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Πρόλογος

Η κατανόηση της φύσης των σπειροειδών βραχιόνων στους γαλαξίες είναι ένα
δύσκολο και ανοιχτό αστρονομικό πρόβλημα. Υπάρχουν πολλά ανοιχτά προβλήματα
ως προς τη μελέτη της σπειροειδούς δομής, που αφορούν την προέλευση, την εξέλιξη
και μακροβιότητα των σπειροειδών βραχιόνων. Η παρούσα διατριβή πραγματεύεται
διάφορες δυναμικές προσεγγίσεις που επιτρέπουν την ερμηνεία των παρατηρούμε-
νων γαλαξιακών μορφολογιών. Τέτοιες προσεγγίσεις αναδεικνύουν και το ρόλο του
χάους και των μη γραμμικών φαινομένων, και συγκεκριμένα πως αυτά συμβάλλουν
στη σταθερότητα και συνοχή των σπειροειδών δομών. Τις τελευταίες δεκαετίες,
τα αποτελέσματα πολλών ερευνών στη δυναμική των γαλαξιών έχουν δείξει ότι οι
γαλαξίες υφίστανται μια σημαντική μακροχρόνια εξέλιξη. Τα φαινόμενα συγχώνευ-
σης γαλαξιών μπορούν επίσης να επηρεάσουν άμεσα τη δυναμική ενός γαλαξιακού
συστήματος. Επιπλέον, οι παρατηρήσεις, καθώς και οι προσομοιώσεις N-σωμάτων
ραβδωτών σπειροειδών γαλαξιών δίνουν ισχυρές ενδείξεις για την παρουσία πολλα-
πλών ταχυτήτων περιστροφής των εκάστοτε δομών σε γαλαξιακούς δίσκους. Αυτό
έρχεται σε αντίθεση με την υπόθεση μιας μοναδικής ταχύτητας περιστροφής, που
υιοθετείται σε πολλά βασικά θεωρητικά μοντέλα σπειροειδούς δομής. Η θεωρία των
κυμάτων πυκνότητας, καθώς και η θεωρία των αναλλοίωτων πολλαπλοτήτων για τη
σπειροειδή δομή είναι παραδείγματα τέτοιων μοντέλων. Υπό το φως αυτών των
παρατηρήσεων, αναδεικνύεται ότι πρέπει να αναπτυχθούν περαιτέρω δυναμικά μο-
ντέλα σπειροειδούς δομής, ώστε να προσαρμοστούν στα πρόσφατα αποτελέσματα
που προέρχονται από παρατηρήσεις και προσομοιώσεις Ν-σωμάτων.

Στην παρούσα διατριβή κατασκευάζουμε δυναμικά μοντέλα της σπειροειδούς
δομής σε δύο διαφορετικές περιπτώσεις: (α) στην περίπτωση μιας προσομοίωσης
Ν-σωμάτων ενός ραβδωτού σπειροειδούς γαλαξία και (β) στην περίπτωση ενός θε-
ωρητικού δυναμικού γαλαξιακού μοντέλου παρόμοιο με τον Γαλαξία μας (Μοντέλο
τύπου Milky Way). Η φύση των τροχιών των αστέρων που στηρίζουν τους σπει-
ροειδείς βραχίονες διαφέρει σε αυτές τις δύο περιπτώσεις, αναδεικνύοντας έτσι
δύο διαφορετικούς μηχανισμούς υποστήριξης της σπειροειδούς δομής. Στην πρώτη
περίπτωση, των ραβδωτών σπειροειδών γαλαξιών, οι σπείρες δημιουργούνται από
χαοτικές τροχιές και προσεγγίζονται μέσα από τη θεωρία των αναλλοίωτων πολλα-
πλοτήτων. Αντίθετα στη δεύτερη περίπτωση, των κανονικών σπειροειδών γαλαξιών,
οι σπειροειδείς βραχίονες κατασκευάζονται από οργανωμένες τροχιές («μεταπί-
πτουσες ελλείψεις»).

Στην περίπτωση της προσομοίωσης Ν-σωμάτων έχουμε ένα αυτοσυνεπές μοντέλο
Ν-σωμάτων ενός ραβδωτού σπειροειδούς γαλαξία. Από τις θέσεις και τις ταχύτητες
των σωμάτων της προσομοίωσης μπορούμε να λάβουμε σημαντικές πληροφορίες
που χρησιμοποιούνται στη περαιτέρω μοντελοποίηση, όπως τα σώματα, την επι-
φανειακή πυκνότητα, τη μέση ταχύτητα και το βαρυτικό δυναμικό σε κάθε σημείο
του επιπέδου του γαλαξιακού δίσκου. Στη συνέχεια προχωράμε στον υπολογισμό
των αναλλοίωτων πολλαπλοτήτων που υποστηρίζουν τις σπείρες με μία ταχύτητα
περιστροφής ή με πολλαπλές ταχύτητες περιστροφής στο γαλαξιακό δίσκο. Παρατη-
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ρούμε επίσης την εξέλιξη των αναλλοίωτων πολλαπλοτήτων μαζί με τις μακροχρόνια
εξελισσόμενες δομές στο δίσκο. Στην περίπτωση του θεωρητικού μοντέλου για τον
Γαλαξία, υπολογίζουμε, αντ’ αυτού, μοντέλα σπειρών που βασίζονται στην υπέρθεση
περιοδικών τροχιών της οικογένειας των «μεταπιπτουσών ελλείψεων». Σε αυτή την
περίπτωση, διερευνούμε πώς συνεργάζονται οι τρεις κύριες παράμετροι του μοντέ-
λου, και πιο συγκεκριμένα η ταχύτητα περιστροφής των σπειροειδών βραχιόνων,
το πλάτος της σπειροειδούς διαταραχής και η γωνία κλίσης των σπειρών, ώστε να
αναπαράγουν ρεαλιστικά κύματα σπειροειδούς πυκνότητας.
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Preface

Understanding the nature of spiral arms in galaxies is a difficult open astronomi-
cal problem. There are many open problems in the study of the spiral structure,
concerning the origin, evolution, and, in particular, the longevity of the spiral arms.
The present thesis discusses several dynamical approaches allowing to interpret the
observed galactic morphologies. Such approaches elucidate, in particular, the role of
chaos and non-linear phenomena in the stability and coherence of the spiral struc-
tures. In the last decades the results of several researches in galactic dynamics have
shown that the galaxies undergo substantial secular evolution. Merging events can
also affect directly the dynamics of the system. Moreover, the observations, as well as
N-body simulations of barred spiral galaxies give strong indications for the presence
of multiple pattern speeds in galactic discs. This is in contradiction to the single
pattern speed assumption inherent in many basic theoretical models of spiral struc-
ture. Density wave theory, as well as the manifold theory of the spiral structure
are examples of such models. In the light of these remarks, it becomes evident that
dynamical models of spiral structure need to be developed and adjust to the recent
results coming from observations and N-body simulations.

In the present thesis we construct dynamical models of the spiral structure in two
different cases: (a) in the case of an N-body simulation of a barred spiral galaxy, and
(b) in the case of a Milky Way-like theoretical potential model. The nature of the
stellar orbits that support the spiral arms differs in these two cases, thus giving rise to
two different mechanisms of support of the spiral structure. In the first case, of barred
spiral galaxies, the spirals are generated by chaotic orbits (‘manifold spirals’), while
in the second case, of normal galaxies, the spiral arms are constructed by ordered
orbits (’precessing ellipses’).

In the case of the N-body simulation we have a self-consistent N-body model
of a barred spiral galaxy, where stemming from the positions and the velocities of
the bodies we can obtain important information used in the modelling, namely the
bodies, the surface density, mean velocitiy and gravitational potential at each point
of the galactic disc plane. We then proceed with the computation of manifold spirals
with a single pattern speed or with multiple pattern speeds. We also observe the
evolution of the manifold spirals along with the secularly evolving structures in the
disc. In the case of the Milky Way-like theoretical model, we compute, instead, models
of spirals based on the superposition of periodic orbits of the family of ”precessing
ellipses”. In this case, we investigate how the three main parameters of the model,
mamely, the pattern speed of the spiral arms, the amplitude of the spiral pertubation
and the pitch angle, collaborate so as to reproduce realistic spiral density waves.
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Chapter 1

Introduction

1.1 The morphology of the spiral galaxies and our Galaxy

Spiral galaxies have been observed for more than 150 years. Until the 1920s they
were referred to as ’spiral nebulae’. The first ’spiral nebula’ to be discovered was
the galaxy M51 by Lord Rosse in April of 1845 (Rosse E. (1850)), who also gave a
sketch of M51 (Fig. 1.1). The morphology of the spiral structure is an indicator of
the underlying dynamics and of the evolution of the galaxy.

The American astronomer Edwin Hubble classified galaxies as ’elliptical’, ’spiral’
and ’irregular’. This classification is essentially based exclusively on a galaxy’s ob-
served morphology. According to the ’Galaxy Zoo Project’ (Lintott et al. (2008),
Willett et al. (2013)) which was developed later, the two thirds of all galaxies are spi-
ral, while approximately one third are ellipticals, and a few per cent merging galaxies
(Lintott et al. (2011)).

Figure 1.1: Τhe sketch that Lord Rosse gave in 1845 when he identified the spiral structure of M51.

Hubble introduced a classification scheme for galaxies by criterion of the observed
structures in their center (existence of bar or buldge), as well as of the degree of
winding of the spiral arms (determined by the pitch angle) (Hubble (1926b), Reynolds
(1927), De Vaucouleurs (1959), see Dobbs & Baba (2014) for a review). Spiral
galaxies are generally classified as ‘S‘ if they have no bar in their center or ‘SB‘ if a
bar is present (barred spiral galaxies). The type SAB refers to weakly barred galaxies.
In order to distinguish galaxies with open spirals from the ones whose spirals are
tightly wound, he added the letter ‘a‘-‘d‘, with the ‘d’ classification representing the
most open arms (greater value of the pitch angle), and the ‘a’ classification the most
tightly wound (smaller value of the pitch angle). Thus, normal galaxies are scaled
from ‘Sa‘ to ‘Sd‘, and barred galaxies from ‘SBa‘ to ‘SBd‘. The Hubble sequence
also represents a decrease in the size and luminosity of the buldge from Sa (or SBa)
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galaxies to Sd (or SBd), and an increase in gas content from Sa to Sd.

Figure 1.2: Morphological classification of galaxies by Hubble (Hubble (1926b))

A second classification scheme was proposed by Elmegreen & Elmegreen (Elmegreen
& Elmegreen (1982), Elmegreen & Elmegreen (1987)) (see Table 1.1). In this classis-
fication 12 types of galaxies (‘arm classes‘) are introduced by criterion of the number,
length and orderliness of the spiral arms. The first four types of galaxies in the
Elmegreen & Elmegreen classification correspond to ‘flocculent galaxies‘ with spiral
arms chaotic, unsymmetric and fragmented into short pieces. The arm classes 5-12
correspond to ‘grand design‘ galaxies, with two long, continuous and symmetric spi-
ral arms. Τhis classification also includes ‘multi-armed galaxies‘ that also have two
inner arms, as well as multiple outer arms or ringlike outer structure. All of these
types may or may not exhibit bars. Around 60 %, of galaxies exhibit some grand
design structure, either in the inner or entire part of the disc (Elmegreen & Elmegreen
(1982), Dobbs & Baba (2014)).

DESCRIPTION OF ARM CLASSES FOR SPIRAL GALAXIES
Arm Class Description

1 Chaotic, fragmented, unsymmetric arms
2 Fragmented spiral arm pieces with no regular pattern
3 Fragmented arms uniformly distributed around the galactic center
4 Only one prominent arm; otherwise fragmented arms
5 Two symmetric, short arms in the inner regions; irregular outer arms
6 Two symmetric inner arms; feathery ringlike outer structure
7 Two symmetric, long outer arms; feathery or irregular inner arms
8 Tightly wrapped ringlike arms
9 Two symmetric inner arms, multiple long and continuous outer arms
10 No longer used; previously denoted barred galaxies
11 No longer used; previously denoted galaxies with close companions
12 Two long symmetric arms dominating the optical disk

Table 1.1: Morphological classification of galaxies by Elmegreen & Elmegreen
(Elmegreen & Elmegreen (1987))
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Note also that the morphology of spiral structure often appears different when a
galaxy is observed in near-infrared rather than optical wavelengths (Bertin, & Lin
(1996)). In the near-infrared we observe the structures that are supported by the
older stars. This change of the morphology reflects the different dynamical effects on
the disc induced by the motions of the old and younger stars respectively.

Since our solar system is immersed in the galactic disc of the Milky Way, there are
many difficulties in observing and open problems in understanding the morphological
features of the spiral arms in our own galaxy. The spiral structure of the Milky
Way was first explored by observations of the 21 cm line from interstellar atomic
hydrogen. Afterwards, the methods for the detection of the spiral structure evolved
and the most commonly used are observations of Ionized hydrogen and OB stars
for the mapping Galactic structure (e.g. Georgelin & Georgelin (1976)). However,
there is still no consensus on whether the Milky Way is a two- armed (e.g. Weaver
(1970), Elmegreen (1985)) or a four-armed galaxy (Georgelin & Georgelin (1976))
or whether or not it exhibits a ring-like structure in the inner parts of the galactic
disc (Cohen & Thaddeus (1977)).

Figure 1.3: A sketch of the Milky Way, seen face-on (left) and edge-on, /(right), Credit: Left: NASA/JPL-
Caltech; right: ESA; layout: ESA/ATG medialab

The Milky Way is generally considered to be a barred spiral galaxy (Burton
(1988), Dame et al. (2002), Benjamin et al. (2005), Hou & Han (2014)). However,
there are many open questions about the morphology and the behaviour of the central
galactic structures. The first indications for the existence of a bar in the galactic
center were given by de Vaucouleurs in 1964 (De Vaucouleurs (1964)) through the
observation of the gas velocity field in the inner Galaxy. Recent researches assume
the co-existence of a boxy buldge (Gerhard (2002), Gerhard (2011)) along with a
bar structure extending to ∼ 4 kpc (Gerhard (2010)).

1.2 The Density wave theory of spiral structure

1.2.1 Historical background

A radical evolution of perspective, generally adopted by the astronomical commu-
nity, as regards the spiral structure in galaxies took place in the 1960s, following the
pioneering work of Bertil Lindblad in the previous decades. B. Lindblad struggled
persistently with the problem of the spiral structure until his death in 1965, and
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published a long series of papers. At the time, the dominant concept for the expla-
nation of the origin of spiral structure was that the galactic spiral arms are supported
primarly from the dynamics of magnetic fields or gas (see Baade (1963), Toomre
(1977)). However, Lindblad pursued the idea that the spiral stucture is generated
by the colllective effect of the stellar orbits under the presence of non-axisymmetric
gravitational forces in the galactic disc.

Consider the circular stellar orbits in the galactic disc. Their angular velocity Ω(r)
is:

Ω(r) =

√
1

r

∂V0(r)

∂r
(1.1)

where V0(r) is the total axisymmetric gravitational potential in the disc plane.
In a disc model in which the mass density falls with distance the angular velocity

Ω(r) decreases with respect to the distance r from the galactic center. As a result, a
differential rotation phenomenon appears, and the stars closer are expected to rotate
faster than the stars further away from the galactic center. In the scenario of so-
called ”material spiral arms”, the spiral arms are constantly inhabited by the same
stars which evolve around the center in nearly circural orbits. However, in such a
scenario the differential rotation on the disc would lead the whole structure to start
immediately winding. After a few rotations, the spiral arms would then become
tightly wound, to an extent inconsistent with the observed morphology of spirals.
This is the so-called ”tight-winding problem” (Lindblad (1958), Kalnajs (1971)),
which led to the conclusion that the non-axisymmetric structures on the galactic disc
(the bar and the spiral arms) can not be material structures, but should, instead, be
modelled as density waves, i.e. local enhancements of the disc density, which are
constructed by stars that constantly travel in and out of the wave.

1.2.2 Density wave theory

Lindblad was the first to introduce the theory that spiral arms are density waves (1941,
1942, 1948, 1955, 1962). Later Lin and Shu (1962, 1964) and Toomre (1964) de-
veloped the idea of spiral waves, considered as perturbations in an axisymmetric disc
that is regarded in the framework of either the Boltzmann equation for collisionless
matter or the hydrodynamical equations for gas.

The reader is referred to Contopoulos (2002) and Binney & Tremaine (2008)
for detailed reviews on density wave theory. We summarise below the main points,
focusing on concepts of use in the present thesis.

In the collisionless approximation of stellar dynamics, the distribution function
f(r,v, t) provides complete information of the spatial distribution of the stars (den-
sity), as well as the velocity distribution of the stars at any point in the galactic disc.
The distribution function f(r,v, t) is defined so that the quantity f(r,v, t)d3rd3v yields
the probability of finding a random star at time t with phase-space coordinates within
the six-dimensional phase-space volume d3rd3v around the position r and velocity v.
The conservation of probability in phase space (Liouville’s theorem) is described by
the collisionless Boltzmann equation, (also called Vlasov equation):

∂f

∂t
+ v∂f

∂r − ∂H

∂r
∂f

∂v = 0 . (1.2)

Using the Poisson brackets [·, ·] the Eq. (1.2) can be written in the following form:

∂f

∂t
+ [f,H ] = 0 . (1.3)
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We generally consider that the Hamiltonian of the system is of the form H =
1
2v

2 + V (r, t). We call a system ”self-consistent” if the density distribution is related
to the potential through Poisson’s equation

∇2V = 4πGρ = 4πG

∫
dr3f(r,v, t) . (1.4)

In this case the gravitational potential is V (r, t) =
∫
dr′G

∫
fd3v′

|r−r′| and the collisionless
Boltzmann equation 1.2 takes a nonlinear integro-differential form:

∂f

∂t
+ v∂f

∂r − ∂

∂r

(∫
dr′

G
∫
fd3v′

|r− r′|

)
∂f

∂v = 0 . (1.5)

According to Lindbland’s assumption of ”quasi-stationary spiral structure” (Lind-
blad (1962), Lindblad (1963)), the whole spiral structure can be seen as a quasi-
steady rotating spiral ”pattern”. The spiral patterns are ”longlived”, i.e. they are
sustained over many orbital periods.

These concepts led to the Lin–Shu theory of stationary density waves. The lin-
ear theory approximates the spiral waves as small perturbations from a stationary,
axisymmetric state, assuming that the potential V, density ρ (or the surface density
Σ =

∫
ρdz, where z is the direction normal to the disc) and the distribution function

f have small deviations from the corresponding axisymmetric terms (V0, ρ0, f0) (Bin-
ney & Tremaine (2008), see Efthymiopoulos (2010) for a tutorial presentation). We
choose f0(r,v) as the distribution function corresponding to a solution of Boltzman’s
equation for a steady-state model of an axisymmetric galaxy. We then define the
distribution function of the system with the spiral density pertubation as

f(r,v, t) = f0(r,v) + εf1(r,v, t) . (1.6)

The gravitational potential is modified to

V (r, t) = V0(r) + V1(r, t) (1.7)

where, in view of the linearity of Poisson’s equation (1.4), we have:

V0(r) = −
∫
dr′

G
∫
f0d

3v′

|r− r′| , V1(r, t) = −
∫
dr′

G
∫
f1d

3v′

|r− r′| . (1.8)

The Hamiltonian becomes
H = H0 + εV1(r, t) (1.9)

where H0 =
1
2v

2 + V0(r). The linearised form of Eq. (1.3) substituting f and H from
Eqs. (1.6) and (1.9) is:

∂f1
∂t

+ [f0,H0] + ε [f1,H0] + ε [f0, V1(r, t)] +O(ε2) = 0 . (1.10)

From Boltzmann’s equation for the time-independent f0 we have that [f0,H0] =
−∂f0

∂t = 0 and the term [f0,H0] gets eliminated from Eq. (1.5). Hence:

∂f1
∂t

+ v∂f1
∂r − ∂

∂r

(∫
dr′

G
∫
f0d

3v′

|r− r′|

)
∂f1
∂v − ∂

∂r

(∫
dr′

G
∫
f1d

3v′

|r− r′|

)
∂f0
∂v = 0. (1.11)

Lin & Shu (1964) did not solve directly Eq. (1.11). Instead, they initially approxi-
mated the distribution function f through its velocity moments, i.e. by multiplying
both sides of Boltzmann equation with progressively higher power combinations of
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the velocities, and integrating the result in the velocity space. This methodology was
first applied to stellar dynamics by Jeans (1919) and the respective equations are
called ”Jeans equations”. Analogous hydrodynamical equations can be obtained from
a fluid (or gas) distriburion of matter (Lin & Shu (1964, 1966)).

On the other hand, straightforward solutions of Eq. (1.11), which also give a
formula for f , were given by Kalnajs (1971) (see the Appendix K of Binney &
Tremaine (2008)).

1.2.3 The orbital version of the density wave theory

The orbital version of density wave theory builds spiral density waves by the super-
position of stable elliptical periodic orbits that ”collaborate” in a way so as to support
and sustain the spiral density wave. These periodic orbits exhibit gradual change in
orientation as a function of the distance from the galactic center and their orientations
combine coherently so as to produce a local enhancement of density in the disc. The
first to stress the contribution of these orbits to the construction and sustainement of
the spiral density wave was Lindblad (1956, 1957, 1958, 1960, 1961), who called them
“dispersion orbits”. Later Kalnajs gave to the periodic orbits the name ”precessing
ellipses” (Kalnajs (1973)). As a result, the spiral density wave is supported by stars,
which travel in elliptical orbits with coherent phases and they construct a ’precessing
ellipsis flow’ (Kalnajs (1973)).

Contopoulos calculated analytically these orbits (Contopoulos (1970), Contopoulos
(1975)). In particular, he developed the theory of ”resonant periodic orbits” near the
inner Linblad resonance. He specified the number and stability of the correspond-
ing periodic orbits, and identified the family of stable periodic orbits which support
the spiral density wave, called the ”x1” family. The resonant theory of Contopoulos,
based on epicyclic action-angle variables, also allows to predict the structure of the
phase space around the periodic orbits, yielding the corresponding invariant curves
as the level curves of a resonant ”third integral” (see Contopoulos (2002) for a re-
view). The predictions of this theory were confirmed by Vandervoort (1973, 1975), see
also Vandervoort & Monet (1975) and Monet & Vandervoort (1978)), Mertzanides
(1976) and Berry & Smet (1979). These studies provided figures of the correspond-
ing phase portraits around the elliptical closed orbits computed analytically (by the
”third integral”) or numerically in simple models of galactic potentials with a spiral
perturbation.

The overall limit of applicability of the ”precessing ellipses” was considered by
Contopoulos (Contopoulos (1985)). The change of the orientation of the elliptical
orbits with the energy is explained by resonant perturbation theory (Contopoulos
(1975), Monet & Vandervoort (1978), see a tutorial presentation by Efthymiopoulos
(2010)). Numerical examples of spirals supported by ”precessing ellipses” have been
computed in self-consistent models of spiral galaxies (Contopoulos & Grøsbol (1986),
Patsis et al. (1991), Patsis & Grosbøl (1996), Pichardo et al. (2003), Efthymiopoulos
(2010)).
N-body experiments since the 1960s have been unable to reproduce long-lived

spiral density waves and the scenario of quasi-stationary spiral density waves has been
strongly criticized (see Toomre (1977), Athanassoula (1984), Binney & Tremaine
(2008), Sellwood & Carlberg (1984), Sellwood (2010) and Dobbs & Baba (2014) for
reviews). The existence of mechanisms regulating the growth rate of spiral density
waves, and hence ensuring their longevity for several pattern periods, remains largely
an open question (Donner & Thomasson (1994), see Bertin, & Lin (1996) and
Contopoulos (2002) for reviews).

12



1.3 Fourier decomposition of the Surface Density Field and
of the potential

The surface mass density Σ(r, φ) (in cylindrical coordinates) of a galactic disc is
obtained through a surface brightness map (amount of light per unit area) which
is constructed through photometric data from observations of the galaxy, assuming a
constant mass-to-light ratio. The application of Fourier transform to the surface mass
density, or to the corresponding gravitational potential, enables us to distinguish the
individual structures in the galactic disc (modes of the Fourier Transform) that present
a certain symmetry with respect to the galactic center and contribute collectively to
the observed galactic morphology and dynamics. The Fourier Transform of the mass
surface desity Σ(r, φ) is given by:

Σ(r, φ) = Σ0(r) +

mmax∑
m

Am(r) cos(mφ) +
∑
m

Bm(r) sin(mφ) (1.12)

where mmax is taken high enough to reach sufficient convergence of the Fourier series,
typically we choose mmax ≃ 10). Σ0(r) corresponds to the axisymmetric part of the
surface density:

Σ0(r) =
1

2π

∫ 2π

0
Σ(r, φ)dφ (1.13)

and Am(r), Bm(r) are the amplitudes of the surface density of the m-th mode com-
puted at a certain radius r from the galactic center:

Am(r) =
1

π

∫ 2π

0
cos(mφ)Σ(r, φ)dφ . (1.14)

Bm(r) =
1

π

∫ 2π

0
sin(mφ)Σ(r, φ)dφ (1.15)

The m = 0 component corresponds to the axisymmetric galactic structures, namely
the buldge, and disc. In most ‘grand design’ spiral galaxies, the m = 2 component
dominates over all other. The m = 2 component describes the bisymmetric features
of the disc, namely the bar and the spiral arms. The m = 4 component also appears
in the bar or the spiral arms. The odd components m = 1, 3,... describe patterns
(modes) with a non-even symmetry. Of particular interest is the m = 1 component.
This is the main component of lope-sided structures which could result, for example,
in cases where the disc galaxy interacts with a satellite galaxy. Early studies tended to
disregard odd components as of smaller importance, but modern observations indicate
that in many galaxies they might play a key role in dynamics (Efthymiopoulos
(2010)).

We cannot recover directly the gravitional potential V (r, φ, z) (in cylindrical co-
ordinates) from the sole knowledge of the surface mass density Σ(r, φ). Poisson
equation relates the gravitational potential to the total mass density ρ(r, φ, z):

∇2V (r, φ, z) = 4πρ(r, φ, z) . (1.16)

Besides Σ(r, φ), to obtain the spatial mass distribution ρ(r, φ, z), requires a model
of the distribution of mass in the vertical z-axis. Moreover, the luminous galactic
matter (i.e. disc, bar, buldge, spiral arms) is embedded in a massive dark halo,
which contributes significantly to the total gravitational potential. Merging events
and external pertubation factors also affect the galactic gravitational potential.

13



A frequently used process to model the gravitational potential of a galaxy consists
in splitting the mass distribution into distinct components (e.g. bulge, disc, bar,
spiral arms, dark halo), then utilise photometric and kinematic data to create a fitting
model for each component, using either empirical laws or an inverse processing of
the observations.

The Fourier decomposition of the gravitational potential of the galaxy in the disc
plane (x, y,z = 0) and radius r takes the following form:

V (r, φ) = V0(r) +

mmax∑
m

Φm(r) cos(mφ) +
mmax∑
m

Ψm(r) sin(mφ) (1.17)

where the axisymmetric potential V0(r) is:

V0(r) =
1

2π

∫ 2π

0
V (r, φ)dφ (1.18)

and the coefficients of the m-th mode at a certain radius r are:

Φm(r) =
1

π

∫ 2π

0
V (r, φ) cos(mφ)dφ (1.19)

Ψm(r) =
1

π

∫ 2π

0
V (r, φ) sin(mφ)dφ . (1.20)

1.4 Stellar orbits in an axisymmetric potential

Let us consider the stellar orbits under the influence of an axisymmetric potential
V0(r). In this case, the angular momentum Pφ is a constant quantity and, therefore,
we are led to the one degree of freedom Hamiltonian in the inertial frame of reference:

H0 =
Pr

2

2
+
Pφ

2

2r2
+ V0(r) =

Pr
2

2
+ Veff (r;Pφ

2) (1.21)

where
Veff (r;Pφ

2) =
Pφ

2

2r2
+ V0(r) (1.22)

is the effective potential. In the above equation, (r, φ) are cylindrical co-ordinates, and
(Pr, Pφ) are canonical momenta which correspond to the radial and angular momenta
(per unit mass) in the rest frame.

Hamilton’s equations are:

ṙ =
∂H0

∂Pr
= Pr

φ̇ =
∂H0

∂Pφ
=
Pφ

r2

Ṗr = −∂H0

∂r
= −

∂Veff (r;Pφ
2)

∂r
(1.23)

Ṗφ = −∂H0

∂φ
= 0 . (1.24)
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Figure 1.4: Τhe effective potential as a function of radius. The sections of the energy level line with the graph
of the effective potential yields the pericenter and apocenter radii rp, ra. The minimum of the effective potential
occurs at the radius r = rc (circular orbit).

The numerical value of H0 in Eq. (1.21) for a given set of coordinates (r, Pr , φ,
Pφ) gives orbits of constant value of energy E. For a given and constant energy E,
the equation E = Veff (r;Pφ

2), namely the section points of E with the curve of the
effective potential give two solutions of r for the apsides of the orbit (Pr = 0), namely
one for which Ṗr = −∂Veff (r;Pφ

2)
∂r > 0 (pericenter of the orbit at distance rp), and

another for which Ṗr = −∂Veff (r;Pφ
2)

∂r < 0 (apocentre of the orbit at distance rap).
The minimum of the effective potential occurs at a distance which corresponds to

the radius of the circular orbit (rc). The condition of the minimum of the effective
potential

(
∂Veff (r;Pφ

2)
∂r = 0

)
leads to:

Pφ
2 = rc

3dV0(rc)

drc
. (1.25)

The angular velocity Ω(rc) of the circular orbit is given by :

Ω(rc) = φ̇ =
Pφ

rc2
=

√
1

rc

dV0(rc)

drc
(1.26)

and the corresponding azimuthal period is:

T =
2π

Ω(rc)
. (1.27)

The energy of the circular orbit is

Ec =
Pφ

2

2rc2
+ VO(rc) =

1

2
rc
dV0(rc)

drc
+ V0(rc) . (1.28)

For orbits of given angular momentum Pφ, and energy Ec < E < 0, the star also
performs an oscillation with a frequency κ between an inner and outer radius. Then
the orbit of the star is called ”epicyclic orbit” and the frequency κ is called ”epicyclic
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frequency”. For epicyclic orbits approximating circular orbits, i.e. close to the mini-
mum of the effective potential at the radius of the circular orbit r = rc, the epicyclic
frequency κ approaches the frequency of a linear harmonic oscillation and κ(rc) at
r = rc is given by

κ(rc) =

√
d2Veff(rc)

drc2
=

3Pφ
2

rc4
+
d2V0(rc)

dr2c
=

√
d2V0(rc)

dr2c
+

3

rc

dV0(rc)

drc
. (1.29)

The radial oscillating motion around the galactic disc is performed with period
and it is related to the epicyclic frequency κ:

Tr(E,Pφ
2) = 2

∫ ra(E,Pφ
2)

rp(E,Pφ
2)

[
2(E − V0(r))−

Pφ
2

r2

]−1/2

dr =
2π

κ((rc)
. (1.30)

The ratio of Ω(rc) and κ(rc) as a function of the radius rc is an important quantity
which affects the structure of the periodic orbits in the galactic disc. Far from the
galactic center the potential approximates the Keplerian case:

V0(r) ≃ −GM
r

as r → ∞ (1.31)

and for the frequencies κ, Ω we find (from Eqs. (1.26), (1.31)):

lim
rc→∞

κ(rc) = lim
rc→∞

Ω(rc) =

√
GM

r3
. (1.32)

At distances close to the galactic center, assuming that the center is smooth, the
potential takes the form of a quandratic function near its minimum:

V0 ≃ c0 + c1r
2 as r → 0 (1.33)

Then:
lim

rc→∞
(κ(rc)− 2Ω(rc)) = 0 . (1.34)

Thus, in general, the value of the epicyclic frequency is between the two extreme
values:

Ω ≲ κ ≲ 2Ω . (1.35)

A remark, due originally to Lindbland, is that for a wide class of galactic disc potentials
one has κ(rc)− 2Ω(rc) ≃ constant across a wide range of radii rc. This remark forms
the basis of density wave theory, as discussed in more detail below.

1.5 Disc resonances

We now consider the epicyclic motions of stars in a galactic disc. The stellar motions
can be described as the combination of a radial oscillation with frequency κ and a
circular motion at a certain radius with the azimuthal frequency Ω.

In density wave theory, these stellar periodic orbits contribute collectively to the
sustainment of the density wave as a whole. The orbital collaboration of the stars
lead to a local density enhancement that takes the form of a ”pattern” that rotates at
an angular velocity ΩP , called the ”pattern speed”.

A resonance occurs when the ratio of the frequency κ of the radial oscillation to
that of the circular motion around the center of the galaxy with frequency Ω−ΩP , in
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a frame of reference rotating together with the spiral pattern with frequency ΩP , is a
rational number. The Corotation Resonance (CR) is defined by the relation:

Ω(r) = ΩP . (1.36)

We consider resonances defined by relation of the form

m(Ω−ΩP ) = ±κ . (1.37)

In most galaxies the dominant mode is the m=2, which corresponds to bisymmetric
structures of the galaxy (bar or two-armed spiral arms). For m=2 the resonant
condition (1.37) defines the Inner and Outer Lindbland resonance at the radii rILR ,
rOLR where

Ω(rILR)− ΩP =
κ(rILR)

2
, Ω(rOLR)− ΩP = −κ(rOLR)

2
. (1.38)

More resonances appear to accumulate close to the region of corotation of the
form:

k

q
=

κ

(Ω− ΩP )
(1.39)

If the radius r approaches the corrotation radius (where Ω = ΩP ) the ratio (1.39)
tends to infinity. As a result an infinity of resonances lie in the region of corotation
((Contopoulos (1981))). Besides the Lindbland resonances and corrotation, some
important resonances in an extended area around the corotation are k/1 = 4/1, 3/1
(inside corotation), and k/1 = −2/1,−1/1 (outside corotation).

Ω and κ are functions of the radius r, while the pattern speed ΩP is a constant
quantity. As a result the location of the resonances in the galactic disc depend on the
value of the pattern speed ΩP .

Figure 1.5: The form of the function Ω(r), and of the resonant combinations of Ω(r) and κ(r), Ω − κ/2,
Ω+ κ/2, and Ω− κ/4 for a dynamical galctic model that is described in Harsoula et al. (2021). The selected
pattern speed ΩP (red line) determines the radii of the ILR, the 4:1 resonance and the corotation.
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Figure 1.5 shows the function Ω(r), as well as the combinations Ω− κ/2, Ω+ κ/2
and Ω− κ/4. The inner section of the curve Ω(r) with the pattern speed ΩP defines
the radius of the corotation rCR, while the inner section of the curve Ω − κ/2 with
the pattern speed ΩP defines the radius of the Inner Lindblad Resonance (ILR) rILR.
Depending on the model we may have no ILR or one or two ILR. Finally the inner
section of the curve Ω− κ/4 with the pattern speed ΩP defines the radius of the 4:1
resonance r4:1.

In Fig. 1.5 we observe that Ω(r) and κ(r) are decreasing functions of r, while
the value of ΩP is a constant number. Hence, for a fixed potential, the location of
resonances depends on the value of ΩP . The value of ΩP plays an important role in
the evolution and structure of galactic systems. However, determining the value of
ΩP in observed galaxies is not a trivial task. Most methods for recovering the value of
ΩP (Tremaine & Weinberg (1984), Tremaine & Weinberg (1984b)) depend not only
on observational data, but also on additional dynamical assumptions. Furhermore,
different values of ΩP lead, in general, to different structures and morphological
characteristics of the various patterns embedded in the galactic disc.

1.6 Extent of the spiral density waves

Spiral density waves cannot extend throughout the entire galactic disc because there
exist natural inner and outer barriers that limit the extension of these waves. A
density wave can only exist if the stars respond to its gravity in a way that they can
maintain the structure. A star at radius r traverses an m- armed spiral structure
with frequency m| Ωp − Ω(r) |. The stellar motions can generally enhance the spiral
density wave if their angular frequency m| Ωp − Ω(r) | is slower than the epicyclic
frequency κ(r) at this radius (Dobbs & Baba (2014)). Therefore, from Eq. (1.37) a
m = 2 spiral wave can propagate in the region between the inner and outer Lindblad
resonances.

It follows that the inner natural barrier for m=2 spiral arms coincides approxi-
mately with the radius of ILR. In fact, the density waves are reflected in this central
region before reaching the ILR, and then they are amplified by swing amplification
(Goldreich & Tremaine (1978)). Swing amplification offers a mechanism of fast
growth of density waves between the ILR and OLR and it works when short leading
waves are reflected to short trailing waves at the CR radius, or when a density en-
hancement formed by self-gravity is stretched out by differential rotation (see Dobbs
& Baba (2014) for a review)). Also, the density waves can be absorbed at the ILR
due to Landau damping (Lynden-Bell & Kalnajs (1972)). But this absorption of the
stellar density waves at the ILR can be avoided if the Toomre’s Q parameter (Toomre
(1964)) has a high value inside the ILR, forming a so-called Q-barrier. Such a barrier
reflects a density wave approaching the ILR back to outwards propagation, away from
the ILR. The Toomre’s Q parameter for a stellar disc is given by the relation:

Q =
κσR

3.36GΣ0
(1.40)

where κ(r) is the epicyclic frequency, σR(r) is the velocity dispersion and Σ0 is the
disc surface density at a certain radius r. A high value of the Q parameter implies
high value of the velocity dispersion. Inside the ILR this can be caused, for example,
by the existence of the central spheroidal (bulge). In such cases, quasi-stationary
two-armed spirals can be generated by ’standing-wave’ patterns which exist between
a reflecting radius from the inner part of the galaxy (i.e. rILR) up to the corotation
radius (Bertin et al. (1989)).
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However, Contopoulos and Grosbøl, (Contopoulos & Grøsbol (1986), Contopoulos
& Grøsbol (1988)) have shown that in the case of normal spirals (without the presence
of a galactic bar) where the amplitude of the spiral arms is strong enough, non
linear-phenomena arise at the 4:1 resonance, and the spiral density wave necessarily
terminates there. In particular, the elliptical periodic orbits become rectangular there
and can no longer support the spiral density wave. This result was further confirmed
in Patsis et al. (1991), Patsis et al. (1994), Patsis et al. (1997), Lépine et al. (2011)
and Junqueira et al. (2013). However, if the spiral pertubation is weaker non-linear
phenomena also weaken and the spiral can extend beyond the 4:1 resonance (see for
example Grøsbol & Patsis (1998)).

As an overall conclusion, the spiral density waves supported by precessing ellipses
should extend in a region starting from a little outside the ILR and up to the 4:1
resonance. The radii of these resonances are defined by the specific pattern speed.
According to Fig. 1.5 this region, rILR < r < r4:1, varies for different values of the
pattern speed ΩP .

