1

• At the same time, the (y) output of the inner call is also propagated through Mult_Grad,

towards Call0 for (dy).

• Once it is reached, the (dy) input of the previous partial call is no longer pending, and,

eventually, (dx) is returned in Return0.

• Finally, the inner (dx) value is used to compute the (dx) output of the outer call, which is

returned in the corresponding Return1 node.

The big picture is that, through this conversion, instead of having two independent func

tions, Exp and Exp_Grad, that are actually subgraphs of each other, and perform duplicate

computations, we create a more general function that solves both problems asynchron

ously. At its core, this mechanism is based on the fact that it is possible to make partial,

overlapping function calls. The ability to perform partial calls is guaranteed by the inde

pendence of Call nodes between arguments (Section 3.4). On the other hand, overlapping

calls are guaranteed through the tagging mechanism (Section 3.1).
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5. IMPLEMENTATION

This chapter discusses several technical details regarding the implementation of the pre

vious ideas in the TensorFlow core. In order to provide support for recursive functions

in TensorFlow, it is required to overcome several issues that concern the Eager mode of

execution. The implementation of our work is integrated as an additional feature to the

framework, meaning that no changes were performed to the existing code.

The implementation itself is based on TensorFlow 2.16, although several legacy features

are reintroduced in order to provide support for recursive function definitions.

Our code can be found on: https://github.com/GeorgeVasilakopoulos/tensorflow

5.1 Forward Function Declaration

When trying to define a recursive function in TensorFlow 2.16, one of the main problems

is that the tf.function decorator traces the recursive function calls indefinitely, as it is

designed to unfold control flow constructs and function calls. For example, the following

segment of code causes a maximum recursion error:

@tf.function
def recursive_fn(n):

if n > 0:
return recursive_fn(n - 1)

else:
return 1

with assert_raises(Exception):
recursive_fn(tf.constant(5)) # maximum recursion error.

For that reason, it is necessary to introduce an alternative way of defining recursive func

tions, so that the tracing process does not fall into an endless loop. The solution came

through reintroducing a legacy class named tf.function.Declare, which allows users

to declare a named function, along with its inputs and then use the Python object as a

callable:

fac = tf.function.Declare("Fac", [("n", tf.float32)], [("ret", tf.float32)])

@function.Defun(tf.float32, func_name="Fac", out_names=["ret"])
def FacImpl(n):

return tf.cond(tf.equal(n, 1),
lambda: tf.constant(1.0),
lambda: n * fac(n - 1))

Additionally, it is required to provide a mechanism that registers a function definition within

the graph. Otherwise, the tracer will not recognize the function that is referred by the

tf.function.Declare object and will return an error. In order to address this, we im

plemented a C API call named TF_GraphAddFunctionDef which can be used in order to

register a function that has not yet been defined, as an operation in the graph.
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5.2 Optimizer function_transformation

In TensorFlow, after a graph is constructed, several optimization procedures are applied to

it, before it gets partitioned and executed. Each individual optimization that is applied on

the graph is defined programmatically as a class with appropriate attributes and methods,

and it can be manually disabled by the users.

Our approach on transforming function calls is implemented as an additional Optimizer,

named ’function_transformation’. This optimizer works by placing inline a single instance

of all userdefined functions and transforming each call, according to the mechanism de

scribed in the previous sections. Also, because of the fact that our transformation creates

graph cycles that are unaccounted for, it is necessary to loosen the conditions of cycles

in the algorithm for topological ordering.

In order for the transformation to be applied properly, users also must disable the optim

izer named function_optimizer, due to discrepancies with function_transformation. More

specifically, function_optimizer performs recurring inline placements to all function calls,

in order to enable other interprocedural optimizations. Therefore, this specific optimizer

cannot work along with our own optimizer, as it will remove all function calls from the main

graph. Furthermore, function_transformation works with graphs that utilize the original

control flow operators, which means that functionalized control flow (Section 2.2.2) needs

to be manually disabled.

5.3 Gradient Function Inference

By default, in order to perform gradient computations for custom TensorFlow functions,

users are required to manually register the gradients of functions as operations. The

standard method to infer the gradient function subgraph is using an API which, as men

tioned in Section 2.1.4, extends the original function graph with backpropagation paths.

