
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Formalized Proofs of the Extension of Consistent
Approximation Fixpoint Theory

Georgios Panagiotopoulos

Supervisors: Panagiotis Rontogiannis, Professor
Angelos Charalambidis, Assistant Professor

ATHENS

JULY 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Τυπικές Αποδείξεις της Επέκτασης της Θεωρίας
Προσέγγισης Σταθερών Σημείων

Γεώργιος Παναγιωτόπουλος

Επιβλέποντες: Παναγιώτης Ροντογιάννης, Καθηγητής
Άγγελος Χαραλαμπίδης, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2024

BSc THESIS

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

Georgios Panagiotopoulos
S.N.: 1115201700113

SUPERVISORS: Panagiotis Rontogiannis, Professor
Angelos Charalambidis, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Τυπικές Αποδείξεις της Επέκτασης της Θεωρίας Προσέγγισης Σταθερών Σημείων

Γεώργιος Παναγιωτόπουλος
Α.Μ.: 1115201700113

ΕΠΙΒΛΕΠΟΝΤΕΣ: Παναγιώτης Ροντογιάννης, Καθηγητής
Άγγελος Χαραλαμπίδης, Επίκουρος Καθηγητής

ABSTRACT

The purpose of this thesis is to formalize key proofs within the framework of consistent
approximation fixpoint theory using the Lean 4 theorem prover, with the aim to refine the
proofs themselves as well as verify their results. This is accomplished by constraining
the formalization process to already verified tools, specifically the Lean base library and
Mathlib.

SUBJECT AREA: Programming Language Semantics

KEYWORDS: lattice, fixpoint, logic, proof, lean

ΠΕΡΙΛΗΨΗ

Ο σκοπός αυτής της εργασίας είναι η τυποποίηση βασικών αποδείξεων της θεωρίας προ-
σέγγισης σταθερών σημείων χρησιμοποιώντας το εργαλείο αποδείξεων Lean 4, με ως
στόχο την βελτίωση των ίδιων των αποδείξεων καθώς και στην επαλήθευση των αποτε-
λεσμάτων τους. Αυτό επιτυγχάνεται με την εξ ολόκληρου χρήση ήδη επαληθευμένων ερ-
γαλείων για την διαδικασία τυποποιήσης, συγκεκριμένα την βασική βιβλιοθήκη της Lean
και την Mathlib.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολόγια Γλώσσων Προγραμματισμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: πλέγμα, σταθερο σήμειο, λογικός, αποδείξη, lean

CONTENTS

1. INTRODUCTION 9

2. DOMAIN THEORY PRELIMINARIES 11

3. UNDERLYING STRUCTURES 12

4. PROPOSITION 8 16

5. PROPOSITION 9 18

6. PROPOSITION 10 20

7. PROPOSITION 11 23

8. PROPOSITION 12 26

9. PROPOSITION 13 28

10. CONCLUSION 30

11. REPOSITORY 31

REFERENCES 32

PREFACE

In the context of the Well-Founded semantics of higher-order logic programs, Angelos
Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou [1] developed an extension
of the theory of consistent approximating operators from [3]. This extension ended up
being of some general mathematical interest, necessitating a stricter formalization of the
theory presented.

In general, approximation fixpoint theory has a wide range of applications in the context of
logic programming and its approximate fields, such as databases and artificial intelligence.
It gives us a framework for understanding the semantics of non-monotonic logic, a type
logic which closely mirrors human reasoning; deducing from incomplete data and making
assumptions based on the now available information, whilst also being able to retract
those assumptions when new, contradictory, information is presented.

At the same time, formalizing proofs has gained popularity for several reasons. Obvi-
ously, the most important one is the verification of the results themselves, which allows us
to have a higher level of confidence in the correctness of our theory. Secondly, many of
those theorems are being utilized in systems where correctness is paramount. One such
example are compilers, which rely on such theorems to guarantee the reliability of their
operations. And of course, formalizing proofs also provides an overview of the dependen-
cies among the theorems, which along with providing a better understanding of the theory,
it also allows us to know if a proof remains valid once changes or extensions are made.

In the text, we shall first go over the primary mathematical structures that are required for
this theory, then we shall go over the Propositions 8-13, their formalization in Lean, and
outline their non-formal proofs. These proofs, originally presented in various papers [1] [2]
[3], will follow the more rigorous Lean proof structure, providing a more formal approach.
As such, the proofs presented can also function as a supplement for understanding the
Lean code.

While some code examples will be provided, they will not be exhaustive due to practical
constraints. The snippets will serve as rough guidelines. For the complete project, refer
to this public repository.

https://github.com/UpTheShipCreek/Extension-of-Consistent-Approximation-Fixpoint-Theory-Proofs

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

1. INTRODUCTION

Non-monotonicity is a concept that appears in various systems. While this extension of
the Approximation Fixpoint Theory spawned from reasoning about the semantics of logic
programs, we can certainly map it into other fields. It is thus vital to build an intuitive un-
derstanding of the motivation behind the theory, as well as the math itself.

We can start with our understanding of knowledge. A very basic and intuitive way to
think about knowledge is through sets. A set of propositions could be thought of as rep-
resenting our knowledge about a certain system. In two valued logic, if a proposition of
the general domain is missing from this set, it means that it is false, and vise versa.

Let’s say we know two people, John and Bill. We know nothing about Bill but we know
that John uses Windows 11. Trying to represent this in traditional logic already proves
challenging, since we are basically forced to assume that Bill doesn’t use Windows, which
is not necessarily true.

Let’s also assume that we know that if someone doesn’t use Windows, they are a good
person.

good(Person)← ¬Person(windows)

At this point it is important to note, that this is an intensional example for clarity. In reality,
this theory discusses extensional structures, structures which we should understand as
general formulas of deduction. Those formulas can just as easily be used for numbers or
any other relation. We generally don’t need to attribute any specific intensional property
to the above formulation for it to be useful.

Continuing with this specific example, if we naively try to extract truth from those rules,
we will end up with more truth about Bill than about John, namely we will end up saying
that we know Bill (represented by the empty set) is a good person while John (represented
by the set with just one element) is not.

