
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Enhanced Techniques for Testing x86 and RISC-V CPUs
Against Speculation Contracts

Grigorios E. Moulkiotis

Supervisor: Karakostas Vasileios, Assistant Professor

ATHENS

June 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βελτιωμένες Τεχνικές Δοκιμών x86 και RISC-V
Επεξεργαστών Έναντι Συμβολαίων Υποθετικής

Εκτέλεσης

Γρηγόριος Ε. Μουλκιώτης

Επιβλέπων: Καρακώστας Βασίλειος, Επίκουρος Καθηγητής

ΑΘΗΝΑ

June 2024

BSc THESIS

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Grigorios E. Moulkiotis
S.N.: 1115201900117

SUPERVISOR: Karakostas Vasileios, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Βελτιωμένες Τεχνικές Δοκιμών x86 και RISC-V Επεξεργαστών Έναντι Συμβολαίων
Υποθετικής Εκτέλεσης

Γρηγόριος Ε. Μουλκιώτης
Α.Μ.: 1115201900117

ΕΠΙΒΛΕΠΩΝ: Καρακώστας Βασίλειος, Επίκουρος Καθηγητής

ABSTRACT

Transient execution attacks exploit the speculative execution of modern CPUs to leak
information regarding the execution of victim programs through the use of microarchitectu-
ral side-channels, e.g., caches. Due to the severe security threats that such microarchite-
ctural attacks impose, prior work has focused on developing various testing techniques
and frameworks that aim at automatically identifying security vulnerabilities on modern
processors. Revizor is a recently proposed model-based relational testing framework that
produces random instruction sequences, i.e., test cases, and inputs to detect existing
and novel security vulnerabilities leveraging the concept of speculation contracts. In this
thesis we enhance Revizor with additional functionality targeting both x86 and RISC-V
processors. On the x86 front, we extend Revizor to use timing measurements, instead
of hardware performance counters, for collecting hardware traces. This extension allows
processor testing inmore realistic system setups in which the use of hardware performance
countersmay be restricted to the attacker.We also enhanceRevizor to use the Flush+Flush
data cache side-channel attack, which has been shown to be a fast and stealthy attack.
Furthermore, we extendRevizor to use the instruction cache as a side-channel for collecting
hardware traces by implementing instruction cache attacks. In this way, we increase the
testing coverage of the processor's microarchitectural components beyond the data cache.
On the RISC-V front, we port the executor component of Revizor to be able to test real
implementations of RISC-V processors, as the current version supports only simulation-
based testing. Finally, we reuse some of the Revizor's components to automatically identify
the CycleDrift RISC-V architectural vulnerability. Our experimental evaluation shows the
capabilities and performance of our enhanced testing techniques.

SUBJECT AREA: Computer architecture

KEYWORDS: Hardware security, microarchitectural side-channel attacks, transient
execution attacks, cache attacks, fuzzing, x86, RISC-V

ΠΕΡΙΛΗΨΗ

Οι επιθέσεις υποθετικής εκτέλεσης εκμεταλλεύονται την υποθετική εκτέλεση των νεότερων
επεξεργαστών για να διαρεύσουν πληροφορίες σχετικά με την εκτέλεση των προγραμ-
μάτων των θυμάτων κάνοντας χρήση μικροαρχιτεκτονικών πλευρικών καναλιών, όπως
οι κρυφές μνήμες. Λόγω των σοβαρών απειλών ασφάλειας που επιβάλλουν οι μικροαρ-
χιτεκτονικές επιθέσεις, προηγούμενες εργασίες επικεντρώθηκαν στην ανάπτυξη διάφο-
ρων μεθοδολογιών δοικιμών που στοχεύουν στον αυτόματο εντοπισμό τρωτών σημείων
ασφάλειας σε σύγχρονους επεξεργαστές. To Revizor είναι ένα πλαίσιο (framework) δοκι-
μών σχεσιακού μοντέλου που προτάθηκε πρόσφατα. Παράγει τυχαίες ακολουθίες εντολών
και εισόδους για τον εντοπισμό υφιστάμενων και νέων τρωτών σημείων ασφαλείας αξιο-
ποιώντας την έννοια του υποθετικών συμβολαίων. Σε αυτή την πτυχιακή επεκτείνουμε το
Revizor με επιπλέον λειτουργικότητα στοχεύοντας επεξεργαστές x86 και RISC-V. Στο κομ-
μάτι του x86, επεκτείνουμε το Revizor ώστε να χρησιμοποιεί χρονικές μετρήσεις για την
συλλογή ιχνών υλικού, αντί για μετρητές απόδοσης υλικού. Αυτή η επέκταση επιτρέπει
την δοκιμή των επεξεργαστών σε ρεαλιστικές ρυθμίσεις συστήματος στις οποίες η χρήση
μετρητών απόδοσης υλικού μπορεί να είναι περιορισμένη στον επιτιθέμενο. Ενισχύουμε
επίσης το Revizor ώστε να χρησιμοποιεί την επίθεση πλευρικού καναλιού κρυφής μνήμης
Flush+Flush, που έχει προταθεί ως μια γρήγορη και κρυφή επίθεση. Επιπλέον, επεκτεί-
νουμε τον Revizor για να χρησιμοποιεί την κρυφή μνήμη εντολών ως πλευρικό κανάλι για
τη συλλογή ιχνών υλικού με την εφαρμογή επιθέσεων κρυφής μνήμης εντολών. Με αυτόν
τον τρόπο, αυξάνουμε την κάλυψη δοκιμών των μικροαρχιτεκτονικών στοιχείων των επεξε-
γαστών πέρα από την κρυφή μνήμη δεδομένων. Στο κομμάτι του RISC-V, επεκτείνουμε το
τμήμα εκτέλεσης δοκιμών του Revizor ώστε να υποστηρίζει τη δοκιμή πραγματικών υλο-
ποιήσεων των RISC-V επεξεργαστών, καθώς η τρέχουσα έκδοση υποστηρίζει μόνο δοκι-
μές που βασίζονται σε προσομοίωση. Τέλος, επαναχρησιμοποιούμε μερικά από τα στοι-
χεία του Revizor για την αυτόματη αναγνώριση της αρχιτεκτονικής ευπάθειας CycleDrift
σε RISC-V επεξεργαστές. Η πειραματική μας αξιολόγηση δείχνει τις δυνατότητες και την
απόδοση των βελτιωμένων τεχνικών ελέγχουν.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική υπολογιστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ασφάλεια υλικού, μικροαρχιτεκτονικές επιθέσεις πλευρικών
καναλιών, επιθέσεις υποθετικής εκτέλεσης εντολών, επιθέσεις
κρυφών μνημών, fuzzing, x86, RISC-V

Στην οικογένειά μου και τους φίλους μου που ηταν πάντα δίπλα μου.

ACKNOWLEDGEMENTS

I would like to thank my advisor Vasileios Karkostas who introduced me to the world of
microarchitectural security and guided me through my thesis. I would also like to thank
Asst. Prof. Marco Guarnieri who provided me with access to the RISC-V front-end of
Revizor.

CONTENTS

1. INTRODUCTION 15

1.1 Goal & Approach . 16

1.2 Thesis Contributions . 16

1.3 Organization . 17

2. BACKGROUND 18

2.1 Microarchitectural Components and Optimization Techniques 18
2.1.1 Caches . 18

2.1.1.1 Cache maintenance instructions . 18
2.1.2 Out-of-order execution . 19
2.1.3 Speculative execution . 19

2.1.3.1 Branch prediction . 19

2.2 Microarchitectural side-channel attacks . 19
2.2.1 Data cache attacks . 20

2.2.1.1 Flush+Reload . 20
2.2.1.2 Prime+Probe . 20
2.2.1.3 Flush+Flush . 20
2.2.1.4 Evict+Reload . 21

2.2.2 Instruction cache attacks . 21
2.2.3 Transient execution attacks . 21

2.2.3.1 Spectre . 21
2.2.3.2 Meltdown . 22
2.2.3.3 Other attacks . 22

2.2.4 Side-channel attacks in RISC-V processors . 22
2.2.4.1 CycleDrift . 22
2.2.4.2 Cache+Time . 23
2.2.4.3 Flush+Fault . 23

2.3 Automatic Detection of Speculative Vulnerabilities in Black-Box CPUs 23
2.3.1 Speculation contracts . 23
2.3.2 Revizor . 24

3. Enhancing Revizor for testing x86 CPUs 26

3.1 Collecting Hardware Traces Based on Timing Measurements 26
3.1.1 Measuring Cache Timing Differences . 26

3.1.1.1 Flush+Reload . 26
3.1.1.2 Prime+Probe . 26
3.1.1.3 Flush+Flush . 27

3.1.2 Generating Hardware Traces based on Timing Measurements 27
3.1.2.1 Flush+Reload . 28
3.1.2.2 Prime+Probe . 29

3.1.2.3 Evict+Reload . 30

3.2 Introducing the Flush+Flush data cache attack . 30

3.3 Introducing instruction cache attacks . 31

4. Enhancing Revizor for testing RISC-V CPUs 34

4.1 Front-end . 34

4.2 Executor . 34
4.2.1 Data cache side channel attacks . 35

4.2.1.1 Prime+Probe . 36
4.2.1.2 Evict+Reload . 37

4.2.2 Instruction cache side channel attacks . 38

4.3 CycleDrift vulnerability detection . 39

4.4 Architectural Fuzzer . 40

5. Evaluation 42

5.1 Methodology . 42

5.2 x86 Results . 42
5.2.1 Using Timing Measurements for Generating Hardware Traces 42

5.2.1.1 Flush+Reload . 43
5.2.1.2 Prime+Probe . 43
5.2.1.3 Flush+Flush . 43

5.2.2 Using Instruction Cache for Generating Hardware Traces 44

5.3 RISC-V Results . 44
5.3.1 CycleDrift . 46
5.3.2 Instruction and Data cache attacks . 46

6. Related Work 47

7. Conclusions and future work 48

ABBREVIATIONS - ACRONYMS 49

APPENDICES 49

A. Artifact appendix for timing measurements enhancement 50

A.1 Calibration . 50

A.2 Execution . 50

A.3 Analysis of results . 50

A.4 Noise reduction . 51

B. Artifact appendix for the RISC-V CycleDrift vulnerability 52

B.1 Installation and configuration . 52

B.2 Analyzing the results . 52

C. Artifact appendix for instruction cache side channel leakage 55

REFERENCES 59

LIST OF FIGURES

2.1 Workflow of Revizor [40]. 24

3.1 Histogram of the latency of memory accesses for the Flush+Reload attack. 27
3.2 Histogram of the latency of memory accesses for the Flush+Flush attack. . 27
3.3 Histogram of the latency of accesses in the instruction cache. 33

4.1 Workflow of the Executor component. 35

5.1 Spectre V1 detection time for (1) Flush+Reload, (2) Flush+Reload with tim-
ing differences, (3) Prime and Probe, (4) Flush and Flush, (5) Prime and
Probe with timing differences, and (6) Instruction cache side channel attack. 44

5.2 Spectre V1-VAR detection time diagram for (1) Flush+Reload, (2) Flush+Reload
with timing differences, (3) Prime and Probe, (4) Flush+Flush, and (5) In-
struction cache side channel. 45

5.3 MDS detection time diagram for (1) Flush+Reload, (2) Flush+Reload with
timing differences, (3) Prime and Probe, and (4) Flush+Flush. 45

5.4 Spectre V4 detection time diagram for (1) Flush+Reload, (2) Flush+Reload
with timing differences, (3) Prime and Probe, and (4) Flush+Flush. 46

LIST OF TABLES

5.1 Ability to detect or not various known vulnerabilities through different side-
channel attacks. 42

5.2 Detection times for each vulnerability through side channels. 43

PREFACE

I would like to thank the personnel of Computer Architecture Laboratory, especially Prof.
DimitriosGizopoulos andDr. George Papadimitriou for their suggestions during ourmeetings.