1.7 The role of chaos in galactic discs

In the case of normal spiral galaxies (without a bar at the center) the non- axisym-
metric pertubation is rather small (<10 %). We have discussed in this case models
of spirals supported by organised orbits (”precessing ellipses”) which extend up to
the 4/1 resonance. In this case, chaos is a local phenomenon that takes place in the
close neighborhood of unstable periodic orbits at the region of the resonances of the
disc. Non-linear phenomena are manifested mostly in the form of the periodic orbits,
which deviate from the elliptical shape as the amplitude of the non-axisymmetric per-
tubation in the disc increases. This phenomenon is responsible for the termination
of the spiral arms at the 4/1 resonance.

In barred spiral galaxies it is generally accepted that the bar lies inside the re-
gion of corotation (Contopoulos (1980)). In many cases the bar induces a strong
non-axisymmetric pertubation in the galactic disc. A large number of resonances are
accumulated in a small spatial zone around the region of corotation and this phe-
nomenon causes a zone of chaotic motion due to the overlapping of the resonances
(Contopoulos (1966), Rosenbluth et al. (1966), Walker & Ford (1969), Voglis et al.
(2006b)). The chaotic orbits near corrotation can, however, support both the bar and
the spiral arms, as first indicated in Kaufmann & Contopoulos (1996). Moreover, in
the case of barred spiral galaxies the spiral arms extend far beyond the corotation.
These results highlight the need for a new theory for the spiral structure in barred
spiral galaxies. Such a theory is the manifold theory (Romero-Gomez et al. (2006),
,Voglis et al. (2006), Romero-Gomez et al. (2007), Tsoutsis et al. (2008), Tsoutsis et
al. (2009), Athanassoula et al. (2009a), Athanassoula et al. (2009b), Athanassoula
(2012), Efthymiopoulos (2010), Harsoula et al. (2016), Efthymiopoulos et al.
(2019), Zouloumi et al. (2024)), analysed in the following sections.

1.8 Hamiltonian model and equations of motion in non‐
axisymmetric potentials

We consider a barred spiral galaxy where the bar rotates with pattern speed ΩP (the
angular velocity of the bar) and we choose a galactocentric frame of reference which
corotates with the bar. In the corrotating frame of reference the Hamiltonian of the
system incorporates the term V0(r) of the axisymmetric potential (e.g. the buldge, the
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disc or the dark halo) and an extra term with azimuthal dependence V (r, φ) which
corresponds to the potential of a non-axisymmetric perturbation in the disc (e.g. the
bar or the spiral arms). Τhe Hamiltonian in the rotating system is:

H =
1

2

(
pr

2 +
pφ

2

r2

)
− ΩP pφ + V0(r) + V (r, φ) = EJ (1.41)

where H = H(r, φ, pr, pφ) and (r, φ) are cylindrical co-ordinates, which give the carte-
sian coordinates through the relations x = r cosϕ, y = r sinϕ. (Pr, Pϕ) are canonical
momenta which correspond to the radial and angular momentum (per unit mass).
The angular momentum Pφ is the angular momentum per unit mass in the inertial
frame of reference, although φ corresponds to the azimuth in the rotating frame of
reference. (Pr, Pϕ) connected to the cartesian velocities Vx, Vy in the corotating frame
via pr = (xVx + yVy)/r, Pφ = ΩP r

2 + (xVy − yVx)/r. The numerical value of the
Hamiltonian H remains constant in time along any particular orbit (Jacobi energy
H = EJ ).

The orbits are given by Hamilton’s equations for Hamiltonian 1.41:

ṙ =
∂H

∂Pr
= Pr

φ̇ =
∂H

∂Pφ
=
Pφ

r2
− ΩP

Ṗr = −∂H
∂r

=
Pφ

2

r3
− ∂V0(r)

∂r
− ∂V (r, φ)

∂r
(1.42)

Ṗφ = −∂H
∂φ

= −∂V (r, φ)

∂φ
.

1.9 Lagrangian Equilibrium points in the disc

We consider a frame of reference which corotates with the bar, which is then always
seen in the same, e.g., vertical direction (see Fig. 1.7). In the corrotating frame
of reference we locate the Lagrangian equilibrium points similarly to the respective
equilibrium points in the restricted three-body problem. These points correspond to
physical points where the forces (gravitational and apparent) get a zero value.

We can easily compute the Lagrangian points in the case of a simplified bar-like
potential model. In this model the Fourier coefficients in Eq. (1.17) are Φm(R) = 0,
Ψm(R) = 0, for all m except m = 2, while Φ2(R)/Ψ2(R) = const. In such a model the
bar-like perturbation leads to a bar with major axis in a fixed azimuthal direction in
the rotating frame given by φbar = 0.5 tan−1(Ψ2/Φ2) (±π/2, depending on the signs
of the terms Φ2,Ψ2). The equations of motion (1.42) combined with the equilibrium
condition in the above simplified model:

∂H

∂r
=
∂H

∂ϑ
=
∂H

∂Pr
=
∂H

∂Pϑ
= 0 (1.43)

yield four Lagrangian equilibrium points (e.g. Binney & Tremaine (2008)):
1) the unstable points L1 and L2, alligned with the bar, have co-ordinates rL1 =

rL2 = rl, for some radius rl > 0 from the galactic center, Pr,L1 = Pr,L2 = 0, φL1 = φbar ,
φL2 = φbar + π, and Pφ,L1 = Pφ,L2 = ΩP r

2
l .

2) The stable points L4 and L5 have co-ordinates rL4 = rL5 = r′l, with r′l < rl, and
PRR,L4 = PR,L5 = 0, ϕL4 = ϕbar + π/2, φL5 = φbar + 3π/2, and Pϕ,L4 = Pϕ,L5 = ΩP r

′2
l .

The radii rl and r′l differ (by quantities of the order of the bar’s m = 2 relative
amplitude) from the radius rCR (the corrotation radius) defined by the root for r
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using the equation (1.26) for the angular velocity Ω(r) of the circular orbit in the rest
frame and the condition (1.36) for the corotation resonance:

ΩP = Ω(rCR) =

(
1

r

dV0(r)

dr

)1/2

r=rCR

. (1.44)

The radius rCR is the co-rotation radius, and Ω(r) is the angular velocity of the
circular orbit in the rest frame under the influence of the axisymmetric potential V0.
One finds rl > rCR, r′l < rCR, while the ring r′l < r < rl is the corotation zone (or
region).

We detect the Lagrangian points through equipotential curves which are called
’zero velocity curves’, which satisfy the condition:

V eff(r;Pφ
2) = V0(r) + V (r, φ)− 1

2
Ω2
P r

2 = EJ . (1.45)

The term 1
2Ω

2
P r

2 is called the centrifugal term, and it is derived from the terms
pφ2

2r2
−ΩP pφ of the Hamiltonian (1.41), by replacing pφ = r2(φ̇+ΩP ) = r2ΩP for φ̇ = 0.

All regions in which Veff (r;Pφ
2) > EJ are forbidden for stellar motions.

Figure 1.6 shows the zero velocity curves of a simulated barred spiral galaxy. All
the Lagrangian points satisfy the condition ∇Veff = 0. The points L1, L2 along the
bar are saddle points and represent the unstable Lagrangian points. Stars with values
of EJ larger than VeffL1,2

or stars that are initially outside the contour through L1 and
L2 can in principle escape to infinity. The points L4, L5 in a direction perpendicular to
the bar represent the stable Lagrangian points. L3 is a stable Lagrangian equilibrium
point in the center of the galaxy (see paragraph 3.3.2 of Binney & Tremaine (2008)).
The Lagrangian points appear stationary in the corotating frame of reference, where
the gravitational and centrifugal forces precisely balance, but they can be regarded
also as circular orbits in the inertial frame of reference.

Figure 1.6: Zero velocity curves constructed from the potential of a N-body simulated barred spiral galaxy (from
Kyziropoulos et al. (2016)) at time t = 2.5 Gyr of the simulation
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For weak non-axisymmetric disturbances the Lagrangian points L1, L2 and L4, L5

are close to the corotation circle as shown in Fig. 1.7. But they move away from the
corotation circle if the non-axisymmetric pertubation is strong. When one considers
the full non-axisymmetric potential (Eq. (1.17)), the unstable Lagrangian points L1,
L2 need no longer be at symmetric positions with respect to the center of the disc,
nor aligned with the bar. In fact, time variations in the non-axisymmetric Fourier
modes of the gravitational potential can alter significantly the form of ’zero velocity
curves’ within the co-rotation zone, influencing the radial and azimuthal position of
the Lagrangian points (see below, and also Tsoutsis et al. (2009), Wu et al. (2016)),
and even their number (e.g. Kalapotharakos et al. (2010)).

Figure 1.7: The Lagrangian points L1, L2,L3, L4, L5 in an the case of weak bar and in the case of a strong
bar

1.10 The Main Families of Periodic Orbits

In simple dynamical systems we distinguish three main types of orbits: (a) Periodic
Orbits (Ordered orbits) (b) Quasi-periodic orbits (Ordered orbits) and (c) Chaotic
Orbits. (see Contopoulos (2002) for a review) In the orbital study of the galactic
systems the study of the periodic orbits are of great significance. The stable orbits trap
around them sets of quasi-periodic orbits which also support the galactic structures.
On the other hand, the unstable orbits separate the various types of ordered orbits
and demarcate the chaotic domains in a galaxy.

The main families of periodic orbits encountered in this particular problem (see
Efthymiopoulos (2010) for a review) are the following: a) The x1 family of Con-
topoulos & Papayannopoulos (1980) are the main stable orbits beyond the inner
Lindblad resonance (ILR), which in the case of normal galaxies construct the pre-
cessing ellipses” and they support the density wave. Near the ILR resonance this
family of periodic orbits are elliptical orbits. However, at longer distances, closer to
higher order resonances, the trajectory tends to acquire a polygonal shape, which
corresponds to the type of epicyclic oscillations of the corresponding resonance (e.g.
in the 4/1 resonance where four epicyclic oscillations are performed in a azimuthal
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period the orbit tends to take a rectangular shape). The family of periodic trajectories
x1 also continues beyond the corotation, where it is performed in retrograde direction.

b) The families of periodic orbits x2, x3, x4. The x2, x3 families lie between the
two ILR resonances (if they exist) and extend perpendicular to the bar. Family x2 is
stable, while family x3 is unstable. The x4 family is retrograde and plays an important
role only near the center. Contopoulos & Grøsbol (1989)

c) Periodic orbits of 2/1 resonances. 3/1, 4/1 etc, resulting from the application of
the Poincaré-Birkhoff theorem (Birkhoff (1917), Poincaré (1912)).

d) Short and long period periodic orbits around the equilibrium points L4, L5.
The short-period orbits form small loops around the equilibrium points, while the
long-period orbits are more elongated and take a ”banana” shape around L4, L5.

e) Short-period periodic orbits around the equilibrium points L1, L2, which will
be mentioned in the following subsection. These short period periodic orbits are also
called PL1, PL2 and their unstable invariant manifolds support the structure of the
spiral arms or the outer shell of the bar. (see details in Section 1.11).

Figure 1.8: (a) The main families of periodic orbits in a barred galaxy. We distinguish x1, but also the x2, x3

families of periodic orbits as well as the long-period (”banana-shaped”) orbits around L4 and L5. (b) Short-period
periodic orbits around L4, L5 as well as x4 orbits are depicted. (source: Contopoulos & Grøsbol (1989))

Additionally to the periodic orbits, other types of orbits are also located in galactic
dynamical models and they are the following:

i) Around the stable periodic orbits there are ”quasi-periodic orbits” that form
tube-like structures (”tubes”), which respond to motions on the invariant tori of the
phase space. These orbits also construct the main body of the organized orbits in the
system.

ii) Chaotic trajectories are very important, especially for values of the Jacobi con-
stant EJ,L4 < EJ < EJ,L1. The structure of the zero-velocity curves presents that
in this energy region an orbit may be moving partly inside and partly outside the
corotation region (Kaufmann & Contopoulos (1996)). Thus the chaotic orbits can
partially support the outer shell of the bar and partially the spiral arms. These orbits
are called the ”hot population” (Sparke & Sellwood (1987), Kaufmann & Contopoulos
(1996)) because of the large dispersion of velocities of the stars moving along them.
The fact that the bars essentially terminate near the corotation is mainly due to the

large degree of chaos which is located at this region. In that region a large number of
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periodic orbits become unstable. An additional factor is the change of the orientation
of the main periodic orbits outside the corotation.

1.11 The manifold theory for the spiral structure of barred
spiral galaxies

1.11.1 Definitions and the two versions of the manifold theory

In barred spiral galaxies the bar is a strong pertubation that leads to chaotic motion in
the region of corotation (Kaufmann & Contopoulos (1996), Patsis (2006)). The work
Patsis (2006) introduces the idea of ’chaotic spirals’ and presents stellar response
models fitting a real barred spiral galaxy in which the spiral arms are supported
almost entirely by chaotic orbits. Someone would expect that the orbital escapes
would increase rapidly due to the chaotic motion and the system could not sustain for
times comparable to Hubble times. However, this speculation has not been assumed
by observations and N-body simulations. These problems arose the need for a new
theory for the barred spiral galaxies which would provide a mechanism that gives
coherent and long-lived spiral structure in barred spiral galaxies.

A central question in the study of barred spiral galaxies was whether the bar drives
spiral dynamics (e.g. Goldreich & Tremaine (1978), Athanassoula (1980), Schwarz
(1984)), or the spiral structure is a recurrent collective instability characterized by
its own independent dynamics which interacts with the bar (e.g. Sellwood (2000)).
Sellwood & Sparke proved that if the spiral would be bar-driven they would rotate
with the same angular velocity (which is not generally observed in real galaxies or in
N-body simulations, see 1.12.2 for more details) and they would be encountered to
lie outside the corotation (Sellwood & Sparke (1988)).

The manifold theory introduced a mechanism for the long-lived spiral structure
in barred spiral galaxies, applicable whenever the bar is a strong pertubation in the
galactic disc and the orbits in the region of corotation are chaotic. The manifold theory
for the spiral structure in barred spiral galaxies was first introduced in two versions
in 2006 by Romero-Gomez et al. (2006) and Voglis et al. (2006). Since then
it has been tested in N- body simulations and analytical potential models of barred
spiral galaxies (Romero-Gomez et al. (2007), Tsoutsis et al. (2008), Tsoutsis et al.
(2009), Athanassoula et al. (2009a), Athanassoula et al. (2009b), Athanassoula et
al. (2010), Athanassoula (2012), Efthymiopoulos (2010), Harsoula et al. (2016),
Efthymiopoulos et al. (2019)).

For values of the Jacobi constant greater than the values of the unstable equilibrium
points L1,2 , there exists a family of short-period periodic orbits (approximately equal
to the epicyclic period) branching around the points L1 , L2 . These trajectories form
loops around L1,2 of increasing size as the value of the Jacobi constant increases.
Hereafter, we will refer to these short-period periodic orbits (or ’Liapunov orbits’ in
Romero-Gomez et al. (2006)) themselves as PL1 or PL2 as called in Voglis et al.
(2006). These orbits are prograde with respect to the galaxy’s rotation inside the
cototation region and retrograde outside the corotation (Fig. 1.9). A similar family of
periodic short-period orbits with epicenters PL4,5 can also exist for the stable points
L4,5 for values of constant Jacobi that exceeds the corresponding values in L4,5.
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Figure 1.9: Short-period orbits PL1,2 around the Lagrangian equilibrium points L1,2 (unstable) and L4,5

(stable). Arrows indicate the direction of rotation in and out of the corotation. (source:Voglis et al. (2006))

The unstable manifolds WU
PL1,2

of the unstable short-period periodic orbits PL1

and PL2 are defined as the set of initial conditions with coordinates (r0, ϑ0, Pr0 , Pϑ0) in
the phase space that tend asymptomatically to the respective periodic orbits PL1,2, in-
tegrated in the backward sense of time, namely t→ −∞. Denote by O(t;R0, ϕ0, pR,0, pϕ,0)
one orbit (R(t), ϕ(t), pR(t), pϕ(t)), with initial conditions (R0, ϕ0, pR,0, pϕ,0) at time t
and OPL1 the locus of all the phase space points of the periodic orbit PL1. Thus, the
unstable manifold WU

PL1 is the ensemble of all different initial conditions for which
the distance between O(t;R0, ϕ0, pR,0, pϕ,0) and OPL1 tends to zero as t→ −∞:

WU
PL1

=

{
All (R0, ϕ0, pR,0, pϕ,0) : dist[O(t;R0, ϕ0, pR,0, pϕ,0), OPL1 ] → 0 as t→ −∞

}
.

(1.46)
Thus, an integration of these trajectories in the forward sense of time from PL1,2

leads a rich outflow in space away form L1,2. This outflow of trajectories yield spiral
patterns in the configuration space and can support the outer shell of the bar and the
spiral arms of the galaxy.

Similarly, the stable manifold WS
PL1,2

is the set of points in phase space with
images approaching asymptotically the orbit PL1 in the forward direction of time
(t → +∞). Both sets, WU and WS are two-dimensional manifolds embedded in
the three-dimensional Jacobi constant hypersurface of the four-dimensional phase
space. Similar definitions hold for the unstable manifold of the Lagrangian points
L1,2, namely the sets WU

L1 (or WU
L2):

WU
L1 =

{
All (R0, ϕ0, pR,0, pϕ,0) : dist[O(t;R0, ϕ0, pR,0, pϕ,0), OL1] → 0 as t→ −∞

}
.

(1.47)
The geometric shapes and properties of the manifolds WU

PL1,2 are similar to those
of the manifolds WU

L1,2. However, a main difference is that the the unstable points
L1,2 and their manifolds represent only one value of the Jacobi constant, while the
periodic orbits PL1,2 and their manifolds form families which span a whole set of
values of the Jacobi constant EJ,PL1,2 > EJ,L1,2 . Furthermore, all the families of orbits
with energies EJ > EL1,2 give manifolds that are trailing parallel paths toWU

PL1,2
and
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contribute to the outflow away from L1 and L2 (Patsis (2006), Tsoutsis et al. (2008))
due to the phenonomen of phenomenon of ’stickiness in chaos’ (G.Contopoulos and
M. Harsoula 2008). The manifolds represent the motion of the material at all energies
beyond the Jacobi energy at corotation. The manifolds play the role of the attractor
of chaotic orbits and provide a dynamical skeleton to the structure of the galaxy.

Two versions of the manifold theory have been developed so far in the literature:
i) The ‘flux-tube’ version of the manifold theory (Romero-Gomez et al. (2006),

Romero-Gomez et al. (2007), Athanassoula et al. (2009a), Athanassoula et al.
(2009b), Athanassoula (2012)) considers continuous-in-time orbits describing the
flow of matter away from the bar’s unstable Lagrangian points L1 and L2, as viewed
in a frame of reference rotating with angular speed equal to the bar’s pattern speed
ΩP . The unstable ‘flux-tube’ manifolds WU

L1, WU
L2 from Eq. (1.47) are invariant sets

formed by all orbits tending asymptotically towards L1 or L2 in the backward sense
of time. This means that, in the forward sense of time, these orbits form outflows
(’flux-tubes’) directed away from L1 or L2. Besides L1 and L2, similar flux-tube
manifolds can be constructed for the whole family of epicyclic periodic orbits (called
‘Lyapunov orbits’) around L1 or L2. This outflow of trajectories yields with initial
conditions selected to lie in the set (1.14) or (1.46).

An elementary linearization of the equations of motion around L1 or L2 shows
that these outflows, have the form of trailing spiral arms in the configuration space. In
particular, the flux-tube manifolds are consisted of two branches: one that is directed
outside co-rotation and takes the form of a trailing spiral arm and a second that is
directed inside corotation, creating a ring-like structure around the bar. Thus, the
flux-tube manifolds can give rise to several morphological structures, from outer or
inner ring-like to open spirals, depending on the model’s parameters (e.g. pattern
spead, m = 2 amplitude and asymmetry (Athanassoula et al. (2009a)).

ii) In the version of the manifold theory called ’apocentric manifolds’ (Voglis et
al. (2006), Tsoutsis et al. (2008), Tsoutsis et al. (2009), Efthymiopoulos (2010),
Harsoula et al. (2016)) one computes first the flux-tube manifolds WU

L1,2
, and then

isolates only those points which correspond to apsidal positions, i.e., local apocentric
or pericentric points of each orbit in the flux-tube. The locus formed by the union
of the apocentric points yields again trailing spiral arms. The apocentric manifolds
WUA

L1,2
are defined through the flux-tube manifolds WU

L1,2
as follows:

WUA
L1,2

=

{
All points of WU

L1,2
: pr = 0, ṗr < 0

}
, (1.48)

where ṗr is given by the Eqs.(1.42). A similar definition holds for the apocentric
manifolds WUA

PL1,2
of the families PL1,2. The form of pocentric manifolds is presented

in Fig. 1.10
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Figure 1.10: The apocentric unstable invariant manifolds WUA
PL1,2

from the unstable periodic orbits PL1 and
PL2 in the physical space positioned over a snapshot of the N-body simulation Kyziropoulos et al. (2016) at
time t = 1.625 Gyr of the simulation. The calculation of these invariant manifolds is described in Efthymiopoulos
et al. (2019)

The set WU
L1,2

reproduces through continous in time orbits the manifolds as geo-
metric objects which show the direction of the flux of matter beyond the corotation.
However, the flux tube version of the manifold theory struggles to approach the real
distribution of matter along the manifolds, which depends on the distribution function
of the N-body system. Despite the fact that a precise knowledge of the distribution
function is hardly tractable, the set WUA

L1,2
can be representative of the mass density

distribution. This is because the method of apocentric manifolds (Voglis et al.
(2006)) exploits the fact that local density maxima along the manifolds are expected
at points close to apsidal (i.e. pericentric or apocentric) positions of the orbits. This
assumption is verified in N-body experiments (see Tsoutsis et al. (2008)), the suc-
cessive apocenters reached by the orbits of the N-body particles are all on the same
locus determined by the coalescence of invariant manifolds.
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Figure 1.11: (a) The unstable invariant tube manifolds WU
PL1,2

into the physical space from the short period
unstable periodic orbits periodic orbits PL1 and PL2 . The bar is aligned on the y axis and rotates counterclockwise.
(b) Same as (a) but in a strongly nonlinear model. (c) The apocentric unstable invariant manifolds WUA

PL1,2
of

the model (b) from PL1 and PL2 in the configuration space (source:Efthymiopoulos (2010))

In Efthymiopoulos (2010) (See Fig. 1.11) and Efthymiopoulos et al. (2019) a
detailed comparison of the two versions of the manifold-theory is exhibited. In the
flux tube manifolds case the spiral arms are quite open and extend away from the
corotation and the stars on them do not likely return into the galaxy (See Fig. 1.11(b)).
In this case, one must devise a mechanism of matter renewal in order to assure that
these spiral structures are long-lived. The flux tube manifolds can lead to escapes
without recurrences (as presented in Fig. 1.11(a)), while in the case of the apocentric
manifolds a large number of recurrences is observed inside and outside the corotation
region (see Fig. 1.11(c) and Fig. 1.10). The orbits which exhibit recurrences belong
to the family known as the ‘hot population’ (Sparke & Sellwood (1987), Kaufmann
& Contopoulos (1996)).

Near L1 or L2 the shapes of the flux-tube and apocentric manifolds coincide. How-
ever, far from the Lagrangian points, the shapes of the apocentric manifolds allow to
visualize the intricate chaotic dynamics known in dynamical systems’ terminology as
the ‘homoclinic tangle’ (see Wiggins (1990)). Thus, the flux-tube and the apocen-
tric manifolds are the same phase-space objects, but visualized differently in physical
space.

In Harsoula et al. (2016) the various manifold theories are generalised and an
analytical theory for the chaotic spirals is presented. In particular, the Moser theory
(Moser (1956), Moser (1958)) of invariant manifolds around unstable periodic orbits
is applied. Moser proved the convergence of the normal form series describing the
Hamiltonian dynamics near an unstable equilibrium point or an unstable periodic
orbit. In Harsoula et al. (2016) is proved that the domains of the chaotic orbits
around the invariant manifolds in barred spiral galaxies correspond to the domains
of convergence of the Moser normal form around the unstable manifolds.

1.11.2 Computation of the apocentric invariant manifolds

In the sequel we focus on computations based on the representation of manifold
spirals via the apocentric manifolds. The algorithm of calculation of the apocentric
invariant manifolds WU

PL1,2
is described in detailed in Voglis et al. (2006) and in

the review Efthymiopoulos (2010). For the computation of the apocentric manifolds
WUA

L1,2 and WUA
PL1,2 we work on an ‘apocentric surface of section’ for all trajectories of

given Jacobi energy EJ .
1) We first build an apocentric Surface of section S. Every orbit corresponds to a

point of (ϑ, Pϑ) on S and satisfies the condition of Pr = 0, Ṗr > 0, which describes the
apsidal position of the orbits. Every point (ϑ, Pϑ) on S defines an initial condition
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with coordinates (r, ϑ, Pr = 0, Pϑ), where r is the local radius at which a particle with
trajectory corresponding to the Jacobi energy EJ reaches a local apocentric passage
with values of its angular variables equal to (ϕ, Pφ). Setting Pr = 0, Ṗr < 0 in the
Hamiltonian 1.41, the equation:

H(r, φ, Pr = 0, Pφ) = EJ (1.49)

allows to compute the local radius r. In particular, this equation has two roots, for
the pericentre and the apocentre of the orbits respectively. We choose the one that
has the greater value of r, which corresponds to the apocentre of the orbits.

2) The Eq. (1.49) fixes the value of r as function of (φ,Pφ). Thus, for a randomly
chosen trajectory undergoing epicyclic oscillations, the transition from one to the next
apocentric passage can be viewed as a Poincaré mapping

(φ,Pφ) → (φ′ = F (φ,Pφ), P ′
φ = G(φ,Pφ)) (1.50)

where the functions F (φ,Pφ) and G(φ,Pφ) are approximated numerically through
the integration of the orbits. By integration, using the Hamilton equations 1.42, we
can locate the images (φ′, P ′

φ) under Poincaré mapping of the initial conditions (φ,Pφ)
on S.

3) The location of the unstable periodic orbits PL1 and PL2 from Eq. (1.50) is
performed through the location of their apocentric intersections with the surface S.
In particular, the orbits PL1,2 correspond to fixed points (φ0 , Pφ0) of the mapping
(1.50), i.e., where the following condition is satisfied:

φ′ = F (φ0, Pφ0) = φ0, P ′
φ = G(φ0, Pφ0) = Pφ0 . (1.51)

Eqs. [(1.51) can be viewed as a 2×2 algebraic system which can be solved numerically,
using a root-finding technique (e.g. Newton-Raphson method), in order to compute
the initial conditions (φ0, Pφ0) of the corresponding PL1 or PL2 orbit.

4) We construct the monodromy matrix of the fixed point PL1 or PL2 and compute
its components through numerical differentiation:

M =

[
∂F
∂φ

∂F
∂Pφ

∂G
∂φ

∂G
∂Pφ

]
φ=φ0,Pφ=Pφ0

. (1.52)

We calculate its eigenvalues and eigenvectors of the matrix M . The monodromy
matrix gives two opposite stable eigendirections and two unstable eigendirections
respectively. We expect two real snd reciprocal eigenvalues λ1,2 of the M , satisfying
λ1λ2 = 1.

In the work of Voglis et al. (2006b) a well-known theorem of dynamics is used
for the calculation of the unstable invariant manifolds, the so called ’Grobman –
Hartman theorem’ (Grobman (1959), Hartman (1960), which proves the following:

(i) In autonomous Hamiltonian systems the manifolds on the Poincaré surface of
section are invariant, i.e. they coincide with their images under the Poincaré map.

(ii) They approach the fixed points PL1,2 in the directions tangent to the eigen-
vectors of the linearized map around PL1,2 .

In particular, the unstable manifoldWUA
L1,2 is tangent to the eigenvectors associated

with the absolutely larger real eigenvalue (say λ1) of the monodromy matrix M at
fixed point (φ0, Pφ0), while the stable manifold WSA

L1,2 is tangent to the eigenvectors
associated with the absolutely smaller eigenvalue, λ2, of the same matrix. By the
symplecticity property of Poincaré maps we have λ1λ2 = 1, thus the two eigenvalues
are reciprocal and it holds that |λ1| > 1 and |λ2| < 1.
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5) In order compute and visualize the apocentric invariant manifolds WUA
PL1,2 we

take many initial conditions equi-spaced on a linear segment of small total length dS
on the apocentric surface of section (φ,Pφ) along the unstable eigendirection which
is determined by the equation:

tanΘ =
λ1,2 − ∂F

∂φ

∂F
∂Pφ

. (1.53)

The set of initial conditions is uniformly distributed with respect to the angle φ in a
small interval dφ, starting from the angle φ0 of the periodic orbit. The corresponding
coordinate at the momentum axis dPφ, is located through the condition that the
vector (dφ, dPφ) coincides with the unstable eigenvector ofthe monodromy matrix of
the unstable periodic orbit PL1. Thus,

dPφ = tanΘdφ . (1.54)

Integrating all these trajectories from the initial conditions on dS forward in time
yields the ‘flux-tube’ manifolds WU

PL1,2, while taking only consecutive iterates of the
mapping (1.50) on the apocentric surface of section S yields the apocentric manifolds
WUA

PL1,2. Note that the iterates of the mapping (1.50) are pairs of values (φ,Pφ).
Plotting the manifold’s iterated points (φ,Pφ) allows the visualization of the manifolds
WUA

PL1,2 in the phase space (phase portrait).
However, the constant energy condition H(r, φ, Pr = 0, Pφ) = EJ (Eq. (1.49))

allows to compute an extra coordinate, the apocentric radius r for any pair (φ,Pφ).
Thus, any point on the apocentric surface of section corresponds to a triplet of values
(r, φ, Pφ). The visualization of the apocentric manifold in physical space is obtained
by plotting the manifold’s computed iterated points x = r cosφ, y = r sinφ.

1.11.3 The apocentric invariant manifolds in the phase space and the
configuration space

The properties of the apocentric manifolds in the phase space and the configuration
space have been exhibited in Voglis et al. (2006), Tsoutsis et al. (2008), Tsoutsis et
al. (2009), Efthymiopoulos (2010), Harsoula et al. (2016), Efthymiopoulos et al.
(2019).

In order to interpret the contribution of the invariant manifolds in the dynamics
of the orbits, we can constuct the phase portrait of a barred spiral galaxy. For the
construction of the phase portrait, one takes a series of initial conditions at a fixed
angle φ on S and changes the azimuthal component of momentum Pφ on the unstable
equilibrium points L1,2 and on the stable equilibrium points L3.4 respectively. The
points on the phase portrait correspond to succesive image of the Poincaré mapping
on S.

In Fig. 1.12 we notice that these points construct orbits of different nature in the
phase space. Thus, in the phase portrait of Fig. 1.12, we observe that there are closed
elliptical orbits in the phase space around the stable equilibrium points L3,4 and open
orbits respectively from the unstable points L3,4.

In Fig. 1.12 the phase space is consisted by two distinct domains. In the domain
inside the corotation, for values of Pφ < Pφ,L1,2, there coexist islands of stability
and organized orbits with chaotic regions that enclose them. Such extended chaotic
domains are responsible for the termination of the bar (Tsoutsis et al. (2009)). The
white circular domains devoid of points, embedded in the chaotic sea in this domain,
correspond to prohibited domains of motion, e.g. for EJ < EJL4

. The upper domain
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Figure 1.12: The phase portrait constructed by consecutive images (φ, pφ) of the Poincatré mapping on S
calculated for an analytical potential model described in Pettitt et al. (2014) and for a pattern speed ΩP = 40
kms−1kpc−1

(a) (b)
Figure 1.13: The form of the invariant manifolds for an analytical potential model of the two-arm Milky Way
described in Pettitt et al. (2014) with a pattern speed ΩP = 40 kms−1kpc−1 (a) in phase space and (b) in
the configutation space

(beyond corotation) for values of Pφ > Pφ,L1,2, is characterized almost entirely by
chaos and orbital escapes. The manifolds are visualised in the phase space (Fig.
1.12 and Fig. 1.13(a)) and the configuration space (Fig. 1.13(b)) and they show the
following properties:

1) The invariant manifolds contribute to the sustainment of the structure and
the trajectories with initial conditions close to the invariant manifolds do not escape,
remain trapped to ‘sticky’ orbits near the manifolds for times comparable to the
age oφ the galaxy. Near the bundles of preferred directions, the invariant manifolds
act as attractors of the orbits along those directions, enhancing iterative chaos and
preventing escapes. These phenomena are similar to the ‘stickiness’ phenomena
caused by invariant manifolds in Hamiltonian dynamical systems (Efthymiopoulos
et al. (1997), Efthymiopoulos et al. (1999), Contopoulos & Harsoula (2008),
Contopoulos & Harsoula (2010))

2) Except for the manifolds from PL1,2, all the families of periodic orbits with
Jacobian energies EJ > EJ,L1,2 give manifolds. One of the main topological properties
of the manifolds is that the unstable (stable) manifolds of one family cannot intersect
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the unstable (stable) manifolds of any other family. As a result, the unstable man-
ifolds of all families of periodic orbits with EJ > EJ,L1,2 are forced to follow nearly
parallel paths in either the phase space or the configuration space. The superposition
of the invariant manifolds of all the different families generates a pattern which is
called the ‘coalescence’ of the invariant manifolds. The coalescence of the invariant
manifolds yields a trailing spiral pattern in the configuration space. In particular, it
provides a dynamical skeleton for the outer shell of the bar and the spiral arms in
the configuration space which is the locus of points corresponding to the successive
apocentric passages of the chaotic orbits.

3) The form of the invariant manifolds originating from e.g. PL1 as they ap-
proach the neighborhood of PL2 is intricate and pronounces the ’homoclinic chaos’
phenomenon, predicted by the theory of Hamiltonian systems. In particular, the sta-
ble and unstable manifolds have cross-sections, which are called ’homoclinic points’.
The part of the invariant manifold located between two consecutive homoclinic points
is called a ’lobe’. Successive images of the Poincaré mapping yield lobes increasingly
elongated along the two eigendirections, creating a complex structure. This complex-
ity is the source of chaos in Hamiltonian systems, as pointed out by Poincaré (Poincaré
(1957))
4) In the disc plane, the homoclinic lobes appear as oscillations of the patterns

formed by the manifolds, which give rise to the systematic appearance of several
features called ’gaps’, ’bridges’ and ’bifurcations’. It is usually observed in the apoc-
entric manifolds case that weak extensions of the spiral arm emanating from one end
of the bar form ‘bridges’, which join the spiral arm emanating from the opposite end
or the bar, aproaching it from its exterior side.

5) Another property of the manifolds is that they are recurrent (Contopoulos &
Polymilis (1995)), i.e. the manifold lobes return many times near the points PL1,2

even if they temporarily go to large excursions away from PL1,2. This property intro-
duces a dynamical mechanism of replenishment of the material in the galactic system.
It is also remarkable that the recurrence of the manifolds can create new stickiness
phenomena (’recurrent stickiness’), leading to further accumulation of points in the
narrow stickiness zone along the manifolds (Contopoulos & Harsoula (2010)).

1.12 Multiple pattern speeds and manifold spirals

1.12.1 Multiple pattern speeds in the Milky Way and in other galaxies

Recent observations in our Galaxy and in other galaxies and N- body simulations of
barred spiral galaxies prove that the spiral arms rotate at a different pattern speed
than the bar. Moreover, the values of the pattern speeds gradually change with time
as the disc goes through secular evolution. These facts should be taken into account
in a dynamical study of the spiral structure of the galaxies.

The multiple pattern speed scenario holds for our Galaxy (as reviewed e.g. in
Bland-Hawthorn & Gerhard (2016); see also Antoja et al. (2014), Junqueira et al.
(2015) and references therein, Gerhard (2010), Dias & Lépine (2005)).

In the Milky Way the bar rotates rapidly at a pattern speed that is estimated at
45 − 60 km/s/kpc (Bland-Hawthorn & Gerhard (2016), Gerhard (2011), Dias &
Lépine (2005)). The corotation is estimated at 3.5− 4.5 kpc (Englmaier & Gerhard
(1999), Fux (1999)). The velocities in the solar neighbourhood are influenced
more by the bar, and somewhat by the spiral arms. Some of the used methods for
the estimation of the pattern speed of the bar in our Galaxy are the following (see
Bland-Hawthorn & Gerhard (2016) review):
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1) The application of the Tremaine-Weinberg method (Tremaine & Weinberg
(1984)) to a complete sample of OH/IR stars in the inner Galaxy (Debattista et al.
(2002)). This method was first discussed in the context of external galaxies but it can
be applied also in our Galaxy.

2) Using hydrodynamic simulations comparing the gas flow with observed Galactic
CO and HI lv-diagrams (longitude–velocity diagrams). These simulations (Englmaier
& Gerhard (1999), Fux (1999)) cannot reproduce all the observed features equally
well, as they depend explicitely on the galactic gas features and they lack the in-
formation of the effect of the gravitational potential (Bland-Hawthorn & Gerhard
(2016).

3) Another method is based on the interpretation of star streams observed in the
distribution of stellar velocities in the solar neighborhood. Hydrodynamic modeling
of the inner Galaxy suggests that the radius of the outer Lindblad resonance (OLR) of
the Galactic bar lies in the solar neighbourhood. The study of the stellar kinematics
in the solar neighbourhood can lead to the location of the resonances and to an
approximately estimation the pattern speed of the bar. (Kalnajs (1991), Dehnen
(2000), Antoja et al. (2014)).

The galactic spiral arms rotate with a distinctively slower pattern speed in the
Milky Way. The angular velocity of the spiral arms has been estimated to be 17− 28
km/s/kpc (Dias & Lépine (2005), Gerhard (2010)). The method of ’open cluster
birthplace analysis’ and the velocity field of nearby younger stars indicate that the
spiral arms corotation is outside from the bar’s corotation. For the determination of
the pattern speed of the spiral arms of the Milky Way, some of the most commonly
used methods are the following:

1) The method ’open clusters birthplace analysis’ (Dias & Lépine (2005), Gerhard
(2010)) is the most common. In the ’open clusters birthplace analysis’ the pattern
speed of the spiral arms of the Galaxy is determined by direct observation of the
birthplaces of open clusters of stars in the Galactic disc as a function of their age.
Given the current locations, distances, proper motions and ages of these stars, they
integrate their orbits backwards in time according to their known ages, using a model
for the local circular speed in the disc. In Dias & Lépine (2005) they confirmed
that open clusters are born in spiral arms. As a result, the distribution of birthplaces
for some age bins is expected to be spiral-like, and by comparing the spiral patterns
obtained from different age bins, the angle of rotation of the pattern can be estimated
and therefore, the pattern speed of the spiral arms.

2) Another method to derive the spiral pattern speed of the Milky Way is based
on the interaction between the spiral arms and the stellar objects (Junqueira et al.
(2015)). In this method, a sample of OCs and red giant stars used and they make an
assumption that the initial energy and the angular momentum of the objects can be
approximated as the circular orbit at the mean radius.