{} ⊆ {windows} ⇒ good({}) = True ≥truth False = good({windows})

This approach, of course, doesn’t correspond to our intuition about knowledge and truth
and yet it is this very approach that is used for defining the semantics of positive logic
programs. It is obvious that we need a different concept for monotonicity, as well as a
different representation of knowledge if we are to sufficiently reason about more complex
systems.

The first problem is with the initial modeling; in simple databases and programs it might
be reasonable to assume that Bill doesn’t use Windows, we are basically operating under
the presumption that our knowledge is complete, so if he did, we’d know about it. That’s
not a reasonable assumption neither in our everyday lives, nor in more complex systems.

So, firstly, we can do away with this by adding a third truth value which we can call ”I
don’t know” or simply Undefined. With this tool our example already appears to align
better with our intuition; we don’t know if Bill uses Windows or not, so by applying our rule:

{} ⊆ {windows} ⇒ good({}) = Undefined ≤ False = good({windows})

G. Panagiotopoulos 9

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

We can see that we used a different ordering now, an ordering on which it doesn’t matter if
something is simply True or False; what actually matters is whether or not we know about
it. We will call this information ordering. Formally this ordering can be expressed as:

Undefined ≤ False ∧ Undefined ≤ True

A problem that we face now, is that we still need the ≤truth ordering. That’s because we
need our model to be ”truth minimal”. Intuitively, we know that we wouldn’t want to believe
every assertion we can think of so long as it doesn’t contradict any evidence. For example,
it generally wouldn’t be reasonable to assume that Bill has an invisible pet dragon in his
house, even though this assertion could probably never contradict any evidence. So, it is
obvious that we still need a way to keep our models from building towards this excess of
assumptions because they are too ”lazy” to account for it.

The way we solve for this is by establishing a bijection between the functions that can
account for the information ordering and our original naive functions. We can represent
the third truth value through the difference of a pair of naive functions (f1, f2). We can of
course reason about these functions as sets:

f : D → {False, True}, then F is a set of element D where:

• ∀ d ∈ F, f(d) = True

• ∀ d /∈ F, f(d) = False

Or, more concisely:
F = {(d : D) | f(d) = True}

If we then have two sets of truths, those two sets are allowed to contradict each other.
What we actually know can be represented as their intersection, and what we don’t know
as their difference. Formally, for sets F1 and F2 representing the f1 and f2 functions re-
spectively, the set of undefined values of the function f = (f1, f2) can be expressed as
F2 − F1 and the set of the actual knowledge as F2 ∩ F1.

Note that we take the difference F2 − F1 rather than F1 − F2. That’s because this ap-
proximation of knowledge relies in the reconciliation between F2 assuming too much and
F1 assuming too little.

Marc Denecker, Victor W. Marek, and Mirosław Truszczynskic[3] showed that by iter-
ating a proper operator, starting from the worst possible pair (f1, f2), we can reach a
fixpoint. The contribution of Angelos Charalambidis, Panos Rondogiannis, and Ioanna
Symeonidou[1] was to then generalize this approximation structure into higher order rela-
tions, where the functions are not simple predicates, but higher order predicates, predic-
ates that can handle as input functions of any complexity. The formalization of the precise
inner workings of this generalization is the subject of this thesis.

We will start with some basic definitions.

G. Panagiotopoulos 10

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

2. DOMAIN THEORY PRELIMINARIES

Definition 2.1. Partial Order
A Partial Order is a ≤ relation on a set (or type)D, that is reflexive, transitive and antisym-
metric.

Definition 2.2. Bounded Order
A Bounded Order is a ≤ relation on a set (or type) D, such that Top (⊤) and Bottom (⊥)
elements exist.

Definition 2.3. Complete Semilattice
A Complete Semilattice is a Partial Order in which all subsets (or sets of elements of the
type) have either a supremum (least upper bound) or an infimum (greatest lower bound).

Definition 2.4. Complete Lattice
A Complete Lattice is a Partial Order in which all subsets, have a supremum and an in-
fimum.

Definition 2.5. Chain
Given a Partial Order (D, ≤), every linearly ordered subset S of D will be called a chain.
A Partial Order is chain-complete if it has a Bottom element and every chain S ⊆ D has a
supremum.

Theorem 2.6. (Theorem 4 in [1])
A Partial Order (D, ≤) is a Complete Lattice if it is a Complete Semilattice of supremum.
Alternatively a Partial Order is a Complete Lattice if it is a Complete Semilattice of infimum.

Note: The above version of the theorem is closer to the one used by Mathlib. In [1] it
is asserted that a Partial Order is a Complete Lattice if every non-empty subset has a su-
premum in the Partial Order and also the Partial Order has a Bottom element. The second
assertion is already accounted for in Mathlib, where the supremum of an empty set is the
Bottom element.

Mathematically this holds true since every element of the empty set is vacuously an upper
bound, and supremum is the least upper bound.

We will be using this theorem for Proposition 8.

Theorem 2.7. Knaster-Tarski
Let L be a (D,≤) complete lattice and let f : D → D be a monotonic function. Then the
set of fixed points of f in L forms a complete lattice under its order, with the least fixpoint
being the infimum of all the prefixpoints, i.e. the set of all x such that f x ≤ x.

G. Panagiotopoulos 11

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

3. UNDERLYING STRUCTURES

Now that we have briefly gone through the basic Domain Theoretic structures, as well as
some theorems that we will need, we are ready to talk about the specific structures of the
proposed extension.

Definition 3.1. Bounded Partial Order
Let L be a Partial Order (D, ≤) and assume that L is Bounded. That is to say that there
exist two elements in D, Top and Bottom such that

∀ (x : D), ⊥ ≤ x ≤ ⊤

This can be expressed in Lean, simply as:
class BoundedPartialOrder (D : Type u)

[PartialOrder D] extends BoundedOrder D

That means, that our Baseline Order is a class, which takes a Partial Order instance as a
parameter, and which inherits the characteristics of a Bounded Order (i.e. Top and Bot-
tom). D is the underlying type of the elements of this Order.

Note: The PartialOrder and the BoundedOrder classes are part of Mathlib.