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

1. INTRODUCTION

To keep up with the performance gains predicted by Moore's Law, high-performance
processors use sophisticated optimization techniques at the microarchitecture level. How-
ever, these optimization techniques create an important attack surface through micro-
architectural side-channels that may jeopardize the security properties of a processor.
Given the rising importance of computing in all aspects of everyday life, identifying security
vulnerabilities and protecting computing systems from them is of utmost importance, includ-
ing microarchitectural side-channel attacks.

Microarchitectural side-channel attacks exploit the performance optimizations of processors
in order to leak in an indirect way sensitive information about the execution of a victim
process. Cache side-channel attacks were among the first microarchitectural side-channel
attacks that were introduced. These attacks use either the data cache or the instruction
cache to infer which cache lines the victim process touched during its execution. More
recently, a new family of microarchitectural attacks was introduced that relies on speculative
execution. These attacks are called speculation attacks or transient execution attacks. The
famous Spectre [27] and Meltdown [30] attacks were the first ones of this family of attacks,
while several other attacks followed next [45, 47, 46]. These attacks aim at exploiting the
speculative execution that high-performance processors use, e.g., branch prediction, to
leave traces in microarchitectural components, e.g., caches, and extract them using side-
channel attacks [54, 42, 21]. In this thesis we focus on transient execution attacks and the
automated discovery of speculation vulnerabilities.

Due to the criticality of transient execution attacks, many prior works have focused on
methodologies and tools that identify vulnerabilities due to side-channel attacks. These
methodologies can be classified into white-box and black-box approaches. White-box ap-
proaches [10, 44, 7, 14, 34] target the RTL design of the processor or are based on known
microarchitectural details regarding the processor design to discover microarchitectural
vulnerabilities. On the other hand, black-box approaches [37, 52, 16, 51, 32, 40] do not
leverage any information regarding the processor design and treat the processor as a
black box.

Revizor [40] is a recently proposed black-box framework for detecting speculative vulnera-
bilities that relies on model-based relational testing. The main difference between Revizor
and other black-box tools is the use of speculation contracts [22]. Speculation contracts
aim atmaking visible themicroarchitectural changes that the ISA abstracts, but the attacker
can exploit, through side-channel attacks during transient execution. The processor complies
with a speculation contract when the processor exposes as much information as defined
by the contract. Revizor generates random instruction sequences, i.e., test cases, and
inputs to find counterexamples, i.e., cases in which the processor is not complying with
the contract. To identify such counterexamples, Revizor executes the test cases in an
emulator and in the real CPU that is under test using different inputs, and collects the
contract and the hardware traces, respectively. If the same contract trace but different
hardware traces are produced for a given test case with different inputs, Revizor reports
the identified speculation vulnerability.

G. Moulkiotis 15

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

1.1 Goal & Approach

Our goal in this thesis is to understand in depth various microarchitectural side-channel
attacks and develop techniques that improve the automated testing of black-box x86 and
RISC-V processors against speculative vulnerabilities and detection of flaws related to
microarchitectural attacks. To meet that goal, we build on top of the Revizor framework
and we enhance it in several aspects.

To improve the testing of x86 processors, we extend Revizor to use timing measurements,
instead of hardware performance counters, for collecting hardware traces. This extension
allows processor testing in more realistic system setups in which the use of hardware
performance counters may be restricted to the attacker. We also enhance Revizor to
use the Flush+Flush data cache side-channel attack [20], which has been shown to be a
fast and stealthy attack that only relies on timing measurements. Furthermore, we extend
Revizor to use the instruction cache as side-channel for collecting hardware traces by
implementing instruction cache attacks [5, 6, 13]. In this way, we increase the testing
coverage of the processor's microarchitectural components beyond the data cache.

Our results on an Intel Core i7-8750H CPU (Coffee Lake) processor show that the use of
timing measurements for collecting hardware traces with the Flush+Reload cache side-
channel attack brings similar results compared to using the same attack with hardware
performance counters, in terms of vulnerabilities detection (same vulnerabilities are detected)
and execution time (in the same order of magnitude). The results are similar for the
Flush+Flush attack as well. Regarding the use of instruction cache as a side-channel
to collect hardware traces, we observe that this side-channel suffers from much more
noise than the data cache, and hence we are able to observe only some speculation
vulnerabilities while requiring longer execution time.

To improve the testing of RISC-V processors, we port the executor component, i.e., a Linux
kernel module, of Revizor to be able to test real implementations of RISC-V processors,
as the current version [12] supports only testing of processor in the gem5 simulator.
This porting effort includes, among other parts, the integration of various RISC-V cache
side-channel attacks in Revizor. We also reuse some of the Revizor's components to
automatically identify the CycleDrift architectural vulnerability [13] that is specific to the
RISC-V ISA.

Our results using aRISC-V virtual machine based onQEMU verify that the ported components
are able to compile and run. Our experiments also verify the functionality of the our approach
to successfully detect the CycleDrift architectural vulnerability.

1.2 Thesis Contributions

In summary, the main contributions of this thesis are:

• We extend Revizor to use timing measurements, instead of hardware performance
counters, for collecting hardware traces.

• We introduce the Flush+Flush data cache side-channel attack, which has been shown
to be a fast and stealthy attack.

• We introduce an instruction cache attack that allows using the L1 instruction cache
as side-channel for collecting hardware traces, instead of using the L1 data cache,

G. Moulkiotis 16

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

increasing the coverage of side-channels.

• We port the executor component of Revizor to the RISC-V ISA, in order to be able
to test real implementations of RISC-V processors.

• We define a methodology that automatically identifies the CycleDrift architectural
vulnerability that is specific to the RISC-V ISA.

1.3 Organization

The rest of this document is organized as follows. In Section 2 we provide background
information regarding processor optimizations, microarchitectural attacks, and the Revizor
framework. We present the extensions that we developed in Revizor for testing x86 and
RISC-V processors in Sections 3 and 4, respectively. In Section 5we evaluate the developed
enhancements.We summarize prior works that focused on automatically identifying security
vulnerabilities due to microarchitectural attacks in Section 6. Finally, in Section 7 we
conclude this work and provide suggestions for future work.

G. Moulkiotis 17

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

2. BACKGROUND

In this section we provide background information regarding some critical microarchitec-
tural components and optimization techniques that are usually involved in microarchitec-
tural side-channel attacks. We then present various microarchitectural side-channel at-
tacks, i.e., cache attacks and transient execution attacks. Furthermore, we discuss some
side-channel attacks that have focused on the RISC-V architecture. Finally, we analyze
speculation contracts and Revizor that is an automatic testing framework for identifying
existing and novel speculative execution vulnerabilities that we extend in this thesis.

2.1 Microarchitectural Components and Optimization Techniques

In this section we briefly present the architecture of caches in modern systems, and then
we describe some optimization techniques of processors which can be used from attack-
ers to leak information through side-channel attacks.

2.1.1 Caches

Caches offer fast access to the stored data, in contrast to the slow access time that the
main physical memory (i.e., DRAM) provides, by leveraging the properties of spatial and
temporal locality. In modern CPUs, there are separate caches for instruction (i.e., instruc-
tion cache) and data accesses (i.e., data cache), as well as unified caches that hold both
instructions and data. In addition, these caches are set associative, i.e., the cache is
divided into sets and every set includes multiple cache lines depending on the associativ-
ity [20]. Furthermore, modern CPUs include a hierarchy of caches. For example, Intel
CPUs use three level of caches in which the L1 and L2 caches are private per core, while
the L3 cache is shared among the cores. The L3 cache is also inclusive meaning that
data from L1 and L2 must also be present in L3. The L3 cache is organized in slices,
and the number of slides is typically equal to the number of the cores. The map function
that maps physical addresses to slices and sets is undocumented. However, prior works
[33, 13] have reverse engineered the map and indexing function of caches, as well as
other microarchitectural details.

2.1.1.1 Cache maintenance instructions

ISAs usually provide cache maintenance instructions for managing directly the processor
caches. More specifically, the x86 ISA provides: (i) the clflush instruction that flushes
a specific memory address and is available in user space, and (ii) the wbinv instruction
which writes back all modified cache lines to main memory and invalidates (flushes) the
caches.

The RISC-V ISA does not specify any instruction that flushes the data cache. However,
some vendors have implemented data cache flush instructions [13]. On the other hand,
the RISC-V ISA includes the fence.i instruction that flushes the instruction cache in user
space.

G. Moulkiotis 18

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

2.1.2 Out-of-order execution

Out-of-order execution is an optimization technique that increases the CPU performance
by executing instructions based on the availability of input data and execution units, rather
than based on the original order in the program. Because data dependent instructions in-
troduce stalls in the processor pipeline, the early execution of non data dependent instruc-
tions that appear later in the program’s instruction stream may accelerate the execution.
Modern CISC (e.g., x86) out-of-order CPUs decode instructions into micro-ops and if all
the micro-ops of an instruction are finished, the instruction is retired and the changes are
committed in the architectural state; in this way, the instructions retire in order [27]. RISC
(e.g., RISC-V) out-of-order CPUs operate in similar fashion directly at the instruction level,
without using micro-ops.

2.1.3 Speculative execution

During the program execution, the CPU is not always sure about the execution of the next
instruction sequence due to data and control dependencies. Speculative execution al-
lows the processor to avoid stalls due to such dependencies and proceed with executing
instruction. During those scenarios the processor predicts and executes the next instruc-
tion(s) in speculative mode without affecting the architectural state. If this guess is correct,
then the instructions that have been executed in speculation mode, are committed in the
architectural state, and the performance is improved by avoiding stalls in the processor
pipeline. In contrast, if the prediction is wrong, then the processor stops the speculative
execution, flushes the pipeline, falls back into the previously saved architectural state and
starts again executing instructions from the correct path now. Examples of speculative ex-
ecution include: branch prediction, prediction of addresses of memory loads and stores,
and prediction of values for executing instructions, among others.

The instructions executed during wrong speculative execution are called transient instruc-
tions. Even though the architectural state is not affected after wrong speculative execu-
tion, the microarchitectural state, e.g., caches, may change during the execution of such
instructions, leaving microarchitectural traces in the processor’s components.

2.1.3.1 Branch prediction

Branch prediction is an optimization technique that aims to accelerate the execution time
based on speculative execution, by improving the utilization of the processor pipeline.
The CPU during branches does not know which path should be followed, so it will attempt
to deduce if the branch is taken or not based on recent history. The component that is
responsible for predicting branches is called branch predictor or branch prediction unit.
If the prediction is correct, the execution will continue. In different case, the processor
flushes the pipeline and starts executing instructions from the correct path.

2.2 Microarchitectural side-channel attacks

Given the organization of modern processors from the previous section we examine how
the aforementioned optimization mechanisms can be used against information security
through cache and transient execution attacks.

G. Moulkiotis 19

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

2.2.1 Data cache attacks

Caching introduces timing differences between cached data and data that reside only in
physical memory. The attacker can use that timing difference or delta in order to implement
a side-channel attack against a victim process by inferring which cache lines the victim
process touched during its execution. Next we briefly describe the most well-known data
cache attacks.

2.2.1.1 Flush+Reload

Flush+Reload [54] is a side-channel attack that utilizes cache maintenance instructions
in order to identify victim accesses into the cache lines. More precisely, the attacker first
flushes the cache line using cache flush instructions (e.g., the clflush in x86). Then the
attacker lets the victim process execute. Finally, the attacker reloads the data. Based on
the timing difference between cached data, the attacker can infer whether the victim used
particular data or not. This attack can be used to compromise cryptographic implement-
ations. In order to initiate the attack, there must be shared memory between the attacker
and the victim and the attacker has to be able to execute cache maintenance instruc-
tions. The countermeasures of the attack are mainly limiting cache flush instructions to
only privileged users and preventing shared memory between processes (as it is typically
happening in the cloud between virtual machines).