3) Some older determinations for the angular velocity of the spiral pattern yield
from OB and Cepheid stars (see Fernández et al. (2001)).

Similar works in other galaxies also give evidence for different pattern speeds for
the bar and the spiral arms (e.g. Vera-Villamizar et al. (2001), Boonyasait et al.
(2005), Patsis et al. (2009), Meidt et al. (2009), Speights & Westpfahl (2012),
Speights & Rooke (2016)). In Speights & Rooke (2016) the galaxy NGC 1365 the
detection of two different pattern speeds for the bar and the spiral arms respectively,
is implemented through the radial profile of the pattern speed, which is obtained by
fitting mathematical models based on the Tremaine–Weinberg method (Tremaine &
Weinberg (1984)). In Patsis et al. (2009) the dynamics of the barred-spiral galaxy
NGC 3359 is studied, where the galactic gravitational potential is estimated through
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observations and orbital theory and response models are applied for the study of
the stellar motions. This study proves that the bar and the spiral arms rotate at a
different pattern speed.

Figure 1.14: The radial profile of the angular velocity for the galaxy NGC 1365 which reveals two different
pattern speeds in Speights & Rooke (2016)

.

As regards simulations, the leading paradigm over the years refers to simulations
showing the co-existence of multiple pattern speeds (Sellwood & Sparke (1988), Little
& Carlberg (1991), Rautiainen & Salo (1999), Quillen (2003), Minchev & Quillen
(2006), Dubinski et al. (2009), Quillen et al. (2011), Minchev et al. (2012), Baba et
al. (2013), Roca-Fabrega et al. (2013), Font et al. (2014), Baba (2015)). The first
indication for different pattern speeds in the galactic disc in an N- body of a barred
spiral galaxy was given by Sellwood and Sparke in 1988. The contour plots of the
power spectrum of m=2 modes of the Fourier transform yield two maxima which
correspond to two different pattern speeds (see Fig. 1.15). Someone would expect
the bar to be observed disconnected from the spiral arms, due to the difference of
their angular velocities. However, Sellwood and Sparke proved through the contours
of the surface density in the physical space, that most of the time of the simulation
the spiral arms emanate from the ends of the bar (see Fig. 1.16).
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Figure 1.15: The Contours of power spectrum of m=2 galactic modes as a function of frequency and radius in
Sellwood & Sparke (1988)

1.12.2 The manifold theory with multiple pattern speeds

The basic form of the manifold theory assumes a single pattern speed in the galactic
disc, which is considered to be the angular velocity of both the bar and the spiral
arms connected to it. This is in conflict with observations and N-body simulations,
as described in 1.12.1. The manifold theory has been extended in a recent work by
Efthymiopoulos et al. (2020) to cover the case of the spiral arms having a pattern
speed different than the one of the bar. In particular, it has been shown that the
spiral arms can be modelled by the manifolds of the so-called GL1 and GL2 families
of periodic orbits, which play, in the multiple pattern speed case, a role analogous to
the one of L1 and L2 equilibrium points of the single pattern speed case.

Since the unstable equilibria L1 and L2 are possible to define only when the po-
tential is static in a frame co-rotating with the bar, manifold spirals emanating from
L1 and L2 are necessarily also static in the same frame, hence, they should co-rotate
with the bar. As shown in Efthymiopoulos et al. (2020) the orbits GL1 and GL2

lead to invariant manifolds which can be regarded as the generalization of the man-
ifolds of the L1, L2 points in the single pattern speed case. As an example they
compute the generalized orbits GL1, GL2 and their manifolds in a Milky-way like
model with bar and spiral pattern speeds assumed different. They find that the man-
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Figure 1.16: The Contours of the fractional perturbation in the surface density at different times of the N-body
simulation in Sellwood & Sparke (1988)

ifolds are time-varying because of the time dependency in our system. The resulting
morphology consisting of segments of spirals or ‘pseudorings’. These structures are
repeated after a period equal to half the relative period of the imposed spirals with
respect to the bar. Along one period, the manifold-induced time-varying structures
are found to continuously support at least some parts of the imposed spirals, except at
short intervals around those times at which the relative phase of the imposed spirals
with respect to the bar becomes equal to ±π/2. A connection of these effects to the
phenomenon of recurrent spirals is discussed below in Chapter 3.

1.13 The secular evolution in galactic discs

Even isolated barred galaxies undergo substantial secular evolution (see Athanassoula
(2013), Binney (2013), Kormendy (2013) in the tutorial volume Falcon-Barroso and
Knapen (2013)) and this also a substantial effect on the dynamics of these galaxies.
Sellwood at Sellwood (1980) was the first to prove the exchange of angular momen-
tum between the disc and the dark halo, which causes the bar slow-down. Later,
Weinberg at Weinberg (1985) made an estimation for the bar deceleration rate. It is
well known that the tendency to transfer angular momentum outwards (e.g. towards
the halo or across the disc, Tremaine & Weinberg (1984), Debattista & Sellwood
(1988), Debattista & Sellwood (2000), Athanassoula (2002), Athanassoula & Misiri-
otis (2002), Athanassoula (2003), OŃeill & Dubinski (2003), Holley-Bockelmann
et al. (2005), Berentzen et al. (2006), Martinez-Valpuesta et al. (2006)) leads the
bars to slow down in time and grow in size at a rate which produces non-negligible
change in dynamics at timescales comparable even to a few bar periods. The bars
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experience a drag due to the dynamical friction with the dark halo and this leads to
the bar slow down and the gradual overlapping of the corotation and of the other
resonances in further distances from the galactic center. As a result, the pattern speed
of the bar is evolving along with the disc, due to the exchange of angular momentum
among the different parts of the disc (Athanassoula (2003)).

This process becomes complex, and even partially reversed due to the growth of
‘pseudo-bulges’ or ‘peanuts’ (Kormendy & Kennicutt (2004)), caused by dynamical
instabilities such as chaos or the ‘buckling instability’ Combes & Sanders (1981),
Combes et al. (1990), Pfenniger & Friedli (1991), Raha et al. (1991), Bureau &
Athanassoula (1999), Martinez-Valpuesta & Shlosman (2004), Bureau & Athanas-
soula (2005), Debattista et al. (2006)). The reduction in size of the bar by transfer
of angular momentum under constant pattern speed is discussed in Weinberg & Katz
(2007). Spiral activity acts as an additional factor of outwards transfer of angular mo-
mentum (Lynden-Bell & Kalnajs (1972)), while a radial re-distribution of matter can
take place even under a nearly-preserved distribution of angular momentum (Hohl
(1971), Sellwood & Binney (2002), Avila-Reese et al. (2005)). Radial migration is
enhanced by the amplification of chaos due to the overlapping of resonances among
the various patterns (Quillen (2003), Minchev & Quillen (2006), Quillen et al.
(2011)).

The secular evolution of barred spiral galaxies should be taken into account in
every study that attempts to investigates the dynamics of these systems. The mor-
phology of the bar and the pattern speed change gradually with time and also other
non-axisymmetric structures may be affected by the secular evolution. The manifold
theory explains the intricate dynamics of barred spiral galaxies and there is an open
problem if the manifold spirals also follow the secular ecolution of the disc. The
morphology of the invariant manifolds found by momentarily ’freezing’ the potential
and pattern speed value are exected to undergo important changes in time so as to
support the evolving structures of the disc. An implementation of this problem was
made in an N-body simulation by Lia Athanassoula and it was shown that, despite
these changes, the stars out-flowing from the neighborhood of the Lagrangian points
L1 and L2 develop orbits which, in general keep track of the change of the form of the
invariant manifolds (Athanassoula (2012), see also Baba (2015), Lokas (2016)). As
a rule, the material which populates the manifolds comes from orbital outflows orig-
inating from the interior of co-rotation, at the end of the bar (Contopoulos (1980)).
As these outflows are adapted to the slowly-changing form of the manifolds, they are
able to yield time-varying spiral or ring-like patterns. However, since the potential of
the N-body simulations is constantly evolving with time, the manifold theory should
develop and get adjusted to the secular evolution of the disc.

1.14 The object and structure of the thesis

In the present thesis we study the spiral structure of the galaxies, a still open astro-
nomical problem. Some open subjects regarging the spiral arms of the galaxies are
their morphology, nature, i.e., the mechanism that generates them, as well as their
longevity and evolution. The spiral structure is supported by mechanisms arising
from the intricate dynamics of the galactic systems. In the present thesis, we examine
two models of spiral galaxies, where the spiral structure is generated by two differ-
ent mehanisms. We apply the theories of the spiral structure and test whether they
reproduce the spirals in any of the two cases. In particular, we conduct a dynamical
study in following cases of galactic models:

(a) In a Milky Way‐like theoretical potential model. We examine how the
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spiral density waves are reproduced by organised orbits, which are called ”precessing
ellipses” in any normal galaxy and in a Milky Way-like model.

(b) In a self‐consistent N‐body model of barred spiral galaxy, where the spirals
are chaotic. One main question is how coherent spiral structures can emerge from
chaotic orbits. The manifold theory attempts to answer this problem. We reproduce
the manifold spirals for the N-body simulation and we examine whether the manifold
spirals are consistent with the assumption of multiple pattern speed.

Subsequently, we are going to present in detail the structure and the objectives of
every Chapter which constructs the thesis:

In Chapter 2 we study spirals generated by the ”precessing ellipses” mechanism,
which evolves the x1 closed orbits. These orbits are elongated ellipses that gradually
change orientation and enhance the spiral. We first present an algorithm, based on
the resonant pertubation theory, which gives analytical solutions of the periodic orbits
of the system, as well as the x1 closed orbits. In particular, we proceed consecutive
transformations in the Hamiltonian in order to end up to a resonant normal form
which reveals the two fundamental frequencies and their relation. This work was
first introduced in Contopoulos (1970), Contopoulos (1975) (see also the review
Efthymiopoulos (2010)). This algorithm can be applied in every toy model of a nor-
mal spiral galaxy and help us make an effective study of its geometric and dynamical
parametrese.

We apply this algorithm in a Milky Way-like potential model (Pettitt et al.
(2014)). We compare the analytical x1 orbits with the ones produced by numerical
methods. The construction of the phase space is going to reveal in which areas of
the galactic disc, determined by the resonances, the precessing ellipses support the
spiral density wave. In this case, we are going to study the range of free parametres
(the pattern speed of the spiral arms, the amplitude of the spiral pertubation and the
pitch angle) and how they collaborate in order to generate realistic density waves. In
the extreme condition of these parameters, the ”precessing ellipses” become largely
distorted, chaos is introduced in the system, and the orbits can no longer support the
spiral arms.

In Chapter 3 we examine the application of the manifold theory in a self- con-
sistent N-body simulation of a barred spiral galaxy (Kyziropoulos et al. (2016)).
Whenever a bar is formed in a simulation, one finds manifold-driven spirals, as well
as traces of secular evolution. The manifold theory of the spiral structure relies
on a few simplifications, the most important of which is that the potential is time-
independent in the frame of reference corotating with the bar. On the other hand, in
simulations and in real galaxies the potential evolves with time, due to redistribution
of angular momentum via the resonances. In this chapter, we are going to study the
time evolution of the manifold spirals along with the secular ecolution of the disc
and the vividly evolving morphologies of the N-body we observe. Through this time
evolution we investigate in which extend the N-body spiral arms, as well as other
non-axisymmetric features, are supported by the manifolds.

We are going to present the reproduction of the apocentric manifolds WUA
PL1,2

both in the phase space and the configuration space and detect some recognisable
manifolds’ morphological features (’bridges’ and ’gaps’). We compare the evolving
disc morphologies with the manifolds at various times and identify the role of the
invariant manifolds as a skeleton of chaotic orbits in phase space, or, the dynamical
avenues to be followed by particles whenever an incident of spiral or other non-
axisymmetric activity is triggered in the disc. We will also correlate the agreement of
the manifolds with the incidents of the spiral activities in the disc.

In Chapter 4 we compute the manifold spirals under the multiple pattern speeds
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assumption. The manifold theory in its basic form made the assumption that the
whole disc corotates with the bar in a single pattern speed. This assumption is in
conflict with observations of real galaxies and N-body simulations (see subsection
1.12.1). In Chapter 3 the manifolds are computed with the simplified assumption of
a unique pattern speed in the galactic disc. However, we discover the limitations of
that assumption as, by a rough estimate of the angular speed of the maxima of m=2
mode, we observe the presence of a second pattern speed beyond the bar.

In this chapter, we revisit the N-body simulation of Chapter 3 and we propose
an accurate method to identify the different pattern speeds in the simulation’s disc
and estimate their values, based on the algorithm of Numerical Analysis of the Fun-
damental Frequencies (NAFF, Laskar (1990), Laskar et al. (1992), Laskar (1993),
Laskar (2003), Fu & Laskar (2019)). This is particularly convenient in cases where
the pattern speeds slowly change in time due to secular evolution in the disc, and/or,
the different modes spatially overlap in the disc. Once we get the frequences, we
compute the approximate gravitational potential, and produce the manifold spirals,
applying the theory of Efthymiopoulos et al. (2020). In the case of multiple pat-
tern speeds the potential becomes time-dependent, thus the Lagrangian equilibrium
point L1,2 generalise to periodic equilibrium orbits GL1,2 and the manifolds are time-
evolving. Finally, we examine whether the observed structures formed by the spiral
arms in the simulation (change of form, formation of ‘bridges’, etc.) can be modelled
by manifolds, consistent with the fact that the bar and spirals have different pattern
speeds.

V) Finally, Chapter 5 summarises the main conclusions of this research work,
which is incorporated in the Chapters 2- 4 and discusses some aspects of future work
in all these subjects that we are going to present.
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Chapter 2

Precessing ellipses as the building
blocks of the spiral arms

Parts of the results of the present chapter were published as:
Harsoula M., Zouloumi K., Efthymiopoulos C., and Contopoulos G., 2021, A& A, 655,
A55.

Τhe main families of periodic orbits, located in the case of normal spiral galaxies,
were first calculated analytically by Contopoulos (Contopoulos (1970), Contopoulos
(1975)). These orbits are called ’x1’, ’x2’ which are stable periodic orbits, and ’x3’
which is unstable. The stable periodic orbits ’x1’ are elongated ’precessing ellipses’
in the physical space which gradually change their orientation and their apocenters
support the spiral density wave. In this Chapter we are going to present a procedure
for the calculation of the families of periodic orbits. In particular we show that the
application of the resonant pertubation theory near the Inner Lindbland resonance
in a simple model of a normal galaxy can give us the three families of periodic orbits
’x1’, ’x2’ and ’x3’. We develop an algorithm that allows the analytical prediction of
the periodic orbits in any toy model of a normal spiral galaxy. For this purpose, we
test the algorithm in an analytical Milky Way-like potential model and we compute
the orbits x1. We compare the analytical orbits to the ones produced by numerical
methods. We also study the range in parameter space for which the amplitude of the
spiral perturbation, the pattern speed and the pitch angle collaborate so as to lead
to the creation of realistic density waves supported by ”precessing ellipses” and their
surrounding matter in ordered motion.

2.1 The resonant pertubation theory for the location of the
periodic orbits in a normal spiral galaxy

2.1.1 Hamiltonian Expansion

The Hamiltonian of the orbits for an axisymmetric galactic potential in the inertial
system of reference is

H0(r) =
Pr

2

2
+
Pφ

2

2r2
+ V0(r) . (2.1)

The term V0(r) corresponds to the axisymmetric potential of a normal galaxy. This
term can incorporate the potential of a buldge, of a disc and a dark halo.

In Section 1.4 we studied the behaviour of the orbits in the case of an axisymmetric
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potential and presented the main frequencies. Two fundamental frequencies of the
stellar orbits are located, the epicyclic frequency κ(r) and the angular frequency Ω(r).
The stellar motions can be seen as elliptic orbits peforming a revolution with frequency
Ω(r) and travelling from an apocentric to a pericentric distance with an oscillating
frequency κ.

We also presented the circular orbit in the axisymmetric problem which is located
at the minimum of the effective potential and for the minimum of the effective po-
tential. As described in Section 1.4 the condition of the minimum of the effective
potential leads to the relation:

Pφ
2 = rc

3dV0(rc)

drc
. (2.2)

These frequencies are given as a function of V0(r) (see the proof in Section 1.4).
The angular velocity of the circular orbit is:

Ω(rc) =

√
1

rc

dV0(rc)

drc
(2.3)

and the epicyclic frequency takes an oscillating form:

κ(rc) =

√
d2Veff(rc)

drc2
=

3Pφ
2

rc4
+
d2V0(rc)

dr2c
(2.4)

The spiral potential Vsp(r, φ) is a non-axisymmetric term which is expected to take
the form:

Vsp(r, φ) = −Asp(r) cos(2φ− ϕ2(r)) (2.5)

where Asp(r) is the amplitude of the spiral pertubation and the term ϕ2(r) is related
to the geometric characteristics of the spiral arms (e.g. the pitch angle or the length
of the spiral arms). The Hamiltonian with the import of the spiral potential Vsp(r, φ)
yields:

H(r, φ) =
Pr

2

2
+
Pφ

2

r2
+ V0(r) + Vsp(r, φ) . (2.6)

Conseqently, the Hamiltonian is written in the form:

H(r, φ) = H0(r) + Vsp(r, φ) = H0(r) +H1(r, φ) . (2.7)

By the form of the Hamiltonian in 2.7 we observe that the system is described by
two parts of the Hamiltonian: by a term H0(r), which is the Hamiltonian of the
unperturbed system and a term H1(r, φ) which is the pertubation of the system. As
a result, the spiral potential plays the role of a pertubation in the galactic system.

The orbits in this case are considered to be a continuation from the circular orbit
of the axisymmetric problem in the 2/1 resonant domain. The relation of the two
fundamental frequencies define the resonances of the orbits which are presented in
Section 1.5 (see Eq. (1.39) in Section 1.5). The 2/1 resonance is given by the relation:

2

1
=

κ

(Ω− ΩP )
. (2.8)

In order to locate these orbits we expand the Hamiltonian around the circular orbit
with coordinates (rc, Pc). Pc is the angular momentum Pφ(rc) of the circular orbit
and from Eq. (1.26) of Section 1.4 it is given by the relation:

Pc = Ωc
2rc . (2.9)
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We also symbolise for simplicity Ωc = Ω(rc) and κc = κ(rc) We proceed Taylor-
expanding up to 4th degree in r − rc in H0, where the coordinates are:

r = rc + εdr

Pφ = Pc + ε2Jφ (2.10)
Pr = Prε .

The Hamiltonian takes the form:

H0 =
Pr

2

2
+
Pc

2

2rc2

n=4∑
n=0

(−1)n
(n+ 1)drn

rcn
+
Jφ

2

2rc2
+
JφPc

rc2
− 2drJφPc

rc3

+
3dr2JφPc

rc4
+

n=4∑
n=0

V
(n)
0 (rc)dr

n

n!
. (2.11)

In the expanding form of Hamiltonian we locate the 1st and the 2nd derivative of
the axisymmetric potential, which can be written as a function of the fundamental
frequencies. The 2nd derivative of the axisymmetric potential V0′′(rc) is given as a
function of the epicyclic frequency κc:

V 0′′(rc) = kc
2 − 3Pc

2

rc4
. (2.12)

Using the condition of the minimum of the effective potential 2.2 the 1st derivative
V ′
0(rc) is given as a function of the angular momentum of the circular orbit Pc:

V0
′(rc) =

Pc
2

rc3
. (2.13)

The Hamiltonian H0 from Eq. (2.11) using Eqs. (2.12),(2.13) becomes:

H0 =
Pr

2

2
+
Pc

2

2rc2
+
Jφ

2

2rc2
+
JφPc

rc2
− 2drJφPc

rc3
+

3dr2JφPc

rc4
+ V0(r)+

Pc
2

2rc2

n=4∑
n=3

(−1)n
(n+ 1)drn

rcn
+

n=4∑
n=3

V
(n)
0 (rc)dr

n

n!
. (2.14)

We also implement the same Taylor-expanding in the spiral potential Vsp:

H1(r, φ) =− drA′(rc) cos(2φ− ϕ2(rc))−A(rc)(drϕ2
′(rc) sin(φ2 − ϕ2(rc))+

cos(φ2 − ϕ2(rc))) . (2.15)

2.1.2 The Hamiltonian in action angle variables

Writing the Hamiltonian H0 in action angle variables helps us define the local motions
around the circular orbit rc and reveals the fundamental frequencies of the orbits.

In order to interpret the purpose of this transformation we first consider the case
of a simple harmonic oscillator. In particular if we consider an harmonic oscillator of
mass m and energy E, which oscillates with frequency ω and its motion is described
by a Hamiltonian:

Hosc((q, p)) =
p2

2m
+
mω2q2

2
. (2.16)

This simple model of periodic motion is a common paradigm in Classical Μechanics
for the definition of the action angle variables. In this model it is proved that the old
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Hamiltonian Hosc((q, p)) is going to be expressed through a canonical set of coordi-
nates (I, ϑ), where ϑ is the angle and I its conjugate action, given by the relations:

q =

√
2I

mω
sin(ϑ)

p =
√
2Imω cos(ϑ) (2.17)

and the new Hamiltonian ends up to the form:

H′
osc(I, ϑ) = Iω . (2.18)

If a pair (I, ϑ) is an action angle variable, we expect the Hamiltonian to be periodic
in angle (ϑ) with one of the fundamental frequencies of the system. In Hamiltonian
H0 from Eq. (2.14) the pair (φ, Pφ) is already an action-angle variable pair with
frequency Ωc. We expect an action angle (φr ,Jr) variable pair to coexist in the system
in order to describe the epicyclic motions with frequency κc. These new coordinates
(φr ,Jr) are related to the old ones (dr = r− rc, Pr) and take a form analogous to the
ones in Eq. (2.17) of a simple harmonic oscillator:

dr = r − rc =

√
2Jr
kc
sin(φr)

Pr =
√
2Jrkc cos(φr) . (2.19)

The variable dr in Hamiltonian describes the deviation from the circular orbit. We
write the old variables (dr = r−rc, Pr) as a function of (ϑr ,Jr) through the Eq. (2.19)
and we substitute Pc from the relation Pc = Ωcrc

2. The Hamiltonian H0 from Eq
(2.14), in the rotating frame of reference with the pattern speed of the spiral arms
Ωsp, takes the form:

H0(φ, Jφ, φr, Jr) = Jrkc + Jφ(Ωc − Ωsp) +
Jφ

2

2rc2
+

Ωc
2rc2

2
+

15Jr
2Ωc

2

4kc
2rc2

+
3JrJφΩc

kcrc2

JrΩc cos(2φr)(5JrΩc − 3Jφkc)

kc
2rc2

+
5Jr

2Ωc
2 cos(4φr)

4kc
2rc2

− (2.20)
√
2
√
JrΩc sin(φr)(3JrΩc + 2Jφkc)

kc
3/2rc

+

√
2Jr

3/2Ωc
2 sin(3φr)

kc
3/2rc

+ V0(rc) +O(V0
(n)(rc)) .

We also implement the same transformation in the Hamiltonian term H1(r, φ) from
Eq. (2.15) and it ends up to the form:

H1(φ, Jφ, φr, Jr) =

√
JrA

′(rc) sin[(2φ− φr)− φ2(rc)]√
2
√
kc

−
√
JrA

′(rc) sin[(2φ+ φr)− φ2(rc)]√
2
√
kc

−
√
JrA(rc)phir

′(rc) cos[(2φ− φr)− φ2(rc)]√
2
√
kc

+

√
JrA(rc)phir

′(rc) cos[(2φ+ φr)− φ2(rc)]√
2
√
kc

−A(rc) cos(2φ− φ2(rc)) . (2.21)

2.1.3 First Normalization of the Hamiltonian

We are going to implement consecutive transformations in the HamiltonianH(φ, Jφ, φr, Jr)
(Eq. (2.20)) in order to eliminate unwanted terms. For this purpose we apply
through the Lie method a canonical transformation in the Hamiltonian and we im-
plement the following steps:

1) The Hamiltonian has the terms H0(φ, Jφ, φr, Jr) and H1(φ, Jφ, φr, Jr) from
Eqs(2.21):

H(φ, Jφ, φr, Jr) = H0(φ, Jφ, φr, Jr) +H1(φ, Jφ, φr, Jr) . (2.22)
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We expand the Hamiltonian (2.22) considering that:

Jr ∝ ε2Jr

Jφ ∝ ε2Jφ . (2.23)

The final Hamiltonian is :

H(0)(φ, Jφ, φr, Jr) = Jrkc + Jφ(Ωc − Ωsp) + ε1h1 + ε2h2 ++O(εn) (2.24)

where h1 are the linear terms of the Hamiltonian:

h1 = −A(rc) sin(2φ) sin(φ2(rc))−A(rc) cos(2φ) cos(φ2(rc)) +

√
2Jr

3/2 sin(3φr)Ωc

kc
3/2rc

−
√
2
√
Jr sin(φr)Ωc (3JrΩc + 2Jφkc)

kc
3/2rc2

+O(εV0
(n)) (2.25)

and h2 are the terms of 2nd order of the Hamiltonian:

h2 =
P (Jr, Jφ,Ωc, kc)

4kc
4rc2

− JrΩc cos(2φr)(5JrΩc + 3Jφkc)

kc
2rc2

+
5Jr

2Ωc
2 cos(4φr)

4kc
2rc2

+

√
2
√
Jr sin

(
∆φ−−∆φ+

2

)
√
kc

[A′(rc) cos
(
1

2
(∆φ− +∆φ+ − 2φ2(rc))

)
+ (2.26)

A(rc)φ2
′(rc) sin

(
1

2
(∆φ− +∆φ+ − 2φ2(rc))

)
] +O(ε2V0

(n))

where

∆φ+ = 2φ+ φr

∆φ− = 2φ− φr (2.27)

and P (Jr, Jφ,Ωc, kc) a polynomial of 4th degree in (Jr, Jφ,Ωc, kc):

P (Jr, Jφ,Ωc, kc) =
∑

|k|+|l|+|m|+|n|=s, s≤4

ak,l,m,nJr
k, Jφ

l,Ωc
m, kc

n . (2.28)

and ak,l,m,n are numerical coefficients of the polynomial terms.
2) Our aim is to eliminate the linear terms(∝ ε1) and we apply a canonical trans-

formation through Lie Transformation Method (see more details in Efthymiopoulos
(2012)). This method helps us simplify the Hamiltonian through a canonical trans-
formation. We rewrite the Hamiltonian in the form:

H(0)(φ, Jφ, φr, Jr) = Hr(φ, Jφ, φr, Jr) + hkill(φ, Jφ, φr, Jr) (2.29)

where Hr(φ, Jφ, φr, Jr) are the terms of the Hamiltonian that we wish to keep and
hkill are the terms that we want to eliminate, thus the linear terms of the Hamiltonian:

hkill = h1 . (2.30)

3) An essential step of the method is to calculate the generating fuction χ1 which
sattisfies the homological equation:{

H(0), χ1

}
+ hkill = 0 . (2.31)
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One practical way to calculate the generating fuction of χ1 through the homological
equation is the following:

In general if the unwanted terms of the Hamiltonian are written in the form:

hkill =
∑
i,j

A(i, j) cos(aiϑj ± biϑj) +B(i, j) sin(aiϑj ± biϑj) (2.32)

where ϑi,j are the appearing angles and ωi,j its respective frequencies, then the gen-
erating fuction χ1 that is given by the homological equation Eq. (2.31) takes the
form:

χ1 =
∑
i,j

A(i, j)
sin(aiϑj ± biϑj)

(aiωj ± biωj)
+B(i, j)

(
−cos(aiϑj ± biϑj)

(aiωj ± biωj)

)
. (2.33)

Consequently, the generating function χ1 in our case is calculated through the
following substitutions in hkill = h1 in Eq. (2.25): sin(φr) → cos(φr)

κc
, sin(3φr) →

− cos(3φr)
3κc

, cos(2φ) → sin(2φ)
2(Ωc−Ωsp)

, sin(2φ) → − cos(2φ)
2(Ωc−Ωsp)

and it takes the form:

χ1 =
A(rc) cos(2φ) sin(φ2(rc))

2(Ωc − Ωsp)
− A(rc) sin(2φ) cos(φ2(rc))

2(Ωc − Ωsp)
−

√
2Jr

3/2 cos(3φr)Ωc
2

3kc
5/2rc

+

√
2
√
Jr cos(φr)Ωc (3JrΩc + 2Jφkc)

kc
5/2rc

+O(εV0
(n)) . (2.34)

4) According to the Lie method of transformation the Hamiltonian is written in
the form:

H(1)(φ, Jφ, φr, Jr) = H(0) +
{
H(0), χ1

}
+

1

2

{{
H(0), χ1

}
, χ1

}
(2.35)

where {...} are the Poisson brackets.
Using the Eq. (2.35) the Hamiltonian takes its final form:

H(1)(φ, Jφ, φr, Jr) = h0
′(φ, Jφ, φr, Jr) + ε2h2

′(φ, Jφ, φr, Jr) +O(εn) (2.36)

where the first order terms have been eliminated.
The Hamiltonian term h0

′(φ, Jφ, φr, Jr) in Eq. (2.36) are the constant terms:

h0
′(φ, Jφ, φr, Jr) = Jrkc + Jφ(Ωc − Ωsp) (2.37)

which are related to the fundamental frequencies of the system.
The 2nd order terms in the Hamiltonian (2.36) are:

h2
′(φ, Jφ, φr, Jr) =

P0(Jr, Jφ,Ωc, kc)

4kc
4rc2

+
P1(Jr, Jφ,Ωc, kc) cos(2φr)

kc
4rc2

+

P2(Jr, Jφ,Ωc, kc) cos(4φr)

4kc
4rc2

+

√
Jr√

2k
3/2
c (Ωc − ωsp)rc

[f1c(φ2(rc)) cos(∆φ−)+

f1s(φ2(rc)) sin(∆φ−) + (f2c(φ2(rc)) cos(∆φ+) + f2s(φ2(rc)) sin(∆φ+)] (2.38)

where Pi(Jr, Jφ,Ωc, kc) are polynomials of 6th degree in (Jr, Jφ,Ωc, kc):

Pi(Jr, Jφ,Ωc, kc) =
∑

|k|+|l|+|m|+|n|=s, s≤6

ak,l,m,nJr
k, Jφ

l,Ωc
m, kc

n . (2.39)

and the fic(φ2(rc)) and fis(φ2(rc)) (i=1,2) are trigonometric fuctions of φ2(rc) of the
form:

fi(c,s) = g1i(c,s) cos(φ2(rc)) + g2i(c,s) sin(φ2(rc)) (2.40)
where the functions g1,2i(c,s) are polynomial coefficients:

g1,2i(c,s) = g(A(rc), A
′(rc), φ2

′(rc),Ωc, κc, (Ωc − ωsp), rc) . (2.41)
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2.1.4 The Hamiltonian in resonant normal form

The variable ∆φ− = 2φ − φr appearing in Hamiltonian H(1)(φ, Jφ, φr, Jr) (see Eq.
(2.38)) is the relation of the two angles and describes the phase difference between its
two different corresponding frequencies Ωc and κc. Thus, the ∆φ− reveals the relation
between the two fundamental frequencies Ωc and κc and it is a resonant variable in
the Hamiltonian. Our purpose is to express the Hamiltonian in resonant variables:

− ψ = 2φ− φr

JF = Jφ + 2Jr (2.42)

where the index F in JF stands for ’fast’.
For this purpose we implement a second Lie transformation in the Hamiltonian

H(1)(φ, Jφ, φr, Jr) (Eq. (2.36)) in order to write the Hamiltonian in a normal form
where it has only the Hamiltonian h0′(φ, Jφ, φr, Jr) (Eq. (2.37)), the constant terms
and the terms that are trigonometric functions of ∆φ− = −ψ in h2′(φ, Jφ, φr, Jr) (Eq.
(2.38)). The purpose of the canonical trasformation of the Hamiltonian is to make
an alteration to the coordinates of the Hamiltonian as follows:

(φr, Jr, φ, Jφ) → (ψ, Jr, φ, JF ) (2.43)

where the pairs (ψ, Jr), (φ, JF ) are canonical.
We folllow a similar procedure we described in section 2.1.3:
1) We first collect the unwanted terms in Hamiltonian H(1)(φ, Jφ, φr, Jr). The

terms we intend to eliminate are located in the 2nd order part h2′(φ, Jφ, φr, Jr) of the
Hamiltonian. The unwanted terms in Eq. (2.38) are those we incorporate trigono-
metric functions other than cos(∆φ−) and sin(∆φ−). Thus, the unwanted part of the
Hamiltonian is:

hkill2 =
P1(Jr, Jφ,Ωc, kc) cos(2φr)

kc
4rc2

+
P2(Jr, Jφ,Ωc, kc) cos(4φr)

4kc
4rc2

+

√
Jr√

2k
3/2
c (Ωc − ωsp)rc

[(f2c(φ2(rc)) cos(∆φ+) + f2s(φ2(rc)) sin(∆φ+)] (2.44)

where the polynomials P1,2(Jr, Jφ,Ωc, kc)(φr), f2c,s(φ2(rc)) are described in Eqs. (2.39)-
(2.41).

We set The Hamiltonian H(1)(φ, Jφ, φr, Jr) as

H(1)(φ, Jφ, φr, Jr) = H(0)′(φ, Jφ, φr, Jr) (2.45)

and we write it in the form:

H(0)′(φ, Jφ, φr, Jr) = Hr2(φ, Jφ, φr, Jr) + hkill2 (2.46)

where Hr2(φ, Jφ, φr, Jr) are the rest terms of the Hamiltonian that we wish to keep
in the final normal form of the Hamiltonian.

2) We build the generating function χ2 which sattisfies the homological equation:{
H(0)′, χ2

}
+ hkill2 = 0 . (2.47)

We apply similar rules in order to calculate the generating function from the form
of hkill2 as described in step 3) of the Section 2.1.3 by the rule (2.32)-(2.33) and the
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generating fuction χ2 is:

χ2 =
P1(Jr, Jφ,Ωc, kc) sin(2φr)

2kc
5rc2

+
P2(Jr, Jφ,Ωc, kc) sin(4φr)

16kc
5rc2

+

√
Jr√

2k
3/2
c (Ωc − ωsp)rc

[
(f2c(φ2(rc))

sin(2φ+ φr)

2(Ωc − Ωsp) + κc
− f2s(φ2(rc))

cos(2φ+ φr)

2(Ωc − Ωsp) + κc

]
.

(2.48)

3) The Lie trasformation will give us the final form of the Hamiltonian H(1)′ :

H(1)′ = H(0)′ +
{
H(0)′, χ2

}
+

1

2

{{
H(0)′, χ2

}
, χ2

}
. (2.49)

Using the equation Eq. (2.42) the resonant Hamilonian is:

H(1)′ = Hres(ψ, Jr, φ, JF ) (2.50)

In particular the resonant Hamiltonian is:

Hres(ψ, Jr, φ, JF ) = (κc − (Ωc − ωsp))Jr + (Ωc − Ωsp)JF + (2c0 − 6c1 −
17

4
c2 + 24c3−

15c4)Jr
2 + (−2c0 + 3c1 + 8c2 − 12c3)JFJr + (

1

2
c0 − 2c2)JF

2 +

√
Jr√
2kc

Dc(A(rc), φ2(rc))

cos(ψ) +
√
Jr√
2kc

Ds(A(rc), φ2(rc)) sin(ψ) +O(V (n)) (2.51)

where cn are terms that appear in the Hamiltonian and are:

cn =
1

rc2
Ωc

n

κcn
(2.52)

and dc,s(φ2(rc)) are trigonometric functions of the form:

Dc(A(rc), φ2(rc)) =−
(
2ΩcA(rc)

κcrc
+

ΩcA(rc)

(Ωc − ωsp))rc
+A(rc)

′
)
sin(φ2(rc))−

A(rc)φ2(rc)
′ cos(φ2(rc))

Ds(A(rc), φ2(rc)) =−
(
2ΩcA(rc)

κcrc
+

ΩcA(rc)

(Ωc − ωsp))rc
+A(rc)

′
)
cos(φ2(rc))+ (2.53)

A(rc)φ2(rc)
′ sin(φ2(rc)) .

2.1.5 Location of the periodic orbits

The periodic orbits are expected to be given by the roots of the following equations:

Hres = 0

ψ̇ =
∂Hres

∂Jr
= 0 (2.54)

J̇r = −∂Hres

∂ψ
= 0 .

The location of the periodic orbits in the (ψ, Jr) space is a difficult task. Therefore,
we make a 3rd canonical transformation in the Hamiltonian in new variables (ξ, pξ)
which are given by the relation:

ξ =
√
2Jr sin(ψ)

pξ =
√
2Jr cos(ψ) . (2.55)
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Thus, we substitute sin(ψ) → ξ√
2Jr

and cos(ψ) → pξ√
2Jr

and Jr → ξ2+pξ
2

2 in the form
of Hres in Eq. (2.51) and the Hamiltonian becomes:

Hres(ξ, pξ) = (κc − (Ωc − Ωsp))
ξ2 + pξ

2

2
+ (Ωc − Ωsp)JF+

(2c0 − 6c1 −
17

4
c2 + 24c3 − 15c4)

(ξ2 + pξ
2)2

4
+ (−2c0 + 3c1 + 8c2 − 12c3)JF

ξ2 + pξ
2

2

+ (
1

2
c0 − 2c2)JF

2 +
1

2
√
kc
Dc(A(rc), φ2(rc))pξ +

1

2
√
kc
Ds(A(rc), φ2(rc))ξ +O(V (n))

(2.56)

where the terms cn, Dc,s(A(rc), φ2(rc)) are given by the Eqs.(2.52)-(2.53). The Hamil-
tonian Hres(ξ, pξ) has terms of JF , but it does not have a corresponding angle for JF .
Therefore, JF plays the role of constant in the Hamilton equations. The root of the
following equations can now give us the periodic orbits:

ξ̇ =
∂Hres

∂pξ
= 0

ṗξ = −∂Hres

∂ξ
= 0 . (2.57)

The above calculations can be applied in any toy potential model of normal spi-
ral galaxy. The Hamiltonian Hres(ξ, pξ), κc (Eq. (2.56)), the Hamilton equations
(2.57), Ωc are functions of the axisymmetric part of the potential V0(rc) given by Eqs.
(2.4).(2.3). If the potential of the galaxy is given then κc, Ωc are known quantities.

The other parameters that appear in Eqs. (2.56)- (2.57) are related to the spiral
potential Vsp(rc) of the model. These parameters are:

1) Ωsp the pattern speed of the spiral arms
2) A(r) the amplitude of the spiral potential
3) φ2(rc) which is related to other parameters and geometric features of spirala

arms e.g. the pitch angle of the spiral arms
Having the ability to make analytical calculations of the periodic orbits enable us

to conduct a more effective parametric investigation in our model. We are going to
present this study in the following section.