Definition 3.2. Twin Complete Lattices
Let L1 and L2 be Complete Lattices (SD1, ≤) and (SD2, ≤). That is, they are both defined
on the previous order. L1 and L2 have the following properties :

1. SD1 ⊆ D ∧ SD2 ⊆ D

2. SD1 ∪ SD2 = D

3. ⊤,⊥ ∈ SD1 ∧ ⊤,⊥ ∈ SD2

Since those Twin Complete Lattices use the same order as the Bounded Partial Order, in
order to implement it, we need a way to tell Lean to use this very same base Partial Order
of the D type.

The Mathlib Complete Lattice class doesn’t have that capability, so we create our own
(which we can then easily map to the Mathlib one).
class CompleteLatticeFromOrder

(D : Type u)
[PartialOrder D]
extends SupSet D, InfSet D,
Sup D, Inf D, BoundedOrder D

The subset relation can be expressed in Lean with the help of subtypes. Given a pre-
dicates D1 = D → Prop and D2 = D → Prop, subtypes are made by restricting the initial
type D to the true values of those predicates, i.e.

SD1 = {x // D1 x}

G. Panagiotopoulos 12

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

SD2 = {x // D2 x}

Note: The notation for the underlying subtypes SD1 and SD2 doesn’t appear in the Lean
code, instead they are called directly either as
Subtype D1

or through the very formula introduced above
{x // D1 x}

We can thus create our class instances
variable

(D : Type u)
(D1 D2 : D → Prop)
[O : PartialOrder D]
[L : BoundedPartialOrder D]
[L1 : CompleteLatticeFromOrder {x // D1 x}]
[L2 : CompleteLatticeFromOrder {x // D2 x}]

The second relation can be expressed with the help of some logic, since we are now
working with predicates, as:
def subtypesCreateType : Prop :=

∀ (d : D), D1 d ∨ D2 d

The last expressionmerely asserts that the two predicates should yield true to the Bottom
and Top values:
def subtypesContainTopBot : Prop :=

D1 L.top ∧ D1 L.bot ∧ D2 L.top ∧ D2 L.bot

Definition 3.3. Interlattice Properties

1. Interlattice Least Upper Bound Property: Let b ∈ SD2 and S ⊆ SD1 such that for
every x ∈ S, x ≤ b. Then

∨
L1

S ≤ b.

2. Interlattice Greatest Lower Bound Property: Let a ∈ SD1 and S ⊆ SD2 such that
for every x ∈ S, x ≥ a. Then,

∧
L2

S ≥ a.

Expressing those two properties in Lean is pretty straight forward.
For Interlattice LUB we have:
def interlattice_lub : Prop :=

∀ (b : D), D2 b → ∀ (S : Set (Subtype D1)),
(∀ x, x ∈ S → ↑x ≤ b) → ↑(L1.sSup S) ≤ b

And for Interlattice GLB we have:
def interlattice_glb : Prop :=

∀ (a : D), D1 a → ∀ (S : Set (Subtype D2)),
(∀ x, x ∈ S → ↑x ≥ a) → ↑(L2.sInf S) ≥ a

Note: The uparrows (↑) denote the coercion from a type to its parent type, which is the
only way we can compare elements of type SD1 with elements of type SD2 , namely through
the order of type D.

G. Panagiotopoulos 13

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

Definition 3.4. Bounded Subtypes
Given a ∈ SD1 and b ∈ SD2, we write [a, b]L1 = {x ∈ SD1 | a ≤ x ≤ b}. Symmetrically,
[a, b]L2 = {x ∈ SD2 | a ≤ x ≤ b}

This we can express in Lean as a subtype of either one of our subtypes SD1, SD2. It
should of course be a predicate, a function SD1 → Prop. And this predicate should check
whether or not our x is within bounds:
def boundedSubtype

(D' : D → Prop)
(a : Subtype D1) (b : Subtype D2) :
(Subtype D') → Prop :=

(λ x =>
(a : D) ≤ (x : D) ∧ (x : D) ≤ (b : D))

Note: We also pass a predicate D′ which only functions to differentiate between the two
cases, namely a subtype of elements of SD1 or of SD2.
The expressions of type (x : D) in this context, are also used to denote the coercion of
the subtype to the parent type.

The structures defined up to here suffice in order to formulate and prove the first Proposi-
tion, namely Proposition 8. For the rest of the Propositions though, somemore definitions
are required.

Definition 3.5. Information Ordering
Given (x, y), (x′, y′) ∈ SD1 × SD2, we will write (x, y) ≾ (x′, y′) if x ≤ x′ and y′ ≤ y

Creating a custom ordering for a specific type can be done through the LE class:
instance : LE (Subtype D1 × Subtype D2) :=

{le := λ d d' => d.1 ≤ d'.1 ∧ d'.2 ≤ d.2}

Note: Since d and d′ are of type product in the above code, the notation d.1, d.2 is used to
denote the first and the second element of the pair respectively.

Definition 3.6. Ordered Product
We will write: SD1 ⊗ SD2 = {(x, y) | x ∈ SD1 , y ∈ SD2 , x ≤ y}

So, Ordered Product basically restricts the product type to include only the pairs that are
ordered. It is in other words a subtype of the product type and thus we can create it using
a predicate.
def ordered_product :

(Subtype D1 × Subtype D2) → Prop := λ d => (d.1 : D) ≤ (d.2 : D)

We will be using the custom notation ⊗ to denote this predicate. The defined subtype
then, can be expressed as:
{x : Subtype D1 × Subtype D2 // ⊗x}

Note: The code is skipped from the two following definitions due to its triviality.

Definition 3.7. Consistent Approximating Operator
A function A : SD1 ⊗ SD2 → SD1 ⊗ SD2 is called a consistent approximating operator if it is
≾-monotonic
Note: In the Lean code the above assertion will often appear with the name conA.

G. Panagiotopoulos 14

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

Definition 3.8. Reliable Pair
A pair (a, b) ∈ SD1 ⊗ SD2 will be called A-reliable if (a, b) ≾ A(a, b)

G. Panagiotopoulos 15

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

4. PROPOSITION 8

Proposition 8.
For all a ∈ SD1 and b ∈ SD2, the sets [⊥, b]L1 and [a,⊤]L2 are Complete Lattices.

It suffices to prove that the bounded subtypes are Complete Semilattices which in turn
means they are Complete Lattices (Theorem 1.6.)