2.2.1.2 Prime+Probe

Prime+Probe [42] is side-channel cache attack that is used in more restricted environ-
ments where memory is not shared and no cache maintenance instructions are available.
In this attack, the attacker first probes either the entire cache or specific sets and fills it
with its own data. Then the attacker lets the victim process execute. Finally, the attacker
probes the cache to determine either which sets were accessed or whether a specific set
was accessed by the victim. To successfully mount such an attack, the attacker must
use an eviction strategy in order to fill the cache line which requires reverse engineering
the indexing and replacement policy of the cache [33]. Prior work [41] has shown that
the attack can be used across virtual machines and sandboxed JavaScript environments.
Possible countermeasures for mitigating this attack include developing software that is
not leaking information in the caches [15] and disallowing the co-execution of VMs on the
same processor [26, 29]. Further countermeasures include reducing the accuracy of tim-
ing measurements [24, 48], partitioning of caches [1, 49], and randomizing memory and
cache mappings [49, 50].

2.2.1.3 Flush+Flush

Flush+Flush [20] is a side-channel attack that utilizes the timing difference of cache flush
maintenance instruction. More specifically, the time it takes in order to flush already
cached data is slower than flushing cache lines without any data in it. In this attack,
the attacker first flushes the cache line and then lets then victim execute. Finally, the
attacker flushes the cache again and measures the latency of the flush instruction. The
entire attack can be conducted in a loop with flush instructions in it. The attack is faster
than the previous ones as it is just flushing the cache lines, and stealthier because it can

G. Moulkiotis 20

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

not be detected using hardware performance counters as the flush instruction does not
perform any memory accesses. The countermeasures for this attack are similar to those
used against Flush+Reload. An additional hardware countermeasure for mitigating the
Flush+Flush attack is to execute the flush instruction in constant time. The impact of that
countermeasure is almost negligible as applications use the flush instruction very rarely.

2.2.1.4 Evict+Reload

Evict+Reload [21] is a hybrid side-channel attack based on the Prime+Probe and Flush+Reload
attacks. In more detail, in the first part of the attack the attacker evicts the cache line by
performing the prime phase of Prime+Probe. After that, the victim executes. In the final
part of the attack, the attacker will reload the data like the second part of the Flush+Reload
attack. The Evict+Reload attack does not require the use of cache maintenance instruc-
tions, but it requires the use of shared memory between the attacker and the victim.

2.2.2 Instruction cache attacks

Instruction cache attacks [5, 6] are not very famous among the side-channel attacks be-
cause the instruction caches are private per core and thus the attacker must be running on
the same core as the victim to perform such attacks. The concept of the instruction cache
attacks is very close to that of the Prime+Probe data cache attack. The attacker first fills
the instruction cache with its own dummy instructions and then lets the victim execute.
Then, the attacker tries to reload those instructions by jumping to the corresponding la-
bel and measuring the time of each reload. As we mention later, RISC-V processors
are additionally vulnerable to the instruction cache side-channel through the Flush+Fault
side-channel attack that is close to the Flush+Reload data cache side-channel attack.

2.2.3 Transient execution attacks

Transient execution attacks are based on the microarchitectural changes that occur due
to the execution of instructions in the mispredicted path. The Spectre and Meltdown vul-
nerabilities are representative examples of this kind of attacks.

2.2.3.1 Spectre

Spectre [27] leverages speculative execution and branch prediction in order to trick the
victim program leak information through a microarchitectural side-channel that would not
have been otherwise available without the speculative execution of instructions. More
specifically, the spectre attack consists of three phases. First, in the prepare phase the
attacker mistrains the branch prediction unit and prepares the microarchitectural state of
the side-channel (e.g., the data cache). Then, the victim program runs leaking information
through the microarchitectural side-channel during the speculation phase. Finally, the
attacker reads the microarchitectural state using a side-channel attack.The attack can be
implemented targeting the branch predictor or the return stack buffer. .The attack can
target operating systems and compilers. The attack can be mitigated in numerous ways,
such as employing software countermeasures [8] and redesigning hardware [53, 25, 43].

G. Moulkiotis 21

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

2.2.3.2 Meltdown

The Meltdown [30] vulnerability abuses the out of order optimization with the aim of break-
ing the isolation of user space and kernel space, and exfiltrate data from the kernel space
which are inaccessible to the user space. The mitigation for that security vulnerability
is the use of KAISER [18], a software countermeasure that ensures better isolation by
making the pages of physical memory space and kernel space invalid in user space.

2.2.3.3 Other attacks

After the initial discovery of the Spectre and Meltdown vulnerabilities, numerous addi-
tional transient execution attacks have been published over the years. An interesting
transient execution attack is Foreshadow [45] which exploits the speculative execution of
processors and leak cryptographic keys from SGX enclaves that are supported in Intel
processors. RIDL [47] is a class of speculative execution attacks (also known as Microar-
chitectural Data Sampling or MDS) that exploits the functionality of CPU internal micro-
optimizations, such as the line buffers. Finally, LVI [46] aims to inject speculatively inform-
ation into victim execution.

2.2.4 Side-channel attacks in RISC-V processors

The topic of security for RISC-V processors has received a lot of attention recently, with
researchers investigating both hardware and software attacks and countermeasures. Re-
cent works have demonstrated software attacks [9] and Rowhammer-based attacks [35].
A recent survey [31] provides an overview of the security field for RISC-V processors, sug-
gesting that the RISC-V ISA must standardize cryptographic instructions and that security
software that is available in other architectures must be ported to RISC-V as well.

A very recent work [13] shows that RISC-V even though is a newer ISA, it still suffers
from cache side-channel attacks similar to the x86 and ARM ISAs. More specifically at-
tacks like Prime+Probe and Evict+Reload, that do not require special cache maintenance
instructions such as cache flushing, can be implemented in RISC-V processors. Further-
more, while the RISC-V ISA does not provide a data cache flushing instruction in user
space, RISC-V processor vendors tend to add cache maintenance instructions like cache
flush which are also available in user space and make it possible for the attacker to ini-
tiate attacks such as Flush+Flush and Flush+Reload. In addition, the RISC-V ISA has
also the following design flaws from the security perspective: it includes the rdinstret
and rdcycle instructions that return the number of retired instructions and the number of
cycles since the boot of the core, respectively, and the fence.i instruction that flushes the
entire instruction cache. Using those instructions one can perform the following attacks.

2.2.4.1 CycleDrift

This instruction side-channel attack is based on the combined use of the rdinstret and
rdcycle instructions for detecting the multi-cycle instructions executed and determining
which instructions may have been executed during the execution of a program. This side-
channel attack affects software that requires constant execution time where even if con-
stant time is guaranteed there must also be constant number of executed instructions, i.e.,

G. Moulkiotis 22

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

two paths in a program must exhibit the same amount of cycles and instructions in order
to be secure against this attack. Attacks involving this side-channel can be used to break
AES, KASLR, and compiler countermeasures such as Zigzagger.

2.2.4.2 Cache+Time

This type of instruction side-channel does not require shared memory, has cache line
granularity, and is based on the fence.i instruction. More specifically, the attacker first
flushes the entire instruction cache with fence.i and mistrains the branch predictor. Then,
the attacker lets the victim execute measuring its execution time. If the victim accesses the
preloaded branch by the attacker, it will execute faster; otherwise, it will execute slower.
The attacker exploits such timing difference to compromise the security of the victim.

2.2.4.3 Flush+Fault

In this instruction cache side-channel attack, the attacker first flushes the instruction cache
using the fence.i instruction. Afterwards, the attacker reads the cycles timestamp and
jumps into the victim’s addresses With that jump the attacker will try to cause a fault, e.g.,
by setting registers to 0 and inside the victim’s code exists a jump into register address.
After the fault, there exists a fault handler in order to catch the fault and read the cycles
timestamp for the second time. By comparing the difference of the timestamps, the at-
tacker can infer whether the victim has used that instruction cache line (i.e., executed the
corresponding instructions) by observing fast execution, or not. The attack is similar to
the logic of the Flush+Reload attack.

2.3 Automatic Detection of Speculative Vulnerabilities in Black-Box CPUs

2.3.1 Speculation contracts

Speculation contracts have been recently introduced [22] in order to make visible the mi-
croarchitectural changes that the ISA abstracts, but the attacker can exploit through side-
channel attacks during speculative or transient execution. More specifically, a speculation
contract has two parts: the observation clause and the execution clause. The observation
clause describes what information is disclosed during the execution of the program. There
are several observation clauses: PC describes the changes in the program counter, CT
the addresses of loads and stores, ARCH the values of loads and stores. The execution
clause describes how the programs are executed (sequentially or speculatively into the
wrong predicted path). Summing up the different clauses, the contracts can be ordered
based on the security they guarantee. For example, the SPEC-ARCH contract (i.e., the
execution is performed speculatively in the wrong path and one can observe the values
of loads and stores) is weaker than SEQ-ARCH (i.e., the execution is sequential and we
one observe the same values).

Furthermore, hardware traces are defined as the sum of observations made by a side-
channel and are used in order to model a side-channel adversary. An example can be the
cache set indexes that were used during the execution of the victim process.

More formally, a contract can be written as:

G. Moulkiotis 23

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 2.1: Workflow of Revizor [40].

[p](σ)=⇒ τ1τ2τ3...τn

where p express the program that is being executed and σ is the microarchitectural state
of the system. States in the assembly code are connected with observations τ that leak
security microarchitectural events.

And a hardware trace as:

{p}(σ)=⇒ µ1µ2µ3...µn

where p and σ are the same as in the contract traces and µ1, µ2, µ3, ..., µn indicate the
hardware traces that the attacker can assume using side-channel attacks.

One can combine the contract traces and hardware traces during the execution of a pro-
gram in order to find out if the contract complies or violates the security properties of the
processor. Next we describe how Revizor uses speculative contracts to detect speculative
vulnerabilities.

2.3.2 Revizor

Fuzzing has been originally proposed and extensively used as a software technique [36]
in order to find bugs automatically by providing random generated inputs. More recently,
fuzzing has been also used for security bugs in hardware. The same approach is taken by
Revizor [40], which is a black box framework aiming at finding speculation vulnerabilities
based on fuzzing techniques. Revizor uses the speculative contracts making them execut-
able and generates random instruction sequences, i.e., test cases, in assembly language.
Then, for each test case Revizor generates various inputs in order to trigger or not spec-
ulation. Afterwards, it executes the produced test case in emulation and in real system
and compares their results using the formal definition of speculation contracts that was
described in the previous section. The real system execution collects the hardware traces
using the executor, a kernel module that minimizes the noise from external software and
hardware performance counters (i.e., L1D cache misses for D-cache attacks) and also
minimizes the noise of counting cycles and using timing differences. If different hardware
traces are observed during the execution of the same instruction sequence with different
inputs, i.e., different information is leaked, then Revizor reports a violation. The workflow
of Revizor is summarized in Figure 2.1 (as published in the original Revizor paper [40]).

Subsequent enhancements to Revizor have incorporated additional optimizations to de-
tect more vulnerabilities and to accelerate performance [39] through faster identification

G. Moulkiotis 24

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

and detection of vulnerabilities. More specifically, the enhanced version of Revizor is able
to detect two new vulnerabilities in x86 processors; one that is based on speculative divi-
sion and another that is based on speculative string comparison. In addition, the enhanced
version of Revizor is faster by introducing the speculative and the observation filters. The
speculative filter checks whether the generated test program produces speculation during
its execution by using performance counters, filtering out programs with no speculation.
The observation filter excludes generated program tests that do not produce observable
difference between the serialized execution (that uses lfence after every instruction) and
the speculative one.

Finally, another recent enhancement [23] to Revizor has been the introduction of fault
handling in order to deal with vulnerabilities that rely on exceptions, such as Meltdown,
MDS, and Foreshadow. The addition of formal verification contracts to model CPU excep-
tions aid in observing three new behaviours: the execution of an exception, the transient
execution after an exception, and finally the transient execution after exception and the
value of the faulting instruction that was determined speculatively.

G. Moulkiotis 25

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

3. ENHANCING REVIZOR FOR TESTING X86 CPUS

In this thesis we extend the x86 infrastructure of Revizor to use timing measurements
instead of hardware performance counters as a hardware trace collection method. We
also introduce the Flush+Flush data cache side-channel attack into Revizor. Finally, we
extend Revizor to collect hardware traces using the instruction cache as side-channel by
implementing instruction cache attacks.