If we insert the above known quantities for a: κc, Ωc,A(r),φ2(rc) in Eqs. (2.56)-
(2.57). The Hamiltonian equations (2.57) for every chosen value of rc are a 3rd
degree polynomial equation of the form:∑

i+j≤3

aiξ
ipξ

j = 0 . (2.58)

This polynomial equations give one or three solutions depending on the value rc. The
three solutions correspond to three different families of periodic orbits: two families of
stable periodic orbits x1 and one family of unstable periodic orbits x3. For different
values of rc we can make the phase portraits in (ξ, pξ) space and the families of
periodic orbits are revealed in each case. This work is going to be presented in detail
in the next sections.

The resonances determine the areas of rc where every family of periodic orbits
appear. In particular for the solutions we identify:

(a) The stable family of periodic orbits x1 is located in the region of rc inside the
first ILR and also between the first and the second ILR, up to the 4:1 resonance. In
the regions inside the first ILR and between the second ILR and the 4:1 resonance the
Eq. (2.57) give only one solution because there exists only the x1 family. The family
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x1 are precesssing ellipses in the cartesian space and support the spiral density wave.
In the region outside the 4:1 resonance there still exists the x1 family, but it can no
longer support the spiral density wave.

(b) The stable family of periodic orbits x2 and the unstable family x3 are located
for values of rc in the region between the first and the second ILR. There coexist the
three families of periodic orbits and Eq. (2.57) give three solutions.

2.1.6 The periodic orbits in the cartesian spase

The final step of our method is to present the solution x1 in the physical space and
examine whether it gives an elliptical orbit for a certain value of rc. For different
values of rc we expect to see precessing ellipses in the cartesian space (X,Y ) which
support the spiral density wave. The equations (2.57) correspond to the Hamil-
tonian Hres(ξ, pξ) in Eq. (2.56) and give solutions in (ξ, pξ). We should a make
a transformation in the coordinates (ξ, pξ) of the solution. This transformation is:
(ξ, pξ) → (r, φ) → (X,Y ) where:

X = r cos(φ)
Y = r sin(φ) . (2.59)

We can have a relation for radius r from the equation of dr in Eq. (2.19). Thus
the variable r is:

r = rc +

√
2Jr
kc
sin(φr) . (2.60)

Considering that the angle φr is: φr = ψ + 2φ, the Eq. (2.60) becomes:

r = rc +

√
2Jr
kc
sin(ψ) cos(2φ) +

√
2Jr
kc
cos(ψ) sin(2φ) . (2.61)

The trigonometric terms sin(ψ), cos(ψ) can be written by the Eq. (2.55) as a function
of ξ, pξ:

sin(ψ) = ξ√
2Jr

, cos(ψ) =
pξ√
2Jr

. (2.62)

The Eq. (2.61) using the Eq. (2.62) becomes:

r = rc +
ξ√
kc
cos(2φ) +

pξ√
kc
sin(2φ) . (2.63)

Thus the cartesian coordinates (X,Y ) of the periodic orbits can be given from
(ξ, pξ) through the relations:

X =

(
rc +

ξ√
kc
cos(2φ) +

pξ√
kc

)
cos(φ)

Y =

(
rc +

ξ√
kc
cos(2φ) +

pξ√
kc

)
sin(φ) . (2.64)

The above relations enable us to draw in the cartesian space (X,Y) the periodic orbit
x1 which is the solution of Eq. (2.56).
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2.2 Precessing ellipses in a Milky Way‐like model

2.2.1 An analytical Milky Way‐like model

We consider a Milky Way theoretical potential model of a spiral galaxy, whose com-
ponents are presented also on the works of Pettitt et al. (2014) and Efthymiopoulos
(2010). This model is consisted of a combination of an axisymmetric and a spiral
potential:

V = Vax + Vsp. (2.65)

The axisymmetric potential Vax is composed by a disc, a bulge and a halo:

Vax = Vd + Vb + Vh. (2.66)

For the disc potential Vd we use a Miyamoto-Nagai model (Miyamoto & Nagai (1975))
given by the relation :

Vd =
−GMd√

r2 + (ad +
√
z2 + b2d)

2

(2.67)

where Md = 8.56× 1010 M⊙ is the total mass of the disc, ad = 5.3 kpc and bd = 0.25
kpc. In order to have a 2-D disc model we take z = 0 and r =

√
x2 + y2. For the

bulge we use a Plummer potential Vb given by the relation:

Vb =
−GMb√
r2 + b2

(2.68)

where Mb = 5 × 1010 M⊙ is the total mass of the bulge, r =
√
x2 + y2 and b = 1.5

kpc.
The halo potential is a γ-model (Dehnen (1993)) with parameters as in Pettitt et

al. (2014):

Vh =
−GMh(r)

r
−

−GMh,0
γrh

[
− γ

1 + (r/rh)γ
+ ln(1 + r

rh
)γ
]rh,max

r

(2.69)

where rh,max = 100 kpc, γ = 1.02, and Mh,0 = 10.7× 1010M⊙, and Mh(r) is given by
the function:

Mh(r) =
Mh,0(r/rh)

γ+1

1 + (r/rh)γ
. (2.70)

The spiral potential is given by the value Vsp for z = 0 of the 3D logarithmic
spiral model Vsp(r, ϕ, z) introduced by Cox & Gómez (2002) (see formula (19) in
Efthymiopoulos (2010)). We have on the disc plane:

Vsp = 4πGhzρ0 G(r) exp
(
−
(
r − r0
Rs

))
C

KB
cos
[
2

(
φ− ln(r/r0)

tan(α)

)]
(2.71)

where
K =

2

r| sin(α) | , B =
1 +Khz + 0.3(Khz)

2

1 + 0.3Khz
(2.72)

and C = 8/(3π), hz = 0.18 kpc, r0 = 8 kpc, Rs = 7 kpc, α = −130 is the pitch
angle of the spiral arms. The function G(r) plays the role of a smooth envelope
determining the radius beyond which the spiral arms are important. We adopt the
form G(r) = b − c arctan((Rs0 − r)), with Rs0 = 6 kpc, b = 0.474, c = 0.335. The
density of the spiral arms is ρ0 = 5 × 107, 15 × 107 or 30 × 107 M ⊙ /kpc3 in the
three different models under study, respectively. These three values of the density
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are chosen so as to yield spiral F -strength values consistent with those reported in
the literature for a weak intermadiate and strong spiral respectively (see for example
Block et al. (2004)).

Figure 2.1: The total force perturbation Fall for different amplitudes of the spiral potential as a function of the
radius.

The F−strength (Buta et al. (2009)) can be defined as either the ratio of the
maximum tangential force of the spiral perturbation over the radial force of the ax-
isymmetric background:

Ftan(r) =

〈
F tansp (r)

〉
max

Fr(r)
=

〈
1
r
∂Vsp
∂φ

〉
max

∂Vax
∂r

(2.73)

or the ratio of the maximum total force of the spiral perturbation over the radial force
of the axisymmetric background, given by the relation:

Fall(r) =

〈
Fsp(r)

〉
Fr(r)

=

〈√(
1
r
∂Vsp
∂φ

)2
+
(
∂Vsp
∂r

)2〉
max

∂Vax
∂r

. (2.74)

Figure 2.1 shows Fall as a function of the radius derived from Eq. (2.74), for three
different values of the density ρ0 of Eq. (2.71), namely ρ0 = 5, 15, 30(×107)M⊙/kpc3.
The maximum values of the spiral F -strength are 5%, 15% and 30% respectively. In
the intermediate model, the F -strength varies between 5% and 15% in the region 5
kpc ≤ r ≤ 15 kpc. Let us note that the observed amplitudes (in F−strength) of the
spirals in grand design galaxies with respect to the axisymmetric background have
typical values between 5% and 10% (Patsis et al. (1991), Grøsbol & Patsis (1998)).

The radial profile of the angular velocity and the rational combinations of the main
frequencies of the model are given in Fig. 2.2. They can help us specify the position
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Figure 2.2: The form of the function Ω(r), and of the resonant combinations of Ω(r) and κ(r), Ω − κ/2,
Ω+ κ/2, and Ω− κ/4. The selected pattern speed Ωsp determines the radii of the ILR, the 4:1 resonance and
the corotation.

of the resonances. Figure 2.2 shows the function Ω(r), as well as the combinations
Ω−κ/2, Ω+κ/2 and Ω−κ/4 in our potential model, where Ω(r) and κ(r) frequencies
are given by Eqs. (2.3)-(2.4). The section points of these curves with the constant
pattern speed Ωsp defines the resonances in the galactic disc (see section 1.5) for more
details). These resonances demarcate a lot of phenomena and different families of
periodic orbits located in the galactic disc. The determination of the location of the
resonances also reveals the area in which a spiral density wave grows.

In the subsection 1.6 we presented a series of works which demonstrate that
the spiral density waves cannot propagate in whole galactic disc, but they can grow
between some natural barriers. As it is mentioned, once the 4:1 radius is approached
the orbits become rectangular and they cannot support the spiral density wave. The
extent of the area where the spiral density waves grow is determined by the value of
the pattern speed. In Fig. 2.2 we observe that in the case of greater values of pattern
speeds in our model, this region which is demarcated by the ILR and 4:1 resonance
becomes smaller.

2.2.2 Analytical and numerical precessing ellipses in the Milky Way‐like
potential model

In this section we attempt to identify the families of the periodic orbits in our model
and the regions that they appear, as well as which periodic orbits are responsible for
the generation of the spiral density wave. We are going to compare the x1 orbits
which are produced through the algorithm of section 2.1 with the ones produced
through numerical methods. The parameters we choose in this case for the pattern
speed of the spiral arms and amplitude of the spiral density wave are: Ωsp = 15
km/s/kpc, ρ0 = 5107 M ⊙ /kpc3.

We first apply all the steps of the analytical calculation presented in section 2.1
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for the Milky Way like- model. The analytical x1 orbits are presented in Fig. 2.7.
We then proceed some numerical calculations. We are going to reproduce the

phase space and the numerical orbits x1 in the physical space. A useful tool for this
study is the construction of the phase space structure. The phase space for different
values of the circular orbit rc corresponds to different values of the energy. The space
space structure reveals all the different families of periodic orbits and the regions
where we locate them.

As it was shown in section 2.1 families of the stable periodic orbits having shapes
of precessing ellipses correspond to the continuation of the circular orbits of the
axisymmetric part of the potential in the region of the 2:1 resonance (see also the
section 1.4). The pair of canonical variables (ξ, Pξ) represents the deviation from the
circular orbit. Using equations (2.19) and (2.55) the functions ξ = ξ(r, pr, φ) and
Pξ = Pξ(r, pr, φ) are:

ξ = (r − rc) cos(2φ)−
pr
κ(rc)

sin(2φ) (2.75)

Pξ = pr cos(2φ) + (r − rc)κ(rc) sin(2φ) . (2.76)

Equations (2.75) and (2.76) can now be used in order to construct a Poincaré
surface of section (ξ, Pξ) for a fixed value of φ and a fixed Jacobi constant Ej . We find
a sequence of surfaces of sections in our model defined by the following procedure:
For a specific value of the pattern speed Ωsp, we specify a certain value for the radius of
the circular orbit rc and calculate the corresponding angular momentun pφc = r2cΩ(rc)
and the corresponding Jacobi integral Ej(rc) = Hax(rc) − Ωsp pφc . For the value of
the total Hamiltonian H = Ej(rc) we then define various initial values ξ0 and Pξ0

taking as initial value of φ the value φ0 = π/2. Then we calculate the initial values of
the coordinates (r, pr, pφ) using Eqs. (2.75) and (2.76) repsectively, i.e. r0 = rc − ξ0
(from Eq. (2.75)), pr0 = −Pξ0 (from Eq. (2.76))) and pφ0 = r20Ω(r0). Finally, we use
Hamilton’s equations:

dr

dt
=
ϑH

ϑpr
,

dφ

dt
=
ϑH

ϑpφ
,

dpr
dt

= −ϑH
ϑr

,
dpφ
dt

= −ϑH
ϑφ

(2.77)

with the Hamiltonian (2.7) in order to integrate orbits with initial conditions (φ0, r0, pr0 , pφ0)
and find the consecutive iterates (ξ, Pξ) on the Poincaré section φ = π/2.
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Figure 2.3: The phase space portraits (ξ, Pξ) for the model (2.71) with pattern speed Ωsp = 15 km.sec−1.kpc−1
and density of the spiral potential ρ0 = 5 × 107M ⊙ /kpc3 for twelve different values of the radius rc namely
rc=1, 2,..., 12 kpc. Precessing ellipses responsible for the spiral density waves are periodic orbits of the x1

family that correspond to radii between approximately 5 kpc (second ILR) and 11 kpc (4:1 resonance).

We construct the phase portraits for different values of rc. This value of the pattern
speed Ωsp = 15 km.sec−1.kpc−1 places the second ILR not far from the inner break
of the surface density profile of the axisymmetric part of the potential due to the
presence of the bulge (see Fig. 2.1). Figure 2.3 shows the phase portraits (surfaces
of section (ξ, Pξ)) for these chosen parameters for twelve different values of the radius
rc namely rc=1, 2, ..., 12 kpc, spanning a region from the center of the galaxy and up
to a radius just outside the 4:1 resonance.

The phase portraits of Fig. 2.3 reveal the main families of periodic orbits which
Contopoulos (1975) identified as the families of periodic orbits in a spiral galaxy and
named x1, x2 (stable periodic orbits) and x3 (unstable periodic orbit). In the case of
our model, precessing ellipses responsible for the spiral density waves are the stable
periodic orbits of the x1 family. Four different regions can be distinguished according
to the number and stability of periodic orbits. These regions are demarcated by the
presence of resonances in the galactic disc and they are shown in Fig. 2.2:

(a) in the region inside the first ILR there exists only the x1 family (stable family),
(b) in the region between the first and the second ILR there exist three families

of periodic orbits, namely the x1 (stable family), the x2 (stable family) and the the x3
(unstable family),

(c) in the region between the second ILR and the 4:1 resonance where exists
only the x1 (stable or unstable family) that supports the spiral density wave via the
precessing ellipses mechanism and

(d) in the region outside the 4:1 resonance there still exists the x1 family, but it
can no longer support the spiral density wave (see figures below). From Fig. 2.2
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we see that for Ωsp = 15 km.sec−1.kpc−1, the radii that correpsonds to the second
ILR and the 4:1 resonance are approximately 5 kpc and 11 kpc respectively. As a
consequence, the spiral density wave should extend between these two radii.

The x1 family of periodic orbits is found at the center of the islands of stability
marked with black points in Fig. 2.3. The x1 family exists at all the radii from the
center of the galaxy up to the 4:1 resonance. The x2 family of periodic orbits is found,
instead, at the center of the islands of stability marked with red points in Fig. 2.3,
while the unstable periodic orbit x3 is plotted with a blue dot. These orbits exist only
in the region between the first and the second ILR and they do not support the spiral
density wave (see below).

In Fig. 2.3 we observe that the x1 family remains stable at all radii and no large
scale chaos exists at least up to the radius corresponding to the 4:1 resonance. Beyond
this resonance, orbits of greater multiplicity, bifurcating from the x1 periodic family,
appear in the phase space (see the last panel of Fig. 2.3 which corresponds to rc = 12
kpc and is found just outside the 4:1 resonance).

Figure 2.4: The characteristic curves S(rc) =
√

ξ2 + p2ξ/κ
2
c of the periodic families x1 (black), x2 (red)

and x3 (blue) for the model (2.71) with Ωsp = 15 km.sec−1.kpc−1 and density of the spiral potential ρ0 =
5× 107M ⊙ /kpc3. The black dashed vertical lines correspond to the first and second ILR resonance, while the
gray dashed vertical line corresponds to the 4:1 resonance.

Figure 2.4 shows, now, the normalized characteristic curves as a function of the
radius rc for the same parameters as in Fig. 2.3 which are given by the relation:

S(rc) =
√
ξ2 + Pξ/κ2c (2.78)

where κc=κc(rc) is the epicyclic frequency given by the relation (1.31)). The periodic
family x1 is plotted in black, the periodic family x2 in red and the (unstable) periodic
family x3 in blue. The black dashed vertical lines correspond to the first and second
ILR, while the gray vertical line corresponds to the 4:1 resonance.
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The existence of the x2 and x3 families of orbits is delimited between the black
dashed vertical lines. In fact, the x2 and x3 periodic orbits are created together at a
tangent bifurcation close to the first ILR and then they join and disappear close to
the second ILR. The value of S(rc), in each case, corresponds to the amplitude of the
epicyclic oscillation of the elliptical orbit around the circular one.

A key remark in Fig. 2.78 is that, in the range of the radii where S(rc) decreases,
between the second ILR (at rc ≈ 5 kpc) and rc ≈ 8.5 kpc, the ellipses become more
circular and so they do not intersect with each other. The value of S(rc) reaches a
minimum value around 8.5 kpc and then it increases, first smoothly and then abruptly.
After this latter radius, the orbits become rectangular as they approach closer to the
4:1 resonance. Hence, the x1 orbits start intersecting each other and no longer support
the imposed spirals. As a conclusion, the end of the response spiral density wave
should be placed somewhere between the radius rc corresponding to the minimum
of the curve S(rc) and the 4:1 resonance.
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Figure 2.5: (a) The spiral density waves formed by the ”precessing ellipses” of the elliptical closed orbits of
the x1 family, for the Milky-Way like model and for pattern speed Ωsp = 15 km.sec−1.kpc−1 and density of
the spiral potential ρ0 = 5 × 107M ⊙ /kpc3, between the second ILR and the 4:1 resonance. (b) Same as in
(a) but with the ellipses of the x1 family inside the second ILR. Superposed are plotted circles corresponding to
the second ILR (green circle), 4:1 resonance (blue circle) and corotation (black circle). The imposed spiral arms
(in red) are derived from the minima of the spiral potential (9). The coincidence of the imposed spirals with the
spiral density wave created by the ”precessing ellipses” is nearly complete.

We then procced the reproduction of the numerical x1 orbits in the physical space
which we located at Fig. 2.3 at the same region of the values rc. As shown in Fig.
2.5, the orbits of the x1 family form precessing ellipses supporting the spiral density
wave in the whole region between the second ILR (≈ 5 kpc) and a little inside the 4:1
resonance. In Fig. 2.5(a) we see that the x1 family forms a dense and well defined
spiral density wave. In Fig. 2.5(b) the x1 family of orbits is plotted both inside and
outside the second ILR. Between the first ILR (≈ 1.5 kpc) and the second ILR (≈ 5
kpc) the orbits form a less dense and well defined spiral density wave, while inside
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the first ILR the orbits are more circular. In fact, inside the second ILR, the spiral
density wave is greatly weakened, as the amplitude of the spiral perturbation is close
to zero (see Fig. 2.1). In Fig. 2.5b, superposed are plotted circles corresponding
to the second ILR (green circle), 4:1 resonance (blue circle) and corotation (black
circle). The imposed spiral arms (superposed to the figure in red) are derived from
the minima of the spiral potential (2.71). The coincidence with the spiral density
wave formed by the elliptical orbits is nearly complete.

We then compare the x1 orbits given by the analytical method with the ones given
by the numerical method. The orbits x1 in the cartesian space allows us to make a
better comparison between the numerical and the analytical orbits. The comparison
is shown in Figs. 2.6, 2.7. We observe that both models give elongated orbits that
support the precessing ellipses mechanism for the generation of the spiral density
wave. The analytical and the numerical spiral density wave in each case presents
many similarities.

Figure 2.6 shows the comparison of the numerical and analytical single x1 orbit
at rc=7 kpc. In rc = 7 kpc the 3rd degree polynomial equation (2.58), gives one
solution, which is x1. In this region of rc we expect the existence of a single family
of periodic orbit which is x1. This is also confirmed by the phase portrait in rc = 7
in Fig. 2.3.

Figure 2.6: The numerical orbit x1 (left panel) compared to the analytical orbit x1 (central panel). In the
right panel the numerical orbit is superposed over the analytical. All the orbits have been computed for the
Milky-Way like model and for pattern speed Ωsp = 15 km.sec−1.kpc−1 and density of the spiral potential
ρ0 = 5× 107M ⊙ /kpc3.

Figure 2.7: The analytical spiral density wave formed by the analytical orbits x1 (left panel) compared to the
numerical spiral density wave (right panel). All the orbits have been computed for the Milky-Way like model
and for pattern speed Ωsp = 15 km.sec−1.kpc−1 and density of the spiral potential ρ0 = 5 × 107M ⊙ /kpc3,
between the second ILR and the 4:1 resonance
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The comparison of the analytical and numerical precessing ellipses in Fig. 2.7
shows the region, demarcated by the resonances, where the spiral density wave prop-
agates, is the same in both cases. However, when the spiral density wave approaches
the natural barrier of 4 : 1 resonance, where the density wave terminates, the orbits
in the analytical model are not rectangular but circular, contrary to those of the nu-
merical case. A parametric study can also test the range of the parameters in which
the two orbits are in agreement.

2.2.3 Parametric study

In this section we choose various values for the spiral amplitude (parameter ρ0 in
Eq. (2.71)), pattern speed Ωsp and pitch angle a. Our study focuses on the form
and stability of periodic orbits which support the spiral arms as well as the shape of
the phase space around these orbits. The agreement between the ”imposed” spirals
(minima of the potential (2.71)) and the ”response” spirals (formed by the elliptical
periodic orbits), as well as the regularity of the phase space structure observed in
the previous example holds for a particular choise of parameters (ρ0,Ωsp, a). We will
now study how the above picture is altered by varying independendly the amplitude
ρ0, the pattern speed Ωsp or the pitch angle a in the imposed spirals. We are going
to examine the range of these parameters in which they give realistic spiral density
waves.

The role of the amplitude of the perturbation

We start by investigating the role of the amplitude of the spiral perturbation (ρ0 in
Eq. (2.71)) in the creation of the spiral wave. To this end, we increase the value of
ρ0 in Eq. (2.71) and repeat the study of the subsection 2.2.2.

Figure 2.8 shows the same phase space portraits (ξ, Pξ) as in Fig. 2.3, but for
a value of the amplitude of the spiral potential three times larger, namely ρ0 =
15× 107M ⊙ /kpc3. Increasing the amplitude, the main observation is that while the
x1 family is stable for most values of rc, chaos is introduced in the phase space for
radii rc > 5 kpc covering a great part of the phase space around the island of stability
corresponding to the x1 periodic orbit. In fact, the x1 family becomes itself unstable
within a small interval of rc values (see Fig. 2.8).

Figure 2.9 shows the normalized characteristic curves S(rc) =
√
ξ2 + Pξ/κ2c as a

function of the radius rc, same as in Fig. 2.4, but for the amplitude ρ0 = 15×107M ⊙
/kpc3. As in Fig. 2.4, here too the x2 and x3 periodic orbits are created together
at a tangent bifurcation close to the first ILR and then they join and disappear close
to the second ILR. The value of S(rc) reaches a minimum value around 8.5 kpc
(same as in Fig. 2.4) and then it increases abruptly. Therefore, the end of the
response spiral density wave should be placed, here again, somewhere between the
radius rc corresponding to the minimum S(rc) and the radius corresponding to the
4:1 resonance.

Figure 2.10 shows the spiral density waves generated by the x1 family in this
model, extending for radii between the second ILR (rc ≈ 5 kpc) and a little inside
the 4:1 resonance. The response spirals appear now more concentrated than the
spirals in Fig. 2.5, around the locus of the maximum of the density wave. This is
because the forced ellipticity of the x1 orbits increases with the amplitude of the spiral
perturbation ρ0 (see Efthymiopoulos 2010 for a review). In Fig. 2.10b the x1 family
of orbits is plotted both inside and outside the second ILR. Here again, the orbits
between the first ILR (≈ 1.5 kpc) and the second ILR (≈ 5 kpc) form a less dense
and well defined spiral density wave, while inside the first ILR the orbits are more
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circular. In Fig. 2.10b, superposed are plotted circles corresponding to ILR (green
circle), 4:1 resonance (blue circle) and corotation (black circle). The superposed red
spiral arms are derived from the minima of the spiral potential (2.71). We observe
again a nearly complete coincidence between imposed and response spirals.

Figure 2.8: Same as Fig. 2.3, but for ρ0 = 15× 107M ⊙ /kpc3.

Figure 2.9: Same as in Fig. 2.4, but for the density parameter of the spiral potential ρ0 = 15×107M⊙/kpc3.
The dashed part of the black curve denotes that the periodic orbit x1 is unstable.
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Figure 2.10: Same as in Fig. 2.5, but for ρ0 = 15× 107M ⊙ /kpc3.

Figure 2.11, now, shows the phase portraits (ξ, Pξ) as in Fig. 2.3, but for even
greater (by a factor 6) value of the amplitude of the spiral potential, namely ρ0 =
30 × 107M ⊙ /kpc3. In comparison with the phase space portraits of Fig. 2.8, we
observe that here chaos is introduced at approximately the same values of rc (namely
for rc > 5 kpc) as in the previous example. However, the main qualitative difference
between these two cases is that, in the latter case the x1 family becomes unstable
by a sequence of period doubling bifurcations starting at rc ≈ 6.8 kpc and there are
no ordered orbits around it from there on. As a consequence, no ordered matter is
collected around it, that could support a realistic spiral density wave.

Figure 2.12 shows the normalized characteristic curves S(rc) =
√
ξ2 + Pξ/κ2c of

this model. The main difference with respect to the previous cases is that the curve
S(rc) forms a nearly constant plateau from the second ILR to the point rc ≈ 7 kpc
and then marks an abrupt fall to a minimum at rc ≈ 8 kpc. As a consequence, the
ellipticity of the x1 orbits remain nearly constant in the region between the second
ILR and the radius rc ≈ 7 kpc. Also, plotting the elliptical orbits of the unstable
x1 periodic orbit for this model (Fig. 2.13a), we see that the ellipses intersect each
other in the whole range of radii and they form a less dense and more wide spiral
density wave, in comparison with the waves of Fig. 2.10. Some secondary, less
intense spiral arms, also appear. This is an unrealistic spiral density wave that cannot
be observed in real galaxies, as there exists no ordered matter around the x1 family
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that could support this spiral wave. Fig. 2.13b is the same as Figs. 2.5b and 2.10b
for ρ0 = 30× 107M ⊙ /kpc3.

Figure 2.11: Same as Fig. 2.3, but for ρ0 = 30× 107M ⊙ /kpc3.

Figure 2.12: Same as in Fig. 2.4 but for ρ0 = 30 × 107M ⊙ /kpc3. The dashed part of the black curve
denotes that the periodic orbit x1 is unstable.
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Figure 2.13: Same as in Fig. 2.5, but for ρ0 = 30× 107M ⊙ /kpc3.

Figure 2.14: The x2 family of orbits for the model (9) for (a) pattern speed Ωsp=15 km.sec−1.kpc−1
and density of the spiral potential ρ0 = 5 × 107M ⊙ /kpc3 in (a) ρ0 = 15 × 107M ⊙ /kpc3 in (b) and
ρ0 = 30 × 107M ⊙ /kpc3 in (c) In all three cases these elliptical orbits do not suport the spiral wave derived
from the galactic potential and have main axes perpendicular to the main axes of the x1 family.
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Figure 2.15: Some precessing ellipses of the x1 family (black orbits) together with the precessing ellipses of the x2

family (red orbits) that correspond to the same radii rc, for density of the spiral potential ρ0 = 30×107M⊙/kpc3
and for pattern speed Ωsp=15 km.sec−1.kpc−1. The x2 ellipses have main axes perpendicular to the main axes
of the x1 family and do not support the spiral density wave.

As an overall conclusion, comparing the F−strength in all three models, we find
that the precessing ellipses of the x1 family can support the spirals for amplitudes
(F -strengths) not exceeding the level 15 − 20%. Beyond that value, the x1 family
becomes unstable at a rather small distance beyond the second ILR (∆rc ≈ 2 kpc),
while chaos dominates in the phase space, thus preventing the existence of any regular
set of orbits to support the spirals. In fact, estimates of the amplitude of the spiral
perturbation of the spiral arms in real grand design galaxies give a relatively low
upper limit which is ≈ 10−15% in the forces (Grøsbol & Patsis (1998), Grøsbol et al.
(2004)). Moreover, long-term evolution of self-gravitating models shows that spiral
density waves will not remain viable over many revolutions if the spiral forcing is
higher than 5% (Chakrabarti (2003)).

Regarding the role of other families of periodic orbits, Fig. 2.14 shows the pre-
cessing ellipses of the x2 family for the model (2.71) for pattern speed Ωsp = 15

km.sec−1.kpc−1 and density of the spiral potential ρ0 = 5 × 107M ⊙ /kpc3 in Fig.
2.14(a), ρ0 = 15× 107M ⊙ /kpc3 in Fig. 2.14(b) and ρ0 = 30× 107M ⊙ /kpc3 in Fig.
2.14c. In all three cases the response spirals are orthogonal to the response spirals of
the x1 family (see Contopoulos (1975)). In Figs. 2.14b,c they form weak spiral arms
in the region between the first and the second ILR, where the amplitude of the spiral
potential is close to zero (see Fig. 2.1).

In Figure 2.15 some precessing ellipses of the x1 family (black orbits) are plotted
together with some precessing ellipses of the x2 family (red orbits) for a density of
the spiral potential ρ0 = 30 × 107M ⊙ /kpc3 and for the pattern speed Ωsp = 15
km.sec−1.kpc−1, corresponding to the same radii rc, namely from rc = 2 kpc to rc = 5
kpc. The ellipses of the x2 family have main axes perpendicular to the main axes of
the x1 family and they exist in radii where the amplitude of the spiral perturbation
is close to zero (see Fig. 2.1). Therefore they do not support the spiral density wave.
One can easily verify that the same is true for the unstable x3 family of periodic orbits
(not shown in the figures).
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Figure 2.16: The spiral density waves formed by the elliptical orbits of the x1 family, from the model (9) for
pattern speed Ωsp = 20 km.sec−1.kpc−1 in (a) and Ωsp = 10 km.sec−1.kpc−1 in (b) and density of the spiral
potential ρ0 = 5 × 107M ⊙ /kpc3. Superposed are plotted circles corresponding to ILR (green circle), 4:1
resonance (blue circle) and corotation (black circle).

The role of the pattern speed

In this subsection we examine the dependence of the response spiral density wave on
the pattern speed Ωsp. In particular, we fix the amplitude of the spiral perturbation to
ρ0 = 5×107M⊙/kpc3 and change the pattern speed of the spiral potential, comparing
the cases Ωsp=10, 15 and 20 km.sec−1.kpc−1. We reproduce the phase space and the
orbits and we examine how their stability of the x1 orbits is affected by the alteration
of the pattern speed and in which case the spiral density wave can be supported by
these orbits.

Figure 2.16 shows the spiral density waves formed by the precessing ellipses of
the x1 family (black orbits) for the pattern speed Ωsp = 20 km.sec−1.kpc−1 (in Fig.
2.16(a) and Ωsp = 10 km.sec−1.kpc−1 (in Fig. 2.16(b). Superposed are plotted the
circles corresponding to the ILR radius (green circle), to the 4:1 resonance (blue circle)
and to corotation (black circle). By comparing Figs. 2.16a,b and Fig. 2.5a,b, which
have all the same amplitude ρ0 = 5×107M⊙/kpc3, but different values of the pattern
speed we derive the following conclusions. When the pattern speed decreases:

(a) all the resonances are shifted outwards (see Fig. 2.2) and therefore the spiral
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density waves reach larger radii. However, the ellipses become rounder when they
get closer to the 4:1 resonance and therefore the spiral density wave becomes less
cospicuous at larger radii.

(b) The region inside the first ILR becomes smaller while the region between the
first and the second ILR increases. The elliptical orbits of the x1 family in this latter
region become much more elongated and intersect each other.

(c) The width of the spiral arms is growing with radius (see Fig. 2.16b). In
Savchenko et al. (2020) it is claimed that in the 86% of a sample of 155 face-on
grand design spiral galaxies they observe that the arm width increases with radius
(see Mosenkov et al. (2020), for an alternative interpetation of this phenomenon
based on the mechanism of swing amplification).

The role of pitch angle

In the present subsection, we choose the model ρ0 = 15 × 107M ⊙ /kpc3, Ωsp = 15
km.sec−1.kpc−1, but vary the pitch angle from the low value a = −5o to the high
value a = −25o, instead of the ”intermediate” value a = −13o used in all previous
numerical experiments.

Figure 2.17: Same as in Fig. 2.3 but for pitch angle a = −25o.

Figure 2.17 shows the phase portraits (ξ, Pξ) for a = −25o. By comparing Figs
2.3 and 2.17, which differ only in the value of the pitch angle, we conclude that
for increasing pitch angle (more open spiral arms), more order is introduced in the
phase space and the chaotic areas are shrinked. Therefore, there exists more matter
in ordered motion around the x1 stable periodic orbit that can better support the
spiral density wave. The corresponding response spirals (Fig. 2.19) are also more
open and extend in the whole region between the second ILR and the 4:1 resonance.
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Figure 2.19: The spiral density wave formed by the precessing ellipses of the x1 family for ρ0 = 15× 107M ⊙
/kpc3, pattern speed Ωsp = 15 sec−1.kpc−1 and pitch angle a = −25o.

Figure 2.18: Same as in Fig. 2.3 but for pitch angle a = −5o.

Figure 2.18 shows, instead, the phase portraits (ξ, Pξ), when a = −5o. The key
observation is that the x1 family becomes unstable, now, a little outside the second
ILR (at rc ≈ 6.65 kpc) and up to the 4:1 resonance, and the region around it is fully
chaotic.

By comparing figures 2.3, 2.17 and 2.18 we conclude that for increasing pitch
angle (more open spiral arms), more order is introduced in the phase space. In fact,
for very small pitch angles chaos dominates in the phase space and we always get
that the x1 family of orbits becomes unstable almost immediately after the second
ILR. The x2 family is aslo unstable in the region outside the second ILR.
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Figure 2.20: The spiral density waves formed by the precessing ellipses of the (a) x1 family and (b) x2 family
for ρ0 = 15× 107M ⊙ /kpc3, pattern speed Ωsp = 15 sec−1.kpc−1 and pitch angle a = −5o. Superposed (in
red) is the theoretical spiral derived from the minima of the spiral potential (9).
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In conclusion, there is a lower limit of the value of the pitch angle a, below which
the central periodic orbit of the x1 family becomes unstable in the region between
the second ILR and the 4:1 resonance. This limit of the pitch angle is defined by the
other two free paremeters of the model, i.e. the amplitude of the spiral perturbation
and the pattern speed of the spiral arm as indicated in Table 2.1.

Table 2.1: The pitch angle below which the x1 family becomes unstable outside the
second ILR for various values of the amplitude of the spiral perturbation and the
pattern speed.

amplitude pattern speed pitch angle
ρ0 Ωsp a (in degrees)
5 10 1
15 10 9
30 10 16
5 15 1
15 15 5
30 15 15
5 20 1
15 20 4
30 20 7

Table 2.1 shows how the three parameters (ρ0 and Ωsp) collaborate so as to produce
realistic spiral density waves. It can be used to estimate the permissible area of pitch
angles which, for ρ0 and Ωsp as in the first two columns, should be larger than the
value reported in the third column as a function of the amplitude of the spirals and
the pattern speed. From these data we conclude that, using the stability of the x1
family as a criterion, a correlation between the pitch angle and the amplitude of the
spiral perturbation is suggesting that spirals formed by precessing ellipses should be
stronger in amplitude when they are more open (larger a). Moreover, a correlation
between the pitch angle and the pattern speed is indicated, namely the larger the
value of the pattern speed, more tightly wound the spirals should be to maintain
stability of the x1 family.

2.2.4 Comparison with observations

In its classical version which we discussed in the section 1.1, the Hubble sequence
for spiral galaxies implies that the bulge size and the spiral arm winding should
be highly correlated. According to this classification, the ”Sa” galaxies have tightly
wound arms and fat nuclear bulges, ”Sb” galaxies have moderately wound arms
and moderate nuclear bulges and ”Sc” galaxies have loosely wound arms and small
nuclear bulges. However, modern classification schemes for spiral galaxies imply a
considerable departure from the classic ‘Hubble sequence’ as regards the correlation
between spiral arm winding type and bulge size. Early studies suggested that spiral
arms become tighter with increasing mass of the bulge (Morgan (1958), Morgan
(1959), Kennicutt (1981), Bertin et al. (1989)). Also, Seigar et al. (Seigar et al.
(2005), Seigar et al. (2006)) reported a tight connection between pitch angle and
morphology of the galactic rotation curve, quantified by the shear rate, with open
arms associated with rising rotation curves and tightly wound arms connected to flat
and falling rotation curves. On the other hand, more recently, Hart et al. in Hart
et al. (2017) analyzed a large sample of galaxies selected from the Sloan Digital

69



Sky Survey (SDSS; York et al. (2000)) and found very weak correlations between
pitch angle and galaxy mass, and a surprising trend, that the pitch angle increases
with increasing bulge-to-total mass ratio. Yu & Ho (2019), found that the pitch
angle decreases (arms are more tightly wound), in galaxies of earlier Hubble type,
more prominent bulges, higher concentration, and larger total galaxy stellar mass.
However, there is a significant scatter in their measures. Finally, Masters at Masters
et al. (2019) and Díaz-García et al. in Díaz-García et al. (2019), found little or no
correlation between spiral arm winding tightness and bulge size.

Given that there is no concluding evidence of correlation between the size of the
bulge and the pitch angle of the grand design galaxies, we have tested various pitch
angles in our galactic model keeping constant the mass of the bulge at a relatively
high value. The results of the previous subsection suggest, indeed, a correlation be-
tween pitch angle and amplitude of the spiral perturbation, suggesting that galaxies
with stronger perturbations should have more open spirals (greater value of the pitch
angle). In comparison with real observations, Grøsbol (2002) found that the dis-
tribution of mean amplitudes of two-armed spirals as a function of the pitch angle
shows a lack of stong in amplitude and at the same time tightly wound spirals. They
have also found that most of the mean amplitudes of spiral arms are below 15% in
forces and there is a correlation between the amplitude of spirals and the pitch angle,
namely weak spirals often have more tight spiral arms. Díaz-García in Díaz-García et
al. (2019) also, found that the mean amplitude of the arms increase with increasing
pitch angle.
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Chapter 3

Manifold spirals and the secular
evolution in N‐body models of
barred galaxies

Parts of the results of the present chapter were published as:
Efthymiopoulos C., Kyziropoulos P., Paez R., Zouloumi K., Gravvanis G., 2019, MNRAS
484, 1487

In this chapter we are going to present the results of Efthymiopoulos et al. (2019).
In this work the evolution of the observing morphologies and the non-axisymmetric
features of an N-body simulation of a barred spiral galaxy of Kyziropoulos et al.
(2016) is examined. A dynamical analysis is also conducted in the N-body, the
manifold spirals are reproduced along with the vividly evolving structures of the
N-body.