Proposition 8. in Lean
def Proposition_8_A :

CompleteLattice {x // (boundedSubtype _ _ _ D1 L1.bot b) x}

def Proposition_8_B :
CompleteLattice {x // (boundedSubtype _ _ _ D2 a L2.top) x}

The expression of the proposition is quite self-explanatory. We just want our functions to
return a complete lattice class type of our bounded types.

Proposition 8. Proof
First we will prove that [⊥, b]L1 is a Complete Semilattice of supremum.

1. Let S be a set of elements of type [⊥, b]L1

2. ∀ (x ∈ S), x ≤ b, by definition of the type [⊥, b]L1

3.
∨

L1
S ≤ b, by Interlattice LUB

4. ⊥ ≤
∨

L1
S, by the Bottom element property

5.
∨

L1
S ∈ [⊥, b]L1

Since the supremum operation is closed within this subtype and we know that every prop-
erty of the operation itself holds, given that it holds for the initial type SD1, [⊥, b]L1 is a
Complete Semilattice and a Complete Lattice as thus.

Now, we shall prove that [a,⊤]L2 is a Complete Semilattice of infimum.

1. Let S be a set of elements of type [a,⊤]L2

2. ∀ (x ∈ S), a ≤ x, by definition of the type [a,⊤]L2

3. a ≤
∧

L2
S, by Interlattice GLB

4.
∧

L2
S ≤ ⊤, by the Top element property

5.
∧

L2
S ∈ [a,⊤]L2

G. Panagiotopoulos 16

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

Similarly, since the infimum operation is closed within this subtype, [a,⊤]L2 is a Complete
Lattice.

The Lean code follows this exact convention for both proofs:

• Proving that the supremum/infimum operation is closed for the subtypes

• Creating the Complete Semilattices using the methods of the original Complete Lat-
tice structures L1 and L2

• Using the Mathlib equivalent of the Theorem 1.6.

G. Panagiotopoulos 17

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

5. PROPOSITION 9

Proposition 9.
Let (a, b) ∈ SD1 ⊗ SD2 and A : SD1 ⊗ SD2 → SD1 ⊗ SD2 be a consistent approximating
operator and assume that (a, b) is A-reliable. Then:

1. ∀ x ∈ [⊥, b]L1 , it holds ⊥≤ A(x, b)1 ≤ b.

2. ∀ x ∈ [a,⊤]L2 , it holds a ≤ A(a, x)2 ≤ ⊤.

Proposition 9. in Lean
def Proposition_9_A : ∀ x :

{x // (boundedSubtype _ _ _ D1 L1.bot b) x},
L1.bot ≤ (A ⟨(x, b), x.prop.2⟩).val.1 ∧
(A ⟨(x, b), x.prop.2⟩).val.1 ≤ (b : D)

def Proposition_9_B : ∀ x :
{x // (boundedSubtype _ _ _ D2 a L2.top) x},
a ≤ (A ⟨(a, x), x.prop.1⟩).val.2.val ∧
(A ⟨(a, x), x.prop.1⟩).val.2.val ≤ (L2.top : D)

Where:

• ⟨(x, b), x.prop.2⟩) is the assertion that (x, b) is an ordered product (needed to be able
to interact with A)

• (A ⟨(x, b), x.prop.2⟩).val returns the value of the function (which is SD1 × SD2, in
contrast to returning its property which is that A.1 ≤ A.2)

• (A ⟨(x, b), x.prop.2⟩).val.1 returns the first element of the product

• For subtypes in general, .val is another way of expressing coercion

Proposition 9. Proof
The Lean proofs follow the exact convention showcased below.
For the first part, we have:

1. Let a∗ =
∨

L1
[⊥, b]L1

2. a∗ ≤ b, by Interlattice LUB (need to make sure that the pair (a∗, b) is in the ordered
product domain)

3. ∀ x ∈ [⊥, b]L1 , (x, b) ≾ (a∗, b), by

• x ≤ a∗, by a∗ =
∨

L1
[⊥, b]L1

• b ≤ b, by reflexivity

4. ∀ x ∈ [⊥, b]L1 , A(x, b) ≾ A(a∗, b), by A ≾-monotonic

5. A(a, b) ≾ A(a∗, b), by a ∈ [⊥, b]L1 on (4)

6. A(a∗, b)1 ≤ A(a, b)2, by transitivity on

G. Panagiotopoulos 18

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

• A(a∗, b)1 ≤ A(a∗, b)2, by A definition
• A(a∗, b)2 ≤ A(a, b)2, by A(a, b) ≾ A(a∗, b) (5)

7. A(a, b)2 ≤ b, by (a, b) A-reliable

8. ∀ x ∈ [⊥, b]L1 , A(x, b)1 ≤ A(a∗, b)1, by A(x, b) ≾ A(a∗, b) (4)

9. ∀ x ∈ [⊥, b]L1 , A(x, b)1 ≤ A(a, b)2, by transitivity on

• A(x, b)1 ≤ A(a∗, b)1, by (8)
• A(a∗, b)1 ≤ A(a, b)2, by (6)

10. ∀ x ∈ [⊥, b]L1 , A(x, b)1 ≤ b, by transitivity on

• A(a, b)2 ≤ b, by (7)
• A(x, b)1 ≤ A(a, b)2, by (9)

11. Thus ∀ x ∈ [⊥, b]L1 , ⊥≤ A(x, b)1 ≤ b, by

• ∀ x ∈ [⊥, b]L1 , ⊥≤ A(x, b)1, by Bottom property
• A(x, b)1 ≤ b, by (10)

Similarly, for the second part we have:

1. Let b∗ =
∧

L2
[a,⊤]L2

2. a ≤ b∗, by Interlattice GLB

3. ∀ x ∈ [a,⊤]L2 , (a, x) ≾ (a, b∗), by

• a ≤ a, by reflexivity
• b∗ ≤ x, by b∗ =

∧
L2
[a,⊤]L2

4. ∀ x ∈ [a,⊤]L2 , A(a, x) ≾ A(a, b∗), by A ≾-monotonic

5. A(a, b) ≾ A(a, b∗), by b ∈ [a,⊤]L2 on (4)

6. a ≤ A(a, b)1, by (a, b) A-reliable

7. A(a, b)1 ≤ A(a, b∗)2, , by transitivity on

• A(a, b)1 ≤ A(a, b∗)1, by A(a, b) ≾ A(a, b∗), (5)
• A(a, b∗)1 ≤ A(a, b∗)2, by A definition