3.1 Collecting Hardware Traces Based on Timing Measurements

Introducing timingmeasurements in Revizor requires first to identify relevant thresholds for
cache hits and misses for each side-channel data cache attack that Revizor supports, and
then extend Revizor accordingly to generate hardware traces using the timestamp counter
instead of the hardware performance counters for the L1 data cache. Revizor currently
supports the Flush+Reload, Prime+Probe, and Evict+Reload attacks. In this thesis we
focus on the Flush+Reload and the Prime+Probe attacks, and leave the Evict+Reload
attack as future work.

3.1.1 Measuring Cache Timing Differences

First we need to measure and find the timing difference between cache hits and misses for
each data cache attack. For this step we use a modified version of the calibration program
that is provided in the software artifact of the Flush+Flush attack [2, 20] and that supports
various data cache side-channel attacks.

3.1.1.1 Flush+Reload

More precisely, for the Flush+Reload attack, the calibration program allocates an array,
and accesses an item of the array for a number of times measuring the reload time, i.e.,
the latency of cache hits, and when the item address is flushed from the cache measuring
the latency of cache misses. We modify the original calibration program to use lfence
between the timestamp measurements, instead of mfence, in order to prevent load re-
ordering because the use of mfence disrupts the filters of Revizor and therefore eliminates
its performance optimizations. Figure 3.1 shows the results of measuring the latency of
memory accesses as histogram for the Flush+Reload attack (Section 5.1 provides details
regarding the evaluation methodology and the system setup).

3.1.1.2 Prime+Probe

The methodology is more complicated for the Prime+Probe attack. The calibration pro-
gram of the Flush+Flush software artifact supports previous generations of Intel processors
than the one we used. As a result, the cycles of hits and misses are indistinguishable and
we can not find the proper threshold using the calibration program.

G. Moulkiotis 26

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 3.1: Histogram of the latency of memory accesses for the Flush+Reload attack.

Figure 3.2: Histogram of the latency of memory accesses for the Flush+Flush attack.

3.1.1.3 Flush+Flush

Finally, for introducing the Flush+Flush attack we apply the same approach as with the
Flush+Reload attack, and use the Flush+Flush calibration program in which every element
of the array is flushed after an access and after an access and a flush, measuring the time
cache hits and misses, respectively. Figure 3.2 shows the results of measuring the latency
of memory accesses as histogram for the Flush+Reload attack.

3.1.2 Generating Hardware Traces based on Timing Measurements

The current version of Revizor collects traces by measuring detailed hardware perform-
ance counters for the L1 data cache that is used as side-channel. However, the OS can
prohibit the use of those hardware performance counters to user-level programs. This

G. Moulkiotis 27

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

makes unclear whether speculation randomized attacks that the Revizor generates and re-
ports can be exploited by attackers in real-system setups in which the use of such counters
is often restricted. We extend the executor component of Revizor to generate hardware
traces using timing measurements, i.e., clock cycles through the available read timestamp
counter, instead of data cache misses to allow enhanced testing.

3.1.2.1 Flush+Reload

More specifically, in order to support the Flush+Reload attack in the executor of the Linux
kernel, we save the callee saved registers, flush the data cache, read the performance
counters (only those used for filtering the test cases for efficiency, i.e., L1 hits, uops issued,
uops retirement slots, and misprediction recovery cycles), and we reset the pipeline by
adding a number of lfence instructions. After that, we execute the test case and then we
try to reload the data and measure the latency of the move instruction which we compare
with the threshold between the cycles of hits and misses. This threshold is different from
system to system and can be found using the calibration method of the previous section.
In the case of the Flush+Reload attack, we find the threshold to be 37 cycles in our system
(Figure 3.1).

The x86 code from the original Revizor framework that uses hardware performance coun-
ters for the reload part of the Flush+Reload attack follows next.
xor DEST, DEST
xor OFFSET, OFFSET
1:
xor TMP, TMP
READ_PERFORMANCE_COUNTER
sub TMP, rdx
mov rax , qword p t r BASE + OFFSET
READ_PERFORMANCE_COUNTER
add TMP, rdx
cmp TMP, 0 ; jne 2 f
sh l DEST, 1
jmp 3 f
2 :
sh l DEST, 1
or DEST, 1
3:
add OFFSET, 64
cmp OFFSET, 4096; j l 1b

The corresponding code that we developed for supporting timing measurements for the
reload part of the Flush+Reload attack is the following:
xor DEST, DEST
xor OFFSET, OFFSET
1:
xor TMP, TMP
rd tscp
sh l rdx , 32; or rdx , rax
sub TMP, rdx
mov rax , qword p t r BASE + OFFSET

G. Moulkiotis 28

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

rd tscp
sh l rdx , 32; or rdx , rax
add TMP, rdx
cmp rdx , 37; jne 2 f
sh l DEST, 1
jmp 3 f
2 :
sh l DEST, 1
or DEST, 1
3:
add OFFSET, 64
cmp OFFSET, 4096; j l 1b

3.1.2.2 Prime+Probe

Our solution for not knowing the threshold for the Prime+Probe attack in the executor code
(due to the difficulty of obtaining meaningful results with the calibration program that was
mentioned earlier) is based on the observation that if the victim has accessed the cache
line after the prime part, then the probe part will take more time for the attacker. Using
this observation, we continuously measure the latency of the probe part and we update
dynamically at runtime (while the executor runs) the threshold every time we measure
an access time that takes longer than the current threshold. Every measurement that
exceeds the current threshold and that will update it, is considered to be a cache access
from the victim. The current threshold is reset after each execution of a test case. With this
approach, it is possible to stop detecting cache misses after a certain amount of iterations
for a specific test case and input set, as the maximum threshold may become too high.
Still this approach can detect instances of known speculative vulnerabilities, as shown in
Section 5.

The code for our solution in the probe part of the Prime+Probe attack is the following:

xor DEST, DEST
xor OFFSET, OFFSET
xor TMP, TMP
xor rdx , rdx
l f ence ; r d t sc ; l f ence
sh l rdx , 32; or rdx , rax
mov r s i , rdx
PROBE_ONE_SET(BASE, OFFSET) \
l f ence ; r d t sc ; l f ence
sh l rdx , 32; or rdx , rax
sub rdx , r s i
mov TMP, rdx
sh l DEST, 1
add OFFSET, 64
1:
l f ence
l f ence ; r d t sc ; l f ence
sh l rdx , 32; or rdx , rax
mov r s i , rdx

G. Moulkiotis 29

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

PROBE_ONE_SET(BASE, OFFSET) \
l f ence ; r d t sc ; l f ence
sh l rdx , 32; or rdx , rax
sub rdx , r s i
cmp TMP, rdx
j l e 2 f
sh l DEST, 1
jmp 3 f
2 :
sh l DEST, 1
or DEST, 1
mov TMP, rdx
3 :
add OFFSET, 64
cmp OFFSET, 4096; j l 1b

3.1.2.3 Evict+Reload

Extending Revizor to use the Evict+Reload attack with timing measurements should be
straightforward as the attack consists of steps that we have implemented in the context of
the aforementioned cache attacks.

3.2 Introducing the Flush+Flush data cache attack

Revizor currently collects traces based on the Prime+Probe, Flush+Reload, and Evict+Reload
attacks, as mentioned earlier. However, the Flush+Flush attack [20] is a data cache attack
that has been shown to be fast and stealthy. We extend Revizor with that attack, allowing
enhanced testing with stealthier attacks that are prone to noise but avoid causing changes
in the hardware performance counters.

For the implementation of the Flush+Flush attack we use exactly the same steps as with
the Flush+Reload attack; the only difference is in the reload step in which we flush the
cache and we measure the time of the flush instruction. The threshold of this attack is
trickier in this case because it changes from time to time and, as it can be seen in Fig-
ure 3.2, the latency of hits and misses are very close. In our experimental setup we find
and set the threshold to be 118 cycles.

The code of our approach for extending Revizor with the Flush+Flush attack is the follow-
ing, which is practically inserted in the reload part of Flush+Reload side channel:
xor DEST, DEST
xor OFFSET, OFFSET
1:
xor TMP, TMP
mfence
rd t sc
mfence
sh l rdx , 32; or rdx , rax
mov TMP, rdx
c l f l u s h qword p t r [BASE + OFFSET]

G. Moulkiotis 30

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

mfence
rd t sc
mfence
sh l rdx , 32; or rdx , rax
sub rdx , TMP
cmp rdx , 116; j g 2 f
sh l DEST, 1
or DEST, 1
jmp 3 f
2 :
sh l DEST, 1
3:
add OFFSET, 64
cmp OFFSET, 4096; j l 1b

3.3 Introducing instruction cache attacks

The current version of Revizor uses only the L1 data cache for collecting traces. While
this has been the covert channel for most microarchitectural attacks (and the main focus
of corresponding mitigation techniques and mechanisms), instruction cache attacks have
been also shown to be effective. To allow for more complete testing of black box CPUs
against transient execution attacks, we extend Revizor to also use the L1 instruction cache
for collecting hardware traces.

In our implementation we flush the instruction cache with the wbinv instruction before ex-
ecuting the test case in order to perform the corresponding flush part of data cache attacks
and then we let the victim execute. During the victim execution we measure the instruc-
tion cache misses cycles using the ICACHE_16B.IFDATA_STALL event and generate the
hardware trace. During the execution of Revizor, if for different inputs different hardware
traces are generated, then Revizor reports a speculation violation.

The difference in the implementation of instruction cache attacks and data cache attacks is
that we have to jump into the executed code using labels and unconditional jumps in order
to determine the execution or not of certain instructions. To enable this functionality, we
add a pass in the generator in order to return to trace collection and continue with analyzing
the traces. Furthermore, we need to execute different assembly code for the executor
than the emulator because the produced assembly code is now collecting hardware traces
where the emulator is only supposed to collect contract traces, i.e., the difference between
the two assemblies is only in the epilogue of the test case where we collect the hardware
trace. This is performed in the code generation in order to make it visible to the compiler
where to jump in the newly inserted labels that we use to determine whether the code hase
been executed not (otherwise compilation errors would occur in the executor component).

The generator ending part in the original Revizor is the following:
. t es t_case_ex i t :
MFENCE

In the model part, we have to execute the following in the ending part of the test case
execution, to avoid collecting hardware traces in the model part:
. t es t_case_ex i t :

G. Moulkiotis 31

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

l f ence
mov r8 ,1
xor r13 , r13
mov rcx ,0
l f ence
sh l rdx , 32; or rdx , rax
sub r13 , rdx
jmp . bb_main .0
. executor_ t races . 0 :

In the executor part we generate the following assembly with hardware traces collection:

. t es t_case_ex i t :
l f ence
mov r8 ,1
xor r13 , r13
xor r11 , r11
mov rcx ,0
l f ence
rdpmc
l fence
sh l rdx , 32; or rdx , rax
sub r13 , rdx
jmp . bb_main .0
. executor_ t races . 0 :
mov rcx ,0
l f ence ; rdpmc ; l f ence
sh l rdx , 32; or rdx , rax
add r13 , rdx
cmp r13 , 0 ; jne _x86_executor_cache_fai led0
_x86_executor_cache_success0 :
sh l r11 , 1
or r11 , 1
jmp _x86_executor_cache_loop_check0
_x86_executor_cache_fai led0 :
sh l r11 , 1
_x86_executor_cache_loop_check0 :

We also tried to implement an instruction cache attack as shown in [13] in order to test if an
attacker with user mode access can perform such a side-channel attack. More specifically,
we tried flushing the instruction cache by executing a lot of NOP instructions, avoiding
the use of the cache flushing instruction that is provided in kernel mode of x86 or user
space mode of RISC-V, and use timing measurements for generating hardware traces.
Figure 3.3 depicts the histogram of the latency of accesses in the instruction cache using
calibration logic that is similar to that used in [2]). The figure shows the best case histogram
that we could produce on a freshly booted machine in which no other programs were
running in the background). The results still contain a lot of noise, so we conclude that the
use of timing measurements for the instruction cache side-channel attacks make it difficult
for the attacker to leak information about the victim execution.

G. Moulkiotis 32

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 3.3: Histogram of the latency of accesses in the instruction cache.