This Chapter is structured as follows: section 3.1 presents the N-body simulation
(initial conditions, code, runs), as well as methods of analysis (extraction of the po-
tential, Fourier transform etc.). Section 3.2 explains the computation of the invariant
manifolds and its comparison with the disc morphology in the simulation. Section
3.3 compares the manifolds with the observed non-axisymmetric activity in the disc
during secular evolution, as well as the phenomena related to secular evolution, i.e.,
the disc-halo interaction, triggering of new incidents, bar evolution and evolution of
the disc’s thermal profile.

3.1 Simulation and numerical computations

3.1.1 Description of the N body simulation

Here, as in Efthymiopoulos et al. (2019) we use in our study the N-body simulation
named ”Q1” in Kyziropoulos et al. (2016). The simulation uses 107 particles and
contains the following components:

1) An initially exponential disc of mass Md = 5 × 1010 M⊙, with exponential
scale length Rd = 3 kpc, vertical exponential scalelength zd = 0.2 kpc, and Gaussian
velocity distribution arising from a profile of Toomre’s Q-parameter rising in the
center and tending to an asymptotic outward value Q → Q∞ = 1 (see equation (13)
of Kyziropoulos et al. (2016)). The disc is simulated by 5× 106 particles.

2) A Sercic-type spherical bulge of massMb = 5×109M⊙, with Sersic index n = 3.5,
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and scale length Rb = 1 kpc. The bulge is simulated by 5× 105 particles.
3) A Dehnen-type double-power law spherical dark matter halo (see Binney &

Tremaine (2008)) with density amplitude ρ0 = 2.016 × 108 M⊙/kpc
3, scale length

Rh = 3 kpc and asymptotic inner and outer exponents α = 1.3, β = 3.5. The mass
of the halo rises to 2 × 1011 M⊙ at R = 100 kpc. The halo is simulated by 4.5 × 106

particles.
The system goes through disc instabilities leading to the formation of a bar and of

dynamically evolving spiral arms. The simulation lasts for 4 Gyrs. In all subsequent
computations we obtain the information by 160 saved snapshots, separated by time
steps of 0.025 Gyr.

One way to quantify the non-axisymmetric structures in the galactic disc is to
Fourier-analyse the disc’s surface density. We separate the space in a polar grid of
50 logarithmically equi-spaced radial bins from r0 = 0.1 kpc to r = 15 kpc, and 180
azimuthal bins from φ = 0 to φ = 2π. The surface density at time t of the simulation
in a bin (∆r,∆φ) centered around (r, φ) is defined by:

Σ(r, φ, t) =
∆N(r, φ, t)

r∆r∆φ
(3.1)

where ∆N(r, φ, t) is the number of disc particles at time t within the area element
r∆r∆φ.

We implement the usual Fourier transform with respect to the angle φ, at fixed
time t, in order to decompose the surface density into 10 angular modes:

Σ(r, φ, t) = A0(r, t) +

10∑
m=1

Am(r, t) cos(mφ) +
10∑

m=1

Bm(r, t) sin(mφ) (3.2)

where
A0(r, t) =

1

2π

∫ 2π

0
Σ(r, φ, t)dφ,

Am(r, t) =
1

π

∫ 2π

0
Σ(r, φ, t) cos(mφ)dφ, Bm(r, t) =

1

π

∫ 2π

0
Σ(r, φ, t) sin(mφ)dφ .

The relative amplitude Cm(R) and phase ϕm(R) of the m-th Fourier mode are defined
by

Cm(r, t) =

(
A2

m(r, t) +B2
m(r, t)

)1/2
A0(r, t)

, φm(r, t) =
1

m
tan−1(Bm(r, t)/Am(r, t)) . (3.3)

as well as a smoothed ‘non-axisymmetric excess density’

D(r, φ, t) =
Σ(r, φ, t)−A0(r, t)

A0
. (3.4)

Besides quantities related directly to the particle distribution in the N-body run,
in subsequent computations we make use of the total gravitational potential V (x, y, t)
on the disc plane ((x, y) for z = 0, where the origin of the Cartesian co-ordinates is
transfered at the center of mass of the disc). The N-body code returns the potential
on the set of points xi = −L0/2 + (i/Np)L0, yj = L0/2 + (j/Np)L0, where i, j =
0, 1, . . . , Np − 1, L0 = 25.6 kpc, Np = 256. Based on the potential values at the grid
points, we use bi-cubic interpolation for obtaining a smooth representation of the
potential and forces within the domain −L0/2 < x < L0/2, = L0/2 < y < L0/2.
This allows to perform any type of computation requiring smooth expressions for
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the equations of motion, as, for example, the computation of the positions of the
Lagrangian points and the associated invariant manifolds

Figure 3.1: Sixteen snapshots of the face-on disc view of the N-body simulation (”Q1” in Kyziropoulos et al.
(2016)) in the time interval 0.5 ≤ t[Gyr] ≤ 2.0. Two- and three-armed spiral instabilities develop in the disc
quickly after the simulation starts. The m = 2 spiral mode dominates in the interval 0.5 ≤ t[Gyr] ≤ 1.0. The
onset of the bar instability at about t = 1.1 Gyr leads to a fully developed bar at t = 1.4 Gyr, which is nearly
imediately followed by a first birst of manifold-driven spirals beyond the bar (at t = 1.5− 1.6 Gyr).

3.1.2 Time evolution of non‐axisymmetric patterns

Figure 3.1 shows snapshots of the time evolution of the simulated system (”Q1” in
Kyziropoulos et al. (2016)) in the time interval from t = 0.5 Gyr to t = 2 Gyr.
The bar rotates counterclockwise and undegoes instabilities that give rise to m=2 or
m=3 spiral modes, the formation of a bar or even the construction of rings or inner
spirals. We observe all main successive phases of the generation and evolution of disc
morphologies and of the non-axisymmetric structures.

As a consequence of the chosen value of Q (=1), the disc exhibits a rapid initial
growth of competing features (mainly m = 3 and m = 2) and undergoes two-armed
or three-armed spiral instabilities. The m = 2 spiral mode becoming dominant after
t ∼ 0.5 Gyr. At this initial phase the simulated disc looks like a normal spiral galaxy
in the Hubble classification. The spirals undergo about one and a half revolution
(counterclockwise in Fig. 3.1) up to the time t = 1.1, maintaining a nearly constant
pattern with features of density wave.

The morphology and the dynamics of the system change rapidly at t = 1.1 Gyr
where the bar instability is activated on the disc. The bar evolves and takes its final
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size at about t = 1.4 Gyr. The bar formation is accompanied by a first ‘incident’
of spiral activity, which is well described by manifold spirals, as discussed in detail
below. Three more incidents of similar size take place up to t = 2 Gyr. One notices that
the overall morphology of the galaxy presents significant variations over a timescale
as small as even one bar period. In particular, features such as inner rings (e.g.
snapshots t = 1.5 Gyr or t = 2 Gyr), or a secondary system of inner spiral arms (e.g.
snapshot t = 1.7 or t = 1.9 Gyr) occasionally appear.

After the bar formation reccurent incidents of spiral activity are observed on the
disc and they are illustrated in greater detail in Fig. 3.2, showing several snapshots
of the time evolution of the system from t = 1.65 to t = 3 Gyr. The bar rotates
counterclockwise, and performs slightly more than seven revolutions in the depicted
time interval. One can recognise an oscillating profile in the strength of spiral arms
and we observe an alteration from conspicuous maxima (e.g. at t = 1.65, t = 1.95,
t = 2.25 Gyr) to very low minima (e.g. at t = 2.025, 2.325, 2.7, or 2.925 Gyr),
albeit never vanishing completely. An inner ring-like structure surrounding the bar
is observed in particular snapshots (e.g. t = 1.825), material is distinguished transiting
from the one end of the bar towards the other by moving along the ring (see also
snapshot t = 1.8 Gyr in Fig. 3.1).

If the evolution of the disc is viewed edge-on (Fig. 3.3), we observe other insta-
bilities that give rise to sevelar observable galactic features. The bar undergoes the
buckling instability, accompanied by the vertical growth of a characteristic peanut,
or ‘X-shaped’, pseudobulge. The onset of the instability follows soon after the bar
formation (at t ≈ 1.8 Gyr), while the edge-on bar profile after the instability reaches
a nearly final extent at t ≈ 2.2 Gyr. As shown below, manifold spiral appear during
and beyond all this time interval. Thus, manifold spirals in our simulation do not
appear to be halted by the buckling instability, as reported in Kwak et al. (2017)
(see also Lokas (2016)).
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Figure 3.2: Sixteen snapshots of the face-on disc view of the N-body simulation (”Q1” in Kyziropoulos et
al. (2016)) in the time interval 1.65 ≤ t[Gyr] ≤ 3.0. The bar rotates counter-clockwise, while two-armed,
four-armed spirals and ring-like structures appear in succession and with altering amplitudes and morphologies
(see text).
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Figure 3.3: Edge on view of the disc for the same snapshots as in Fig. 3.2. The growth in time of a
peanut-shaped pseudo-bulge is clearly distinguished.

3.1.3 Time evolution of the Fourier transform modes in the Surface
Density

The description of the morphological evolution of the disc in section 3.1.2 is quali-
tative. However, the observed morphological features can be quantified through the
time evolution of the modes of Fourier transform in the disc surface density, which is
described by Eqs. (3.1)- (3.4). A construction of the maps of the non-axisymmetric
excess density, obtained by Eq. (3.4) for the most important modes e.g. m = 2, 3, 4
can highlight the symmetry and thee nature of the observed morphological features
in the disc in Figs. 3.1-3.2. This study helps us distinguish better the incidents of
the spiral activity.
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Figure 3.4: Fourier decomposition of the disc non-axisymmetric excess density at the times t = 0.125 Gyr (top
left block), t = 0.250 Gyr (top right block), t = 0.375 Gyr (down left block), and t = 0.5 Gyr (down right
block). The left panels in each block show, in color scale, the non-axisymmetric excess density D(r, φ, t) as viewed
in an inertial frame of reference. The color scale is fixed from blue to red, representing values D(r, φ, t) ≤ −0.5
in the blue limit, D(r, φ, t) ≥ 0.5 in the red limit and −0.5 < D(r, φ, t) < 0.5 in between. The right panels
show the relative Fourier amplitudes Cm(r, t) as function of r for the modes m = 2 (red), m = 3 (green) and
m = 4 (blue).

In Figure 3.4 the initial phase of rapid growth of non-axisymmetric features in
the disc is depicted via maps of the non-axisymmetric excess density, obtained by
Eq. (3.4), as well as the corresponding Fourier amplitude profiles, as function of the
radial distance r across the disc, for the most important modes, namely m = 2, 3, 4.
We observe a competition between the growing m = 2 and m = 3 modes. However,
the plots of the the non-axisymmetric excess density at the subsequent phases of the
simulation, which are shown in Fig. 3.5 reveal that the m = 2 mode prevails after
t ≈ 0.5 Gyr, leading to a conspicuous bi-symmetric spiral pattern (Fig. 3.5). In the
density excess map, the m = 2 spiral extends across the disc at nearly the disc’s entire
optical length, and it maintains a nearly constant pattern speed Ωspiral ≈ 15 km/s/kpc
in the time interval 0.5 ≤ t[Gyr] ≤ 1.1.
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Figure 3.5: The non-axisymmetric excess density D(r, φ, t) (same color scale as in Fig. 3.4) in sixteen
equidistant in time snapshots in the time interval 0.55 ≤ t[Gyr] ≤ 1.15.

Figure 3.6: The non-axisymmetric excess density D(r, φ, t) in six snapshots in the time interval 1.25 ≤
t[Gyr] ≤ 1.5. The onset of the bar instability leads to the bar formation, accompanied by the first manifold-
driven incident of spiral activity.

In Fig. 3.6 the onset of the bar instability is depicted through succesive maps
of the non-axisymmetric excess density in the time interval 1.25 ≤ t[Gyr] ≤ 1.5. By
the time that bar prevails, all the traces of the previous spiral activity in the disc get
dissolved. The bar grows rapidly (between t = 1.25 Gyr and t = 1.4 Gyr. This growth
is followed, immediately, by a first conspicuous incident of spiral activity beyond the
bar. The incident takes place between t = 1.4 Gyr and t = 1.5 Gyr. The initial pattern
speed of the bar is about Ωbar ≈ 40 km/s/kpc, yielding an initial period Tbar ≈ 0.16
Gyr. The bar extends to a radial distance R ≈ 5 kpc, while its co-rotation is initially
at R ≈ 6.5 kpc. The procedure of computation of the pattern speed of the bar is
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described in section 3.2.
A second major incident of spiral activity occurs after nearly one more bar’s full

turn, at t = 1.625 Gyr. At that point, the m = 2 and m = 4 Fourier amplitudes inside
the bar (i.e. for R < 5 kpc) are nearly stabilized, while the bar enters a phase of
slower (secular) evolution. The snapshot t = 1.625 corresponds to the largest in time
observed amplitude of the m = 2 mode in the region between the bar’s co-rotation
and outer Lindblad resonance. We examine the N-body disc morphologies at the
snapshot at t = 1.625 (see Fig. 3.7) and we set this time conventionally as the time
where the secular evolution of the bar initiates. In Fig. 3.7 we observe that the bar
is very strong at this snapshot, with m = 2 and m = 4 Fourier amplitudes taking the
maximum values C2 > 1 and C4 ≈ 0.8 at R ≈ 4 kpc. A secondary local maximum of
m = 2 and m = 4 Fourier amplitudes is observed at larger distances (R ≈ 10−11 kpc)
which represents the dominant modes of the weaker non-axisymmetric pertubation
(compared to the strong bar) in the disc, i.e. the one of the spiral arms. We can notice,
however, also the presence of important power in the m = 1 and m = 3 Fourier terms
in a domain which contains the bar (R < 5 kpc), with relative amplitude larger than
0.1 across the whole bar’s extent and reaching ∼ 0.2 in the central parts (R < 2 kpc).
Such m = 1 amplitudes are distinguishable in several simulations (see, for example,
Quillen et al. (2011), Minchev et al. (2012)). On the other hand, in the snapshot
of Fig. 3.7, substantial m = 1 relative amplitudes are observed also at large distances
(R > 10 kpc). This phenomenon is connected to the lopesidedness of the observed
spirals (and manifolds, see below), a fact which hints towards nonlinear interaction
of the outer disc modes.
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Figure 3.7: (a) Color map of the non-axisymmetric excess density at the time snapshot t = 1.625 Gyr,
conventionally set as the beginning of the phase of the bar’s secular evolution. A second incident of spiral activity
accompanies the bar. (b) The Fourier amplitudes C1 (cyan), C2 (red), C3 (green) and C4 (blue) as function of
the radial distance R accross the disc. (c) Plain image of the N-body snapshot, created by a logarithmic grayscale
plot of the surface density Σ(r, φ, t). (d) The image of the same snapshot after performing the Sobel-Feldman
edge detection algorithm. Dimmer patterns in panel (c) are enhanced and clearly visible in panel (d).

The density excess map (Fig. 3.7 (a)) and the plain N-body picture of the galaxy
(Fig. 3.7 (c)) do not give a detailed and clear view of the morphological features and
the patterns of the disc. In order to efficiently recover these patterns, a Gaussian filter
is implemented, which smoothes the disc’s surface density accompanied by the Sobel-
Feldman edge-detection algorithm (e.g. Gonzalez & Woods (1992)). The result is
shown in Fig. 3.7(d). The Sobel-Feldman filter enchances patterns already existing in
the disc, but of amplitude significantly lower than the one of the main bi-symmetric
spirals. The Sobel-Feldman filters reveals more structures, such as ‘bridges’, which
are formed whenever weak extensions of the spiral arm emanating from one end of
the bar join the spiral arm emanating from the opposite end or the bar, aproaching it
from its exterior side. As a result, the Sobel-Feldman image shows the spiral patterns
to extend and produce a morphology which is more ring-like in its outer parts than
the corresponding morphology in the plain image of the disc. In the next sections
we show how the manifolds allow to interpret such ’bridges’, and the Sobel-Feldman
disc images at different snapshots are compared to the manifold-induced patterns in
the disc.
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3.2 Manifold spirals in the N‐body simulation

The computation of the apocentric manifolds WUA
PL1,2 in our N-body computation

proceeds in the general way described in section 1.11.2. In this section we present the
reproduction of the manifolds a time t = 1.625 Gyr of the simulation, and we discuss
whether they support the morphological features of the snapshot, which we identified
in section 3.1.3. The computation of the invariant manifolds, applied in our N-body
first follows the following steps:

1) Having the potential of the N-body in a grid, we use an interpolating technique
(see section 3.1 for more details), in order to continue with the computation the
equations of motion.

2) We specify the value of the bar pattern speed as follows: computing the Fourier
transform of the non-axisymmetric density excess (Eq. (3.2)), the m = 2 mode is
largely dominant for the bar. The angular displacement, for fixed radial distance r,
of the maxima of the m = 2 mode at two successive snapshots separated by a time
∆t yield the m = 2 pattern speed at the distance r:

Ω2(r) ≃=
∆ϕ2(r)

∆t
(3.5)

where ∆ϕ2(r) = ϕ2(r, t+∆t)− ϕ2(r, t), and

ϕ2(r, t) =
1

2
tan−1

(
B2(r, t)

A2(r, t)

)
.

Equation (3.5) can be used also in order to compute the instantaneous pattern speed
of the m = 2 mode as function of the radial distance r via the N-body data at two
successive snapshots. Therefore, we build the radial profile of the angular velocity of
m = 2 mode, which can lead us to the estimation of the pattern speeds. We prefer this
method over extending the Fourier transform (say of A2, B2) in the time domain, since
the latter approach assumes that patterns are characterized by constant frequencies
in a relatively long time window, while ΩP appears to vary in time significantly over
rather short time windows (see below).

Figure 3.8: The m = 2 mode pattern speed as function of the radial distance R (Eq. (3.5)) for the N-body
snapshot t = 1.625. The inner and outer dashed vertical lines mark the position of the Inner or Outer Linblad
Resonance (ILR, OLR) respectively, while the solid vertical line marks the position of the co-rotation resonance
(CR). The bar pattern speed is estimated as the mean value of ΩP (R) in the interval 2.5 kpc ≤ R ≤ 4 kpc.

Figure 3.8 is the radial profile of the angular velocity of m = 2 mode t = 1.625
Gyr. We observe the formation of an approximate ‘plateau’ of the curve Ω2(R) at
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radii 2 ∼ 5 kpc, which is identified to the (constant) pattern speed of the bar. In
subsequent computations we estimate the bar pattern speed Ωbar as the mean value
of Ω2 in the interval 2.5 kpc < R < 4 kpc. The vertical lines mark the positions of
the Inner Linblad Resonance (ILR), co-rotation (CR), and outer Linblad resonance
estimated from the relations (see also section 1.5 for more details on the resonances):

Ω(RILR)−Ωbar =
1

2
κ(RILR), Ω(RCR)−Ωbar = 0, Ω(ROLR)−Ωbar = −1

2
κ(ROLR) .

(3.6)
where the epicyclic frequency κ(r) is given by Eq. (1.31). One notes that the plateau
is well formed after the ILR radius, and it corresponds to a pattern speed Ωbar ≃
42 km/sec/kpc. Inside the ILR, the curve ΩP (R) becomes noisy, as expected since
the ILR radius nearly coincides with the interface between the bar and inner bulge
components. On the other hand, the pleateau is lost, and and a varying form of the
curve Ω2(R) appears close to the corotation and OLR.

3) Having fixed Ωbar we compute the unstable Lagrangian points L1 and L2 in the
Hamiltonian (1.41). Since we use the full N-body potential, the Lagrangian points are
not found at exactly symmetric positions with respect to the disc’s center, while their
Jacobi energies have also a small difference 2|EJ,L1 − EJ,L2|/|EJ,L1 + EJ,L2| ≈ 10−4.
Similar differences hold for the stable Lagrangian points L4 and L5.

4) The next step is the location of the apocenters of the unstable periodic orbits
PL1 or PL2, from which the apocentric invariant manifolds WUA

PL1,2 emanate. This
procedure is described in step 3) of section 1.11.2. In order to estimate the location
of PL1,2, we keep, in each case, the orbit of the family with Jacobi energy midway
between the energies at L1,2 and L4,5, i.e., EJ,PL1 = (EJ,L1 + EJ,L4)/2, EJ,PL2 =
(EJ,L2 + EJ,L5)/2. These energies roughly correspond to the median of the Jacobi
energy distribution for the N-body particles in the corotation zone.

5) We finally compute the apocentric manifold spirals emanating from the co-
rotation zone, emanating from the families PL1 and PL2 as explained in steps 4) and
5) of the section 1.11.2. For the computation of the manifolds WUA

PL1,2, we take an
initial segment on the apocentric surface of section with N=10000 initial conditions
distributed according to φj = φ0,PL1−j∆φ/N , pφ,j = pφ,0,PL1+j∆pφ/N , for the outer
branch, and φj = φ0,PL1 + j∆ϕ/N , pφ,j = pφ,0,PL1 − j∆pφ/N for the inner branch
of WUA

PL1, with ∆φ = 10−3 and ∆pϕ = Su∆φ, where Su is the slope of the unstable
eigendirection of the the monodromy matrix (see Eq. (1.52) at the fixed point PL1

(and similarly for the orbit PL2).
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Figure 3.9: The apocentric surface of section as defined in Eq. (1.49) for the energy EJ = 0.5(EJ,L1+EJ,L4),
considering the equations of motion (1.42) under a frozen potential and bar pattern speed equal to those of the
snapshot t = 1.625 Gyr. The orbits in this surface of section are strongly chaotic. The right panel is a
magnification of the left panel in the region of angular momenta pϕ closer to corotation. The black thick points
represent the successive iterates of orbits with initial conditions taken at various locations within the chaotic
domain. The red points represent iterates of the apocentric invariant manifolds WUA

PL1,2 at the same energy.
The Lyapunov periodic orbits PL1 and PL2 give two blue points (left and right respectively). The thick blue
points mark the position of the fixed points corresponding to the periodic orbits PL1 and PL2, while the thick
blue arrows indicate the corresponding unstable eigendirections. The closed green thick curves are the limiting
curves of the apocentric surface of section, inside which the motion is energetically forbidden. The parts of the
manifolds (and phase) space marked with B,B′ and G,G′ correspond to the manifolds’ morphological features
called ‘bridges’ and ‘gaps’ (see text). The right panel shows a magnification of the left panel in its upper part,
where most lobes of the invariant manifolds develop homoclinic oscillations.

For the snapshot at time t = 1.625 Gyr we proceed the construction of manifolds in
the phase space and the configuration space. Figure 3.9 shows the apocentric surface
of section (plane (φ, pφ), as well as the apocentric invariant manifolds of the PL1

and Pl2 orbits, at the snapshot t = 1.625 Gyr. The manifolds (red points) emanate
as straight lines starting from the fixed points corresponding to the periodic orbits
PL1 and PL2, but they soon develop a very complicated form and they reveal an
intricate dynamics. Therefore, we observe a number of thin lobes, which are the
signature of homoclinic dynamics. We can also observe some recognisable manifolds’
morphological features, such as ’brisdges’ and ’gaps’ (B,B′ and G,G′ respectively
in Fig. 3.9) .Taking segments of initial conditions in the interior of the manifolds
defined by the lobes marked B,B′, we iterate these chaotic orbits (black points), and
find that the distribution of the iterates covers more and more uniformly the area
inside the manifolds’ lobes.

All together, the phase portrait formed at the indicated level of energies (Jacobi
constant EJ = 0.5(EJ,L1+EJ,L4)) is strongly chaotic. While such level of chaos can be
expected even in purely barred models (see Patsis et al. (1997)), the deformation of
all phase space structures due to the strong spiral mode is evident in Fig. 3.9. This
deformation affects the form of the closed limiting curves in the apocentric surface of
section, inside which the motion is energetically forbidden. These curves are found
by locating the pairs (φ, pφ) for which the effective potential satisfies the relation

Veff (rc;φ, pφ) =
p2φ
2r2c

− Ωbarpφ + V (r, φ) = EJ

where rc is the root of the equation ∂Veff/∂r = 0 at r = rc (see section 1.4). The
above limiting curves are similar in shape to the usual curves of zero velocity, but
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Figure 3.10: Left: comparison between the Sobel-Feldman edge detection image of the N-body disc at t = 1.625
Gyr and the corresponding apocentric unstable invariant manifolds WUA

PL1 (red) and WUA
PL2 (blue), see text for

definitions. Besides the overall agreement in the ‘grand design’ forms of spirals, the patterns formed by the
manifolds clearly interpret also several secondary features of the observed patterns formed by the N-body disc
beyond the end of the bar, such as ‘gaps’, ‘bridges’, ‘ring-like structures’ and ‘bifurcations’ of secondary spiral
arms (see text for details). Right: the apocentric manifolds shown together with the limiting curves of the
apocentric surface of section (green), and with the corresponding bridges and gaps marked (compare with Fig.
3.9).

provide the most stringent limits for the apocentric surface of section (see Tsoutsis et
al. (2009)).

In Fig. 3.9 the manifolds’ lobes from PL1 and PL2 encircle the corresponding
limiting curves. However, despite the lack of energetic barrier, we observe that the
uppermost manifold lobes do not fill the whole area around the limiting curves,
but perform a number of oscillations leaving narrow gaps ( G,G′) in the surface of
section. This behavior of the manifolds is dictated by basic rules of dynamics, which
assert that the manifold lobes of the same or different periodic orbits cannot intersect
each other. In this way, we observe that the lobes of the manifold emanating from
PL2 approach the manifold emanating from PL1 in the area marked B, but do not
intersect it, leaving instead a gap G. Similarly, the lobes of the manifold from PL1

approach the manifold from PL2 in the area B′, leaving a gap G′. These features
have a specific morphological correspondence in physical space, as shown below. Let
us note also that the level of Jacobi energy of the surface of section in Fig. 3.9 is
close to the median of the entire distribution of the simulation’s particles in chaotic
orbits, which is consistent with the general expectation that most particles supporting
chaotic spirals should be distributed in the interval of energies between EJ,L1 and
EJ,L4 (Patsis (2006), Tsoutsis et al. (2008))).

Figure 3.10 shows the comparison between the disc morphology and the apoc-
entric manifolds in the configuration space at the snapshot t = 1.625 Gyr. The
Sobel-Feldman image of the N-body disc shows a nearly bi-symmetric set of spirals,
along with secondary ring and spiral features beyond the bar. We observe that the
outer branch of the manifolds supports the spiral arms, while the inner branch of the
manifolds supports the outer shell of the bar. We can also locate the morphological
features of ’gaps’ and ’bridges’, which we pbserved in the phase space in Fig. 3.9.
The gaps G and G′ appear as narrow zones separating the manifolds at the bridges
B, B′. In these ’bridges’, the manifold emanating from the region of L1 approaches,
in a nearly-tangent direction, the exterior side of the manifold emanating from the

84



region of the Lagrangian point L2, and vice versa. The approach takes place via
several oscillations of the manifolds in space, forming patterns recognized in the plot
as bundles of preferential directions occupied by the manifolds. Such bundles mostly
form spiral patterns, while breaks, or ‘bifurcations’, are also observed, splitting in two
some of these bundles. We observe that most of the morphological features of the
apocentric manifolds have their counterparts in the Sobel-Feldman image of the real
patterns of the N-body disc. Finally, the manifolds WUA

PL1 and WUA
PL2 exhibit some

obvious lopesidedness, which is manifested also in the form of the limiting curves
of the apocentric surface of section as projected in physical space. This effect im-
plies that the outflow of particles in chaotic orbits, in the directions indicated by the
manifolds, is not symmetric with respect to the disc center. Since the phase space
outside corotation is open to escapes, particles escaping in chaotic orbits carry with
them linear momentum with a distribution of orientations anisotropic with respect to
the center. The consequences of this fact are discussed in the next section.

3.3 Secular evolution and manifold spirals

The various Fourier modes connected to spiral and other non-axisymmetric features
beyond the bar in the galactic disc evolve in time along with the bar’s secular evo-
lution. We observe how the secular evolution makes the bar slowing down in our
simulation and how the manifolds follow the vividly evolving structures in the disc.
We note that the manifolds WUA

PL1 and WUA
PL2 are geometric objects, which can be

defined at any time snapshot. Hence, these objects can be compared to the shape,
but not to the amplitude of observed non-axisymmetric features. In this section we
first examine the question of how spirals and other non-axisymmetric features are
excited during the time evolution of the N-body system, and which mechanisms are
responsible for the maintainance of appreciable levels of recurrent non-axisymmetric
activity in the disc besides the bar. Then, we test the evolution of the manifolds along
with the observed morphologies by comparing, for different snapshots representative
of the entire secular evolution, the patterns constructed by the invariant manifolds
and the observed morphologies in the disc.

3.3.1 Bar spin‐down

Signs of secular evolution are conspicuous in the simulation. A basic manifestation
of secular evolution in the disc is the bar’s spin down, as shown in Fig. 3.11. The
cyan solid curve in Fig. 3.11 represents an exponential decay law fitting to the
decay of the values of the bar’s angular velocity. The fitting is given by Ωbar(t) =

Ω0 −
(
1− Ω1 exp

(
− t−t0

td

))
, with Ω0 = 42 km/sec/kpc, Ω1 = 11 km/sec/kpc, t0 = 1.625

Gyr, td = 2 Gyr. The resonances also undergo an outward slow displacement as
a result of the Eq. (3.6). As shown in Fig. 3.11 the co-rotation resonance in
our simulation is dispaced gradually from RCR ≃ 6.5 kpc immediately after the bar
formation to RCR ≃ 7.5 kpc at the end of the simulation, and the ILR and OLR radii
from RILR ≃ 1.75 kpc, ROLR ≃ 9.5 kpc to RILR ≃ 3.1 kpc, ROLR ≃ 12 kpc. These
secular evolution phenomena are disccussed in detail in section 1.13.

The bar’s spin down is caused in our simulation also by the following factors: i)
the outward transfer of angular momentum due to the spiral waves generated at the
end of the bar. In fact, a portion of particles traveling with these waves are in escaping
orbits. Thus, as they escape the system they carry with them energy, as well as linear
and angular momentum (see below), ii) transfer of angular momentum due to the
dynamical friction of the bar with the dark halo (see Debattista & Sellwood (1988),
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Debattista & Sellwood (2000), Athanassoula (2002), Athanassoula & Misiriotis
(2002)). In order to investigate the bar halo interaction we produced the Fourier
decomposition of the non-axisymmetric excess density for the halo particles contained
in a planar slab of thickness ∆z = 0.5 kpc centered around the disc center of mass,
at several times of our simulation (Fig. 3.12)). As it is shown in Fig. 3.12), the
bar-halo interaction is accompanied by the generation of a bar-spiral response in the
halo particles immediately after the formation of the bar (Fig. 3.12)). This response
can reach significant m = 2 amplitude (up to C2 ∼ 0.4 at radii associated with the bar,
and C2 ∼ 0.2 at radii associated with the spiral arms). However, after a time t ∼ 2.2
Gyr it is observed to fade to rather negligible amplitudes.

Figure 3.11: Top left: Time evolution of the bar’s pattern speed. The cyan solid curve represents an exponential
decay law fitting, given by Ωbar(t) = Ω0 −

(
1− Ω1 exp

(
− t−t0

td

))
, with Ω0 = 42 km/sec/kpc, Ω1 = 11

km/sec/kpc, t0 = 1.625 Gyr, td = 2 Gyr. The remaining panels show the time evolution of the radii where the
basic disc resonances occur with pattern speed equal to Ωbar, namely RILR (top right), RCR (down left) and
ROLR (down right).
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Figure 3.12: Fourier decomposition of the non-axisymmetric excess density for the halo particles contained in a
planar slab of thickness ∆z = 0.5 kpc centered around the disc center of mass, at the times t = 1.650 Gyr (top
left block), t = 1.95 Gyr (top right block), t = 2.25 Gyr (down left block), and t = 2.7 Gyr (down right block).
Left panel in each block: non-axisymmetric density excess map. Right panel in each block: Fourier amplitudes
Cm(R) as function of R for the modes m = 2 (red), m = 3 (green) and m = 4 (blue).

3.3.2 Incidents of spiral and other non‐axisymmetric activity

In this subsection we examine the incidents of spiral activity and we assume that
they show an oscillating profile as they evolve in time. A quantification of the m = 2
oscillations associated with spiral and other non-axisymmetric activity in the disc can
be done via the time variations of the Fourier amplitude C2(R) at specific radii R (see
Eq. (3.3)).

We examine the time variation of C2(R) for different radii (see the top panel of
Fig. 3.13). An inner group of C2(R) curves, for R = 3, 4 and 5 kpc, correspond to
the amplitude of the m = 2 mode at radii within the range of the bar’s major axis.
The bar growth is observed to continue up to t = 1.6 Gyr, leading to m = 2 bar
amplitudes larger than unity. After this growth phase, the bar m = 2 mode stabilizes
in a time interval between t = 1.6 and t = 2.1 Gyr, which overlaps with the evolution
of the buckling instability. After a small in size but abrupt drop at t = 2.1, the
bar’s amplitude starts undergoing slow decay, which lasts for the whole remaining 2
Gyr of the simulation, but keeping always a value of the order of unity. The m = 2
amplitude in general falls with the radial distance R at intermediate distances between
CR and OLR, but it tends to stabilize to a mean level ∼ 0.2 in an annulus of radii
8 ≤ R[kpc] ≤ ROLR.

The outer group of C2(R) curves corresponds to distances R = 8, 9, 10 kpc (solid
red curves in the top panel of Fig. 3.13)), where the spiral arms in the disc are
located. We observe that, after the bar formation, the amplitude C2 within this
annulus undergoes time oscillations which are nearly in-phase for all radii within the
annulus. We observe a local maximum of these oscillations at approximately t ∼ 3
Gyr, where the C2 amplitude exceeds the value 0.2. Afterwars the oscillations become
smaller and they do not exceed the value 0.2. As exemplified below, all consequent
peaks of the C2 mode found in the time interval 1.5 ≤ t[Gyr] ≤ 4 are connected
with ‘incidents’ of non-axisymmetric activity in the outer parts of the disc. In order
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Figure 3.13: (Top panel) Time evolution of the m = 2 Fourier amplitude C2 in the time interval 1 ≤ t[Gyr] ≤
4. The value of C2 is shown at the distances R = 3, 4 kpc (dotted blue), R = 5 kpc (solid line, blue), R = 6, 7
kpc (dotted green), and R = 8, 9, 10 kpc (solid red). (Bottom panel) Time evolution of the m = 1 Fourier
amplitude C1 at R = 3 kpc (dotted blue), R = 4 kpc, (solid blue), and R = 12 kpc (thick solid red).

to estimate the period and the amplitude of these oscillations, we take the mean C2

of the values of C2 at distances corresponding to the three lowermost curves in the
top panel of Fig. 3.13. Through this method we locate the incidents by considering
the times when the mean C2 reaches the maximum amplitude. We thus identify a
sequence of incidents around the times:

t[Gyr](incident) = 1.625, 1.8, 1.95, 2.2, 2.375, 2.525, 2.725, 2.950, 3.1, 3.325, 3.75, 3.95.
(3.7)

By the above sequence, an approximate period T ≈ 0.2 Gyr can be deduced, but with
large fluctuations ∆T ∼ 0.1 Gyr. It is intriguing to note that the bar, in the same
time interval, has a pattern speed Ωbar ≈ 40 km/sec/kpc, i.e., period Tbar ≈ 0.15 Gyr
at the starting time of the sequence, and Ωbar ≈ 30 km/sec/kpc, i.e., period Tbar ≈ 0.2
Gyr at the ending time of the sequence. Thus, the m = 2 incidents of the sequence
(3.7) seem to be roughly in resonance with the bar. However, in order to investigate
the coupling between the bar and oscillations of the outer m = 2 modes, one must
also remark that the bar also exhibits some extra phenomena relating to the time
variations of the m = 1 mode.

As seen in the bottom panel of Fig. 3.13, after the bar’s growth stabilizes at t = 1.6
Gyr important m = 1 oscillations with an amplitude exceeding the value of C1 ∼ 0.1,
at distances inside the bar’s length. In the time interval between t = 2 Gyr and t = 3
Gyr these oscillations have an approximate period T ∼ 0.4 Gyr. These osxcillations
show no significant decay in time over the whole simulation. Oscillations m = 1
appear also in the outer disc, but they are not in phase with those of the inner disc
and they decay in time.

In order to observe the evolution and the periodicity of the incidents of the non-
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asxisymmetric activity we construct density excess maps, and the corresponding radial
profiles of the Fourier modes m = 1, 2, 3, 4, for different times of the simulation. We
can also see how these incidents of non-axisymmetric activity appear to affect the disc’s
morphology beyond the bar. Based on phenomenological criteria, we distinguish two
types of incidents, exemplified in Figs. 3.14 and 3.15 respectively, as follows:

-Incidents of inner origin: an incident of inner origin corresponds morphologically
to a spiral wave emanating from the end of the bar, and travelling outwards, until it
becomes gradually detached from the bar. An example is given in the sequence of left
panels of Fig. 3.14, showing the density excess maps at nine snapshots around the
time t = 2.2, which belongs to the sequence (3.7). In Fig. 3.14 a local maximum in
C2(r) curve rises inside the corotation, and then it gradually propagates to the outer
parts of the disc. This phenomenon corresponds to an outwards ‘emission’ of the
spiral wave from the bar, which is evident after t = 2.15. A similar phenomenon, but
to lesser extent, appears in the m = 4 mode. Notice also the significant rise of the
m = 1 and m = 3 modes well inside the bar (at radii R < 5 kpc) at the initial phase of
the incident. At earlier times, one observes the appearance of small leading extensions
of the bar, so that the whole incident is reminiscent of swing amplification. The
creation of a leading component can be associated with flow of material approaching
the bar in the leading direction by moving along outer families of periodic orbits
such as the 2:1 family (Patsis; private communication). Finally, the spiral wave starts
fading out when it becomes detached from the bar.

Figure 3.14: Left: Snapshots of the density excess color map of the disc at the indicated times. An ‘incident of
inner origin’ occurs, whose maximum, as measured in the C2 average value in the outer disc, takes place around
t = 2.2. Right: the profiles of the Fourier amplitudes Cm as function of the radial distance R at the same
snapshots, for the modes m = 1 (cyan), m = 2 (red), m = 3 (green), and m = 4 (blue). The dotted vertical
line marks the position of the bar’s co-rotation. The incident appears mostly as an excitation of the m = 2 mode
inside co-rotation, starting at t = 2.075, which propagates outwards (to larger R) at subsequent times.

- Incidents of outer origin: an incident of outer origin corresponds morphologically
to a rise of the of the C2(r) curve in the outer parts of the disc, as shown in Fig. 3.15.
Contrary to incidents of inner origin, in those of outer origin the excitation of the
m = 2 mode takes place entirely outside corotation, and propagates both inwards and
outwards, apparently being reflected at corotation. Notice also, again, the significant
rise of the m = 1 and m = 3 modes inside the bar at the initial phase of the incident
(at radii R < 5 kpc). The left panels in Fig. 3.15 indicate that the m = 2 perturbation
takes place at radial distances beyond r = 12 kpc, initially traveling inwards, and
then appearing to be reflected at corotation (at t = 2.95) whereby the disturbance
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appears to travel outwards. Note that this reflection provides the best criterion to
characterize incidents of outer origin, since weak spiral extensions in the end of the
bar may always be present, and hence appear to connect morphologically with the
disturbance after the latter one reaches corotation.