In order to automate the process of extending the function graph, we introduce a special

flag that can be supplied during the function definition. This flag is named create_grad_func
and, if enabled, then the extended graph will be inferred and registered in place of the ori

ginal function, so that the gradient call transformation will work as described in Section

4.2

@function.Defun(tf.float32, tf.float32, func_name="EXPONENT",
create_grad_func = True, out_names=["ret"])

def ExpImpl(x, n):
return tf.cond(tf.equal(n,0),

lambda: tf.constant(1.0),
lambda: x*exp(x,n-1))
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6. EVALUATION

In order to evaluate our implementation, we performed experiments on some basic use

cases of recursion and automatic differentiation and compared the performance against

existing mechanisms provided by TensorFlow. Because of the fact that TensorFlow does

not support datadependent recursion, we considered use cases where the recursion

depth is fixed and known in advance. Therefore, this type of recursion can be emulated

by either unrolling the graph prior to execution, or by adapting iterative constructs such as

tf.while_loop, were datadependent looping conditions are actually possible. All tests

were performed on a TensorFlow CPUonly build.

6.1 Machine Learning Task

In this test, we experimented with a relatively simple model in the family of Recursive

Neural Networks, the TreeRNN [13]. More specifically, the task is to perform sentiment

classification in data from the Stanford Sentiment Treebank dataset, where every instance

is a fully labeled parse tree of a certain sentence, meant to represent the semantic struc

ture of its individual words.

In the TreeRNN model, a set of trainable parameters is reused hierarchically, in each

layer of the tree, in a bottomup manner, in order to yield a prediction at the root of the

tree. Since each training instance is an individual tree, the model needs to adapt to the

unique structure of each data instance. This is where recursion can show its potential.

We compared our approach (labeled as Recursion) against an implementation that uses

iteration, using the tf.while_loop operation. Both models were trained for 4 epochs, on
a dataset containing 700 examples, and performed inference on a dataset containing 200

examples. The training and inference times listed in Table 6.1 indicate a significant spee

dup in favour of our recursive approach. This speed up can be attributed to the difference

in managing gradient calls [18], hence the larger percentage difference in training. Al

though, to be fair, it is possible that an overhead is also introduced by ’flattening’ recursion

into iteration.

Table 6.1: TreeRNN Training & Inference Times in seconds

Iteration Recursion Speedup

Training Time (s) 268.91 179.57 33.22%

Inference Time (s) 8.24 7.41 10.07%

6.2 Recursion Depth Test

In this test, we demonstrate how our approach scales, depending on the recursion depth.

Specifically, for incremental values of n (which corresponds to the maximum recursion

depth), we perform 100 gradient descent iterations on the (tail) recursively defined Expo

nent function xn. Our approach is compared with the purely imperative one and the one

that statically unrolls the graph prior to runtime, by using the tf.function decorator.

The results, displayed in Figure 6.1 imply that our transformation scales better for larger

recursion depths. This can be attributed to the fact that the other methods ’expand’ their

G. Vasilakopoulos 32



An Automatic Differentiation Algorithm for Recursive Functions and its Implementation in TensorFlow

structure as the size of the input n increases, whereas, in our method, the computational

graph remains the same. The aspect that expands in our case, is the amount of data that

flows within the graph, originating from different contexts.

Figure 6.1: Minimizing the Exponent Function  100 iterations

import tensorflow as tf
import time

@tf.function # Comment out for purely imperative mode
def f(n,x):

if n == 0:
return tf.constant(1.0)

else:
return x*f(n-1,x)

x = tf.Variable(1.0, dtype=tf.float32)
optimizer = tf.optimizers.SGD(learning_rate=1e-10)

def make_test(n):
start_time = time.time()
for step in range(100):

with tf.GradientTape() as tape:
loss = f(n,x)

grad = tape.gradient(loss, x)
optimizer.apply_gradients([(grad, x)])

total_time = time.time() - start_time
print(f"Final result: x = {x.numpy()}")
return total_time