G. Moulkiotis 33

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

4. ENHANCING REVIZOR FOR TESTING RISC-V CPUS

In this part of the thesis, we extend Revizor to be able to test real implementations of
RISC-V processors by porting the executor component to RISC-V and implementing data
cache side channel attacks and instruction cache side channel attacks. We also imple-
ment a detector for the architectural CycleDrift RISC-V vulnerability, and finally we port
an architectural fuzzer to RISC-V in order to detect bugs in the implementation of the
emulator.

4.1 Front-end

In the current Revizor infrastructure, only the front-end component has been ported to the
RISC-V ISA. That component was ported by Eric García Arribas in his thesis [12] and
targeted the testing of RISC-V CPUs using the gem5 simulator. In this thesis we reuse
that front-end component.

More specifically the front-end is used for generating test cases and inputs for them. The
instructions of the test cases are parsed from the ISA specification that is found in the
open hardware repository Force-riscv [3]. The repository contains xml files which the
parser transforms into json files. These json files are parsed by the test generator in order
to create the executable binary and mapping of the relative addresses of the instructions.
Furthermore, the test case must comply with additional rules, e.g., it must access memory
in a restricted space in order not to cause corruption in memory and some instruction op-
erands must not be zero. Those restrictions are complied with passes that the generator
does in order to fix the generated test case. Another part of the front-end is the Model
which executes the test cases in the emulator and collects the contract traces. The obser-
vation clauses that are currently supported are: MEM (exposure of addresses of memory
loads or stores), CT (MEM with additional exposure of the Program Counter), ARCH (CT
with additional exposure of loaded values from memory). The execution clauses that are
supported by this port are: SEQ (sequential non speculative execution of the test cases),
COND (collection of traces is done with conditional jump missprediction from correct and
false path of the condition), BPAS (the execution is sequential and the traces are extracted
after store bypass), and COND-BPAS (combination of COND and BPAS).

4.2 Executor

The modification we insert is the addition of the executor component, i.e., the back-end
component of Revizor that is implemented as a kernel module. The executor aims to
execute the test cases and collect the hardware traces that speculation may leave on
microarchitectural components, such as the data cache and the instruction cache.

In the implementation of the back-end, we basically follow the same flow of Revizor as
done for x86 processors (Figure 4.1). We first read through the compilation of the module
the size of L1 Data cache and the ways of associativity of the cache. During the initializa-
tion of the module we provide a function that stores the binary of the test case, the inputs,
the type of side channel attack that will be performed to generate the hardware traces, and
the number of warm-up rounds that will be performed in order to set the microarchtectural
state. During the initialization phase, we allocate memory for the test case and set its

G. Moulkiotis 34

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 4.1: Workflow of the Executor component.

memory as executable. We also allocate memory for the inputs and the sandbox, with
the sandbox being page aligned. After the execution of the test cases, the memory is
deallocated.

Next we describe the implementation of the data and instruction cache side channel at-
tacks in the executor for the RISC-V ISA. Note that the RISC-V ISA does not specify
hardware performance counters related to microarchitectural events, e.g., the L1 data
and instruction caches, as those are specific to the processor implementation. The ISA
specifies the appropriate instruction extension that includes three generic performance
counters (related to cycles, instructions, and time) and generic support for accessing any
hardware performance counter that is implemented in the processor that is used. Hence,
we implement the cache side-channel attacks using timing measurements; modifying the
attacks to use specific hardware performance counters should be straightforward.

4.2.1 Data cache side channel attacks

The RISC-V ISA does not contain instructions for flushing the data cache. Therefore, the
Flush+Reload and Flush+Flush side channel attacks can not be performed. Our solution
to this challenge is using attacks that do not require cache maintenance instructions. This
type of side channel attacks are the Prime+Probe and Evict+Reload attacks.

G. Moulkiotis 35

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

4.2.1.1 Prime+Probe

In our implementation we must first save the callee-saved registers of the previous execut-
ing function, because we do not use a compiler to perform clobbering, set the offsets of
sandbox, and zero the registers. After that we prime the data cache by filling all the ways
of the cache set; in our implementation this is simply performed in a loop where each loc-
ation inside the eviction region of the sandbox is loaded inside a temporary register for
all lines of the cache set. After the prime part, we initialize the registers that are going to
be used in the test case and execute the test case. After the execution of the test case,
we probe the cache set by refilling all the ways, and checking the hardware performance
counters or measuring the timing differences; this step is also implemented in a loop in
which every location of the eviction set of every line of the cache sets is loaded into a
temporary register where we read the performance counters or the timestamp difference.
Collecting the differences essentially gives as the hardware trace which is stored in the
results in the epilogue of the side channel attack. Finally, the registers are restored.

The prime part is the following for a 2-way set associative cache:

fence rw , rw
add COUNTER , zero ,REPS
_r iscv_executor_pr ime_outer :
add OFFSET, zero , zero
_r iscv_executor_pr ime_ inner :
l i TMP, x s t r (EVICT_REGION_OFFSET)
sub TMP, BASE, TMP
fence rw , rw
add TMP, TMP, OFFSET
ld ACC, 0(TMP)
fence rw , rw
l i ACC, x s t r (L1D_CONFLICT_DISTANCE)
add TMP,TMP,ACC
ld ACC, 0(TMP)
fence rw , rw
addi OFFSET, OFFSET, 64
l i ACC, x s t r (L1D_CONFLICT_DISTANCE)
b l t OFFSET, ACC, _r iscv_executor_pr ime_ inner
l i TMP, 1
sub COUNTER , COUNTER ,TMP
bne COUNTER , zero , _r iscv_executor_pr ime_outer
fence rw , rw

The probe part follows next, in which the THRESHOLD value can either be based on
timing measurements or hardware performance counters:

xor DEST, DEST, DEST
xor OFFSET, OFFSET, OFFSET
_r iscv_executor_probe_loop :

fence rw , rw
xor TMP, TMP, TMP
rdcyc le TMP
add ACC, zero ,TMP
l i s8 , x s t r (EVICT_REGION_OFFSET)

G. Moulkiotis 36

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

sub TMP, BASE, s8
add TMP, TMP, OFFSET
ld TMP2, 0(TMP)
fence rw , rw
l i s8 , x s t r (L1D_CONFLICT_DISTANCE)
add TMP, TMP, s8
l d TMP2, 0(TMP)
fence rw , rw
rdcyc le TMP
sub ACC, TMP, ACC
l i t0 ,THRESHOLD
bge ACC, t0 , _ r i scv_execu to r_p robe_ fa i l ed
_r iscv_executor_probe_success :
SLLI s8 ,DEST,1
add DEST, zero , s8
o r i DEST, DEST, 1
c . j _r iscv_executor_probe_loop_check

_r i scv_execu to r_p robe_ fa i l ed :
SLLI s8 ,DEST,1
add DEST, zero , s8

_r iscv_executor_probe_loop_check :
addi OFFSET, OFFSET, 64
l i s8 , x s t r (L1D_CONFLICT_DISTANCE)
b l t OFFSET, s8 , _r iscv_executor_probe_loop

4.2.1.2 Evict+Reload

The same initial step must be performed to save the registers. After that we must evict the
data cache using the same algorithm as in the probe part, and let the test case execute
after we set its registers. After the execution, we reload the data. This is implemented
with a loop that iterates through the eviction space of our sandbox, loading every memory
location inside it and using the differences in cache misses through the hardware perform-
ance counters or in timing measurements through the timestamp counter. After that we
store the traces and save the registers.

The code for the evict part in the executor follows next:

fence rw , rw
add ”COUNTER ” , zero , ”REPS
_r i scv_execu to r_ev i c t_ou te r :
add ”OFFSET” , zero , zero
_ r i scv_execu to r_ev i c t_ i nne r :
l i ”TMP” , ” x s t r (EVICT_REGION_OFFSET
sub ”TMP” , ”BASE” , ”TMP”
fence rw , rw
add ”TMP” , ”TMP” , ”OFFSET
ld ”ACC” , 0 (”TMP”)
fence rw , rw
l i ”ACC” , ” x s t r (L1D_CONFLICT_DISTANCE)
add ”TMP” , ”TMP” , ”ACC”

G. Moulkiotis 37

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

l d ”ACC” , 0 (”TMP”)
fence rw , rw
addi ”OFFSET” , ”OFFSET” , 64
l i ”ACC” , ” x s t r (L1D_CONFLICT_DISTANCE)
b l t ”OFFSET” , ”ACC” , _ r i s cv_execu to r_ev i c t_ i nne r
l i ”TMP” , 1
sub ”COUNTER ” , ”COUNTER ” , ”TMP
bne ”COUNTER ” , zero , _ r i scv_execu to r_ev i c t_ou te r
fence rw , rw

For the reload:
xor OFFSET, OFFSET,OFFSET
xor TMP, TMP,TMP
xor TMP2, TMP2,TMP2
xor ACC, ACC,ACC
xor DEST, DEST,DEST
_r iscv_executor_re load_ loop :
fence rw , rw
xor TMP, TMP,TMP
rdcyc le TMP
add ACC, zero ,TMP
fence rw , rw
add TMP, BASE, OFFSET
ld TMP2, 0(TMP)
fence rw , rw
rdcyc le TMP
sub ACC, TMP, ACC
l i TMP2,120
b l t ACC,TMP2, _ r i s cv_execu to r_ re l oad_ fa i l ed
_r iscv_executor_re load_success :
SLLI s8 ,DEST,1
add DEST, zero , s8
o r i DEST, DEST, 1
c . j _r iscv_executor_re load_loop_check
_ r i scv_execu to r_ re l oad_ fa i l ed :
SLLI s8 ,DEST,1

add DEST, zero , s8
_r iscv_executor_re load_loop_check :
addi OFFSET, OFFSET, 64
l i TMP, x s t r (MAIN_REGION_SIZE)

b l t OFFSET,TMP, _r iscv_executor_re load_ loop

4.2.2 Instruction cache side channel attacks

The implementation of the instruction cache attacks follows the samemethodology as with
the x86 version. The only difference is that we use the fence.i instruction, instead of the
wbinv instruction.

The code that must be produced from the generator in the end is the following, where the
threshold can be a timing difference between hits and misses:

G. Moulkiotis 38

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

. t es t_case_ex i t :
FENCE rw , rw # ins t rumen ta t i on
l i x6 ,1
rdcyc le s4
c . j . bb_main .0
. executor_ t races . 0 :
rdcyc le t2
sub s4 , t2 , s4
l i t2 ,THRESHOLD
b l t s4 , t2 , _ r i scv_executo r_cache_fa i led0
_riscv_executor_cache_success0 :

SLLI s8 , s3 ,1
add s3 , zero , s8
o r i s3 , s3 , 1
c . j _r iscv_executor_cache_loop_check0
_r iscv_executor_cache_fa i led0 :

SLLI s8 , s3 ,1
add s3 , zero , s8
_r iscv_executor_cache_loop_check0 :

4.3 CycleDrift vulnerability detection

In this part of the thesis we reuse components from Revizor to detect the CycleDrift ar-
chitectural vulnerability. In this methodology we generate the test case checking the ne-
cessary hardware performance counters that the attack relies on and that the RISC-V ISA
exposes to the user through the rdinstret and rdcycle instructions, before and after the
execution. Then, we execute it only on the real system. In the final step, we store the dif-
ference of those measurements. If for two different inputs we observe different hardware
traces, we report the architectural violation.

This methodology can also be used directly on assembly code to test whether it com-
plies with the constant time and constant cycles property through fuzzing, i.e., for random
inputs. The methodology can become really helpfully when writing cryptographic applica-
tions on RISC-V platform where a fast verification of a few seconds is needed to increase
confidence whether the application is complying with the constant time policy. Note that
this methodology does not use the emulator, nor relies on the concept of the speculation
contracts.