Figure 3.15: Left: Snapshots of the density excess color map of the disc at the indicated times. An ‘incident of
outer origin’ occurs around t = 2.95. Right: the profiles of the Fourier amplitudes Cm at the same snapshots
(m = 1 cyan, m = 2 red, m = 3 green, m = 4 blue). The dotted vertical line marks the position of the bar’s
co-rotation.

Figure 3.16: Non-axisymmetric density excess image of the disc for all snapshots corresponding to the maxima
of consecutive incidents of non-axisymmetric activity, taking place at the sequence of times given in Eq. (3.7).

We then accumulate the density excess maps of the disc of all the snapshots
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belonging to the sequence (3.7) in Fig. 3.16, corresponding to incidents of spiral
activity and we attempt to distingish if they are of inner or outer origin. Incidents of
inner origin are clearly associated with the time snapshots t = 1.625, t = 1.95, t = 2.2,
t = 2.725 Gyr, while incidents of outer origin are associated to the snapshots t = 2.375,
t = 2.95, t = 3.75, and t = 3.95 Gyr. On the other hand, the classification, either by
the morphological criterion, or by the criterion of reflection of the m = 2 Fourier
transform, is unclear for the incidents taking place at the snapshots t = 1.8, t = 2.525,
t = 3.1, and 3.325 Gyr. In general, most incidents of inner origin, which are those
mainly connected with spiral activity, take place in the interval 1.6 < t[Gyr] < 3, while
incidents of outer origin are observed throughout the whole simulation time span.
Finally, we observe that the disc overall becomes less responsive to non-axisymmetric
perturbations as the time goes on, with a transition from stronger to weaker responses
discernible at a time t ≈ 3 Gyr.

3.3.3 Manifold spirals and the time evolution of non‐axisymmetric pat‐
terns in the disc

One main question that arises from the above study of the N-body simulation is to
what extent the response of the disc to internal or external perturbations is manifold-
driven, as well as how a manifold-driven response can be reconciled with the presence
of multiple pattern frequencies in the disc. In order to answer these questions we
reproduce the apocentric manifoldsWUA

PL1,2 for consecutive snapshots of the simulation
(as in section 3.2) and we compare them with the morphologies of the disc both in
minima and maxima of the non-axisymmetric activity.

As in Fig. 3.7 for snapshot 1.625 Gyr, we reproduce the Sobel-Feldman images
of the disc for several times of the simulation (see Fig. 3.17) in order to recover
patterns which are quite fuzzy in simple surface-density processed images of the disc
and distinguish the incidents of spiral activity in the pure N-body images. In Fig.
3.13 we observe nearly in-phase oscillations of the amplitude C2 of m = 2 structures
in the outer parts of the disc. We focus on such oscillations in the time interval
1.8 < t[Gyr] < 2.8, in which we mostly observe incidents of non-axisymmetric activity
of inner origin, i.e., connected with an enhancing of the spiral structure. To be more
precise on the times of occurence of such incidents with respect to the approximate
sequence (3.7), we choose a reference radius R = 9 kpc which is between the CR and
OLR at all snapshots. Six consecutive local maxima and six minima of C2[9kpc] occur
at the sequence of times

t(max,9kpc)[Gyr] = 1.8, 1.95, 2.2, 2.375, 2.525, 2.725

and minima at the sequence of times

t(min,9kpc)[Gyr] = 1.875, 2.05, 2.275, 2.425, 2.625, 2.85 .

The left panels of Figure 3.18 show the Sobel-Feldman images of the disc in the
above times, alternating between a maximum and a minimum of C2[9kpc]. Within
a timescale as short as one bar’s period one finds vivid variations of the patterns
identified in the disc beyond the bar. The Sobel-Feldman algorithm enables us to
identify better the maxima and minima of the spiral activity. In particular, some
form of spiral activity is identifiable in all snapshots, although the morphology of
these spirals (number of arms, pitch angle, radial extent, luminosity etc) seem to
rapidly change. This fact alone indicates that these spirals cannot be considered as
one rigid pattern evolving with nearly fixed pattern speed. We note also that, besides
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shape-evolving spiral patterns, we distinguish in these plots other features commonly
observed in barred galaxies, which also appear and disappear in a recurrent form, as,
for example, inner rings (as in the panels for t = 1.8 Gyr or t = 2.375 Gyr) or outer
rings (e.g. at t = 2.95 Gyr in Fig. 3.17).

Figure 3.17: The Sobel-Feldman images of the disc in fourteen snapshots corresponding to the alternating local
maxima and minima of C2[9kpc] (except for the minimum at t = 1.725 Gyr, see text). Some spiral pattern is
identifiable in all these plots, except for the last one at t = 2.95, a time which coincides with the maximum of
an ‘outer incident’. Inner ring, inner spiral or outer ring structures appear in several of these snapshots.

Figure 3.18 shows the comparison between the Sobel-Feldman images of the disc
in the above snapshots and the corresponding apocentric manifolds, computed in all
cases as described in section 1.11.2. In particular the right panels of Figure 3.18
are obtained by a superposition of the apocentric manifolds calculated at the cor-
responding time of the simulation on top of the same Sobel- Feldman images as
in the left panels of Fig. 3.18. The manifolds show an agreement with the Sobel-
Feldman images in shape and orientation of the non-axisymmetric structures. The
level of coincidence of the manifolds with the non-axisymmetric patterns detected
by the Sobel-Feldman algorithm varies between snapshots. By (rather subjective)
visual comparison, one distinguishes snapshots of generally good agreement (e.g.
t = 1.95, 2.275 or 2.725 Gyr, and other ones of worse agreement (e.g. t = 2.425, 2.625
Gyr). The following are some basic remarks regarding this comparison:

- The manifolds and the Sobel-Feldman detected patterns exhibit similar degrees
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Figure 3.18: Left: Sobel-Feldman images of the disc in twelve snapshotstext). Right: the apocentric manifolds
for the same snapshots (colours as in Fig. 3.10), compared to the Sobel-Feldman detected patterns in the disc
plane for the times of the sequence of successive maxima and minima of C2[9kpc].

of complexity. In the case of the invariant manifolds, as explained in section 3.2 this
complexity is associated with the chaotic structure of the phase space, which leads to
the effect of homoclinic manifold dynamics. In the disc plane, the homoclinic lobes
appear as oscillations of the patterns formed by the manifolds. Also, they result in
the systematic appearance of the features called gaps, bridges and bifurcations, which
are commonly recognized in nearly all panels of Fig. 3.18. Such features are also
present in the Sobel-Feldman detected patterns in the disc. We note that gaps and
bridges can be recognized also in plots of ‘flux-tube’ manifods (see Athanassoula
(2012)), but they are better visualized using the apocentric manifolds.

- In nearly all patterns, here are small phase differences (≤ 50 between some
manifold lobes and the corresponding (e.g. t = 2.375 Gyr), the patterns formed by the
invariant manifolds agree in shape, but are in phase difference with the Sobel-Feldman
detected patterns. This might be a dynamical phenomenon (disc response has delay
with respect to the manifolds), but it may also be an artefact of the visualization by
the apocentric manifolds, since the disc’s local density maxima do not necessarily
coincide with the individual orbits’ apocenters (Tsoutsis et al. (2008)).

- In all these panels, for computational convenience we just choose one value of
the Jacobi constant for computing the invariant manifolds, selected near the median
of the distribution of particle Jacobi energies in the corotation region. Despite the fact
that the invariant manifolds retain a rather robust pattern against small changes of
the Jacobi energy (Tsoutsis et al. (2008)), small variations in shape, not captured
in Fig. 3.18, are expected at energies different from the chosen ones. Superposed
one on top of the other, these manifolds form a more robust spiral pattern called
‘manifold coalescence’ (Tsoutsis et al. (2008)). The manifold coallesence is a better
representation of chaotic dynamics in the co-rotation zone than the manifolds of any
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single family. Nevertheless, its computation for many snapshots is a voluminous work
extending outside the scope of a manifold survey as in Fig. 3.18.

- Finally, although Fig. 3.18 shows a clear correlation bewteen manifolds and
Sobel-Feldman detected non-axisymmetric patterns, not all patterns in the disc need
necessarily be linked to the manifolds. In fact, structures such as outer rings or slowly
rotating outer spirals may not be connected with chaotic flows at all, and be, instead,
manifestations of a form of density wave theory using regular orbits (see, for example,
Boonyasait et al. (2005), Struck (2015)).

3.3.4 Consistency with multiple pattern speeds

It is well known that most observations and N-body simulations of barred spiral
galaxies give evidence for multiple pattern speeds in the galactic disc, as it is analysed
in the subsection 1.12.1. In particular, the spiral arms rotate at a different pattern
speed than the one of the bar. This is also an argument against manifold-supported
spirals (see, for example, Speights & Rooke (2016)). In the paper of Efthymiopoulos
et al. (2019), which we particularly analyse, however, the manifolds are computed
with the assumption that the whole galactic structure corotates with a single pattern
speed, the pattern speed of the bar and as it is shown in Fig. 3.18 they are in good
agreement with the N-body morphological features. Note also that measured pattern
speeds can be affected both by the change in morphology and by the transport of
material along invariant manifolds (Athanassoula (2012).

In order to quantify the time evolution of the located pattern speeds in our N-body
experiment, we produce radial profiles of the angular velocity of the m = 2 mode, as
in Fig. 3.8, for different times of the simulation. Figure 3.19 shows these profiles for
the same snapshots as in Fig. 3.18, corresponding to the consecutive maxima and
minima of the C2[9kpc] amplitude. In all these snapshots, the inner plateau that is
observed corresponds to a nearly constant value of Ω2(R) ans it marks the pattern
speed of the bar. This plateau extends up to a distance equal to ∼ 0.6 − 0.8 the
bar’s co-rotation radius. However, important fluctuations of the pattern speed Ω2

beyond the corotation radius are observed at all time snapshots after t = 1.8 Gyr. In
particular, these fluctuations correspond to the alterations from maxima to minima of
the m = 2 spiral activity. Examining more carefully the fluctuating part of the Ω2(R)
profile between CR and the OLR, the following evolution pattern is identified: at the
snapshots identified by the maxima of C2[9kpc] (denoted by ‘max’ in Fig. 3.19),
the profile of Ω2, after a possible hump near corotation, starts decaying, but tends to
stabilize again to a value Ω2 < Ωbar forming a nearly outer plateau as it approaches
the OLR . This outer plateau may reveal the coexistence of a second pattern speed in
the galactic disc. The values of this second ‘plateau’ are estimated at ∼ 20 km/sec/kpc,
which are a factor 1.5−2 smaller than the (time decaying) value of Ωbar. However, the
second plateau disappears at the minima of C2[9kpc] (denoted by ‘min’ in Fig. 3.19).
In these minima, the Ω2 profile beyond corotation becomes constantly decaying. Most
notably, the decay leads to Ω2 ≈ 0 at a radius R found always to be very close to
the OLR radius. Note that decaying profiles of the pattern speeds are reported in
observations (e.g Speights & Westpfahl (2012), Speights & Rooke (2016)). It is of
interest to check whether the criterion of where the decaying curve Ω2(R) terminates
can be exploited in real observations for the location of resonances. A systematic
study of this topic is proposed.
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Figure 3.19: The pattern speed of the m = 2 mode (Eq. (3.5)) as function of the distance R from the disc
center at the same snapshots as in Fig. 3.18. The inner plateau at distances between 2 kpc and 4 kpc determines
the bar pattern speed. The two vertical lines in each panel mark the position of corotation and the OLR. The
value Ω2(R) undergoes fluctuations in the interval of distances between CR and OLR, which are co-related with
whether we are close to a minimum or maximum of the m = 2 mode in this interval (see text).

In the previous subsection we observed in Fig. 3.18 no appreciable difference in
the levels of agreement between manifolds and the disc morphologies depending on
whether we are at a maximum or min- imum of C2[9kpc]. As a result, the level of
coincidence of the manifolds to the observed N- body morphologies isindependent of
the variability of the pattern speeds beyond the bar. One may remark, in this respect,
that multiple patterns enhance chaos (Quillen (2003), Minchev & Quillen (2006))
and thus render more particles’ orbits ruled by manifold dynamics. On the other
hand, whether or not the manifolds are populated by sufficiently many particles to

95



dominate the global patterns in the disc depends on mechanisms able to inject new
particles in chaotic orbits. Such mechanisms are distinct from the manifolds.

3.3.5 Disc thermalization

Disc thermalisation phenomena play an important role in the evolution of the disc
morphologies and in the coherence of the structures. In this subsection we examine
the time evolution of the disc’s ‘temperature’, i.e., velocity dispersion profile, which
is a crucial factor affecting the disc’s responsiveness to all internal or external per-
turbations as those described in previous subsections. Regarding, in particular, the
manifolds, the region of interest is the disc domain between CR and the OLR. We
quantify disc temperature in an annulus of width ∆R around the radius R by the
radial velocity dispersion σR =

∑
(VR,i − µR)

2, where VR,i is the radial velocity of
the i-th particle in the annulus and µR =

∑
i VR,i. Similar formulas hold for the

dispersion in the transverse and vertical velocity components, but they are connected
to the radial one via the epicyclic approximation (Binney & Tremaine (2008)).

Figure 3.20 shows the profile σR(R) at four different times, namely t = 1.625,
t = 2, t = 2.5 and t = 3 Gyr. The ordinate is in logarithmic scale, thus straight lines
indicate exponential scalings with R. At t = 1.625 Gyr, the dependence of the radial
velocity dispersion on R can be approximated by the union of two exponential profiles,
one for the inner part of the disc (in the interval Rin ≤ R ≤ RCR), with law σR ≈
σ1 exp(−(R−Rin)/R1), with σ1 ≈ 150 Km/sec, R1 ≈ 6 kpc, Rin ≈ 2 kpc, and another
for the outer part of the disc (R > RCR), with law σR ≈ σ2 exp(−(R−RCR)/R2), with
σ2 ≈ 70 Km/sec, R2 ≈ 15 kpc.

Figure 3.20: Profile of the radial velocity dispersion σR(R) at four different times, namely t = 1.625 Gyr
(thick blue with points), t = 2 Gyr (thick green solid), t = 2.5 Gyr (dotted red) and t = 3 Gyr (solid red).
The dashed vertical lines mark the position of CR, and the solid vertical lines mark the position of the OLR at
t = 1.625Gyr (blue) and t = 3 Gyr (red) respectively.

Three more curves in Fig. 3.20, corresponding to t = 2, 2.5 and 3 Gyr, show how
the profile σR vs. R evolves in time. At radii beyond the last position of the OLR
(R > 11 kpc), the velocity dispersion increases in time by a factor between 1.1 and
1.2 in a time interval ∼ 1.5 Gyr, and the corresponding exponential profile becomes
less steep. We notice, however, that the profile becomes nearly horizontal, leading
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to an ‘isothermalization’ (i.e. constant velocity dispersion) in a domain of the disc
roughly between R = 6 kpc and R = 11 kpc. As seen in Fig. 3.20, the inner limit
of this domain nearly coincides with the innermost position of CR (at t = 1.625 Gyr),
while the outer limit nearly coincides with the outermost position of the OLR (at
t = 3 Gyr) in the considered time interval. One remarks that, as they move outward,
these resonances scan nearly completely the domain where the isothermalization takes
place. Physically, the domain RCR < R < ROLR is where chaotic motions completely
dominate the dynamics. The corresponding particles belong to the well known ‘hot
population’ (Sparke & Sellwood (1987)), whose orbits span the whole domain while
recurrently entering also inside corotation. As a result, the strongly chaotic dynamics
brinks about an equalization of the velocity dispersion in the whole domain. On
the other hand, we observe that the velocity dispersion profile remains practically
invariant at distances smaller than the initial position of the ILR (at ≈ 3 kpc). In fact,
this resonance appears to act as a barrier for ‘heat’ (random kinetic energy) transfer
across the disc.

The key remark, regarding the above time evolution, is that although the incidents
and time evolution of non-axisymmetric activity appear to heat the outer parts of the
disc, isothermalization in the domain scanned by the CR and OLR resonances implies
that a part of the disc between the CR and OLR becomes cooler at later simulation
times. Physically, particles in the outer parts of the bar migrate outwards, carrying
with them kinetic energy in the form of random motions. In Fig. 3.20, the initial and
final profiles σR(R) intersect at a radius Rc ≈ 8.5 kpc. The bar’s co-rotation at the
time of the initial profile is at RCR ≈ 6.4 kpc, while it shifts to R′

CR ≈ 7.5 kpc at the
final time. Estimating by RCR < R < Rc the disc domain where manifolds rule the
response of particles’ orbits to external perturbations, this domain has a width ∼ 2.1
kpc at the initial time t = 1.6 Gyr, which is limited to ∼ 1 kpc at t = 3 Gyr, while
this domain is expected to shrink further to negligible widths as the bar’s co-rotation
keeps moving outwards.
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Chapter 4

Multiple pattern speeds and the
manifold spirals in a simulation of
a barred spiral galaxy

Parts of the results of the present chapter were published as:
Zouloumi K., Harsoula M. and Efthymiopoulos C., 2024, MNRAS,529(3), 1941–1957

In sequence of the paper of Efthymiopoulos et al. (2019) described in Chapter
3. We revisit the same simulation of Kyziropoulos et al. (2016), where we estimated
that the spiral arms rotate at a different pattern speed than the bar in Chapter 3
(see subsection 3.3.4). Although this work pointed out the existence of a second
pattern speed in the N-body the manifold spirals were produced with the assumption
of unique pattern speed. In this Chapter we introduce the application of NAFF
(Numerical Analysis of the Fundamental Frequencies, Laskar (1990), Laskar et al.
(1992), Laskar (1993)) for the determination of the pattern speeds in a N-body model
simulation of a barred spiral galaxy (Efthymiopoulos et al. (2019)). Our main new
results are: i) We demonstrate that the NAFF algorithm allows for a determination
of pattern speeds far more precise than with traditional methods based on the time-
Fourier spectrum of the m=2 mode. ii) We apply the theory of Efthymiopoulos et al.
(2020), showing how the spiral arms in the simulation can be modelled by manifolds,
despite the fact that, as NAFF clearly shows, the spiral arms have a pattern speed
different than the one of the bar in the same simulation.

The structure of the paper is as follows: Section 4.1 summarises the fundamentals
of the theory behind the NAFF algorithm as well as some general estimates on the
method’s precision. The presentation is made in a form adopted to the use of the
method in the particular problem considered, namely the detection of the various
pattern speeds in a galactic disc. Section 4.2 gives the results from the application
of the method to the determination of the pattern speeds and the resulting semi-
analytical modelling of the potential using the simulation’s data. Section 4.3 gives
the reconstruction of the manifolds in the two-pattern speed model as well as their
comparison with the structures seen in the simulation.
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4.1 The method of Numerical Analysis of the Fundamental
Frequencies (NAFF)

In this section, we briefly summarise the method of Numerical Analysis of the Fun-
damental Frequencies (NAFF) for the determination of the fundamental frequencies
via a time series extracted from a multiply periodic system. Our presentation be-
low uses some formulas adapted to, and emphasizing, those points necessary for the
implementation of the method to the data of our N-body simulation.

Besides the issue of accuracy, we point out already at this point, a main difference
between the NAFF algorithm and the usual Discrete Fourier Transform, often applied
for obtaining the pattern speeds in N-body experiments (Sellwood & Sparke (1988)),
concerning the nature of the system to which each method is applied. The Discrete
Fourier Transform can determine the fundamental frequencies of a periodic system
which is represented by a sum of sine and cosine waves, whose frequencies are
integer multiples of the same, unique fundamental frequency of the system. Instead,
NAFF can locate the constituent frequencies of a multiply periodic system, represented
by quasi-periodic time series. Such series are sums of sines and cosines of these
constituent frequencies.

Consider a continuous in time series of the form:

H(t) =

Nk∑
k=1

Ck cos(ωkt) +Dk sin(ωkt) (4.1)

where the Nk frequencies ωk, with k = 1, . . . , Nk, are not necessarily commensurate.
The real quantities Ck and Dk are called the ‘amplitudes’. Assume we possess a dis-
cretely sampled information on the time series through the valuesH(ti), i = 0, 1, , ..., N
in the time interval t0 < ti < tN . The quantity T = tN − t0 is called the time length of
the series.

Based on this discrete time series data, the NAFF algorithm allows to recover the
frequencies ωk with a precision O(1/T 2) (or better, using a Hanning filter, see below),
and the amplitudes Ck, Dk with a O(1/T ) precision. To demonstrate this fact consider
the integrals:

Fc(σ) =
2

T

∫ T

0

[
cos(σt)

∑
k

(Ck cos(ωkt) +Dk sin(ωkt))

]
dt (4.2)

Fs(σ) =
2

T

[∫ T

0
sin(σt)

∑
k

(Ck cos(ωkt) +Dk sin(ωkt))

]
dt (4.3)

σ ∈ ℜ, as well as the corresponding Power Spectrum function P (σ) defined by:

P (σ) = Fc(σ)
2 + Fs(σ)

2. (4.4)

For a fixed set (Ck, Dk, ωk), the integrals (4.2) and (4.3), as well as the power spectrum
(4.4), are explicit functions only of σ. Pick now, one of the frequencies ωk and define
the variable δσ = σ − ωk. Let

G(δσ) =
dP (ωk + δσ)

d(δσ)
. (4.5)

Then, the power spectrum P (σ) has a local maximum at a value δσ = δσk satisfying:

G(δσk) =

(
dP (ωk + δσ)

d(δσ)

)
δσ=δσk

= 0 . (4.6)
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The following bound is found below as regards the exact solution of Eq. (4.6):

|δσk| ≤
6(Ck

2 + CkDk +Dk
2)

(Ck
2 +Dk

2)ωkT 2
. (4.7)

This implies that the function P (σ) has a local maximum at a distance which is
O(1/ωkT

2) close to the frequency ωk.
Figure 4.1 shows a toy example of the behavior of the integrals Fc(σ), Fs(σ) as

a function of σ and of the corresponding power spectrum P (σ), choosing a simple
quasi-periodic function:

H(t) = 0.5 cos(t+ π/6) + 0.8 cos(t+ π/4) (4.8)

corresponding to Nk = 2, ω1 = 1, ω2 =
√
2, C1 = 0.433, C2 = −0.566, D1 = −0.25,

D2 = −0.566. The integrals Fc(σ), Fs(σ) of Eqs. (4.2) and (4.3) and the power
spectrum P (σ) of Eq. (4.4) are computed as a function of σ with σ in the range
0 ≤ σ ≤ 2.5. We produce a discretely sampled time series with N = 1000 points
equispaced in the interval 0 ≤ t ≤ T = 100, and use the trapezoidal rule to compute
the integrals Fc(σ) and Fs(σ).

As shown in Fig. 4.1 the power function P (σ) takes locally the well known form
of a sinc function sinc(x) = sin(x)/x (see derivation below, or Binney & Spergel
(1982)) around two distinct local maxima which nearly correspond (with the error
dσ) to the frequencies ω1 = 1, ω2 = 1.414. Also, the quantity

√
P (σ) near each local

maximum is nearly equal to the amplitudes 0.5 and 0.8 respectively. Errors in these
numbers are due to the sidelobes of the sinc function around each principal lobe.
These can be reduced using a Hanning filter han = 1 + cos

(
πt
T

)
., i.e., computing

Fch(σ) =
2

T

∫ T

0
cos(σt)[Ck cos(ωkt) +Dk sin(ωkt)] ×[

1 + cos
(
πt

T

)]
dt (4.9)

Fsh(σ) =
2

T

∫ T

0
sin(σt)[Ck cos(ωkt) +Dk sin(ωkt)] ×[

1 + cos
(
πt

T

)]
dt . (4.10)

The respective power spectrum is:

Ph(σ) = Fch(σ)
2 + Fsh(σ)

2 . (4.11)
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Figure 4.1: (a) The NAFF power function P (σ) in the case of the toy function H(t) of Eq. (4.8) discretely
sampled with N = 1000 points equispaced in the interval 0 ≤ t ≤ T = 100. (b) The power function computed
with a Hanning filter.

Having obtained a numerical approximation for the power function P (σ) we then
select that value σ = σmax for which P (σmax) is maximum. The fundamental fre-
quency is then identified as: ω1 = σmax, with an error O(1/T 2) (see the Appendix B),
while the amplitudes C1, D1 are identified as C1 = Fc(σjmax), D1 = Fs(σjmax), with
an error O(1/T ).

Subtracting, now, the corresponding sine and cosine terms from the time series
leads to a new time series H(1)(ti) = H(0)(ti)−C1 cos(ω1(ti− t0))−D1 sin(ω1(ti− t0)),
in which the procedure can be repeated. In general, working iteratively with the
series

H(l)(ti) = H(l−1)(ti)− Cl cos(ωl(ti − t0))−Dl sin(ωl(ti − t0)),

l = 1, . . . , Nl (4.12)

and recomputing the integrals (4.9) and (4.10) for the time series H(l)(t) allows to
specify, one by one and by order of importance, the Nl more important frequencies
and corresponding amplitudes of the sine and cosine terms in the time series.

4.2 Mode (m=2) analysis in the N‐ body galatic model

4.2.1 NAFF determination of the pattern speeds

Section 4.1 provides a short description of the generic NAFF algorithm. In the present
section we discuss how to apply NAFF to the determination of the two most important
pattern speeds and amplitudes of the corresponding density/potential modes in the
N-body simulation under study.

In the N-body simulation we quantify the non-axisymmetric structures in the disc
by Fourier-analysing the disc’s surface density/potential. We separate the space in a
polar grid of 50 logarithmically equi-spaced radial bins from r0 = 0.1 kpc to r = 15
kpc, and 180 azimuthal bins from φ = 0 to φ = 2π. The surface density (number
of disc particles per bin area) at time t Σ(r, φ, t) is Fourier-analysed into 10 angular
modes:

Σ(r, φ, t) = A0(r, t) +
10∑

m=1

Am(r, t) cos(mφ) +
10∑

m=1

Bm(r, t) sin(mφ) . (4.13)
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In the present study we are interested mostly in the m=0,2 modes. From the N-
body data we compute numerical time series A2(r, ti), B2(r, ti), ti = i × 0.025 Gyr,
i = 0, ..., 160, covering the entire interval of 4 Gyrs and computed for all radii r in the
above logarithmic grid. In the sequel we focus on the m=2 modes coexisting in the
disc at one epoch. Analysis of higher harmonics (m>2) does not alter significantly
the picture.

In our simulation, we have in total i = 1, ..., 160 snapshots corresponding to the
times ti = i×0.025 Gyr. We divide the plane of the galactic disc into q = 1 . . . , 50 rings
of radius rq defined by a logarithmic grid in the interval 0.1 kpc ≤ r ≤ 15 kpc, and
180 angular bins around the angles φp = pπ/180, p = 1, . . . , 180. Fixing a time ti and
radius rq , the angular dependence of Σ(rq, φ, ti) is Fourier-analysed by the standard
method, yielding the Fourier amplitudes Am(rq, ti), Bm(rq, ti), m = 0, . . . , 10 (see
Eq. (4.13)). We then focus on the evolution of the functions A0(rq, t), A2(rq, t) and
B2(rq, t).

Due to the fact that the disc in the simulation undergoes significant secular evolu-
tion, it makes no sense to assume a quasi-periodic character for the functions A2(rq, t)
and B2(rq, t), i.e., a constant in time spectrum of frequencies, over the whole time
span of the simulation. At most we can assume that the frequencies remain nearly
constant over time windows corresponding to few bar/spiral revolutions. Due to this,
we work with the discretely sampled time series A2(rq, t), B2(rq, t) over time windows
of limited length T = 0.5 Gyr, with n = 21 data points A2(rq, ti) and B2(rq, ti) per ring,
with ti = t0 + i∆t, where t0 is the initial time of each time window and ∆t = 0.025
Gyr. The sampling rate is imposed by the rate of saving of the N-body snapshots
during the simulation.

Fixing one time window, to implement NAFF, we then proceed by the following
steps:

i) Sample the frequency space by a dense grid of values σk = k∆σ, with ∆σ much
smaller than the DFT (Discrete Fourier Transform) leakage limit ∆σk << 2π/T . Here
we take ∆σk = 1.256 Gyr−1 = 0.2π/T , but a finer frequency resolution can be chosen
at practically no computational cost.

ii) Compute the NAFF Power Function

Pk(rq, σk) = ack
2(rq, fk) + ask

2(rq, σk) (4.14)
+ bck

2(rq, σk) + bsk
2(rq, σk)

where the coefficients ack, ask, bck, bsk are computed by a Hanning-filter-weighted
trapezoidal rule approximation to the integrals (4.9), (4.10), given by the sums:

ack(rq, σk) ≃
2∆t

T

(
A2(rq, t0) + (4.15)

n−1∑
i=1

A2(rq, ti) cos(σk(ti − t0))

[
1 + cos

(
π(ti − t0)

T

)])

ask(rq, σk) ≃
2∆t

T

(
(4.16)

n−1∑
i=1

A2(rq, ti) sin(σk(ti − t0))

[
1 + cos

(
π(ti − t0)

T

)])
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bck(rq, σk) ≃
2∆t

T

(
B2(rq, t0) + (4.17)

n−1∑
i=1

B2(rq, ti) cos(σk(ti − t0))

[
1 + cos

(
π(ti − t0)

T

)])

bsk(rq, σk) ≃
2∆t

T

(
(4.18)

n−1∑
i=1

B2(rq, ti) cos(σk(ti − t0))

[
1 + cos

(
π(ti − t0)

T

)])
.

iii) Use a frequency extraction method (‘subtract and repeat’) to extract the main
modes and corresponding pattern speeds. This last step is presented in more details
in the next subsection.

103



Figure 4.2: The contours of the NAFF power function Pk of Eq. (4.14) as functions of frequency σk/2 and
radius r, derived from the application of NAFF in several consecutive time windows of the N-body simulation.

Figure 3 shows the contours of the NAFF Power Function Pk(rq, σk) given by
Eq. (4.14) as a function of the frequency σk and the radius rq from the centre of
the galactic disc for different time windows of length T = 0.5 Gyr, namely t ∈ [1, 1.5]
Gyr, t ∈ [1.375, 1.875] Gyr, t ∈ [1.75, 2.25] Gyr, t ∈ [2.125, 2.625] Gyr, t ∈ [2.5, 3.0] Gyr,
t ∈ [2.875, 3.375] Gyr. As observed in Fig. 4.2, the contours of the power spectrum
Pk(rq, σk) give several local maxima in each time window of the simulation. As
described in Efthymiopoulos et al. (2019), the time interval t ∈ [1, 1.5] Gyr (top
left panel in Fig. 4.2) corresponds to the phase of growth of the bar instability, thus
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no quasi-steady structures can be found in this interval. On the other hand, all the
remaining panels in Fig. 4.2 were chosen so that the center of each time interval
corresponds to a maximum, or ’episode’, of spiral activity (see Efthymiopoulos et
al. (2019)). As shown in Fig. 4.2, in all these cases there is a well formed global
maximum of the spectrum Pk(rq, σk) with the contours centered around the frequency
σk,max = 2fk,max with fk,max decaying slowly from a value fk,max ≃ 40 km/s/kpc at the
second time window to fk,max ≃ 30 km/s/kpc at the final time window considered. As
regards the radial extent of the closed isocontours around this dominating maximum,
we have 2 kpc < r ≤ rmax, where rmax undergoes a sharp transition from a value
rmax ≃ 10 kpc, from the second to the fourth time window, to rmax ≃ 6 kpc in the
last two time windows of Fig. 4.2.

The bar corresponds to the dominating m=2 maxima up to r ≃ 6 kpc, and with
spiral extensions and/or distinct spiral modes to the local maxima in the spectrum
formed at radii r > 6 kpc. The gradually decrease with time of the bar and spiral
pattern speeds is associated with the secular evolution of the galaxy. The bar gradually
spins down as angular momentum gets transfered to the outer structures of the galaxy
(Debattista & Sellwood (1988), Debattista & Sellwood (2000), Athanassoula (2002),
Athanassoula (2003), Efthymiopoulos et al. (2019)). A similar process affects the
pattern speed of the spiral arms (Lynden-Bell & Kalnajs (1972)). Note, finally, that
the overdensities observed in panels 4, 5 of Fig. 4.2 beyond r = 10 kpc correspond
to additional pattern speeds, while, as the time goes on, the second most important
pattern altogether shifts towards larger radii, exceeding r = 10 kpc in the last panel
of the same figure.

4.2.2 Determination of the bar and spiral pattern speeds

We now refer to step (iii)) above of the frequency extraction algorithm. To implement
the manifold theory, we choose two different time windows: T1 = 2.125 − 2.625 Gyr
(Fig. 4.3) and T2 = 2.500 − 3.000 Gyr (Fig. 4.4). These are chosen to correspond
to the two regimes discussed above, i.e., in which the closed contours of the power
spectrum Pk(rq, σk) around the main (bar) maximum extend to radii overlapping, or
not, with those of the second most important maximum (fourth and fifth panel in
Fig. 4.2).

To determine the bar’s pattern speed Ωb, we scan the contour plots of Pk(rq, σk)
vertically in the region of the bar’s radii. In every annulus rq we numerically locate
the the frequency fmax1 where Pk(rq, σk) has its global maximum, and specify at
which frequency the maximum occurs. The semi-analytical time series A2th1

(rq, ti),
B2th1

(rq, ti) are obtained by the formula

A2th1
(rq, ti) = ack1(rq, fmax1) cos(fmax1(ti − t0)) +

ask1(rq, fmax1) sin(fmax1(ti − t0)) (4.19)

B2th1
(rq, ti) = bck1(rq, fmax1) cos(fmax1(ti − t0)) +

bsk1(rq, fmax1) sin(fmax1(ti − t0)) . (4.20)

and compared to the N-Body time series of A2 or B2 at the same radii. The compar-
ison (e.g. Fig. 4.3 for the A2 amplitude at the time window T1 = 2.125 < t < 2.525
Gyr, Fig. 4.4 at the time window T2 = 2.5 < t < 3 Gyr) shows that the frequency of
the bar’s rotation is well recovered in both windows. We find Ωb = 33.3 km/s/kpc for
the time window T1 and Ωb = 32.04 km/s/kpc for the time window T2.
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Figure 4.3: The semi- analytical time series A2th1
(r, t) (red curves) of the amplitude of m=2 pertubation in

density produced by the frequency fmax1, where we locate a maximum at the power spectrum for several radii
((a) r=3.72 kpc, (b) r=5.23 kpc, (c) r=7.35 kpc, (d) r=10.32 kpc), compared to the corresponding numerical
time series A2(r, t) (black curves) in the same radii for the time window T1 = 2.125− 2.625 Gyr of the N-body
simulation.

At larger radii (beyond r = 7 kpc) the agreement of the analytical time series with
the numerical ones (Figs. 4.3(c), 4.3(d), 4.4(c), 4.4(d)) is not so good. However, the
power function Pk(rq, fk) exhibits a second local maximum at radii r > 7 kpc (see
Fig. 4.2). To exctract the second pattern speed, we compute the new time series

A2
′(rq, ti) = A2(rq, ti)−A2th1

(rq, ti) (4.21)

B2
′(rq, ti) = B2(rq, ti)−B2th1

(rq, ti) (4.22)

where A2th1
(rq, ti) and B2th1

(rq, ti) are given by Eqs (4.19) and (4.20), with fmax1

in all radii substituted with a unique constant value fmax1 = Ωb. We then repeat
the process, computing the first iterated amplitudes a′ck, a′sk, b′ck, b′sk (formulas (4.15),
(4.16), (4.17), (4.18) with A′

2, B′
2 in the place of A2, B2), and the first-iterated Power

Function P ′
k(rq, σk). For every fixed radius rq we now plot Pk

′(rq, σk) as a function
of fk = σk/2 (Figs. 4.5, 4.6). Our criterion for choosing a second fundamental
frequency fmax2 stems from comparing the values of fk where Pk

′(rq, fk) exhibits a
local maximum for all the different radii rq.

As shown in Fig. 4.5, at all radii beyond r = 7 kpc we detect a local maximum
at fk ≈ 15 km/s/kpc, which stabilises to the value Ω2 = fmax2 = 14.45 km/s/kpc in

106



the range of 8 kpc < rq < 11 kpc while it tends to fall with rq for rq > 11 kpc. This
information for all radii rq is summarised in Fig. 4.7, which shows the computed
values of the frequencies Ω1(rq) = σ1,max(rq)/2, and Ω2(rq) = σ2,max(rq)/2, where the
power function was found to exhibit its first and second local maximum, along with the
corresponding values Pk1,max = Pk1(rq, σ1,max), Pk2,max = Pk2(rq, σ2,max), as a function
of radius r = rq , in both time windows T1 and T2. From the bottom left panel of Fig.
4.7 we note that, despite the overall variation with r, we can define an approximately
constant value in the range 8 kpc < rq < 11 kpc. Thus, we adopt a second (spiral)
pattern speed Ωsp = 14.45 km/s/kpc in the first time window T1 = 2.125− 2.625 Gyr.

Figure 4.4: The semi-analytical time series A2th1
(r, t) (red curves) of the amplitude of m=2 pertubation in

density produced by the frequency fmax1, where we locate a maximum at the power spectrum for several radii
((a) r=3.72 kpc, (b) r=5.23 kpc, (c) r=7.35 kpc, (d) r=10.32 kpc), compared to the corresponding numerical
time series A2(r, t) (black curves) in the same radii for the time window T2 = 2.5 − 3.0 Gyr of the N-body
simulation.

In the second time window (T2 = 2.5 − 3 Gyr), a plot of Pk
′(rq, σk) (Fig. 4.6)

reveals, instead, the existence of at least two important local maxima, whose presence
is detected at practically all radii beyond rq = 7 kpc. The first local maximum is
dominant in the domain 7 kpc < rq < 10.5 kpc, and its value stabilises to fmax2 = 17.6
km/s/kpc, while the second local maximum becomes dominant for rq > 11 kpc, with
a value slightly decreasing with r, around fmax3 = 7.5 km/s/kpc. In the sequel, we
ignore the effects of this third pattern and focus only on the pattern which is dominant
in the radii 7 kpc < rq < 10.5 kpc, thus identifying a spiral pattern speed Ωsp = 17.6
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km/s/kpc in the time window T2 = 2.5− 3 Gyr.
We note that the above specified values of the pattern speeds are in good agreement

with those found with a crude method in Efthymiopoulos et al. (2019) (see, for
example, panel t = 2.375 in figure 20 of Efthymiopoulos et al. (2019)).

