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Abstract

In field theories conserved dipole moment can arise from global dipole symmetry, which
is interpreted and as a higher moment generalization of global phase symmetry U(1). In
this thesis we will first see various symmetries, like dipole symmetry, spatial rotations etc.,
and will derive the conserved currents and the algebra they satisfy. Afterwards, we will
study the gauge symmetries of these transformations in the background of Aristotelian
Geometry, which describes the geometry of absolute time and space. Equipped with the
aforementioned elements, we will examine the behavior of quantum anomalies with guide
tools like the Wess – Zumino consistency conditions.

Περίληψη

Σε θεωρίες πεδίου η διατηρούμενη διπολική ροπή μπορεί να προκύψει από καθολική
διπολική συμμετρία, που ερμηνεύεται και ως υψηλότερης ροπής γενίκευση της καθολικής
συμμετρίας φάσης U(1). Σε αυτή την εργασία θα δούμε αρχικά διάφορες συμμετρίες,
όπως η διπολική, οι χωρικές στροφές κλπ., και θα εξάγουμε τα διατηρούμενα ρεύματα και
την άλγεβρα που ικανοποιούν. Στη συνέχεια, θα μελετήσουμε τις συμμετρίες βαθμίδας
των μετασχηματισμών αυτών σε υπόβαθροΑριστοτέλειας Γεωμετρίας, η οποία περιγράφει
την γεωμετρία του απόλυτου χρόνου και χώρου. Εφοδιασμένοι με τα προαναφερθέντα
στοιχεία, θα εξετάσουμε την συμπεριφορά των κβαντικών ανωμαλιών με οδηγό εργαλείων
όπως οι συνθήκες συνέπειας Wess – Zumino.

i



ii



Contents

1 Introduction to Dipole Symmetry 1

1.1 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Noether currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theories with Dipole Symmetry 13

2.1 Lagrangians with Dipole Symmetry . . . . . . . . . . . . . . . . . . . . 13

2.2 Symmetry Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Gauging procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Aristotelian Geometry 28

3.1 Second order formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Coupling to background sources . . . . . . . . . . . . . . . . . . . . . . 31

3.3 First order formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Aristotelian Anomalies 40

4.1 Symmetry and Conservation Laws . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Second order formulation . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 First order formulation . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Aristotelian Symmetry Algebra . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Quantum Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Wess-Zumino conditions . . . . . . . . . . . . . . . . . . . . . . 50

iii



4.3.2 Candidate Anomalies . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 60

iv



v



Chapter 1

Introduction to Dipole Symmetry

1.1 Noether’s Theorem

In this thesis the central object of our attention will be fractons, quasiparticles that repre-
sent a new hypothetical phase of matter . Fractons are characterized by their peculiar quan-
tum behavior of having restricted mobility. For further elaboration on the physical proper-
ties of fractons see [1, 2, 3, 4]. The features of this emergent topological quasiparticle can
have physical implications to a wide spectrum of research areas, from elasticity [5, 6, 7,
8, 9], hydrodynamics [10, 11, 12, 13, 14, 15], phase transitions [16, 17, 18, 19, 20, 21, 22]
and quantum information [2, 23, 24, 25] to quantum field theory [26, 27, 28, 29, 30, 31],
gravitation [32, 33, 34, 35, 36, 37, 38, 39, 40] and holography [41, 42, 43, 44, 45].

It can be seen that in some theories this limited mobility of isolated fracton particles
is equivalent to the conservation of their dipole moment. To see this heuristically, note
that for a point particle at x⃗(t), with charge q and dipole moment d⃗(t) = qx⃗(t), conser-
vation of dipole moment ˙⃗

d(t) = 0 is the same as ˙⃗x(t) = 0. For more details on this see
[46, 47, 48, 49] and for a broad review on fractons see [50, 51, 52]. To study the quan-
tum features of fractons, we will need to encode the conservation of dipole moment in
a field-theoretic manner. This is done through the use of Noether’s Theorem that con-
nects conserved quantities with corresponding symmetries. For more details on Noether’s
Theorem see [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].

This chapter will be heavily based on [64], focusing on a generic complex scalar field
ϕ = ϕ(x), with x ≡ (t, x⃗), and some real Lagrangian (density)

L = L(x, ϕ, ∂µϕ, ∂µ∂νϕ, c.c.),

where c.c.means the complex conjugate of the preceding terms inside the parenthesis. Let
us review the basic theoretical concepts we will need to move forward. We call a variation
of the field ϕ(x) a class of functions ϕϵ(x) such that ϕϵ=0(x) = ϕ(x) and we will work to
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first order in ϵ, sometimes called “infinitesimal” order, so we write

ϕϵ(x) = ϕ(x) + ϵδϕ(x) +O(ϵ2)

by denoting

δϕ(x) ≡ ∂ϕϵ(x)

∂ϵ

∣∣∣∣
ϵ=0

.

We would like to write other ϵ-dependent quantities in a similar manner. For a variation
ϕϵ(x) of the field, the Lagrangian

L(x) ≡ L(x, ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), c.c.)

is also varied to
Lϵ(x) ≡ L(x, ϕϵ(x), ∂µϕϵ(x), ∂µ∂νϕϵ(x), c.c.)

and written as
Lϵ(x) = L(x) + ϵδL(x) +O(ϵ2)

with the infinitesimal change, to first order in ϵ, being represented again by

δL(x) ≡ ∂Lϵ(x)
∂ϵ

∣∣∣∣
ϵ=0

.