8. ∀ x ∈ [a,⊤]L2 , A(a, b)1 ≤ A(a, x)2, by transitivity on

• A(a, b)1 ≤ A(a, b∗)2, by (7)
• A(a, b∗)2 ≤ A(a, x)2, by A(a, x) ≾ A(a, b∗) (4)

9. ∀ x ∈ [a,⊤]L2 , a ≤ A(a, x)2, by transitivity on

• a ≤ A(a, b)1, by (a, b), by (6)
• A(a, b)1 ≤ A(a, x)2, by (8)

10. Thus ∀ x ∈ [a,⊤]L2 , a ≤ A(x, b)2 ≤ ⊤, by

• a ≤ A(a, x)2, by (9)
• A(x, b)2 ≤ ⊤ by Top property

G. Panagiotopoulos 19

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

6. PROPOSITION 10

Proposition 8. asserts that ([⊥, b]L1 ,≤) and ([a,⊤]L2 ,≤) are complete lattices. If we can
prove that the operators A(ꞏ, b)1 and A(a, ꞏ)2 are monotonic in their respective domains,
then they have least fixpoints in the corresponding lattices, by Knaster-Tarski.

Proof A(ꞏ, b)1 monotone in [⊥, b]L1

For x, y ∈ [⊥, b]L1 , x ≤ y ⇒ (x, b) ≾ (y, b)⇒ A(x, b) ≾ A(y, b)⇒ A(x, b)1 ≤ A(y, b)1

Proof A(a, ꞏ)2 monotone in [a,⊤]L2

For x, y ∈ [a,⊤]L2 , x ≤ y ⇒ (a, y) ≾ (a, x)⇒ A(a, y) ≾ A(a, x)⇒ A(a, x)2 ≤ A(a, y)2

Thus the operators have least fixpoints. We can now define the stable revision operator.

Definition 6.1. Stable Revision Operator
The stable revision operator is defined as:
CA(a, b) = (b↓, a↑) = (lfp(A(ꞏ, b)1), lfp(A(a, ꞏ)2))

The operation b↓ can be expressed in Lean as:
@OrderHom.lfp

{x // (boundedSubtype _ _ _ D1 L1.bot b) x}
(Proposition_8_A b interlub)
(A1OrderHom . . .)

Where:

• OrderHom.lfp is the Mathlib function that returns the least fixpoint of a monotone
function

• {x // (boundedSubtype _ _ _ D1 L1.bot b) x} is the domain of the monotone function

• Proposition 8 is of course used to prove that the domain is a complete lattice

• A1OrderHom is a struct that holds A(ꞏ, b)1 along with the proof that it is monotone

• The dots (. . .) are not standard Lean notation and are just used for clarity

Similarly, for a↑ we have:
@OrderHom.lfp

{x // (boundedSubtype _ _ _ D2 a L2.top) x}
(Proposition_8_B a interglb)
(A2OrderHom . . .)

Note: The elements a↑ and b↓ appear in the code with the notation rOa and rOb, which
stand for revision operator a and revision operator b.

G. Panagiotopoulos 20

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

Proposition 10.
LetA : SD1⊗SD2 → SD1⊗SD2 be a consistent approximating operator. For everyA-reliable
pair (a, b):

1. b↓ ≤ b

2. a ≤ a↑

3. a↑ ≤ b

4. b↓ ≤ a↑ (i.e. (b↓, a↑) ∈ SD1 ⊗ SD2)

Proposition 10. in Lean
def Proposition_10 :

(rOb . . .) ≤ b.val ∧
a.val ≤ (rOa . . .) ∧
(rOa . . .) ≤ b.val ∧
(rOb . . .) ≤ (rOa . . .).val.val

Again, the following proof is structured in the image of the Lean code.

Proposition 10. Proof
1. a↑ ∈ lowerBounds {x ∈ [a,⊤]L2 | A(a, x)2 ≤ x}, by Knaster-Tarski (a↑ being the

least fixpoint of (A(a, ꞏ)2)

2. b ∈ {x ∈ [a,⊤]L2 | A(a, x)2 ≤ x}, by A(a, b)2 ≤ b (since (a, b) is A-reliable)

3. Thus a↑ ≤ b, by a↑ ∈ lowerBounds

4. Let a∗ =
∨

L1{(x : SD1) | x ≤ a↑}

5. a ∈ {(x : SD1) | x ≤ a↑}, by (a↑ : [a,⊤]L2)

6. a ≤ a∗, by a ≤
∨

L1{(x : SD1) | x ≤ a↑} = a∗

7. a∗ ≤ a↑, by Interlattice LUB

8. a∗ ≤ b, by transitivity on

• a∗ ≤ a↑, by (7)
• a↑ ≤ b, by (3)

9. (a∗, b) ≾ (a∗, a↑), by

• a∗ ≤ a∗

• a↑ ≤ b

10. A(a∗, b) ≾ A(a∗, a↑), by A ≾-monotonicity

11. (a, a↑) ≾ (a∗, a↑), by

• a ≤ a∗, by (6)

G. Panagiotopoulos 21

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

• a↑ ≤ a↑, by reflexivity

12. A(a, a↑) ≾ A(a∗, a↑), by A ≾-monotonicity

13. A(a∗, b)1 ≤ A(a∗, a↑)2, by transitivity on

• A(a∗, b)1 ≤ A(a∗, a↑)1, by A(a∗, b) ≾ A(a∗, a↑) (10)
• A(a∗, a↑)1 ≤ A(a∗, a↑)2, by A definition

14. A(a∗, b)1 ≤ A(a, a↑)2, by transitivity on

• A(a∗, b)1 ≤ A(a∗, a↑)2, by (13)
• A(a∗, a↑)2 ≤ A(a, a↑)2, by A(a, a↑) ≾ A(a∗, a↑) (12)