The following code should be produced by executor,noting that the generated tests are
placed in the TEMPLATE_INSERT_TC the retired instruction and cycles are read in READ_PFC_START
and READ_PFC_END.

asm v o l a t i l e (” . word ” x s t r (TEMPLATE_ENTER)) ;

prologue () ;
/ / read PFC
READ_PFC_START () ;
/ / I n i t i a l i z e r e g i s t e r s
SET_REGISTER_FROM_INPUT () ;

G. Moulkiotis 39

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

/ / Execute the t e s t case
asm (” \ nfence rw , rw \ n ”

” . word ” x s t r (TEMPLATE_INSERT_TC) ” \ n ”
” fence rw , rw \ n ”) ;

/ / Read pfcs and re tu rn hardware t race
READ_PFC_END() ;

asm v o l a t i l e (” ” \
/ / s11 <− &latest_measurement
” l i s11 , ” x s t r (MEASUREMENT_OFFSET) ” \ n ”
” add s11 , t5 , s11 \ n ”
” sd s4 , 0(s11) \ n ”
” sd s5 , 8(s11) \ n ”
” sd s4 , 16(s11) \ n ”

/ / rsp <− stored_rsp
” l i s2 , ” x s t r (RSP_OFFSET) ” \ n ”
” add s2 , t5 , s2 \ n ”
” l d sp , 0(s2) \ n ”

/ / r es to re r e g i s t e r s
” l d s11 , 0(sp) \ n ”
” l d s10 , 8(sp) \ n ”
” l d s9 , 16(sp) \ n ”
” l d s8 , 24(sp) \ n ”
” l d s7 , 32(sp) \ n ”
” l d s6 , 40(sp) \ n ”
” l d s5 , 48(sp) \ n ”
” l d s4 , 56(sp) \ n ”
” l d s3 , 64(sp) \ n ”
” l d s2 , 72(sp) \ n ”
” l d s1 , 80(sp) \ n ”
” l d s0 , 88(sp) \ n ”
” addi sp , sp ,96 \ n ”
” r e t \ n ”

) ;
asm v o l a t i l e (” . word ” x s t r (TEMPLATE_RETURN)) ;

4.4 Architectural Fuzzer

The architectural fuzzer is amode in the executor component that aims at detecting bugs in
the implementation of the emulator, i.e., cases in which the execution in the emulator and
the real system do not produce the same results, instead of commencing a side channel
attack. The architectural fuzzer is available only in the x86 version. In this thesis we port
it to the RISC-V ISA.

The same appraoch as that in the previous section is followed by our architectural fuzzer.
Initially, the fuzzer generates and executes the test case in both the emulator and in the

G. Moulkiotis 40

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

real system. Then, the fuzzer reads the used registers. With that, the fuzzer can verify
whether the emulator and the real system agree on the execution of the program or if there
exists a bug in the emulator.

The following code describes what is returned from the executor:

asm v o l a t i l e (” . word ” x s t r (TEMPLATE_ENTER)) ;

prologue () ;
/ / I n i t i a l i z e r e g i s t e r s
SET_REGISTER_FROM_INPUT () ;

/ / Execute the t e s t case
asm v o l a t i l e (” \ nfence . i \ n ”

” xor t1 , t1 , t1 \ n ”
” . long ” x s t r (TEMPLATE_INSERT_TC) ” \ n ”) ;

asm v o l a t i l e (” ” \
/ / s11 <− &latest_measurement
” l i s11 , ” x s t r (MEASUREMENT_OFFSET) ” \ n ”
” add s11 , t5 , s11 \ n ”
” sd s3 , 0(s11) \ n ”
” sd s4 , 8(s11) \ n ”
” sd s5 , 16(s11) \ n ”

/ / rsp <− stored_rsp
” l i s2 , ” x s t r (RSP_OFFSET) ” \ n ”
” add s2 , t5 , s2 \ n ”
” l d sp , 0(s2) \ n ”

/ / r es to re r e g i s t e r s
” l d s11 , 0(sp) \ n ”
” l d s10 , 8(sp) \ n ”
” l d s9 , 16(sp) \ n ”
” l d s8 , 24(sp) \ n ”
” l d s7 , 32(sp) \ n ”
” l d s6 , 40(sp) \ n ”
” l d s5 , 48(sp) \ n ”
” l d s4 , 56(sp) \ n ”
” l d s3 , 64(sp) \ n ”
” l d s2 , 72(sp) \ n ”
” l d s1 , 80(sp) \ n ”
” l d s0 , 88(sp) \ n ”
” addi sp , sp ,96 \ n ”
” r e t \ n ”

) ;
asm v o l a t i l e (” . word ” x s t r (TEMPLATE_RETURN)) ;

G. Moulkiotis 41

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

5. EVALUATION

5.1 Methodology

The experimental platform for the x86 part consists of an Intel Core i7-8750H CPU (Coffee
Lake) operating at 2.20GHz. We use Ubuntu 22.04 ,Revizor v1.2.4 and kernel version
6.8.0-40-generic. Furthermore, python is required more specifically version 3.9 and later.
Kernel headers are required for the executor kernel module. In our experiments we run
every side channel attack in Revizor for detecting every speculative vulnerability 10 times
using different seeds (the seeds are the same for all side channels) and report the average
time required to detect a violation.

The experimental platform for the RISC-V part consists of an emulated virtual machine
based on QEMU running Ubuntu 20.04. Again, we use Revizor v1.2.4. Python and kernel
headers requirements must be satisfied as mentioned in the previous paragraph. In our
experiments we verified that the RISC-V port of the executor compiles and runs. We also
verified that we are able to detect if a program is vulnerable to the CycleDrift attack.

5.2 x86 Results

Table 5.1 summarizes the ability of the various hardware tracing methods to detect or
not various speculation attacks, while Table 5.2 summarizes the corresponding execution
times. Figures 5.1, 5.2, 5.3, and 5.4 show the execution time results for the Spectre V1,
Spectre V1-VAR, MDS, and Spectre V4 vulnerabilities, respectively.

5.2.1 Using Timing Measurements for Generating Hardware Traces

We first examine the impact of using timing measurements and compare the performance
of using various attacks.

Variant Hardware tracing method

F+R P+P F+R(timing) F+F P+P(timing) I-Cache

V1 Yes Yes Yes Yes Yes Yes

V1-Var Yes Yes Yes Yes Yes Yes

V4 Yes Yes Yes Yes Yes No

MDS Yes Yes Yes Yes Yes No
Table 5.1: Ability to detect or not various known vulnerabilities through different side-channel

attacks.

G. Moulkiotis 42

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Variant Average time per tracing method

F+R P+P F+R(timing) F+F P+P(timing) I-Cache

V1 28.38 54.08 24.94 84.82 426.22 3941.46

V1-Var 283.325 62.025 201.675 349.325 X 164.05

V4 9927.35 5812.25 6118.2 174.4 X X

MDS 2019.62 436.4 902.94 1959.95 X X
Table 5.2: Detection times for each vulnerability through side channels.

5.2.1.1 Flush+Reload

The use of timing measurements in the Flush+Reload attack proved to be almost as effect-
ive as the performance counters equivalent. This proves the point that the Flush+Reload
with timing differences side channel attack is the most precise of all (as it can even detect
vulnerabilities with all filters and disabled flaky violations). As seen on all figures, the use
of the Flush+Reload attack with timing measurements is a fast and reliable method for
Revizor in order to collect hardware traces and only second in speed after Prime+Probe
with hardware traces.

5.2.1.2 Prime+Probe

Prime+Probe relies on the replacement policy of the cache of the processor. Therefore,
our generic approach of the Prime+Probe attack with timing differences was slower than
Flush+Reload and prone to noise. We did not test for more complex vulnerabilities than
Spectre V1 with Prime+Probe because of the longer detection times that would be re-
quired. As seen in Figure 5.1, the generic approach is more than five times slower than the
other approaches. This shows that the dynamic (and pessimistic) approach of calculating
the timing threshold between hits and misses at the runtime (as explained in Section 3.1)
can be used only on simple speculative vulnerabilities.

5.2.1.3 Flush+Flush

Due to the fact that we had to disable the observation filter (that executes the program with
and without all its instructions surrounded in lfence), we encountered longer detection
times than for all other side-channel attacks. We also had to enable flaky violations (i.e.,
a test case shows contract violation but the same hardware trace cannot be reproduced
in two consecutive executions of the same test case with the same inputs) because of the
noise that disturbs the execution of the test cases and prevents us from reading exactly the
same hardware trace for the same execution (i.e., test case and input set). Nevertheless,
when comparing all hardware extraction methods, we observe that the average detection
times are on the same order of magnitude. This more noisy method of collection can

G. Moulkiotis 43

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 5.1: Spectre V1 detection time for (1) Flush+Reload, (2) Flush+Reload with timing
differences, (3) Prime and Probe, (4) Flush and Flush, (5) Prime and Probe with timing differences,

and (6) Instruction cache side channel attack.

be seen to be slower than all the other methods, except for Spectre v4 in which case
Flush+Flush is the fastest among all and for MDS in which case Flush+Flush is slightly
faster thatn F+R.

5.2.2 Using Instruction Cache for Generating Hardware Traces

Our experiments consisted of testing the processor against the original Spectre vulner-
ability. We tested with enabled SMT and without it. With SMT enabled we managed to
reproduce Spectre using the instruction cache. We also tested with SMT disabled be-
cause in some confidential environments it is preferred to disable SMT in order to prevail
security. This made clear to us that the extra noise of enable SMT would not disturb our
measurements.

The results show that instruction cache can be used as a side channel to leak information
from speculative execution, but the instruction cache attacks contain more noise than data
cache attacks. As shown in Figure 3.3, the attacker can not reliably distinguish between
a fast or slow execution through timing differences (cached or not instruction) and the
instruction cache flushing instruction is only available in kernel level and requires root
access. Finally, the instruction cache can only be used to detect the original Spectre
V1 vulnerability which is patched in all processors at the time of writing. Nevertheless
this enhancement can be used for secure processors design and detection of instruction
cache leakage.

5.3 RISC-V Results

We test our RISC-V implementation using QEMU which allows us to verify that the code
builds and runs but does not simulate any microarchitectural components, such us the
processor pipeline and the caches. Therefore the RISC-V port is not tested on real RISC-

G. Moulkiotis 44

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 5.2: Spectre V1-VAR detection time diagram for (1) Flush+Reload, (2) Flush+Reload with
timing differences, (3) Prime and Probe, (4) Flush+Flush, and (5) Instruction cache side channel.

Figure 5.3: MDS detection time diagram for (1) Flush+Reload, (2) Flush+Reload with timing
differences, (3) Prime and Probe, and (4) Flush+Flush.

G. Moulkiotis 45

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

Figure 5.4: Spectre V4 detection time diagram for (1) Flush+Reload, (2) Flush+Reload with timing
differences, (3) Prime and Probe, and (4) Flush+Flush.

V systems or simulators; we leave that as future work.

5.3.1 CycleDrift

The first part of our experimental evaluation consists of Revizor producing a test case and
checking whether this program is vulnerable to CycleDrift (see Appendix B produced code
for proof of concept). After that we create our own test case and test it using Revizor; it
successfully managed to find inputs as examples of the CycleDrift vulnerability. Hence,
we verify the functionality of the detector for the CycleDrift architectural vulnerability.

5.3.2 Instruction and Data cache attacks

The instruction and data cache attacks performed by Revizor are a port of the x86 version
of Revizor and therefore they are expected to detect the same speculative vulnerabilities.

G. Moulkiotis 46

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

6. RELATED WORK

In this section we review prior works that have focused on detecting automatically (both
black-box and white-box approaches) and semi-automatically microarchitectural and ar-
chitectural leaks due to side-channel attacks.

Black-box approaches for identifyingmicroarchitectural leaks. Black box approaches
do not leverage any information regarding the processor design and treat the processor as
a black box. Transynther [37] was developed in order to detect and analyze the MDS vul-
nerability, and Speechminer [52] for studying transient execution attacks. ABSynthe [16]
and Osiris [51] were developed towards finding new side channel attacks. Another inter-
esting approach is AutoCAT [32] which uses machine learning in order to detect cache
side channels. Finally, Scam-V [38] can be used to detect security violations in in-order
ARM processors with model relational testing.