So far, the simplification was made that we adopted constant values for the two
pattern speeds throughout the whole disc, i.e., ignored the small variations in the
values of fmax1 and fmax2 with radius yielded by the NAFF algorithm, and adopted
the mean value of fmax1 and fmax2 in the corresponding range of radii as Ω1 = Ωb,
Ω2 = Ωs. Figure 4.7, bottom, shows that this is essentially correct. The same figure
(top) yields the relative amplitudes bar/spiral throughout the disc. As a further test
of how accurately the surface density of the disc in the simulation is reproduced, we
obtain a semi-analytical formula for the surface density Σth(r, φ, t) given by:

Σth(rq, φp, ti) = A0(rq, ti) +A2th(rq, ti) cos(2φp)

+ B2th(rq, ti) sin(2φp) (4.23)

where

A2th(rq, ti) =
2∑

n=1

(acn(rq,Ωn) cos(Ωn(ti − t0)))+

2∑
n=1

(asn(rq,Ωn) sin(Ωn(ti − t0))) (4.24)

B2th(rq, ti) =
2∑

n=1

(bcn(rq,Ωn) cos(Ωn(ti − t0)))+

2∑
n=1

(bsn(rq,Ωn) sin(Ωn(ti − t0))) (4.25)

and the index n = 1, 2 refers to the frequencies and amplitudes determined in the
two iterations of the NAFF algorithm. Note that the above formula gives rise both

to sincos[2(φp − Ωb(ti − t0))] and
sin
cos[2(φp + Ωb(ti − t0))] terms. However, the terms of

cos[2(φp +Ωb(ti − t0))] and sin[2(φp +Ωb(ti − t0))] can be neglected as one can check
that their coefficients are small (no more than 10%) with respect to the coefficients of
the cos[2(φp−Ωb(t− t0))] and sin[2(φp−Ωb(ti− t0))] terms throughout the disc. Thus
we finally adopt the approximate formula:

Σth(rq, φp, ti) = A0(rq, ti)+

1

2

2∑
j=1

(
acj (rq,Ωj) + bsj (rq,Ωj)

)
cos[2(φp − Ωj(ti − t0))]+(

bcj (rq,Ωj)− asj (rq,Ωj)
)
sin[2(φp − Ωj(ti − t0))] (4.26)

where Ω1 = Ωb, Ω2 = Ωsp.
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Figure 4.5: The power function Pk of the time series A2
′(r, t) given by Eq. (4.21) as a function of the

frequencies fk for the time window of T1 of the N-body simulation. In every plot the frequency fmax2, which
corresponds to the second local maximum of the power function is indicated by a vertical line.
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Figure 4.6: The power function Pk of the time series A2
′(r, t) given by Eq. (4.21) as a function of the

frequencies fk for the time window of T2 of the N-body simulation. In every plot the frequency fmax2, which
corresponds to the second local maximum of the power function is indicated by a vertical line.
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Figure 4.7: Top: the maximum values Pk1,max = Pk(r, σk = 2fmax1) (black) or Pk2,max = Pk(r, σk =
2fmax2) (red) as a function of radius r, in the time window T1 (left) and T2 (right). Bottom: the values of
Ω1(r) = σ1,max(r)/2, Ω2(r) = σ2,max(r)/2 where σ1,max(r), σ2,max(r), at the same time windows.

Figures 4.8 and 4.9 show the comparison between the semi-analytical time series
A2th(rq, ti) from Eq. (4.24) and the numerical time series A2(rq, ti) of the m = 2
in Eq. (4.13) for the time windows T1 and T2 respectively. The superposition of
the semi-analytical time series A2th(rq, ti) and the numerical ones A2(rq, ti) at various
radii shows an overall agreement up to r=14 kpc. Beyond that radius, the numerical
time series exhibits patterns that cannot be recovered with the simple model of Eqs.
(4.24) and (4.25).
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Figure 4.8: The superposition of the semi-analytical time series of m = 2 pertubation A2th(rq, ti) (red curves),
which are obtained through NAFF algorithm, to the numerical one A2(rq, ti) (black curves) for the time window
of T1 = 2.125− 2.625 Gyr.
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Figure 4.9: The superposition of the semi-analytical time series A2th(rq, ti) of m = 2 pertubation (red curves),
which are obtained through NAFF algorithm, to the numerical one A2(rq, ti) (black curves) for the time window
T2 = 2.500− 3.000 Gyr of the N-body simulation.

Figures 4.10, 4.11 show that the semi-analytical formulas (4.23)-(4.25) reproduce
with a good accuracy the numerical sums of the m = 0, 2 modes of the surface density
of the galaxy. It is also remarkable that, notwithstanding the differences, with only the
m=0,2 terms of the galaxy we can have a representative image of the galaxy in every
snapshot, even when compared to the complete image of the surface density. Note, in
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particular, that the NAFF model catches correctly the appearance of a leading spiral
component extending beyond the bar in the snapshot t = 2.625 Gyr of Fig. 4.11.
In Efthymiopoulos et al. (2019) the appearance of such leading components on
the galactic disc was attributed to the flow of material approaching the bar from the
leading direction by moving along outer families of periodic orbits.

Figure 4.10: The contours of the surface density for 4 snapshots of the time window T1 = 2.125− 2.625 Gyr
of the N-body simulation that were produced in 3 ways: (a) with the use of the semi-analytical fitting form of
Eq. (4.39) for the surface density of m=0,2 modes of the galaxy (b) by the numerical form of m=0,2 modes of
Eq. (4.13) of the surface density of the N-body model (c) by the complete numerical form with all the modes
(m=0-10) of Eq. (4.13) of the surface density of the N-body model.
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Figure 4.11: The contours of the surface density for 4 snapshots of the time window of T2 = 2.500 − 3.000
Gyr of the N-body simulation that were produced in 3 ways: (a) with the use of the semi-analytical fitting form
of Eq. (4.39) for the surface density of m=0,2 modes of the galaxy (b) by the numerical form of m=0,2 modes
of Eq. (4.13) of the surface density of the N-body model (c) by the complete numerical form with all the modes
(m=0-10) of Eq. (4.13) of the surface density of the N-body model.

4.2.3 Application of the NAFF algorithm to the gravitational potential

We now repeat the NAFF analysis as in subsection 4.2.2 for the gravitational potential
of the N-body simulation in the same time windows T1 = 2.125 − 2.625 Gyr and
T2 = 2.5− 3 Gyr. In every snapshot the data for the gravitational potential are given
in the form of a grid Ng ×Ng in cartesian space, where Ng = 511. We thus obtain the
values Vng(xng , yng) of the potential at the grid points (xng , yng), ng = 0, . . . Ng. We
finally apply bilinear interpolation method in order to have the values of the potential
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V (x, y) in every point of the disc plane (x, y). We finally follow the same procedure
as in subsection 4.2.1 to Fourier analyse the potential V (rq, φp, ti) of the i-th snapshot
with respect to its periodical dependence on φ in all the annuli defined by the radii
rq of the logarithmic grid. This allows to compute the coefficients of the m-th mode
of the Fourier decomposition:

V (rq, φp, ti) =V0(rq, ti) +
∑
m

Φm(rq, ti) cos(mφ)+∑
m

Ψm(rq, ti) sin(mφ) . (4.27)

As in the previous subsections the integrals:

V0(rq, ti) =
1

2π

∫ 2π

0
V (rq, φp, ti)dφ (4.28)

Φm(rq, ti) =
1

π

∫ 2π

0
V (rq, φp, ti) cos(mφ)dφ (4.29)

Ψm(rq, ti) =
1

π

∫ 2π

0
V (rq, φp, ti) sin(mφ)dφ (4.30)

are calculated through the trapezoidal rule on the discrete set of values V (rq, φp, ti),
p = 0, . . . , 180. We apply the NAFF method in order to determine the fundamental
frequencies of m=2 mode of the potential. We apply the same methods as in subsec-
tion 4.2.2 to compute the fundamental frequencies and amplitudes associated to the
time series Φ2(rq, ti) and Ψ2(rq, ti). As a control of the accuracy of the method, we
checked that we obtain the same fundamental frequencies by the NAFF analysis of
the potential as the ones by the NAFF analysis of the surface density.

The semi-analytical formula for the potential then is:

Vth(rq, φp, ti) = V0(rq, ti) + Φ2th(rq, ti) cos(2φp) + Ψ2th(rq, ti) sin(2φp) (4.31)

where

Φ2th(rq, ti) =
2∑

n=1

(
aVcn

(rq,Ωn) cos(Ωnti) + aVsn
(rq,Ωn) sin(Ωnti)

)
(4.32)

Ψ2th(rq, ti) =

2∑
n=1

(
bVcn

(rq,Ωn) cos(Ωnti) + bVsn
(rq,Ωn) sin(Ωnti)

)
(4.33)

where aVcn
, aVsn

, bVcn
, bVsn

are the respective coefficients of the NAFF analysis and
Ω1 = Ωb, Ω2 = Ωsp.

4.2.4 Modelling the gravitational potential

The semi-analytical formula for the bar potential given by (4.31)-(4.33) can be written
as follows:

Vb(rq, φp, ti) =
1
2

(
aVc1

(rq,Ωb) + bVs1
(rq,Ωb)

)
cos[2(φp − Ωb(ti − t0))] +

1
2

(
aVc1

(rq,Ωb)− bVs1
(rq,Ωb)

)
cos[2(φp +Ωb(ti − t0))] +

1
2

(
bVc1

(rq,Ωb)− aVs1
(rq,Ωb)

)
sin[2(φp − Ωb(ti − t0))] + (4.34)

1
2

(
aVs1

(rq,Ωb) + bVc1
(rq,Ωb)

)
sin[2(φp +Ωb(ti − t0))] .
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We notice that the NAFF formula gives rise both to sincos[2(φp − Ωb(ti − t0))] and

sin
cos[2(φp + Ωb(ti − t0))] terms. However, the terms of cos[2(φp + Ωb(ti − t0))] and

sin[2(φp + Ωb(ti − t0))] can be neglected as their coefficients are small with respect to
the coefficients of the cos[2(φp −Ωb(t− t0))] and sin[2(φp −Ωb(ti − t0))] terms. Figure
4.12 shows the quantity:

Pcoef =√√√√(aVc1
(rq,Ωb)− bVs1

(rq,Ωb)
)2

+
(
aVs1

(rq,Ωb) + bVc1
(rq,Ωb)

)2(
aVc1

(rq,Ωb) + bVs1
(rq,Ωb)

)2
+
(
bVc1

(rq,Ωb)− aVs1
(rq,Ωb)

)2 (4.35)

as a function of the radius r. From Fig. 4.12 we conclude that Pcoef remains smaller
than 10% across the whole galactic disc, which is consistent with the O(1/T ) error in
the specification of the NAFF amplitudes. In the sequel, for simplicity we adopt for
the bar potential the approximate formula:

Vb(rq, φp, ti) =

1

2

(
aVc1

(rq,Ωb) + bVs1
(rq,Ωb)

)
cos[2(φp − Ωb(ti − t0))]

+
1

2

(
bVc1

(rq,Ωb)− aVs1
(rq,Ωb)

)
sin[2(φp − Ωb(ti − t0))] . (4.36)

Figure 4.12: The power spectrum Pcoef of Eq. (4.35) is plotted as a function of r.

By a similar analysis we adopt for the potential of the spiral arms the approximate
formula:

Vsp(rq, φp, ti) =

1

2

(
aVc2

(rq,Ωsp) + bVs2
(rq,Ωsp)

)
cos[2(φp − Ωsp(ti − t0))]

+
1

2

(
bVc2

(rq,Ωsp)− aVs2
(rq,Ωsp)

)
sin[2(φp − Ωsp(ti − t0))] . (4.37)
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Therefore, the final semi-analytical potential model used below takes the form:

V (rq, φp, ti) = V0(rq, ti) + Vb(rq, φp, ti) + Vsp(rq, φp, ti) (4.38)

where V0(rq, ti) is the axisymmetric term of the potential, Vb(rq, φp, ti) the potential of
the galactic bar given by Eq. (4.36) and Vsp(rq, φp, ti) the potential of the spiral arms
given by Eq. (4.37).

Applying the same simplifications to the semi-analytical formula for the surface
density of the galaxy we are led to the approximate formula:

Σth(rq, φp, ti) = A0(rq, ti)+

1

2

2∑
j=1

(
acj (rq,Ωj) + bsj (rq,Ωj)

)
cos[2(φp − Ωj(ti − t0))]+(

bcj (rq,Ωj)− asj (rq,Ωj)
)
sin[2(φp − Ωj(ti − t0))] (4.39)

where Ω1 = Ωb, Ω2 = Ωsp.
We perform now various tests of the above approximate formulas against the

real potential at each snapshot of the simulation. Tests can be made as regards
the precision of the semi-analytical formula yielding the galactic potential and the
respective forces. For any fixed radius r we calculate the potential V as a function of
the azimuth φ in the disc plane in three ways:

(a) by the semi analytical formula of the potential of Eqs. (4.36)-(4.38) for the
m=0,2 modes.

(b) by the numerical form of the potential for m=0,2 modes of the potential of
Eq. (4.27)

(c) by the complete numerical form of the potential obtained directly from the
N-body code.

Figures 4.13, 4.15 show the comparison between the semi-analytical model for
the potential and the corresponding numerical models (m=0,2 modes or complete)
at some snapshots of the time windows T1 (Fig. 4.13) and T2 (Fig. 4.15), and for
two indicative radii r=3.2 kpc and r=10.3 kpc. The m=0,2 curves (semi-analytical
and numerical) are quite close to each other. The curves of the complete numerical
potential, instead, deviate from the respective curves (both the numerical and semi-
analytical) m=0,2 by about 10% at inner radii and about 2% at outer radii (observe
the vertical scale in each panel). This deviation is due to the relative importance of
the modes m>2 (but also m=1, see Efthymiopoulos et al. (2020)) which become
relevant at radii covering the whole extent of the bar.

The deviation can be better quantified by computing the azimuthal forces Fφ =
1
r
∂V
∂φ with the various models, as a function of φ and for fixed r (Figs. 4.14 and 4.16 for

the time windows T1 and T2 respectively). The calculation of the forces (derivatives of
the potential) in the semi-analytical model is realised by implementing a cubic spline
interpolation formula to smoothly connect the values of the coefficients aVc1,2

, aVs1,2
,

bVc1,2
, bVs1,2

given at the grid points r = rq. Notwithstanding the agreement between
the m=0,2 semi-analytical and numerical force models, we observe that the errors in
the azimuthal force calculation due to the omission of the terms besides m=0,2 can be
locally enhanced up to 40%. At any rate, these errors concern only the evaluation of
the force due to the m=1, or m>2 terms, which is already a pertubation with respect
to the leading component of the force (due to the axisymmetric (m=0) term). As a
result plotting the isocontours of the effective potential

Veff (r, φ, t) = V (r, φ, t)− 1

2
Ωb

2r2 (4.40)
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shows an overall agreement between all these potential models (Fig. 4.17), with the
(m=0,2) model only failing to catch the asymmetry of the isocontours in the complete
model.

Figure 4.13: The gravitational potential V as a function of the azimuthal angle φ, at the radii r = 3.248 kpc
and r = 10.324 kpc for 4 different snapshots within the window T1 = 2.125 − 2.625 Gyr. The potential is
calculated in three ways: (a) by the semi-analytical formulas (4.36)-(4.38) (black curves) (b) by the numerical
form of the potential for m=0,2 modes of the potential of Eq. (4.27) (red curves) (c) by the complete numerical
form of the potential with all the modes of the galaxy (m=0-10) of the potential of Eq. (4.27) (blue curves).
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Figure 4.14: The azimuthal gravitational force Fφ = 1
r

∂V
∂φ

as a function of the azimuthal angle φ, at the
radii r = 3.248 kpc and r = 10.324 kpc for 4 different snapshots within the window T1 = 2.125 − 2.625
Gyr, calculated in three ways: (a) by the derivatives of the semi-analytical formulas of the potential of Eqs.
(4.36)-(4.38) for the m=0,2 modes of the galaxy (black curves) (b) by the derivatives of the numerical form of
the potential for m=0,2 modes of the potential of Eq. (4.27) (red curves) (c) by the derivatives of the complete
interpolated numerical form of the potential (blue curves).

120



Figure 4.15: The gravitational potential V as a function of the azimuthal angle φ, at the radii r = 3.248 kpc
and r = 10.324 kpc for 4 different snapshots within the window T2 = 2.500 − 3.000 Gyr. The potential is
calculated in three ways: (a) by the semi-analytical formulas (4.36)-(4.38) (black curves) (b) by the numerical
form of the potential for m=0,2 modes of the potential of Eq. (4.27) (red curves) (c) by the complete numerical
form of the potential with all the modes of the galaxy (m=0-10) of the potential of Eq. (4.27) (blue curves).
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Figure 4.16: The azimuthal gravitational force Fφ = 1
r

∂V
∂φ

as a function of the azimuthal angle φ, at the
radii r = 3.248 kpc and r = 10.324 kpc for 4 different snapshots within the window T2 = 2.500 − 3.000
Gyr, calculated in three ways: (a) by the derivatives of the semi-analytical formulas of the potential of Eqs.
(4.36)-(4.38) for the m=0,2 modes of the galaxy (black curves) (b) by the derivatives of the numerical form of
the potential for m=0,2 modes of the potential of Eq. (4.27) (red curves) (c) by the derivatives of the complete
interpolated numerical form of the potential (blue curves).

As explained in Efthymiopoulos et al. (2020), a computation of manifolds in the
regime of multiple patterns (and pattern speeds) is possible by a pertubative calcu-
lation including modes of any value of m, as well as an arbitary number of pattern
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frequencies Ω1,Ω2, . . .. Since, however, the computation becomes quite cumbersome
with the addition of many modes, in view of the above tests in the sequel we will
limit ourselves to an investigation of the manifold model by the semi-analytical rep-
resentation of the potential including only the m=2 non-axisymmetric modes (Eqs.
(4.36) to (4.38)), and the pattern speeds Ωb and Ωsp, as specified by just one iteration
of the NAFF algorithm. We emphasize, however, that the construction of a precise
potential model including more modes is straightforward as it only requires further
iteration of the NAFF algorithm, and it was only omitted here for reasons of keeping
low the cost of computations related to the manifolds (see section 4.3 below).

Figure 4.17: The zero velocity curves given by Eq. (4.40) for the snapshot t=2.125 Gyr of the time window
T1 = 2.125 − 2.625 Gyr of the simulation (top row) and the snapshot t=2.500 Gyr of the time window
T2 = 2.500− 3.000 Gyr (bottom row), calculated in 3 ways: (a) by the semi-analytical formula of the potential
of Eqs. (4.36)-(4.38) for the m=0,2 modes of the galaxy (b) by the numerical form of the potential for m=0,2
modes of the potential of Eq. (4.27) (c) by the complete numerical form of the potential with all the modes of
the galaxy (m=0-10) of the potential of Eq. (4.27). On the plots the red spots are the stable Lagrangian points
L3,4 and the black ones are the unstable Lagrangian points L1,2.

4.3 The manifolds in the NAFF model with two pattern
speeds

4.3.1 Hamiltonian model and equations of motion

Consider a frame of reference which corotates with the bar. Introduce the angular
variable:

ϑ = φp − Ωb(ti − t0) . (4.41)
The semi-analytical formula for the bar potential (Eq. (4.36)) becomes:

Vb(rq, ϑ) =
1
2

(
aVc1

(rq,Ωb) + bVs1
(rq,Ωb)

)
cos(2ϑ) +

1
2

(
bVc1

(rq,Ωb)− aVs1
(rq,Ωb)

)
sin(2ϑ) . (4.42)

Let now ϑ2 be the phase difference between the bar and the spiral arms due to the
different adopted values of the two pattern speeds:

ϑ2 = (Ωsp − Ωb)(ti − t0) . (4.43)
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Using Eqs. (4.41) and (4.43), the angle φp − Ωsp(ti − t0) in Eq. (4.37) takes the
form:

φp − Ωsp(ti − t0) = ϑ+Ωb(ti − t0)− (ϑ2 +Ωb(ti − t0)) = ϑ− ϑ2 . (4.44)

As a result the potential of the spiral arms (Eq. (4.37)) takes the form:

Vsp(rq, ϑ, ϑ2) =
1
2

(
aVc2

(r,Ωsp) + bVs2
(rq,Ωsp)

)
cos[2(ϑ− ϑ2)]

+1
2

(
bVc2

(rq,Ωsp)− aVs2
(rq,Ωsp)

)
sin[2(ϑ− ϑ2)] . (4.45)

The potential of Eq. (4.45) varies in time periodically with a period TP given by:

TP =
π

|Ωsp − Ωb|
. (4.46)

Consider, finally, the Hamiltonian function

H(r, ϑ, ϑ2, Pr, Pϑ, J2) =
Pr

2

2
+
Pϑ

2

2r2
+ V0(r) + Vb(r, ϑ)

− ΩbPϑ + (Ωsp − Ωb)J2 + Vsp(r, ϑ, ϑ2) (4.47)

where (r, Pr), (ϑ, Pϑ), (ϑ2, J2) are canonical pairs. The equations of motion for a test
particle (e.g. star) in the bar’s rotating frame are given by:

ṙ = ∂H
∂Pr

, Ṗr = −∂H
∂r = Pϑ

2

r3
− ∂V0

∂r − ∂Vb
∂r − ∂Vsp

∂r

ϑ̇ = ∂H
∂Pϑ

= Pϑ
r2

− Ωb , Ṗϑ = −∂H
∂ϑ = −∂Vb

∂ϑ − ∂Vsp

∂ϑ . (4.48)

ϑ̇2 =
∂H
∂J2

= Ωsp − Ωb , J̇2 = − ∂H
∂ϑ2

= −∂Vsp

∂ϑ2

The last equation, for J2, can be used as a control for the conservation of the en-
ergy E = H(r(t), ϑ(t), ϑ2(t), Pr(t), Pϑ(t), J2(t)) along the numerical propagation of
any individual trajectory.

We will employ the equations of motion (4.48) in all subsequent computations
related to periodic orbits and their manifolds in our model.

4.3.2 Locating the periodic equilibrium orbit GL1,2

According to the manifold theory of spirals (Romero-Gomez et al. (2006), Voglis et
al. (2006)) in galactic models with a single pattern speed the manifolds emanate
from the unstable Lagrangian equilibrium points L1,2, which lie in the end of the
bar. In the case of multiple pattern speeds, instead, the Lagrangian equilibrium point
solutions L1,2 generalise to periodic equilibrium orbits GL1,2, whose period is equal
to the period TP of Eq. (4.46) (Efthymiopoulos et al. (2020)). The manifolds
emanating from GL1,2 have also a periodic dependence on time.

To compute the periodic orbit GL1 (and, analogously, GL2) in our N-body model
we first locate the Lagrangian equilibrium point L1 of the ’bar-only’ Hamiltonian Hb

defined by

Hb(r, ϑ, Pr, Pϑ) =
1

2

(
Pr

2 +
Pϑ

2

2r2

)
− ΩbPϑ + V0(r) + Vb(r, ϑ) (4.49)

by computing numerically the fixed points of Hamilton’s equations:

∂Hb

∂r
=
∂Hb

∂ϑ
=
∂Hb

∂Pr
=
∂Hb

∂Pϑ
= 0 . (4.50)
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The Lagrangian equilibrium point L1 (solution of Eq. (4.50)) has coordinates (rL1 , ϑL1 , PrL1
,

PϑL1
= Ωbr

2
L1
). Consider, then, the Hamiltonian

Hε = Hb + (Ωsp − Ωb)J2 + εVsp(r, ϑ, ϑ2) (4.51)

which coincides with the full Hamiltonian of the problem for ε = 1. We finally
consider a local expansion of the canonical variables around L1:

r = rL1 +∆r(t)

ϑ = ϑL1 +∆ϑ(t)

Pr = PrL1
+∆Pr(t) (4.52)

Pϑ = PϑL1
+∆Pϑ(t) .

The periodic orbit GL1 corresponds to a periodic solution of Hamilton’s equations
under the full Hamiltonian with period equal to TP , for which ∆r(TP ) = ∆r(0),
∆θ(TP ) = ∆θ(0), ∆Pr(TP ) = ∆Pr(0), ∆Pθ(TP ) = ∆Pθ(0). Defining the 4D strobo-
scopic mapping for the Hamiltonian Hε given by Mε:(Mε,r , Mε,ϑ, Mε,Pr , Mε,Pϑ

)
where:

r′ = Mε,r(r, ϑ, Pr, Pϑ)

= r(t = TP , r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ)

ϑ′ = Mε,ϑ(r, ϑ, Pr, Pϑ)

= ϑ(t = TP , r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ)

P ′
r = Mε,Pr(r, ϑ, Pr, Pϑ) (4.53)

= Pr(t = TP , r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ)

P ′
ϑ = Mε,Pϑ

(r, ϑ, Pr, Pϑ)

= Pϑ(t = TP , r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ) .

one may attempt to find the periodic orbit GL1 purely numerically, as a period-one
fixed point of Mε for ε = 1. Experience shows that a quick trial, e.g., with the
Newton-Raphson method, setting the L1 state vector as initial guess, typically fails.
Alternatively, one can try to use the Newton-Raphson method as above, but computing
the entire family GL1 for parameter values εmin ≤ ε ≤ 1, where εmin << 1. In our
model this works if εmin is taken equal to 0.01 and the computation of the fixed
point of the mapping is continued forward up to ε = 1 with steps ∆ε = 0.01. The
computation, however, is greatly accelerated, if, instead, one computes a partially
hyperbolic normal form around L1, expanding first the Hamiltonian with respect to
the variables ∆r, ∆θ, ∆Pr , ∆Pθ , diagonalizing the quadratic part to obtain linear local
normal form, and then computing few steps of the nonlinear local normal form. All
necessary steps are described in detail in Efthymiopoulos et al. (2020). In the sequel
we are going to present this procedure:
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(a) (b)
Figure 4.18: The equlibrium periodic orbits GL1 as computed by the procedure of subsection 4.3.2 and the
potential data in the two time windows (a) T1 = 2.125− 2.625 Gyr (b) T2 = 2.500− 3.000 Gyr.

1) The new Hamiltonian, after the expansion, reads:

H0 = H0(∆r,∆ϑ,∆Pr,∆Pϑ) = Hb(rL1 , ϑL1 , PrL1
, PϑL1

)+

(∆r,∆ϑ,∆Pr,∆Pϑ)M


∆r
∆ϑ
∆Pr

∆Pϑ

 (4.54)

where M is the variational matrix at the point L1:

M =


∂2Hb
∂r2

∂2Hb
∂r∂ϑ

∂2Hb
∂r∂Pr

∂2Hb
∂r∂Pϑ

∂2Hb
∂ϑ∂r

∂2Hb
∂ϑ2

∂2Hb
∂ϑ∂Pr

∂2Hb
∂ϑ∂Pϑ

∂2Hb
∂Pr∂r

∂2Hb
∂Pr∂ϑ

∂2Hb
∂P 2

r

∂2Hb
∂Pr∂Pϑ

∂2Hb
∂Pϑ∂r

∂2Hb
∂Pϑ∂ϑ

∂2Hb
∂Pϑ∂Pr

∂2Hb

∂P 2
ϑ


rL1

,ϑ=ϑL1
,Pr=PrL1

,Pϑ=PϑL1

. (4.55)

2) Diadonalization of the Hamiltonian H0: the variational matrix M has two real
eigenvalues ±µ and two imaginary eigenvalues ±iκ, where µ, κ > 0. Thus, it has
also four eigenvectors, of which two, (e1, e2), are associated with the real eigenvalues
±µ, and the other two, (e3, e4), are associated with the imaginary eigenvalues ±iκ.
Each eigenvector can be written as a vertical column with four components. We
then define the matrix B = (c1e1 c2e2 c1e3 c2e4) with unspecified coefficients ci,
i = 1, 2. The symplectic condition allows us to specify the coefficients ci and thus all
the components of B. The symplectic condition is:

BT JB = J (4.56)

where J is the fundamental symplectic matrix:

J =

[
0 I2

−I2 0

]
(4.57)

and I2 is the 2× 2 identity matrix.
We also define the matrix:

C =


1 0 0 0
0 1√

2
0 −i√

2

0 0 1 0
0 −i√

2
0 1√

2

 . (4.58)
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Define, now, the 4×4matrixA = BC, as well as the linear tranformation (∆r,∆ϑ,∆Pr,
∆Pϑ) → (u, q, v, p) given by: 

∆r
∆ϑ
∆Pr

∆Pϑ

 = A


u
q
v
p

 . (4.59)

Substituting the transformation (4.59) into the Hamiltonian H0 (Eq. (4.54)), the latter
obtains a diagonal form:

H ′
0(u, q, v, p) = µ(vu) +

κ

2

(
q2 + p2

)
. (4.60)

Note that the term κ
2

(
q2 + p2

)
has the form of a harmonic oscillator and it is physically

related to epicyclic oscillations with frequency κ =

√
∂2V0

∂r2L1

+
3p2φ,L1

r4L1

. On the other

hand, at the neighbourhood of the equilibrium point L1 the term µ(vu) describes
an exponential deviation from the Lagrangian point of the form u = uoe

µt following
the unstable direction. Therefore, the Hamiltonian H ′

0(u, q, v, p) consists of two terms
whose combination describes the motion of the guiding centre and of the epicycle
that travels along the manifold.

3) Applying, now, the linear transformation (4.59) the complete Hamiltonian
H(r, ϑ, ϑ2, Pr, Pϑ, J2) of Eq. (4.47) leads to the Hamiltonian expressed in the vari-
ables (u, q, ϑ2, v, p, J2):

H ′(u, q, ϑ2, v, p, J2) = H ′
0(u, q, v, p) + (Ωsp − Ωb)J2

+P1(u, q, v, p) + P2(ϑ2, u, q, v, p) (4.61)

where P1(u, q, v, p) is a polynomial independent of ϑ2:

P1(u, q, v, p) =
∞∑
s=3

∑
k1+k2+l1+l2=s

ck1,k2,l1,l2u
k1qk2vl1pl2 (4.62)

with ck1,k2,l1,l2 constants, while P2(ϑ2, u, q, v, p) is a polynomial depending on ϑ2, of
the form:

P2(ϑ2, u, q, v, p) =
∞∑
s=1

∑
k1+k2+l1+l2=s

V(2),k1,k2,l1,l2(ϑ2)u
k1qk2vl1pl2 . (4.63)

By using Hamilton’s equations under the Hamiltonian (4.61) it is now easy to see
that the point L1 with coordinates (u = q = v = p = 0) is no longer equilibrium point,
since we have non-zero corresponding velocities u̇, q̇, v̇, ṗ ̸= 0. This happens because
the function V(2),k1,k2,l1,l2(ϑ2) is non-zero for k1+k2+ l1+ l2 = 1. Physically, the phase
space coordinates of L1 no longer imply equlibrium due to the time dependency of
the system.

We then introduce a near-to-identify nonlinear canonical transformation:

(u, q, v, p, ϑ2, J2) → (ξ, q′, η, p′, ϑ2, J
′
2) (4.64)

where

u = ξ + Fu(ξ, q
′, η, p′;ϑ2)

q = q′ + Fq(ξ, q
′, η, p′;ϑ2)

v = η + Fv(ξ, q
′, η, p′;ϑ2) (4.65)

p = p′ + Fp(ξ, q
′, η, p′;ϑ2)
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in such a way that the final form of the Hamiltonian has no longer terms linear in
the variables (ξ, q′, η, p′) :

Hf (ξ, q
′, η, p′, ϑ2, J

′
2) = vξη + κ

2

(
q′2 + p′2

)
+ (Ωsp − Ωb)J

′
2

+Φ1(ξ, q
′, η, p′) + Φ2(ϑ2, ξ, q

′, η, p′) (4.66)

where J ′
2 is the conjugate action of the angle ϑ2, Φ1(ξ, q

′, η, p′) is a polynomial inde-
pendent of ϑ2:

Φ1(ξ, q
′, η, p′) =

∞∑
s=3

∑
k1+k2+l1+l2=s

gk1,k2,l1,l2ξ
k1q′k2ηl1p′l2 (4.67)

and Φ2ϑ2, ξ, q
′, η, p′) of the form:

Φ2(ϑ2, ξ, q
′, η, p′) =

∞∑
s=2

∑
k1+k2+l1+l2=s

V ′
k1,k2,l1,l2(ϑ2)η

k1q′k2ξl1p′l2 . (4.68)

The procedure to obtain the nonlinear transformation (4.65) is described in detail
in Efthymiopoulos et al. (2020) . In summary, we work with the method of the
composition of Lie series for the generation of the transformation of Eq. (4.65). In
our actual computations in the N body model, as we are only able to compute Poisson
brackets involving up to the second derivatives in the potential (due to the cubic spline
interpolation scheme), we just perform two steps of the algorithm, with generating
functions χ1, χ2. This yields the required GL1 orbit with limited precision (see step
5 below), which, however, can be refined by use of a Newton algorithm. Note, also,
that the transformation of Eq. (4.65) leaves the angular variable ϑ2 unaltered.

4) The point ξ = q′ = η = p′ = 0 is now an equilibrium point of the system, as
Hamilton’s equations give zero respective velocities ξ̇ = q̇′ = η̇ = ṗ′ = 0. We apply a
procedure of backward transformation in order to visualise the equilibrium solution
in the original phase space with the initial coordinates. Using the transformation of
Eq. (4.65) the equilibrium solution (ξ = q′ = η = p′ = 0, ξ̇ = q̇′ = η̇ = ṗ′ = 0) takes
the following form in the variables (u, q, v, p):

uGL1 = Fu(0, 0, 0, 0;ϑ2)

qGL1 = Fq(0, 0, 0, 0;ϑ2)

vGL1 = Fv(0, 0, 0, 0;ϑ2) (4.69)
pGL1 = Fp(0, 0, 0, 0;ϑ2)

Through the linear transformation of Eq. (4.59) we then obtain (∆rGL1 , ∆ϑGL1 ,
∆PrGL1

, ∆PϑGL1
), which are functions of ϑ2, i.e. functions of time. Hence, in the

original variables (r, ϑ, Pr, Pϑ), the equlibrium solution (4.69) is mapped to time-
dependent expression, function of ϑ2 = (Ωsp−Ωb)t. The time-depedency through the
frequency (Ωsp−Ωb) maps equilibrium solution GL1 to a periodic orbit in the original
variables. This equilibrium periodic orbit (ξGL1 , q

′
GL1

, ηGL1 , p
′
GL1

) is simply unstable
(the variational matrix has one pair of real eigenvalues µ and two imaginary ones
±iκ).

As discussed in Efthymiopoulos et al. (2020), the above method for the compu-
tation of GL1 involves series which are convergent with the order of normalization.
However, owing to the limitation from our modeling of the N-body potential, we can-
not compute any series terms involving derivatives of the Hamiltonian in the canonical
variables of order higher than the second, we are enforced to work with a very low
truncation of the series yielding the transformation of Eq. (4.69). We can easily
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check that this leads to a rather imprecise semi-analytical determination of the initial
condition for the orbit GL1, which, when integrated numerically lead actually to no
periodicity (even approximately) in the computed orbit. To bypass this difficulty, we
work as follows: consider a fictitious Hamiltonian model in which the amplitude of
the spiral mode in the potential has been artificially reduced by a small factor ε≪ 1:

Hf,ε =H0
′(u, q, v, p) + (Ωsp − Ωb)J2 + P1(u, q, v, p)+

εP2(ϑ2, u, q, v, p) . (4.70)

We set ε sufficently small so that the semi-analytical orbit GL1 obtained by the trans-
formation (4.69) computed on the Hamiltonian Hf,ε be sufficintly accurate. More
precisely, knowing the period of the spiral pertubattion P2, TP = π

|Ωsp−Ωb| , for any
initial condition (r, ϑ, Pr, Pϑ) we can propagate the corresponding trajectory under
Hamilton’s equations for the Hamiltonian Hf,ε and obtain fictitious trajectories de-
fined by:

r(t; r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ) =

fε,r(r, ϑ, Pr, Pϑ;ϑ2 = 0)

ϑ(t; r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ) =

fε,ϑ(r, ϑ, Pr, Pϑ;ϑ2 = 0)

Pr(t; r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ) =

fε,Pr(r, ϑ, Pr, Pϑ;ϑ2 = 0)

Pϑ(t; r(0) = r, ϑ(0) = ϑ, Pr(0) = Pr, Pϑ(0) = Pϑ) = (4.71)
fε,Pϑ

(r, ϑ, Pr, Pϑ;ϑ2 = 0)

where fε=(fε,r , fε,ϑ, fε,Pr , fε,Pϑ
) defines the flow under the Hamiltonian Hf,ε.

The mapping Mε from Eq. (4.53) yields the image, after time equal to the
period TP , of any initial condition (r, ϑ, Pr, Pϑ) in the disc plane under the flow of
the Hamiltonian Hf,ε. Since the periodic orbit GL1 has period equal to TP , setting
r = rGL1(t = 0), ϑ = ϑGL1(t = 0), Pr = PrGL1

(t = 0), Pϑ = PϑGL1
(t = 0) yields a

fixed point of the mapping Mε. We then use the semi-analytical computation of the
quantities (r = rGL1(t = 0), ϑ = ϑGL1(t = 0), Pr = PrGL1

(t = 0), Pϑ = PϑGL1
(t = 0))

as initial guess in the Newton-Rapshson method, to accurately compute the periodic
orbit GL1 by the numerically found fixed point of the mapping Mε.

Finally, having been able to compute the orbit GL1 on a fixed point of the mapping
Mε, the whole characteristic family of GL1 as a function of ε can be now computed,
by slowly varying ε to ε+ δε, with δε sufficiently small to ensure the convergence of
Newton-Raphson method, and using the computed fixed point of the mapping Mε

as initial guess for the computation of the fixed point of the mapping Mε+δε. This
eventually leads to the computation of the periodic orbit GL1 (and, analogously, GL2)
for the actual potential model, i.e., for ε = 1. These orbits are shown in Fig. 4.19.
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(a) (b)
Figure 4.19: The equlibrium periodic orbits GL1 as computed by the procedure of subsection 4.3.2 and the
potential data in the two time windows (a) T1 = 2.125− 2.625 Gyr (b) T2 = 2.500− 3.000 Gyr.

4.3.3 The manifolds in the model with two pattern speeds

The dependence of the Hamiltonian H(r, ϑ, ϑ2, Pr, Pϑ, J2) (Eq. (4.47)) on the angle
ϑ2, i.e, on time, implies that, to visualise the manifolds of the periodic orbit GL1 we
are in need of plotting sections, not only in space, but also in time. To this end, we
construct a stroboscopic and at the same time apocentric section of the orbits.