15. A(a, a↑)2 = a↑, by a↑ least fixpoint A(a, ꞏ)2

16. Thus A(a∗, b)1 ≤ a↑

17. And thus A(a∗, b)1 ∈ {(x : SD1) | x ≤ a↑}

18. A(a∗, b)1 ≤ a∗, by a∗ =
∨

L1{(x : SD1) | x ≤ a↑}

19. Thus a∗ ∈ {(x : [⊥, b]L1) | A(x, b)1 ≤ x}

20. b↓ ∈ lowerBounds {(x : [⊥, b]L1) | A(x, b)1 ≤ x}, by Knaster-Tarski

21. b↓ ≤ a∗, by a∗ ∈ {(x : [⊥, b]L1) | A(x, b)1 ≤ x} and b↓ lower bound

22. b↓ ≤ b, by transitivity on

• b↓ ≤ a∗, , by (21)
• a∗ ≤ b, , by (8)

23. a ≤ a↑, trivially from a↑ domain

24. a↑ ≤ b, by line (3)

25. b↓ ≤ a↑, by transitivity on

• b↓ ≤ a∗, by line (20)
• a∗ ≤ a↑, by line (7)

G. Panagiotopoulos 22

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

7. PROPOSITION 11

Before we can talk about Proposition 11, we need one more definition.

Definition 7.1. Prudent Pair
An A-reliable approximation (a, b) is A-prudent if a ≤ b↓

We can express this in Lean as:
def prudent (ab : {x // reliable A x}) : Prop :=

let a := ab.1.1.1
a.val ≤ rOb . . .

Where:

• ab holds a pair that is A-reliable

• ab.1 is a more concise notation for ab.val, which returns the value of object

• ab.2 is notation for ab.property, which returns the property of the object

• In our case the value is an element of type of ordered pair

• And the property is of course the reliability

• Another step futher and ab.1.1 gives us a product element

• In an analogous way ab.1.2 gives us the proof that a ≤ b

• Last step, we choose the first element of the product, by calling ab.1.1.1

• a.val ≤ rOb. . . asserts that a ≤ b↓ (as mentioned before, a.val is another way
of expressing the coercion of a subtype, which happens to interfere less with the
notation of the paper[1])

Proposition 11.
Let A : SD1 ⊗ SD2 → SD1 ⊗ SD2 be a consistent approximating operator and let (a, b) ∈
SD1 ⊗ SD2 be A-prudent. Then, (a, b) ≾ (b↓, a↑) and (b↓, a↑) is A-prudent.

Proposition 11. in Lean
We split Proposition 11 in two parts, one that asserts the inequality and the A-reliability of
(b↓, a↑) (a pressuposition of prudence) and the second one which asserts that (b↓, a↑) is,
in fact, A-prudent.
def Proposition_11_A :

(a, b) ≾ ((rOb . . .).val,(rOa . . .).val) ∧
reliable A ⟨((rOb . . .).val, (rOa . . .).val),
-- Proposition_10.2.2.2 holds its last assertion, i.e. the proof that b↓ ≤
a↑, which is a precondition of the domain of A
(Proposition_10 . . .).2.2.2⟩

G. Panagiotopoulos 23

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

def Proposition_11_B : prudent
(rOb . . .).val
(rOa . . .).val
interlub
(Proposition_10 . . .).2.2.2
A conA
-- Proposition_11_A.2 holds the reliability assertion of the revised pair,
which is a precondition of prudence
(Proposition_11_A . . .).2

A somewhat interesting thing to note here is that the assertion b↓ ≤ a↑ is crucial, since we
couldn’t reason about what the function A does to the pair, if we didn’t know that the pair
was in fact in the ordered product domain. That’s why Proposition 10 is called in the very
formulation of Proposition 11. And of course, the second part of Proposition 11 needs the
first one in order to be expressed.

Proposition 11 Proof
1. (a, b) ≾ (b↓, a↑), by

• a ≤ b↓, by (a, b) A-prudent assumption
• a↑ ≤ b, by Proposition 10 (3)

2. (b↓, b) ≾ (b↓, a↑), by

• b↓ ≤ b↓, by reflexivity
• a↑ ≤ b, by Proposition 10 (3)

3. A(b↓, b) ≾ A(b↓, a↑), by A ≾-monotonicity

4. A(b↓, b)1 = b↓, by b↓ least fixpoint of A(ꞏ, b)1

5. b↓ ≤ A(b↓, a↑)1, by

• A(b↓, b)1 ≤ A(b↓, a↑)1, by A(b↓, b) ≾ A(b↓, a↑) (3)
• A(b↓, b)1 = b↓, by (4)

6. (a, a↑) ≾ (b↓, a↑), by

• a ≤ b↓, by (a, b) A-prudent assumption
• a↑ ≤ a↑, by reflexivity

7. A(a, a↑) ≾ A(b↓, a↑), by A ≾-monotonicity

8. A(a, a↑)2 = a↑, by a↑ least fixpoint of A(a, ꞏ)2

9. A(b↓, a↑)2 ≤ a↑, by

• A(b↓, a↑)2 ≤ A(a, a↑)2, by A(a, a↑) ≾ A(b↓, a↑) (7)
• A(a, a↑)2 = a↑, , by (8)

10. (b↓, a↑) ≾ A(b↓, a↑) by

• b↓ ≤ A(b↓, a↑)1, by (5)

G. Panagiotopoulos 24

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

• A(b↓, a↑)2 ≤ a↑, by (9)

11. (b↓, a↑) A-reliable, by (10)

12. Let (a↑)↓ = lfp(A(ꞏ, a↑)1)

13. ∀ x ∈ [⊥, a↑]L1 , (x, b) ≾ (x, a↑), by

• x ≤ x, by reflexivity
• a↑ ≤ b, by Proposition 10 (3)

14. ∀ x ∈ [⊥, a↑]L1 , x ≤ b, by transitivity on

• x ≤ a↑, by domain of x
• a↑ ≤ b, by Proposition 10 (3)

15. ∀ x ∈ [⊥, a↑]L1 , A(x, b)1 ≤ A(x, a↑)1, by A ≾-monotonicity

16. ∀ x ∈ {x | A(x, a↑)1 ≤ x}, A(x, b)1 ≤ x, by transitivity on

• A(x, b)1 ≤ A(x, a↑)1, by (15)
• A(x, a↑)1 ≤ x, by domain of x

17. b↓ ∈ lowerBounds {x | A(x, b)1 ≤ x}, by Knaster-Tarski

18. (a↑)↓ ∈ {x | A(x, a↑)1 ≤ x}, , by Knaster-Tarski

19. A((a↑)↓, b)1 ≤ (a↑)↓, by

• ∀ x ∈ {x | A(x, a↑)1 ≤ x}, A(x, b)1 ≤ x, by (16)
• (a↑)↓ ∈ {x | A(x, a↑)1 ≤ x}, by (18)