White-box approaches for identifyingmicroarchitectural leaks. White box-approaches
are based either on the RTL design, on known microarchitectural details regarding the
processor design, or on discovering first such details through reverse-engineering tech-
niques. Fadiheh et al. [10] use RTL analysis of the processor design to identify hardware
security vulnerabilities. CheckMate [44] uses formal verification in order to detect known
CPU designs that are vulnerable to speculative attacks. WhisperFuzz [7] uses fuzzing to
examine the RTL design in order to find microarchitectural side channels using a static
analysis methodology. INTROSPECTRE [14] is a pre-silicon framework for early discov-
ery of transient execution vulnerabilities at the RTL level. SpecCheck [34] is a tool for
early identification of speculative vulnerabilities in the gem5 simulator.

Approaches for identifying architectural leaks. Several prior works have also used
fuzzing to find flaws at the architectural level. This approach is followed in TestRIG [4] for
RISC-V processors, RFuzz [28] for RTL designs, and Coppelia [55] for producing software
attacks and identifying vulnerable CPUs through symbolic execution. Finally, Cascade [11]
uses fuzzing to generate programs in order to find bugs in available RISC-V RTL designs.

Semi-automated approaches. Gruss et al. [21] proposed the concept of cache template
attacks to automate the generation of cache side-channel attacks, focusing on crypto-
graphic implementations and tracking events such as keyboard usage. Gerlach et al. [13]
followed a similar approach and systematically analyze every side-channel that is avail-
able in current RISC-V processors.

G. Moulkiotis 47

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

7. CONCLUSIONS AND FUTURE WORK

In this thesis we extended the Revizor framework for testing x86 andRISC-VCPUs against
speculation contracts. On the x86 front, we enhanced Revizor by: (i) using timing meas-
urements instead of performance counters to collect hardware traces, (ii) implementing
the Flush and Flush data cache attack, and (iii) introducing instruction cache attacks. Fur-
thermore, on the RISC-V front, we (iv) ported the front-end component of Revizor to detect
speculative vulnerabilities in RISC-V CPU, and (iv) implemented the CycleDrift architec-
tural vulnerability.

Our evaluation results show that the use of timing measurements can introduce noise
into the experimental campaign but it can also reveal how easily an attacker can exploit
the leakage of the speculative execution in a more realistic execution setup. The use of
the Flush+Flush data cache attack proved to be noisy, because of the changes in cache
hit/misses threshold, but with the activation of flaky violations we managed to detect spec-
ulative vulnerabilities. In addition, our results show that an attacker can use the instruction
cache as a side-channel for implementing transient execution attacks as proposed in the
Spectre paper [27] and CVE-2017-5753 and CVE-2017-5715, despite the fact that the
instruction cache is more sensitive to noise than the data cache. On the RISC-V part, we
verified that the ported Revizor front-end can be built and run in RISC-V systems using
QEMU. Finally, we tested the ported Revizor against the architectural CycleDrift vulner-
ability and identified vulnerable code patterns.

Future work can focus on extending Revizor with using more side-channels of the memory
system through fuzzing, such as prefetch attacks on KASLR [19] or on cryptographic im-
plementations, and TLB attacks [17]. Another interesting direction is to enhance Revizor
to support SIMD execution, such as the AVX extension of the x86 ISA and the vector
extensions of the RISC-V ISA. Finally, more research is needed in order to quickly and
automatically identify security vulnerabilities in RISC-V processors, as new boards from
various vendors are expected to become widely available soon that will include more ad-
vanced, high-performance, out-of-order cores with performance optimizations that may
leak information about the execution through their microarchitectural design. Automated
tools like Osiris [51] can help on this attempt lifting the burden of long manual experiments
in order to find new side channels.

G. Moulkiotis 48

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

ABBREVIATIONS - ACRONYMS

F+R Flush and Reload

F+F Flush and Flush

P+P Prime and Probe

SMT Simultaneous multithreading

AVX Advanced Vector Extensions

RISC Reduced Instruction Set Computer

G. Moulkiotis 49

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

APPENDIX A. ARTIFACT APPENDIX FOR TIMING MEASUREMENTS
ENHANCEMENT

A.1 Calibration

First of all, clone the repository of the Flush+Flush artifact found here. After that navigate
in folders histogram and in the folders ff (flush and flush), pp (prime and probe), fr(flush and
reload) compile them with make all and execute them. The produced histograms should
look like figures in Section 3. By using these diagrams, you can define the threshold or
use the max of cycles in prime and probe. The threshold is defined in the templates c file
in the src/x86/executor folder.

A.2 Execution

After the calibration it is necessary to compile and install the Revizor linux kernel module.
We achieve this with the execution of the following commands inside the src/x86/executor:
make unistall , make clean, make, and finally make install. It is also required to change
the configuration for each fuzzing execution. For each vulnerability that we want to detect,
we choose the corresponding config file in the /demo folder and also add a line containing
the hardware trace collectionmethod. This line starts with executor_mode : and continues
with the following arguments for each hardware tracing method.

F+R Flush and Reload

F+T Flush and Reload with timing differences

P+P Prime and Probe

P+T Prime and Probe with timing differences

F+F Flush and Flush

After choosing the hardware trace method we can execute Revizor with the configuration
file and the target ISA. It must also be noted that wemust execute the python file of Revizor
installed from sources and not the pip module.

A.3 Analysis of results

After the execution of Revizor we get the statistics of the execution in the terminal including
the number of test cases executed, the inputs per test case, the number of flaky violations
detected (i.e., violations in which the hardware trace could not be reproduced more than
one time), the effectiveness, the number of test cases that passed the speculation and
observation filters, and finally the duration of execution. There is also available the test
case that caused the violation in assembly language in the generated.asm file.

G. Moulkiotis 50

https://github.com/IAIK/flush_flush

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

A.4 Noise reduction

We noticed that the Flush+Flush side channel attack is prone to noise so it is optimal to
execute Revizor in a freshly booted system, that does not execute any other applications
and with SMT disabled.

G. Moulkiotis 51

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

APPENDIX B. ARTIFACT APPENDIX FOR THE RISC-V CYCLEDRIFT
VULNERABILITY

B.1 Installation and configuration

Similarly to the x86 version of Revizor, it is required to install the Revizor linux kernel
module. This is installed with make unistall , make clean, make, and make install inside
the src/RISCV/executor folder. After the installation of the linux kernel module, we need
to choose the configuration file that will be used for the execution of the testing campaign.
For the cycle drift vulnerability we need to choose the conf-cycle.yaml in the /src/demo
folder. Finally, we can test our CPU against cycle drift vulnerability.

B.2 Analyzing the results

After the execution, we get which inputs caused the violation and the number of retired
instructions and cycles for each execution. Furthermore, we can see the code that is
vulnerable to the CycleDrift architectural vulnerability. An example can be seen below:

FENCE rw , rw # ins t rumen ta t i on
. tes t_case_enter :
. funct ion_main :
. bb_main . en t ry :
C. J . bb_main .0
. bb_main . 0 :
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
SLLI x10 , x10 , 11 # ins t rumen ta t i on
AND x10 , x10 , x31 # ins t rumen ta t i on
ADD x10 , x10 , x30 # ins t rumen ta t i on
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
LB x11 , 1869(x10)
C.NOP
SLLI x11 , x11 , 2 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
AMOMINU.W x12 , x14 , (x11)
AND x9 , x0 , x0 # ins t rumen ta t i on
ADDI x9 , x9 , 1 # ins t rumen ta t i on
C. L I x9 , 12
SLLI x13 , x13 , 2 # ins t rumen ta t i on
AND x13 , x13 , x31 # ins t rumen ta t i on
ADD x13 , x13 , x30 # ins t rumen ta t i on
AMOMIN.W x9 , x14 , (x13)
SLLI x13 , x13 , 2 # ins t rumen ta t i on
AND x13 , x13 , x31 # ins t rumen ta t i on

G. Moulkiotis 52

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

ADD x13 , x13 , x30 # ins t rumen ta t i on
AMOMINU.W x9 , x12 , (x13)
C.BEQZ x9 , . bb_main .1
C. J . bb_main . e x i t
. bb_main . 1 :
SLLI x10 , x10 , 2 # ins t rumen ta t i on
AND x10 , x10 , x31 # ins t rumen ta t i on
ADD x10 , x10 , x30 # ins t rumen ta t i on
AMOOR.W x13 , x13 , (x10)
C.ANDI x9 , 15
AND x14 , x0 , x0 # ins t rumen ta t i on
ADDI x14 , x14 , 1 # ins t rumen ta t i on
AND x12 , x0 , x0 # ins t rumen ta t i on
ADDI x12 , x12 , 1 # ins t rumen ta t i on
C.ADD x14 , x12
C.ANDI x9 , 5
SLLI x11 , x11 , 2 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
AMOOR.W x13 , x10 , (x11)
C.SUB x12 , x9
OR x10 , x13 , x14
SLLI x10 , x10 , 11 # ins t rumen ta t i on
AND x10 , x10 , x31 # ins t rumen ta t i on
ADD x10 , x10 , x30 # ins t rumen ta t i on
FLD f15 , 1951(x10)
SLLI x10 , x10 , 11 # ins t rumen ta t i on
AND x10 , x10 , x31 # ins t rumen ta t i on
ADD x10 , x10 , x30 # ins t rumen ta t i on
FLW f8 , 1868(x10)
C.NOP
SLLI x11 , x11 , 2 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
LR.W x9 , (x11)
C. SRAI x10 , 28
REM x11 , x13 , x11
SLLI x11 , x11 , 10 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
LBU x10 , 928(x11)
. bb_main . e x i t :
. t es t_case_ex i t :
FENCE rw , rw # ins t rumen ta t i on

We can even use existing code to test against cycle drift vulnerability.An example can be
seen here:

FENCE rw , rw # ins t rumen ta t i on
. tes t_case_enter :
. funct ion_main :

G. Moulkiotis 53

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

. bb_main . en t ry :
C. J . bb_main .0
. bb_main . 0 :
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
SLLI x10 , x10 , 11 # ins t rumen ta t i on
AND x10 , x10 , x31 # ins t rumen ta t i on
ADD x10 , x10 , x30 # ins t rumen ta t i on
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
LUI x31 , 2 # ins t rumen ta t i on
ADDI x31 , x31 , −1 # ins t rumen ta t i on
LB x11 , 1869(x10)
C.NOP
SLLI x11 , x11 , 2 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
AMOMINU.W x12 , x14 , (x11)
AND x9 , x0 , x0 # ins t rumen ta t i on
ADDI x9 , x9 , 1 # ins t rumen ta t i on
C. L I x9 , 12
SLLI x13 , x13 , 2 # ins t rumen ta t i on
AND x13 , x13 , x31 # ins t rumen ta t i on
ADD x13 , x13 , x30 # ins t rumen ta t i on
AMOMIN.W x9 , x14 , (x13)
SLLI x13 , x13 , 2 # ins t rumen ta t i on
AND x13 , x13 , x31 # ins t rumen ta t i on
ADD x13 , x13 , x30 # ins t rumen ta t i on
AMOMINU.W x9 , x12 , (x13)
C.BEQZ x9 , . bb_main .1
C. J . bb_main . e x i t
. bb_main . 1 :
SLLI x11 , x11 , 10 # ins t rumen ta t i on
AND x11 , x11 , x31 # ins t rumen ta t i on
ADD x11 , x11 , x30 # ins t rumen ta t i on
LBU x10 , 928(x11)
. bb_main . e x i t :
. t es t_case_ex i t :
FENCE rw , rw # ins t rumen ta t i on

G. Moulkiotis 54

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

APPENDIX C. ARTIFACT APPENDIX FOR INSTRUCTION CACHE
SIDE CHANNEL LEAKAGE

For the instruction cache side-channel leakage through speculation vulnerabilities, it is
required to use the branch of each repository because of the different way the test cases
are produced. The installation is similar to Αppendix Α and Αppendix Β for each version
of Revizor. Regarding the configuration, the executor mode argument in the configuration
file should be set to I for each vulnerability needed to be tested. Finally, after execution we
will see the same statistics as for the data cache side-channels with the main difference
being the time taken because the instruction cache is nosier channel than the data cache.