Let t0 be the starting time of a particular window, i.e., t0 = 2.125 Gyr for the time
window T1 and t0 = 2.500 Gyr for time window T2. The ’flux tube’ manifolds of a
snapshot t within the considered window will be hereafter denoted as WU

GL1,2
(tsec),

where we define the ’section time’ tsec as tsec = t−t0. By definitionWU
GL1,2

(tsec) is the
set of all possible initial conditions in the disc plane, which, integrated backwards in
time, starting from the time t = tsec+t0, lead to trajectories which tend asymptotically,
as t → −∞, to the periodic orbits GL1 (or GL2). The manifolds WU

GL1,2
(tsec) can be

computed by the following steps:
1) We first compute the Jacobian matrix Λ of the mapping (4.53) evaluated at the

fixed point of GL1 (or GL2) for ε = 1:

Λ =

(
∂(Mr,Mϑ,MPr ,MPϑ

)

∂(r, ϑ, Pr, Pϑ)

)
r=rGL1

,ϑ=ϑGL1
,Pr=PrGL1

,Pϑ=PϑGL1

. (4.72)

The matrix Λ satisfies the symplectic condition ΛJΛT = J and it has two real reciprocal
eigenvalues λ1, λ2 and two complex ones λ3,4 = e±iωTP with ω > 0. The computation
of the partial derivatives in the Jacobian matrix Λ is done by iterating the mapping
M numerically for nearby initial conditions and using centered finite differences.

2) We consider the unitary eigennvector eUGL1
of Λ which is associated to the

real eigenvalue λ1. This eigenvector defines the unstable eigendirection emanating
from the unstable periodic orbit GL1 with coordinates on the phase space (rGL1 ,
ϑGL1 , PrGL1

, PϑGL1
). We then take a small initial segment of 3000 initial condi-

tions (ri(0), ϑi(0), Pri(0), Pϑi
(0)), i = 1, ..., 3000, that are distributed along the un-

stable eigendirection covering a total length dS=10−3. Thus (ri(0), ϑi(0), Pri(0),
Pϑi

(0))=(rGL1 + δri(0), ϑGL1 + δϑi(0), PrGL1
+ δPri(0), PϑGL1

+ δPϑi
(0)) with (δri(0),

δϑi(0), δPri(0), δPϑi
(0))=(i/3000)× dS × eUGL1

3) Given these initial conditions we propagate the orbits in time using Hamilton’s
equations for the Hamiltonian of Eq. (4.47). We then collect the points which, at a

130



time range t = nTP + tsec ± ∆TP , with n = 1, ...25 and ∆TP = 0.2TP , are close to
a local apocentric passage of the orbit, i.e., they satisfy the condition |Pr| < 0.1 and
Ṗr < 0 for the corresponding periodic orbit.

4) The ensemble of points collected by the above procedure constitutes the ’apoc-
entric manifold’ at the section time tsec, denoted asWU,A

GL1
(tsec) orWU,A

GL2
(tsec). In order

to visualise the manifolds in physical space and in the inertial system of reference
(X,Y) we apply the rotation:

Xj = xj cos(Ωbtsec)− yj sin(Ωbtsec)

Yj = xj sin(Ωbtsec) + yj cos(Ωbtsec) (4.73)

where (xj = rj cos(ϑjt), yj = rj sin(ϑjt)), j = 1, 2, . . . denotes the j-th point in the
collection of all the points of, say, the apocentric manifold WU,A

GL1
(tsec).

Figure 4.20 shows the manifolds WU,A
GL1

(tsec) (blue points) and the manifolds
WU,A

GL2
(tsec) (red points) in the inertial frame of reference at four different snapshots

within the first time window T1 = 2.125− 2.625 Gyr, corresponding to four different
fractions of the period TP , i.e. at tsec = 0, 0.45 TP , 0.9 TP , 2.4 TP . In the same way
Fig. 4.21 shows the manifolds WU,A

GL1,2
(tsec) in the inertial frame of reference in the

time window T2 = 2.500 − 3.000 Gyr at the times tsec = 0, 0.625TP , 1.25TP , 2.375TP .
In both figures we also plot the manifolds of L1,2 derived in a pure bar model, in
which the term Vsp, and the corresponding pattern speed Ωsp, are ignored altogether
in the Hamiltoniam (4.47).

In Figs. 4.20, 4.21 the manifolds give a rich in structure and complexity outflow
in the space away form GL1,2. This outflow of chaotic trajectories can support dy-
namically and morphologically both the outer shell of the bar and the spiral arms
of the galaxy. Note also in Figs. 4.20, 4.21 that the manifolds with the two pattern
speeds assumption are not very different, but only exhibit small deformation with
respect to the manifolds by the pure bar case. In particular, several features such as
the ’bridges’ that connect the manifolds emanating from one end of the bar to the
other, as well as the ’gaps’ between these bridges, are created by the main pertu-
bation (potential term Vb), while, as emphasized in Efthymiopoulos et al. (2020),
the role of the pertubation Vsp is instead to introduce a small periodic oscillation of
the manifolds with respect to the pure bar case, taking place with a period equal to
TP = π

|Ωsp−Ωb| . The most notable effect of this oscillation, as regards the morphology
of these structures supported by the manifolds, is a periodic variation of the length of
the manifold lobes, which leads to a periodic change of the morphology from ’ring’ to
’pseudoring’ (Buta (2012)). As shown in Figs. 4.22 and 4.23, in which the images
of several snapshots of the N-body simulation, after performing the Sobel-Feldman
edge detection algorithm (see Efthymiopoulos et al. (2019)), are compared to the
morphology of the manifolds in the inertial frame of reference, such a periodic alter-
nation of the ’ring’ with ’pseudoring’ morphology also appears in the images of the
simulation, in particular in the second time window T2 (Fig. 4.23).

131



(a) t=2.125 Gyr

(b) t=2.200 Gyr

(c) t=2.275 Gyr

(d) t=2.525 Gyr

Figure 4.20: The manifolds at four differnt snapshots in the time window T1 = 2.125 − 2.625 Gyr with a
period TP= O.525 Gyr. The snapshots corrspond to times: (a) t=2.125 Gyr, at time tsec = 0 (beginning of
the period) (b) t=2.200 Gyr, at time tsec = 0.45TP (c) t=2.275 Gyr, at time tsec = 0.9TP (d) t=2.525 Gyr,
at time tsec = 2.4TP . The blue points correspond to the manifolds emanating from GL1 and the red points to
the manifolds emanating from GL2. Left: manifolds in the model with two pattern speeds. Right: manifolds in
a pure bar model (see text).
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(a) t=2.500 Gyr

(b) t=2.625 Gyr

(c) t=2.750 Gyr

(d) t=2.975 Gyr

Figure 4.21: Same as in Fig. 4.20 but for the time window T2 = 2.500− 3.000 Gyr. The period is TP=O.2
Gyr at the times of the snapshots are: (a) t=2.500 Gyr, at time tsec = 0 (beginning of the period) (b) t=2.625
Gyr, at time tsec = 0.625TP (c) t=2.750 Gyr, at time tsec = 1.25TP (d) t=2.975 Gyr, tsec = 2.375TP .
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Figure 4.22: The manifolds calculated as described in section 4.3.3 compared to the respective images of the
snapshots of the N-body simulation at the times (a) t=2.200 Gyr (top), (b) t=2.275 Gyr (center) and (c)
t=2.525 Gyr (bottom) of the first time window T1.
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Figure 4.23: The manifolds calculated as described in section 4.3.3 compared to the respective images of the
snapshots of the N-body simulation at the times (a) t=2.625 Gyr (top) and (b) t=2.95 Gyr (bottom) of the
second time window T2.

Figure 4.24: The manifolds calculated as described in section 4.3.3 compared to the contours of the disc surface
density at six successive snapshots t = 2.125, 2.150, 2.175, 2.200, 2.225, 2.250 Gyr of the first time window
T1, covering about one relative period TP .
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Figure 4.25: Same as in Fig. 4.24, but now the manifolds and contours are shown in a rotating frame with
angular velocity Ωb. The lobes and bridges formed by the manifolds are described in the text.

The creation of ‘bridges’ is a generic phenomenon created by the manifold lobes as
a consequence of Poincaré’s ‘homoclinic chaos’, and as shown in the previous figures,
persists even when the chaotic motions around the bar’s L1,2 points are modulated
by more frequencies besides the bar’s Ωb. In particular, the manifolds emanating
from the orbit GL1, after half a turn, start approaching the neighborhood of L2 and
create a sequence of lobes which start, now, supporting the spiral arm connected to
L2 (instead of their origin, i.e., L1), and vice versa. As first discussed in Tsoutsis et
al. (2008) (see also Efthymiopoulos et al. (2019), Efthymiopoulos et al. (2020)),
the role of the ‘bridges’ is essential in understanding how the manifold lobes create
density enhancements supporting particular ring or spiral morphologies. Figures
4.24 and 4.25 allow to see how the variation in time of the position of the bridges,
due to the second pattern speed, is correlated with the variation in morphology of the
spiral structure during a cycle of relative period TP . Both figures show six consecutive
snapshots in the first time window roughly covering a time interval equal to TP . In
Fig. 4.24 all structures are projected in a fixed frame, while in Fig. 4.25 the same
structures are visualized in a rotating frame of angular speed Ωb, as determined by
NAFF. Thus, in the latter case, the bar co-rotates with the frame, as evident from the
innermost iso-densities, which keep a practically constant orientation.

While an exact comparison of the manifold structures (computed only with the
m = 2 potential) with the full density is not possible, the main qualitative comparison
yields the following picture. At the beginning of this interval, the bar is detached from
the spiral arms (Figure 4.24, t = 2.125 Gyr) and altogether the spiral arms are weak
in amplitude. Progressively the bar approaches the starting points of the spiral arms
(t = 2.175 Gyr to t = 2.225 Gyr) and the spiral arms gain amplitude. Near the end of
the cycle (t = 2.25 Gyr) the spiral amplitude starts reducing again. By visualising the
system in the frame co-rotating with the bar we can identify the effect of the second
pattern speed in the manifold structure. The most important feature is the evolution
in time of the system of lobes, and of the bridges formed by them, as shown in
Fig. 4.25. We identify two main homoclinic lobe systems, marked as LB1 and LB2,
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shown in the bottom part of all the manifold plots, which correspond to lobes of the
GL1 manifolds forming ‘bridges’ with the initial parts of the GL2 manifolds (denoted
WL2 in the figure), marked by B1 and B2 respectively. Symmetric lobes and bridges
exist also in the upper part of the manifold plots, connecting the manifolds of GL2

with GL1 respectively. Two main effects are produced by the second pattern speed:
i) the lobe system LB2 gets enhanced in the middle of the time interval, and ii) the
position of the bridge B1 rotates clockwise (compare the snapshots t = 2.125 Gyr with
t = 2.200 Gyr). As a result, in the middle of the considered time interval the bridges
B1 and B2 are almost in phase, while at the beginning (t = 2.125 Gyr) they have a
phase difference of almost π/2. Finally, near the end of the interval, B1 exceeds in
phase B2, while altogether the lobe system LB2 becomes again weak. Furthermore,
the bridges B1 and B2 can be roughly associated with the spiral overdensities S1
and S2 seen in the isodensity plots for the same snapshots. Note that all these time
variations are exclusively due to the presence of a second pattern speed, while the
structure of the manifolds with a unique pattern speed remains invariant in time (see
figure 4.20).

Note that this type of homoclinic dynamics produced by the manifolds’ lobes and
bridges affects not only the orbits strictly on the manifolds, but essentially all the
orbits which belong to the outflows from L1,2. Figure 4.27 shows an example of this
effect in the inertial frame of reference. A ball of initial conditions centered at the
bar’s L1 (and, symmetrically, L2), is allowed to propagate forward in time under the
semi-analytical potential model with both pattern speeds present. We observe that
the points in these initial balls propagate in the disc, at the beginning being stretched
along the linear eigendirections of the unstable manifolds. Up to time t = 0.2 Gyr
these orbits then create the usual thin structures that define the spiral arms and the
envelope of the bar. Later, however, the same strings of stars develop a sequence of
lobe-like chaotic oscillations. In particular, at time t = 0.35 Gyr the orbits from L1

start approaching asymptotically the neighborhood of L2, and then, they develop thin
lobes which support the spiral arm connected to L2, instead of L1, and vice versa.
As time goes on (t = 0.6 Gyr) the lobes grow in size, keeping the same connection
to the points L1 and L2. Later on, however, the same mechanism generates anew a
reversal, as the lobes connected with L1 form a complete turn, thus returning to the
neighborhood of L1 and supporting anew the spiral arm connected to it. The overall
picture gives rise to a so-called ‘lagrangian coherent structure’ (Sánchez-Martín et
al. (2018)), which acts as a skeleton for a continuous chaotic flow of particles. In
practical terms, this flow implies that, independently of its origin (outflow from L1 or
L2) the same group of particles can sometimes support the spiral arm connected to
L1, and other times the one connected to L2.
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Figure 4.26: The velocity vector field positioned over the manifolds at the time t=2.200 Gyr of the simulation.

Finally, as shown in Fig. 4.26, the invariant manifolds in two pattern speed case in
the inertial frame of reference are consistent with the residual velocity flow model for
the trajectories along density waves of the ’chaotic spiral’ type (Patsis (2006), Patsis
& Tsigaridi (2017)). The residual velocity flow corresponds to the mean velocity of
the N-body particles in the frame co-rotating with the bar at any fixed time t, and
it can be computed as follows: Given the positions in cartesian coordinates (x, y)
and the respective velocities (Vx, Vy) of the bodies of the N-body simulation at the
particular snapshot, we divide the cartesian space into a grid. For the construction
of the grid we divide the cartesian space in 50 cells of size dx ≃ 0.61 kpc, dy ≃ 0.61
kpc, considering that the grid is limited by the values: xmax ≃ 15 kpc, xmin ≃ −15
kpc, ymax ≃ 15 kpc, ymin ≃ −15 kpc. In every cell of the grid, we calculate the mean
velocity components (⟨Vx⟩, ⟨Vy⟩) in the rotating system of reference of the bodies
within this cell. We then construct the vectors ⟨Vx⟩√

Vx
2 + Vy

2
,

⟨Vy⟩√
Vx

2 + Vy
2

 (4.74)

and plot the corresponding residual velocity vector field superposed to the manifolds,
as in Fig. 4.26, corresponding to the time t=2.200 Gyr. In Fig. 4.26 we observe
that the velocity vector field yields prograde orbits at the region inside the corotation
and retrograde outside corrotation. However, we observe that the mean flow in the
region of the manifolds WU,A

GL1
(tsec) and WU,A

GL2
(tsec) is along the manifold spirals,

in accordance with the predictions of chaotic spirals model (Patsis (2006)). The
manifolds GL1,2 illustrated in Fig. 4.26 are unstable braches and the motions of stars
travelling along them are forced to travel outwards and support the outflow away
from the corrotation.
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Figure 4.27: Propagation of a ball of initial conditions around the bar’s points L1 (blue) and L2 (red) under
the semi-analytical potential with both pattern speeds included. The orbital evolution of these groups of particles
generates a ‘lagrangian coherent structure’ (LCS, see text). The flow of particles through the LCS implies that
the same group (blue of red) sometimes supports the spiral connected to L1, and othertimes the spiral connected
to L2. The switch from one to the other type of support can be explained by the underlying manifold dynamics,
in particular by the phenomenon of ‘bridges’ created by the invariant manifolds.
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Chapter 5

Conclusion

In the present thesis we attempted to investigate the problem of the spiral structure
of the galaxies from an orbital point of view. The study of the orbits in galaxies can
give evidence for the mechanism that generates the spirals. Our research attempted to
approach the open subjects of spiral structure, which we presented in the introduction
(the morpholology of the spiral arms, their mechanism, their longevity and their evo-
lution). We concluded that all these open problems commute and orbits of different
nature contribute respectively to different mechanisms for the spiral structure, as well
as, different morphologies and evolution of the galaxy. We also discovered that chaos
is a key factor for the cooherence of the structure. In barred spiral galaxies chaos and
the intricate dynamics enhances the spiral structure and leads through the manifold
dynamics to long lived spirals. However, in normal galaxies where the spiral arms
are supported by ordered orbits, chaos makes these orbits unstable and dissolves the
spiral structure.

In this final chapter we are going to summarise the main results of the thesis and
present some ideas for future work that yield from our research. We are going to
present in detail the results of our study in the case of the N-body simulation of a
barred spiral galaxy (Chapter 3-4) and in the case of a Milky Way theoretical model
(Chapter 2).

I) In Chapter 2 we studied the case of spiral density waves generated by ordered
orbits. These ”precessing ellipses” model of elliptical orbits are considered to approach
the spiral density waves in grand design spiral galaxies.

We initially proved that these ordered elliptical periodic orbits can be located
through analytical calculations and consecutive transformations of the Hamiltonian
of the system. The Lie method of generating functions enabled us to write the
Hamiltonian in resonant normal form and get three solutions which correspond to
the three different families of periodic orbits x1, x2, x3 which are known in the
bibliography. There have been works in the past for the calculation of these periodic
orbits, but there was still the need for a consise algorithm which sets in order and
clarity the steps for the analytical calculation of these periodic orbits.

The algorithm that was developed and presented in Chapter 2 can be applied in
any galactic model whose spirals are generated by the precessing ellipses mechanism.
It is a tool for several experiments in order to test the parameters of the galactic
models.

A parametric study can also be made in a range of free geometric and dynamical
parameters of galactic models such as the pattern speed of the spiral arms Ωsp, the
amplitude of the spiral pertubation or the pitch angle of the spiral arms. This para-
metric study shows how the parameters collaborate in a way that a realistic spiral
density wave is generated. Moreover, the knowledge of the right values of parame-
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ters for a realistic density wave may give us the ability to make long-lasting N-body
simulations. N-body simulations of normal galaxies based on the precessing ellipses
mechanism is a difficult task for the astronomers and a lot of work needs to be done
in this field.

A comparison with numerical results can enhance this research. In section 2.2.2
a comparison of the analytical elliptical orbit x1 to a numerical elliptical orbit was
made. For the particular model and the particular free parameters we used the two
orbits were in good agreement. However, a parametric study needs to be done, in
order to show us in which range of the parameters this agreement of the numerical
and analytical orbits holds.

We also investigated when these orbits become unstable and no spiral density
waves can be supported. We used a theoretical potential Milky Way- like model
consisting of a bulge, a disc, a halo and a spiral potential. The free parameters of our
model were: the amplitude of the spiral density perturbation (ρ0), the pattern speed
of the spiral potential (Ωsp) and the pitch angle of the spiral arms of the model (a). By
testing the effect of the variation of the free parameters of the model on the response
spirals, formed by elliptical periodic orbits we extracted the following conclusions:

1) In all models under study the x1 family is responsible for the creation of
response spirals consisted with the imposed ones. The repsonse spirals extend in the
region from the center of the galaxy up to the radius of the 4:1 resonance. The x2
and x3 families of orbits exist between the first and the second ILR. They are created
simultameously near the first ILR at a tangent bifurcation and they join and disappear
near the second ILR in all the models, except in the case of a very small pitch angle
where they still exist outside the second ILR but do not contribute to the response
spirals. The x2 family of orbits has main axes perpendicular to the main axes of the
x1 family and the x3 family is always unstable in the whole range of the radii.

2) By increasing the amplitude of the spiral density perturbation in our model
chaos is introduced gradually and the x1 family of orbits becomes unstable. An upper
limit for the spiral density perturbation is ρ0 = 30×107M⊙/kpc3 where the x1 family
is unstable in the whole range between the second ILR and the 4:1 resonance.

3) Regarding influence of the value of the pattern speed Ωsp, when Ωsp decreases,
all the resonances are shifted outwards and therefore the spiral density waves can
reach larger radii. However, the ellipses become rounder when they get closer to the
4:1 resonance and therefore the spiral density wave becomes less cospicuous at larger
radii. Moreover, the elliptical orbits of the x1 family become much more elongated
and intersect each other, thus destroying a coherent spiral response.

4) Regarding the influence of the value of the pitch angle, we conclude that for
increasing pitch angle (more open spiral arms), more order is introduced in the phase
space and the chaotic areas shrink in size, while for decreasing pitch angle (more tight
spiral arms) chaos dominates on the phase space and the x1 family of orbits can no
longer support the spiral density wave.

5) Summarizing the above, the main result of this research in the ”precessing
ellipse model” is a quantitative estimation of the range of the free parameters of
our galactic model for generating realistic spiral density waves, via the ”precessing
ellipses” model of elliptical closed orbits (and their surrounding quasi-periodic ones).
In particular, a correlation between the pitch angle and the amplitude of the spiral
perturbation was shown, where stronger spirals can be statistically less tight than
weaker ones. Moreover, a corellation between the pitch angle and the pattern speed
showed, where spirals than spin faster can be statistically tighter that slower ones.

The results of this research, which are associated to the range of free parameters
in the dispertion relation for the generation of realistic density waves, can be used for
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the construction of an N-body model of a long living density wave, which is in lack
in bibliography. These orbits can be reproduced analytically and be compared with
the numerical results.

The mechanism that generates the spiral arms in the Milky Way is still unknown.
This work arises the need for a correlation of the pattern speed of the bar with the
mechanism that generates the spiral arms in the Milky Way case. Milky Way is a
barred spiral galaxy and one would expect the spiral arms to be chaotic. A rapidly
rotating bar may be related to a precessing ellipses mechanism for the construction of
the spiral arms. We have shown that in the case of the spiral arms produced by the
invariant manifolds the velocity vectors are parallel to the manifolds. This can give
us an observational tool through which we can investigate if the spirals are produced
by chaotic or organised orbits.

II) In Chapters 3‐4 we studied the case of barred spiral galaxies, where the co-
existence and possible non-linear coupling of multiple patterns hints towards the
chaotic nature of spiral arms. To the extent that spirals are bar driven, they are
affected in a non-trivial way by the bar’s secular evolution. Within this context, the
main contribution of the manifold theory is to describe what should be the expected
form of the bar-driven spiral mode when the disc’s region between the bar’s corotation
and Outer Lindblad Resonance is largely chaotic. It should be stressed that the
manifold theory poses no requirement that chaos originates exclusively from the bar.
Nonlinear interaction of the bar mode with additional patterns beyond co-rotation
actually enhances chaos. Furthermore, it is a basic rule of dynamics that the unstable
manifolds of one periodic orbit cannot intersect themselves or the unstable manifolds
of any other periodic orbit of equal Jacobi energy. Thus, all these manifolds have to
‘coalesce’ in nearly parallel directions, thus enhancing chaotic spirals.

The manifolds emanating from the region of the bar’s L1 and L2 points provide
the simplest representation of these chaotic outflows. In the present thesis, we found
that the manifold spirals provide the dynamical skeleton for these structures and they
pave the direction that the trails of the orbits will follow. The study of the manifold
spirals with an assumption of a single or a second pattern speed has been presented
in Chapters 3 and 4. We are presenting the main results of these two chapters which
examine the application of the manifold theory in an N-body galactic model:

-In Chapter 3 we gave evidence that these manifolds provide a dynamical skeleton
in phase space, or, the dynamical avenues to be followed by new particles injected
in the domain between CR and OLR at reccurent ‘incidents’ of non-axisymmetric
activity. In particular:

1) We proved that the manifolds evolve and support the secularly evolving struc-
tures. We gave a characterization of such incidents as of i) inner, or ii) outer origin,
depending on whether the spectral analysis shows a wave originating inside CR and
propagating outwards (in (i)), or originating outside CR, moving initially inwards,
then being reflected at CR, and then moving outwards (in (ii)). Morphologically, spi-
rals are connected mainly with incidents of inner origin. However, pattern detection
algorithms such as Sobel-Feldman allow to detect the co-existence of various patterns,
including spiral ones, both at maxima and minima of the m = 2 amplitude beyond
the bar, i.e., both close to and far from incidents of non-axisymmetric activity. We
interpret the importance of manifolds as follows: whatever causes these incidents,
at every incident the particles’ orbits (and in particular chaotic ones) are perturbed.
Then, new particles injected in the CR zone tend to follow and populate the manifolds
to a large extent, according to general rules of dynamics.

2) We argued that the continuous in time change of the form of the manifolds, as
well as the motion, along the manifolds, of the matter which populates them, allows
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to compromise the above picture on the role of manifolds with the multiplicity of
pattern speeds in the disc. Most notably, we unravel a basic behavior of the radial
profile of the pattern frequency Ω2(R) beyond the bar, connected with alteration
between maxima and minima of the non-axisymmetric activity. Namely, besides the
always present plateau in the graph of Ω2(R) representing the bar’s pattern speed, we
observe that Ω2(R) tends to form a second plateau, indicating a second pattern with
distinct frequency outside CR, whenever we are near maxima of the non-axisymmetric
activity. However, this second plateau disappears near minima of non-axisymmetric
activity, giving its place, instead, to a shear-like decaying profile of the curve Ω2(R),
which, remarkably, terminates at a value Ω2 ∼ 0 near R = ROLR. Five full cycles
of this behavior are seen in our simulation, in a period of ∼ 1 Gyr (see Fig. 3.19),
leading to an approximate period of ∼ 0.2 Gyr. This is in rough resonance with
the bar’s period, but with large uncertainties in the numbers. On the other hand,
since the comparison between manifolds and Sobel-Feldman-recognized patterns in
the disc (Fig. 3.18) shows no appreciable differences between snapshots of minima
and maxima of the non-axisymmetric activity, we argued that the degree to which
manifolds are able to dictate the dynamics outside CR seems to be rather independent
of the strength of any additional pattern in the disc.

3) We also discussed the ‘thermal’ evolution of the disc, i.e., the way in which
the radial profile of the velocity dispersion appears to be influenced in time due to
non-axisymmetric activity. Owing, again, to the large degree of chaos between CR
and OLR, we argued that the gradual outward shift of both the CR and OLR radii
as the bar slows down, causes part of the disc, beyond the end of the bar, to acquire
a nearly constant radial velocity dispersion. In fact, this ‘isothermalization’ causes a
part of the disc, starting from inside the bar and ending at a point midway between
CR and OLR to cool down as the time goes on. We interpret this effect as a hint
that chaotic populations of particles gradually migrate outwards, carrying with them
kinetic energy in the form of randomly oriented motions. Regarding, however, the
responsiveness of the disc to manifold dynamics, we provide a heuristic argument
showing that good levels of responsiveness should be limited in a domain which
shrinks in time, as the CR radius moves outwards, while the radius beyond which
the disc gets hotter in time is nearly fixed.

-In Chapter 4 we presented another version of application of the manifold theory
in the same N-body model of barred spiral galaxies, which, in this case, evolves mul-
tiple pattern speeds. The purpose of the present study was twofold: i) we illustrated
the applicability of the algorithm of the ’Numerical Analysis of the Fundamental
Frequencies’ (NAFF, Laskar (1990), Laskar et al. (1992), Laskar (1993), Laskar
(2003), Fu & Laskar (2019)) to the problem of detecting and computing the accurate
values of more than one pattern speeds, and of the amplitudes of the correspond-
ing modes, in the disc plane of a N-body simulation of a barred-spiral galaxy, ii)
we used the outcome of (i) in order to build two-pattern speed models of manifold
spirals in the same simulation, implementing the algorithm proposed to this end in
Efthymiopoulos et al. (2020). Our main conclusions are:

1) The NAFF method was implemented in the time series yielding the evolution
of the amplitudes of the m = 2 sine and cosine modes obtained by an angular-
Fourier analysis of the surface density, or the potential, within concentric rings in the
simulation’s disc plane. We demonstrated that this leads to a determination of the
frequencies of rotation of the m = 2 patterns with an error scaling far better than
the O(1/T ) error of the simple time-Fourier method, where T is the length of the
time series considered. We showed how to adapt theoretical estimates on the NAFF
method to our problem, actually yielding an error scaling only as O(1/T 2), or better
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(by use of the Hanning filter, see section 4.1).
2) Due to the above behavior of the error of the NAFF method, we were actually

able to use time series of a length T short enough with respect to the timescale of
the secular evolution in the galactic disc, but still long enough for the NAFF method
to produce nearly-constant estimates of the pattern speeds for both the bar and the
spiral arms in the simulation, within moving time windows of length T .

3) Implementing the above to a particular simulation, we provided clear evidence
of the presence of multiple pattern speeds in the galactic disc. In particular, in many
cases we clearly detected the dominant m = 2 bar mode, as well as one or more spiral
modes evolving at radii beyond the bar’s corotation. At earlier phases of the evolution
of the system, we clearly detected a second spiral m = 2 mode at radii which partly
overlap with those where the bar mode is still present. At later phases, the second
most important spiral mode had practically no overlap with the bar mode (albeit
having, in all cases, a clearly different pattern speed), but it has a partial overlap with
a third mode important at the outermost parts of the disc.

4) Ignoring any extra modes beyond the bar and most dominant spiral m = 2
modes, we arrived at a rough model of the gravitational potential in the disc plane,
consisting of the superposition of the m = 0 and m = 2 bar and spiral modes, the
latter rotating with the pattern speeds Ωb and Ωsp respectively. We provided various
tests on the degree of approximation of this model with respect to the full potential
and surface density data obtained numerically by the simulation.

5) In the framework of the above m = 0, 2 model, we implemented the algorithm
of Efthymiopoulos et al. (2020) in order to compute the manifold spirals emanating
from the periodic orbits GL1 and GL2 at the two ends of the bar. The algorithm
requires a perturbative computation using canonical perturbation theory, whose im-
plementation, however, requires an analytical knowledge of high order derivatives of
the gravitational potential. Since, in our case, we could produce only a low-order
smooth interpolation of potential coefficients provided by the NAFF method, we sub-
stituted the high order perturbative computation with one based only on second order
perturbation theory, combined with a numerical (Newton-Raphson) determination of
the crucial periodic orbits GL1 and GL2 as the fixed points of a suitably defined
stroboscopic symplectic map (subsection 5.2). This led, in turn, to a numerical deter-
mination of the manifold spirals (‘flux tube’ WU (tsec), or ‘apocentric’ WUA(tsec)), at
different times tsec corresponding to a fraction of the main period TP = π/|Ωsp − Ωb|
present in the potential in the two-pattern speed regime (see subsection 5.3 for the
corresponding definitions).

6) We finally compared the computed manifolds WUA(tsec) with the observed bar
and spiral morphologies in the simulation at different snapshots, translated to different
values of the time-parameter tsec. Besides recovering the main spirals obtained in the
simulation through the manifolds, we also recovered several secondary morphological
features such as the ‘bridges’ discussed in past works (Efthymiopoulos et al. (2019),
Efthymiopoulos et al. (2020)). We also recovered the basic property of the manifolds
in the two-pattern speed case, which is an oscillation (with period equal to TP ) with
respect to the static bar-driven manifolds of the simple pattern speed case. In fact,
this oscillation allows to reproduce several changes in the apparent spiral morphology
observed along one time window, in particular the change between more open spiral
arms forming bridges and more closed, oscillating between the ’ring’ and the ’pseudo-
ring’ like ones, as tsec moves from the beginning to half the way along a period of
oscillation.

7) Finally, we checked that the mean residual velocity field (i.e. mean velocity
in the disc plane with respect to a frame co-rotating with the bar) in the simulation
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follows the model of ‘chaotic spirals’ (Patsis , 2006), i.e., the mean velocities are
parallel to the invariant manifolds computed in the two-pattern speed model.

As an overall conclusion, we find that the modelling of chaotic spirals by mani-
folds, including the hypothesis of multiple pattern speeds, gives a consistent picture of
the complexity of the non-axisymmetric structures like pseudo-rings and spirals ob-
served beyond the bar in N-body simulations of barred-spiral galaxies. We attribute
this connection of the manifolds to the chaotic spirals to a dynamical mechanism.
Namely, the manifolds provide pathways in phase-space, which play, for the phase-
space orbital flow, a role analogous to the lagrangian coherent structures in chaotic
fluid-dynamics (Haller & Yuan (2000), Sánchez-Martín et al. (2018)). In particu-
lar, the manifold lobes created in the neighborhood of the homoclinic or heteroclinic
tangles among unstable periodic orbits in the co-rotation region create preferential
directions which sculpt the orbital flow for all chaotic orbits. Thus, they generate
coherent patterns, such as the observed spiral ones, which can persist in timescales
surpassing by far the Lyapunov times (i.e., inverses of the Lyapunov exponents) of
individual trajectories. On the other hand, a detailed study of such chaotic struc-
tures in a simulation requires a precise identification of all the patterns (and pattern
speeds) in the decomposition of the gravitational potential in Fourier modes. This
can be efficiently achieved with methods as NAFF. In the present study, we limited
ourselves to a modelling of the two most dominant modes, using the NAFF method
to accurately fit the corresponding amplitudes and frequencies. We leave open the
question of the effects of adding to the analysis more modes of the spectrum detected
by NAFF, thus leading to a consistent study of the full complexity of the dynamical
interactions between various modes co-existing in a galactic disc over a long fraction
of the bar or spiral lifetimes.
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Appendix A

Asymptotic analysis in the
integrals of NAFF algorithm

The integrals (4.2) and (4.3) give terms of the following form:

Fc(σ) =
∑
k

Dkωk

(ωk
2 − σ2)T

− Dkωk cos((ωk − σ)T )

(ωk
2 − σ2)T

+

Dkωk

(ωk
2 − σ2)T

− Dkσ cos((ωk − σ)T )

(ωk
2 − σ2)T

− Dk cos((ωk + σ)T )

(ωk + σ)T

+
Ck sin((ωk + σ)T )

(ωk + σ)T
+
Ck sin((ωk − σ)T )

(ωk − σ)T
(A.1)

Fs(σ) =
∑
k

− Ckσ

(ωk
2 − σ2)T

+
Ckωk cos((ωk − σ)T )

(ωk
2 − σ2)T

−

Ckσ

(ωk
2 − σ2)T

+
Ckσ cos((ωk − σ)T )

(ωk
2 − σ2)T

− Ck cos((ωk + σ)T )

(ωk + σ)T

− Dk sin((ωk + σ)T )

(ωk + σ)T
+
Dk sin((ωk − σ)T )

(ωk − σ)T
. (A.2)

We make asymptotic analysis in equations (A.1), (A.2) in order to examine the
limiting behaviour of these integrals as σ → ωk and the series’ length T becomes a
large quantity.

For the integral of Fc in (A.1) we have:
-The first two terms in (A.1) can be simplified using the relation cos((ωk −σ)T ) =

1− 2sin2
(
(ωk−σ)T

2

)
and the limit as σ → ωk is zero :

lim
σ→ωk

Dkωk

(ωk
2 − σ2)T

− Dkωk cos((ωk − σ)T )

(ωk
2 − σ2)T

=

lim
σ→ωk

Dkωk

ωk + σ

sin2
(
(ωk−σ)T

2

)
(
(ωk−σ)T

2

) = 0 . (A.3)

-Similarly, the 3rd and the 4th term in (A.1) give a limit of the following form:

lim
σ→ωk

Dkωk

(ωk
2 − σ2)T

− Dkσ cos((ωk − σ)T )

(ωk
2 − σ2)T

=

lim
σ→ωk

Dk

(ωk + σ)T
+ lim

σ→ωk

Dkσ

ωk + σ

sin2
(
(ωk−σ)T

2

)
(
(ωk−σ)T

2

) =
Dk

2ωkT
. (A.4)
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-The limit of the 5th and 6th term in (A.1) as σ → ωk is :

lim
σ→ωk

Dk cos((ωk + σ)T )

(ωk + σ)T
=
Dk cos(2ωkT )

2ωkT

lim
σ→ωk

Ck sin((ωk + σ)T )

(ωk + σ)T
=
Ck sin(2ωkT )

2ωkT
. (A.5)

-The limit of the 7th term in (A.1) as σ → ωk gives the amplitude of the time
series (4.1) Ck:

lim
σ→ωk

Ck sin((ωk − σ)T )

(ωk − σ)T
= Ck . (A.6)

We conclude that:
Fc(σ = ωk) = Ck +O(1/T ) . (A.7)

In the same way we find that:

Fs(σ = ωk) = Dk +O(1/T ) . (A.8)
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Appendix B

The error of the NAFF algorithm
in the determination of the
fundamental frequencies

The calculation of the solution of (4.6) leads us to the error dσ of the NAFF algorithm
for the determination of the fundamental frequencies ωk of a quasi-periodic time series
(4.1). Approximating the solution with the Newton’s method, we find the following
expression for the error dσ, which is a rational function of T:

dσ =
Pn(T )

Pd(T )
(B.1)

where Pn(T ) in the numerator is a 2nd degree polynomial in T :

Pn(T ) =
2∑

n=1

anT
n (B.2)

with coefficients an given by:

a0 = 6ωk

(
Ck

2 cos(2ωkT )− Ck
2 +Dk

2 cos(2ωkT )−Dk
2
)

a1 = 6ωk

(
2CkDkωk cos(2ωkT )− 2CkDkωk + 2Dk

2ωk sin(2ωkT )
)

a2 = 6ωk

(
Ck

2ωk
2 cos(2ωkT ) + Ck

2ωk
2 + 2CkDkωk

2 sin(2ωkT )
)

− 6ωk

(
Dk

2ωk
2 cos(2ωkT ) +Dk

2ωk
2
)

(B.3)

and Pn(T ) in the denominator is a 4th degree polynomial in T :

Pd(T ) =
4∑

n=1

bnT
n (B.4)

with coefficients bn given by:

b0 = 9Ck
2 cos(2ωkT )− 9Ck

2 + 9Dk
2 cos(2ωkT )− 9Dk

2

b1 = 6Ck
2ωk sin(2ωkT ) + 12CkDkωk cos(2ωkT )− 12CkDkωk+

18Dk
2ωk sin(2ωkT )

b2 = 6Ck
2ωk

2 + 12CkDkωk
2 sin(2ωkT )− 12Dk

2ωk
2 cos(2ωkT )−

6Dk
2ωk

2

b3 = 4Ck
2ωk

3 sin(2ωkT )− 8CkDkωk
3 cos(2ωkT ) + 8CkDkωk

3−
4Dk

2ωk
3 sin(2ωkT )

b4 = 2Ck
2ωk

4 + 2Dk
2ωk

4 .
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For T large, we then obtain:
dσ ≈ a2

b4T 2
+ . . . (B.5)

We conclude that the error dσ is proportional to T−2.
Furthermore, since Fc(σ) and Fs(σ) have a local extreme at any of the values

σ = ωk, with k = 1, . . . , Nk, we obtain: Fc(ωk + dσk) = Fc(ωk) + O(dσk
2) = Ck +

O(1/T ) +O(1/T 4), that is:

Fc(ωk + dσk) = Ck +O(1/T ) (B.6)

and, analogously,
Fs(ωk + dσk) = Dk +O(1/T ) (B.7)

In summary, scanning the frequency space with small steps ∆σ << |dσk| in an interval
σmin < ωk < σmax, and computing the integrals Fc(σj), Fs(σj) for any of the values
σj = σmin + j∆σ, with j = 0, . . . , Nσ with Nσ =

[
σmax−σmin

∆σ

]
, allows to compute

the values σjmax such that P (σjmax) = Fc(σjmax)
2 + Fs(σjmax)

2 is maximum with
respect to any of the remaining values σj , j ̸= jmax in the interval. We then have
a determination of the frequency ωk ≈ σjmax with an error O(1/T 2), and of the
amplitudes Ck = Fc(σjmax), Dk = Fs(σjmax), with an error O(1/T ).
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