20. (a↑)↓ ∈ {x | A(x, b)1 ≤ x}, by (19)

21. Thus b↓ ≤ (a↑)↓, by b↓ ∈ lowerBounds {x | A(x, b)1 ≤ x}

G. Panagiotopoulos 25

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

8. PROPOSITION 12

Proposition 12.
Let {(aκ, bκ)}κ<λ, where λ is an ordinal, be a chain in SD1⊗SD2 ordered by the ≾ relation.
Then:

1.
∨

L1
{aκ | κ < λ} ≤

∧
L2
{bκ | κ < λ}

2. The least upper bound of the chain with respect to ≾ exists and it is equal to
(
∨

L1
{aκ | κ < λ},

∧
L2
{bκ | κ < λ})

Before we get into the specifics of Proposition 12, we will need the definitions for chains
and chain complete posets. Mathlib provides definitions for omega complete partial orders
but those support chains (as the name would suggest) up to the smallest infinite ordinal
whilst, as we shall soon see, Proposition 12 needs to reason about chains up so some
limit ordinal.

Without straying too much from the Mathlib definitions, we can express the chain func-
tion as a monotone function from ordinals to elements of the partial order domain, instead
of a function from naturals to elements:
def Chain (D : Type u) [Preorder D] :=

Ordinal →o D

Note: The→o symbol denotes monotonicity.

In the same spirit we can define our chain complete partial order class similar to the omega
complete partial order class, with the supremum defined up to some limit ordinal:
class ChainCompletePartialOrder (D : Type*) extends PartialOrder D where

LimitOrdinal : Ordinal
Is_Limit : LimitOrdinal.IsLimit
cSup : Chain D → D
le_cSup : ∀ c : Chain D,
∀ (i : {x | x < LimitOrdinal}), c i ≤ cSup c
cSup_le : ∀ (c : Chain D) (x),
(∀ (i : {x | x < LimitOrdinal}), c i ≤ x) → cSup c ≤ x

Proposition 12. in Lean
This proposition is a again split in two parts, since this supremum/infimum pair being
ordered is a presupposition to even be able to reason about it as being in the domain
of the chain. We first define the necessary extra variable baggage for this very formula-
tion.
variable

(limitOrdinal : Ordinal)
(isLimit : limitOrdinal.IsLimit)
(chain :
(@ChainCompletePartialOrder.Chain
{x : Subtype D1 × Subtype D2 | ⊗x} (
@InfoPoset _ _ _ O).toPreorder))

Then Proposition 12. can be formulated as:

G. Panagiotopoulos 26

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

def Proposition_12_A :
L1.sSup {(chain i).val.1 | i < limitOrdinal} ≤
(L2.sInf {(chain i).val.2 | i < limitOrdinal}).val

def Proposition_12_B :
ChainCompletePartialOrder
{x : Subtype D1 × Subtype D2 | ⊗x}

Proposition 12. Proof
1. ∀ u, k ordinals, ak ≤ bu, by cases

• u ≤ k

– ak ≤ bk, by (ak, bk) ordered pair
– (au, bu) ≾ (ak, bk), by chain monotone
– bk ≤ bu, by (au, bu) ≾ (ak, bk)

– ak ≤ bu, by transitivity
• k ≤ u, by k < u→ k ≤ u

– au ≤ bu, by (au, bu) ordered pair
– (ak, bk) ≾ (au, bu), by chain monotone
– ak ≤ au, by (ak, bk) ≾ (au, bu)

– ak ≤ bu, by transitivity

2. Thus ∀ (u : ordinal) , bu ∈ upperBounds {aκ | κ ≤ λ}

3. ∀ u,
∨

L1
{aκ | κ < λ} ≤ bu, by Intelattice LUB property

4.
∨

L1
{aκ | κ < λ} ≤

∧
L2
{bκ | κ < λ}, by Interlattice GLB property

5. Assuming a limit ordinal λ

•
∨

L1
{aκ | κ < λ} is the supremum of the {aκ | κ < λ} chain

•
∧

L2
{bκ | κ < λ} is the infimum of the {bκ | κ < λ} chain

6. Thus (
∨

L1
{aκ | κ < λ},

∧
L2
{bκ | κ < λ}) is the least upper bound of the {(aκ, bκ)}κ<λ

chain ordered by ≾

Note: The pair (
∨

L1
{aκ | κ < λ},

∧
L2
{bκ | κ < λ}) we will denote as (a∞, b∞).

G. Panagiotopoulos 27

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

9. PROPOSITION 13

Proposition 13.
LetA : SD1⊗SD2 → SD1⊗SD2 be a consistent approximating operator and let {(aκ, bκ)}κ<λ,
where λ is an ordinal, be a chain of A-prudent pairs from SD1⊗SD2. Then

∨
≾{(aκ, bκ)}κ<λ,

is A-prudent.

In order to prove prudence, we first need to prove reliability and so again we split this
proposition into two parts.

Note: The second part of Proposition 12 holds the structure which is responsible for giving
us the supremum of a certain chain.