G. Moulkiotis 55

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

BIBLIOGRAPHY

[1] Intel® 64 and ia-32 architectures software developer manuals. https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-sdm.html.

[2] flush_flush. https://github.com/IAIK/flush_flush, 2016.

[3] force-riscv. https://github.com/openhwgroup/force-riscv, 2020.

[4] testrig. https://github.com/CTSRD-CHERI/TestRIG, 2021.

[5] Onur Aciiçmez. Yet another microarchitectural attack: exploiting i-cache. In Proceedings of the 2007
ACMWorkshop on Computer Security Architecture, CSAW ’07, page 11–18, New York, NY, USA, 2007.
Association for Computing Machinery.

[6] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New results on instruction cache attacks. In
Proceedings of the 12th International Conference on Cryptographic Hardware and Embedded Systems,
CHES’10, page 110–124, Berlin, Heidelberg, 2010. Springer-Verlag.

[7] Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh, Rahul Kande, Ahmad-Reza Sade-
ghi, Chester Rebeiro, and Jeyavijayan Rajendran. Whisperfuzz: White-box fuzzing for detecting and
locating timing vulnerabilities in processors, 2024.

[8] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan. Sok: Practical
foundations for spectre defenses. CoRR, abs/2105.05801, 2021.

[9] Tobias Cloosters, David Paaßen, JianqiangWang, OussamaDraissi, Patrick Jauernig, Emmanuel Stapf,
Lucas Davi, and Ahmad-Reza Sadeghi. Riscyrop: Automated return-oriented programming attacks on
risc-v and arm64. InProceedings of the 25th International Symposium onResearch in Attacks, Intrusions
and Defenses, RAID ’22, page 30–42, New York, NY, USA, 2022. Association for Computing Machinery.

[10] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra, and Wolfgang Kunz.
Processor hardware security vulnerabilities and their detection by unique program execution checking.
In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 994–999, 2019.

[11] Kaveh Razavi Flavien Solt, Katharina Ceesay-Seitz. Cascade: Cpu fuzzing via intric-
ate program generation. https://comsec.ethz.ch/research/hardware-design-security/
cascade-cpu-fuzzing-via-intricate-program-generation/, 2023.

[12] Eric García Arribas. Fuzzing risc-v processors for speculative leaks. Unpublished, June 2023.

[13] Lukas Gerlach, Daniel Weber, Ruiyi Zhang, and Michael Schwarz. A security risc: Microarchitectural
attacks on hardware risc-v cpus. In 2023 IEEE Symposium on Security and Privacy (SP), pages 2321–
2338, 2023.

[14] Moein Ghaniyoun, Kristin Barber, Yinqian Zhang, and Radu Teodorescu. Introspectre: A pre-silicon
framework for discovery and analysis of transient execution vulnerabilities. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages 874–887, 2021.

[15] Xiaofei Guo Gorka Irazoqui. Cache side channel attack: Exploitability and
countermeasures. https://www.blackhat.com/asia-17/briefings/schedule/
#cache-side-channel-attack-exploitability-and-countermeasures-5373, 2017.

[16] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi. ABSynthe: Automatic
Blackbox Side-channel Synthesis on Commodity Microarchitectures. In NDSS, February 2020.

[17] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-aside Buffer: Defeat-
ing Cache Side-channel Protections with TLB Attacks. In USENIX Security, August 2018. Pwnie Award
Nomination for Most Innovative Research.

[18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice, and Stefan
Mangard. Kaslr is dead: Long live kaslr. In ESSoS 2017, 2017.

[19] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard. Prefetch side-
channel attacks: Bypassing smap and kernel aslr. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’16, page 368–379, New York, NY, USA, 2016.
Association for Computing Machinery.

G. Moulkiotis 56

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/IAIK/flush_flush
https://github.com/openhwgroup/force-riscv
https://github.com/CTSRD-CHERI/TestRIG
https://comsec.ethz.ch/research/hardware-design-security/cascade-cpu-fuzzing-via-intricate-program-generation/
https://comsec.ethz.ch/research/hardware-design-security/cascade-cpu-fuzzing-via-intricate-program-generation/
https://www.blackhat.com/asia-17/briefings/schedule/#cache-side-channel-attack-exploitability-and-countermeasures-5373
https://www.blackhat.com/asia-17/briefings/schedule/#cache-side-channel-attack-exploitability-and-countermeasures-5373

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

[20] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+flush: A fast and
stealthy cache attack. InProceedings of the 13th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016, page 279–299, Berlin, Heidelberg,
2016. Springer-Verlag.

[21] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Automating attacks
on inclusive Last-Level caches. In 24th USENIX Security Symposium (USENIX Security 15), pages
897–912, Washington, D.C., August 2015. USENIX Association.

[22] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-software contracts for secure
speculation. In IEEE Symposium on Security and Privacy. IEEE, May 2021.

[23] Jana Hofmann, Emanuele Vannacci, Cedric Fournet, Boris Kopf, and Oleksii Oleksenko. Speculation
at fault: Modeling and testing microarchitectural leakage of CPU exceptions. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 7143–7160, Anaheim, CA, August 2023. USENIX Associ-
ation.

[24] W.-M. Hu. Reducing timing channels with fuzzy time. In Proceedings. 1991 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 8–20, 1991.

[25] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry
Ponomarev, and Nael Abu-Ghazaleh. Safespec: Banishing the spectre of a meltdown with leakage-free
speculation. In Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[26] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM: System-Level protection
against Cache-Based side channel attacks in the cloud. In 21st USENIX Security Symposium (USENIX
Security 12), pages 189–204, Bellevue, WA, August 2012. USENIX Association.

[27] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[28] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen. Rfuzz: Coverage-
directed fuzz testing of rtl on fpgas. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–8, 2018.

[29] J. Liedtke, N. Islam, and T. Jaeger. Preventing denial-of-service attacks on a /spl mu/-kernel
for weboses. In Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat.
No.97TB100133), pages 73–79, 1997.

[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown:
Reading kernel memory from user space. In 27th USENIX Security Symposium (USENIX Security
18), 2018.

[31] Tao Lu. A survey on RISC-V security: Hardware and architecture. CoRR, abs/2107.04175, 2021.

[32] Mulong Luo, Wenjie Xiong, Geunbae Lee, Yueying Li, Xiaomeng Yang, Amy Zhang, Yuandong Tian,
Hsien-Hsin S. Lee, and G. Edward Suh. Autocat: Reinforcement learning for automated exploration of
cache-timing attacks. In 2023 IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA), pages 317–332, Los Alamitos, CA, USA, mar 2023. IEEE Computer Society.

[33] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien Francil-
lon. Reverse engineering intel last-level cache complex addressing using performance counters. In
Herbert Bos, Fabian Monrose, and Gregory Blanc, editors, Research in Attacks, Intrusions, and De-
fenses, pages 48–65, Cham, 2015. Springer International Publishing.

[34] Z. McKevitt, A. Trivedi, and T. Lehman. Speccheck: A tool for systematic identification of vulner-
able transient execution in gem5. In 2023 32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 265–278, Los Alamitos, CA, USA, oct 2023. IEEE Computer
Society.

[35] Kaveh Razavi Michele Marazzi. RISC-H: Rowhammer Attacks on RISC-V. In Fourth Workshop on
DRAM Security (DRAMSec), 2024.

[36] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32–44, dec 1990.

G. Moulkiotis 57

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

[37] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Microarchitectural data
leakage via automated attack synthesis. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1427–1444. USENIX Association, August 2020.

[38] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and Swen Jacobs. Validation of
abstract side-channel models for computer architectures. In Computer Aided Verification: 32nd Inter-
national Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I, page
225–248, Berlin, Heidelberg, 2020. Springer-Verlag.

[39] O. Oleksenko, M. Guarnieri, B. Kopf, and M. Silberstein. Hide and seek with spectres: Efficient dis-
covery of speculative information leaks with random testing. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 1737–1752, Los Alamitos, CA, USA, may 2023. IEEE Computer Society.

[40] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. Revizor: Testing black-box cpus
against speculation contracts. In 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’22). ACM, March 2022.

[41] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. The spy in
the sandbox: Practical cache attacks in javascript and their implications. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page 1406–1418,
New York, NY, USA, 2015. Association for Computing Machinery.

[42] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The case of
aes. In David Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, pages 1–20, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[43] Gururaj Saileshwar and Moinuddin K. Qureshi. Cleanupspec: An ”undo” approach to safe speculation.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’52, page 73–86, New York, NY, USA, 2019. Association for Computing Machinery.

[44] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate: Automated synthesis of hard-
ware exploits and security litmus tests. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 947–960, 2018.

[45] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In Proceedings of the 27th USENIX Security
Symposium. USENIX Association, August 2018.

[46] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In 41th IEEE Symposium on Security and Privacy (S&P’20),
2020.

[47] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-flight data load. In S&P, May 2019.

[48] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained timers in xen. In
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW ’11, page 41–
46, New York, NY, USA, 2011. Association for Computing Machinery.

[49] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based side
channel attacks. SIGARCH Comput. Archit. News, 35(2):494–505, jun 2007.

[50] Zhenghong Wang and Ruby B. Lee. A novel cache architecture with enhanced performance and
security. In 2008 41st IEEE/ACM International Symposium on Microarchitecture, pages 83–93, 2008.

[51] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian Rossow. Osiris: Auto-
mated discovery of microarchitectural side channels. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1415–1432. USENIX Association, August 2021.

[52] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. Speechminer: A framework for investigating and
measuring speculative execution vulnerabilities. In NDSS. The Internet Society, 2020.

[53] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher Fletcher, and Josep Torrel-
las. Invisispec: Making speculative execution invisible in the cache hierarchy. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 428–441, 2018.

G. Moulkiotis 58

Enhanced Techniques for Testing x86 and RISC-V CPUs Against Speculation Contracts

[54] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, l3 cache Side-
Channel attack. In 23rd USENIX Security Symposium (USENIX Security 14), pages 719–732, San
Diego, CA, August 2014. USENIX Association.

[55] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. End-to-end automated exploit
generation for validating the security of processor designs. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 815–827, 2018.

G. Moulkiotis 59

	CONTENTS
	INTRODUCTION
	Goal & Approach
	Thesis Contributions
	Organization

	BACKGROUND
	Microarchitectural Components and Optimization Techniques
	Caches
	Cache maintenance instructions

	Out-of-order execution
	Speculative execution
	Branch prediction

	Microarchitectural side-channel attacks
	Data cache attacks
	Flush+Reload
	Prime+Probe
	Flush+Flush
	Evict+Reload

	Instruction cache attacks
	Transient execution attacks
	Spectre
	Meltdown
	Other attacks

	Side-channel attacks in RISC-V processors
	CycleDrift
	Cache+Time
	Flush+Fault

	Automatic Detection of Speculative Vulnerabilities in Black-Box CPUs
	Speculation contracts
	Revizor

	Enhancing Revizor for testing x86 CPUs
	Collecting Hardware Traces Based on Timing Measurements
	Measuring Cache Timing Differences
	Flush+Reload
	Prime+Probe
	Flush+Flush

	Generating Hardware Traces based on Timing Measurements
	Flush+Reload
	Prime+Probe
	Evict+Reload

	Introducing the Flush+Flush data cache attack
	Introducing instruction cache attacks

	Enhancing Revizor for testing RISC-V CPUs
	Front-end
	Executor
	Data cache side channel attacks
	Prime+Probe
	Evict+Reload

	Instruction cache side channel attacks

	CycleDrift vulnerability detection
	Architectural Fuzzer

	Evaluation
	Methodology
	x86 Results
	Using Timing Measurements for Generating Hardware Traces
	Flush+Reload
	Prime+Probe
	Flush+Flush

	Using Instruction Cache for Generating Hardware Traces

	RISC-V Results
	CycleDrift
	Instruction and Data cache attacks

	Related Work
	Conclusions and future work
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Artifact appendix for timing measurements enhancement
	Calibration
	Execution
	Analysis of results
	Noise reduction

	Artifact appendix for the RISC-V CycleDrift vulnerability
	Installation and configuration
	Analyzing the results

	Artifact appendix for instruction cache side channel leakage
	REFERENCES