Figure 6.2: Python Test Code: Static Unrolling

G. Vasilakopoulos 33



An Automatic Differentiation Algorithm for Recursive Functions and its Implementation in TensorFlow

import os
import time
import tensorflow as tf
from tensorflow.python.framework import function

tf.compat.v1.disable_eager_execution()
tf.compat.v1.disable_control_flow_v2()

exp = function.Declare("EXPONENT", [("x", tf.float32), ("n", tf.int32)],
[("ret", tf.float32)])

@function.Defun(tf.float32, tf.int32, func_name="EXPONENT",
create_grad_func = True, out_names=["ret"])

def ExpImpl(x, n):
return tf.cond(tf.equal(n,0),

lambda: tf.constant(1.0),
lambda: x*exp(x,n-1)

)

def make_test(n):
tf.compat.v1.reset_default_graph()
x = tf.Variable(initial_value=1.0, dtype=tf.float32)
n = tf.constant(n)
y = ExpImpl(x,n)

optimizer = \
tf.compat.v1.train.GradientDescentOptimizer(learning_rate=1e-10)

train_op = optimizer.minimize(y)

sess = tf.compat.v1.Session()
sess.run(tf.compat.v1.global_variables_initializer())

start_time = time.time()

for step in range(100):
sess.run(train_op)

total_time = time.time() - start_time

final_x, final_f_x = sess.run([x, y])
print(f"Final result: x = {final_x}, f(x) = {final_f_x}")

return total_time

Figure 6.3: Python Test Code: Recursion
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7. FUTURE WORK & CONCLUSIONS

7.1 Graph Load Balancing

In our approach we have demonstrated that in TensorFlow’s graph execution mode, it

suffices to include a single copy of each used function within the main graph. However,

even though this approach allows for recursive function definitions and efficient gradient

calculation in small graphs, in larger graphs, performance issues could arise. If a certain

function were to be called through many different call sites in a large graph, then all of the

data would have to pass through a single instance of the function body, given that there

is only one throughout the entire graph. A possible improvement could be to add more

than one instances of each function body, under certain circumstances, so that the load

is balanced between multiple parts of the graph. This would allow for better parelleliza

tion amongst available devices, and it would yield more favourable results in distributed

runtime.

7.2 Demand Driven Model

As of right now, TensorFlow’s computational model is based on data driven dataflow,

meaning that each node/operation is executed if and only if all of its arguments are avail

able. An alternative approach would be to incorporate a demand driven [4] model, where

each node awaits for a demand to be received from succeeding nodes. Naturally, this

implies that, in order to initiate a computation, users would have to signal a demand that

starts at the end of the graph and propagates backwards, towards the source nodes. This

approach could be beneficial, as it avoids making redundant computations that do not

contribute to the final result, potentially improving the execution time. It would be interest

ing to examine the behaviour of a demand driven architecture, or even a ’hybrid’ mode of

operation, that alternates between the two methods [11].

7.3 Adapting to Other Frameworks

Another interesting future direction would be to examine whether this transformation can

benefit other popular machine learning frameworks, such as PyTorch [10]. It is worth ex

amining whether the core idea that is proposed in this transformation can also be adapted

into automatic differentiation mechanisms of imperative execution, such as the gradient

tape.

7.4 Conclusions

The main goal of this project was to reintroduce recursive function definitions in Tensor

Flow and to present a suitable mechanism for computing the gradients of such functions.

We believe that recursion is a powerful technique that should be exploitable by machine

learning architectures, as it enables the definition of complicated, hierarchical structures

in a convenient manner. According to our experimentation, our approach yields promising
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results and it has the potential to perform even better in distributed execution environ

ments.

For reasons unknown to us, TensorFlow’s support for recursion has diminished after the

release of TensorFlow Eager. We hope that this work could provide some insight in ways

to establish a mechanism that allows for recursion in TensorFlow and is compatible with

the existing features of the framework.
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ABBREVIATIONS  ACRONYMS

NKUA National and Kapodistrian University of Athens

TF TensorFlow

HUA Harokopio University of Athens

CPU Central Processing Unit

GPU Graphics Processing Unit

TPU Tensor Processing Unit

API Application Programming Interface
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