Proposition 13. in Lean
def Proposition_13_A

-- Assuming that every element of the chain is reliable
(A_reliable : ∀ i, reliable A (chain i.val)) :
-- Prove that the supremum of the chain is reliable
reliable A ((Proposition_12_B . . .).cSup chain)

def Proposition_13_B
-- Assuming that every element of the chain is prudent
(prudent_chain :
∀ i, prudent interlub A conA ⟨chain i, A_reliable limitOrdinal i⟩) :
-- Prove that the supremum of the chain is prudent
prudent interlub A conA

⟨((Proposition_12_B · · ·).cSup chain), (Proposition_13_A · · ·)⟩

Proposition 13. Proof
∀ i ≤ λ :

1. (ai, bi) ≾ (a∞, b∞), by (a∞, b∞) supremum of chain

2. A(ai, bi) ≾ A(a∞, b∞), by A ≾-monotone

3. (ai, bi) ≾ A(a∞, b∞), by transitivity on:

• (ai, bi) ≾ A(ai, bi), by (ai, bi) A-reliable

4. Thus A(a∞, b∞) is upper bound of chain

5. (a∞, b∞) ≾ A(a∞, b∞), by (a∞, b∞) least upper bound of chain

6. Thus (a∞, b∞) is A-reliable

7. Let bi↓ = lfp(A(ꞏ, bi)1)

8. bi↓ ∈ lowerBounds {x | A(x, bi)1 ≤ x}, by Knaster-Tarski

9. Let (b∞)↓ = lfp(A(ꞏ, b∞)1)

10. (b∞)↓ ∈ {x | A(x, b∞)1 ≤ x}, by Knaster-Tarski

11. ∀ x ∈ [⊥, b∞], (x, bi) ≾ (x, b∞), by

G. Panagiotopoulos 28

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

• x ≤ x, by reflexivity
• b∞ ≤ bi, by b∞ =

∧
L2
{bκ | κ ≤ λ}

12. ∀ x ∈ [⊥, b∞], A(x, bi) ≾ A(x, b∞), by A ≾-monotone

13. ∀ x ∈ [⊥, b∞], x ≤ bi, by transitivity (b∞ ≤ bi, (11.2))

14. ∀ x ∈ {x | A(x, b∞)1 ≤ x}, A(x, bi)1 ≤ x, by transitivity on

• A(x, bi)1 ≤ A(x, b∞)1, by A(x, bi) ≾ A(x, b∞)

• A(x, b∞)1 ≤ x

15. A((b∞)↓, bi)1 ≤ (b∞)↓, by

• ∀ x ∈ {x | A(x, b∞)1 ≤ x}, A(x, bi)1 ≤ x, by (14)
• (b∞)↓ ∈ {x | A(x, b∞)1 ≤ x}, by (10)

16. ∀ x ∈ [⊥, bi], A(x, bi)1 ≤ x→ bi↓ ≤ x, by bi↓ least upper bound of {x | A(x, b1)1 ≤ x}

17. bi↓ ≤ (b∞)↓, by

• ∀ x ∈ [⊥, bi], A(x, bi)1 ≤ x→ bi↓ ≤ x, by (16)
• A((b∞)↓, bi)1 ≤ (b∞)↓, by (15)
• (b∞)↓ ≤ bi, by transitivity on

– (b∞)↓ ≤ b∞), by the domain of A(ꞏ, b∞)1

– b∞ ≤ bi, by (11.2)

18. ai ≤ bi↓, by prudent chain

19. ai ≤ (b∞)↓, by transitivity (bi↓ ≤ (b∞)↓)

20. ∀(xa, xb), (ai, bi) ≾ (xa, xb)→ a∞ ≤ xa, by a∞ least upper bound

21. (ai, bi) ≾ ((b∞)↓, b∞), by

• ai ≤ (b∞)↓, by (19)
• b∞ ≤ bi, by (11.2)

22. a∞ ≤ (b∞)↓, by

• ∀(xa, xb), (ai, bi) ≾ (xa, xb)→ a∞ ≤ xa, , (20)
• (ai, bi) ≾ ((b∞)↓, b∞), by (22)

23. Thus (a∞, b∞) is prudent

G. Panagiotopoulos 29

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

10. CONCLUSION

While this work has focused on specific propositions, the methodology can be extended
to other formalizations, even outside the area of logic programming. Future work could
explore the formalization of additional theorems, such as the last two vital theorems of the
extension, which are constructed by putting together all those propositions.

Another interesting direction would be to formalize this twin lattice structure and all of
its properties as a distinct class in Lean, carefully defining all the necessary structures
with optimal code practices, so that it could be integrated into the Mathlib library. That
would indeed be a strong contribution to both proof assistants and the field of approxim-
ation fixpoint theory.

About a theoretic direction, there has also been some exploration of matching the cre-
ativity of LLMs with the rigor of Lean [5] [4] which is a promising direction. However,
this endeavor faces several challenges due to a significant data scarcity problem, spe-
cifically lack of mappings natural language proofs to formalized ones —a gap that this
thesis indirectly addresses. Then there is also the issue of complexity and performance,
as such systems are forced to integrate multiple components (data extraction, interaction
with proof assistants, model training, proof search and so on).

Nonetheless, such advancements outline another connection between artificial intelligence
and this very topic. And who is to say that a reconciliation between LLMs and non-
monotonic logics isn’t exactly what we need to take the next step in general artificial intel-
ligence and fully autonomous proof writing systems?

G. Panagiotopoulos 30

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

11. REPOSITORY

https://github.com/UpTheShipCreek/Extension-of-Consistent-Approximation-Fixpoint-Theory-
Proofs

G. Panagiotopoulos 31

https://github.com/UpTheShipCreek/Extension-of-Consistent-Approximation-Fixpoint-Theory-Proofs
https://github.com/UpTheShipCreek/Extension-of-Consistent-Approximation-Fixpoint-Theory-Proofs

Formalized Proofs of the Extension of Consistent Approximation Fixpoint Theory

BIBLIOGRAPHY

[1] Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Approximation fixpoint theory
and the well-founded semantics of higher-order logic programs. CoRR, abs/1804.08335, 2018.

[2] Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, Stable Operators, Well-
Founded Fixpoints and Applications in Nonmonotonic Reasoning, pages 127–144. Springer US, Boston,
MA, 2000.

[3] Marc Denecker, Victor W. Marek, and Mirosław Truszczyński. Ultimate approximation and its application
in nonmonotonic knowledge representation systems. Information and Computation, 192(1):84–121,
2004.

[4] Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theoreml-
lama: Transforming general-purpose llms into lean4 experts, 2024.

[5] Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented language mod-
els, 2023.

G. Panagiotopoulos 32

	CONTENTS
	INTRODUCTION
	DOMAIN THEORY PRELIMINARIES
	UNDERLYING STRUCTURES
	PROPOSITION 8
	PROPOSITION 9
	PROPOSITION 10
	PROPOSITION 11
	PROPOSITION 12
	PROPOSITION 13
	CONCLUSION
	REPOSITORY
	REFERENCES