For a real Lagrangian L = L(x, ϕ, ∂µϕ, ∂µ∂νϕ, c.c.), using1(
∂L
∂ϕ

)∗

=
∂L
∂ϕ∗ ,

(
∂L

∂(∂µϕ)

)∗

=
∂L

∂(∂µϕ∗)
, etc.,

changes to first order in ϵ by

δL =
∂L
∂ϕ

δϕ+
∂L

∂ (∂µϕ)
∂µ (δϕ) +

∂L
∂ (∂µ∂νϕ)

∂µ∂ν (δϕ) + c.c. (1.1)

1Let L(z, w) be analytic for both z, w ∈ C. Define L̃(Re z, Im z) = L(z, z∗) ∀z ∈ C (see Section 6.1
of [58]). Then we can show that

∂L(z, z∗)
∂z

=
1

2

(
∂L̃

∂ Re z
− i

∂L̃
∂ Im z

)
∂L(z, z∗)

∂z∗
=

1

2

(
∂L̃

∂ Re z
+ i

∂L̃
∂ Im z

)

If L̃ ∈ R, then (
∂L(z, z∗)

∂z

)∗

=
∂L(z, z∗)

∂z∗
.
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Then, through the relation2

∂L
∂ (∂µ∂νϕ)

=
∂L

∂ (∂ν∂µϕ)
,

it can be seen that

δL =

[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
+ ∂µ∂ν

∂L
∂(∂µ∂νϕ)

]
δϕ

+ ∂µ

[
∂L

∂(∂µϕ)
δϕ+

∂L
∂(∂µ∂νϕ)

∂ν(δϕ)− ∂ν
∂L

∂(∂µ∂νϕ)
δϕ

]
+ c.c.

(1.2)

Similarly to the above, the action functional

S[ϕ] ≡ S[Reϕ,Reϕ] ≡ S[ϕ, ϕ∗] =

∫
R

dd+1xL(x)[ϕ, ϕ∗],

of the complex scalar ϕ under an arbitrary variation ϕϵ(x) of the field, also changes from
S ≡ S[ϕ, ϕ∗] to Sϵ ≡ Sϵ[ϕ, ϕ

∗] ≡ S[ϕϵ, ϕ
∗
ϵ ] and we write

Sϵ = S + ϵδS +O(ϵ2),

with infinitesimal change

δS ≡ ∂Sϵ
∂ϵ

∣∣∣∣
ϵ=0

.

Using the concept of the functional derivative (see [54, 57, 53, 55, 65]) we can easily see
that

δS =

∫
dd+1x

(
δS

δϕ(x)
δϕ(x) +

δS

δϕ∗(x)
δϕ∗(x)

)
=

∫
dd+1x δL(x).

Taking variations δϕ that vanish on the boundary of the region of integration R and using
1.1 we get3

δS

δϕ
=
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
+ ∂µ∂ν

∂L
∂(∂µ∂νϕ)

δS

δϕ∗ =
∂L
∂ϕ∗ − ∂µ

∂L
∂(∂µϕ∗)

+ ∂µ∂ν
∂L

∂(∂µ∂νϕ∗)

(1.3)

2 Let L̄ = L̄(Aµν) and A(µν) =
1
2

(
Aµν +Aνµ

)
. If we define L(Aµν) = L̄(A(µν)), we can show that

∂L
∂Aµν

=
∂L

∂Aνµ

.

3For complex scalar fields ϕ, since the Lagrangian depends on both the field ϕ and its complex conjugate
ϕ∗ separately, to calculate the functional derivative of the action, we need to choose two types of variations
of ϕ. The first type should be such that δϕ = δϕ∗, while the second should be chosen such that δϕ = −δϕ∗.
The logic is similar to that in footnote 2 and we can see that everything works well as if we had two totally
independent fields ϕ and ϕ∗ in the Lagrangian L. This means that ϕ and ϕ∗ can actually be treated as
independent fields as far as matters of the action and the Lagrangian are concerned. For more details, see
Section 6.1 of [58].
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The fields ϕ that extremize the action, meaning δS = 0 for any variation δϕ or, equiva-
lently,

δS[ϕ, ϕ∗]

δϕ
=
δS[ϕ, ϕ∗]

δϕ∗ = 0,

are usually said to be on-shell and they are off-shell otherwise. So for on-shell fields ϕ we
get the following equations

δS

δϕ
=
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
+ ∂µ∂ν

∂L
∂(∂µ∂νϕ)

= 0

δS

δϕ∗ =
∂L
∂ϕ∗ − ∂µ

∂L
∂(∂µϕ∗)

+ ∂µ∂ν
∂L

∂(∂µ∂νϕ∗)
= 0

known by everyone as Euler-Lagrange equations or equations of motion.

In using Noether’s Theorem to link symmetries to conserved currents, we will work
with specific transformations where the spacetime point x and the field ϕ change simul-
taneously as one transformation. In particular, we take x′ = x′(x) and ϕ′ = ϕ′(x), where
the function ϕ′ is usually declared in the form ϕ′(x′) = T [ϕ](x) with T [ϕ] some func-
tional of ϕ. We will also assume that the inverses x(x′) and T −1[ϕ] exist4. Obviously,
to get the transformation ϕ′(x) we use the inverse transformation x = x(x′) and ob-
tain ϕ′(x′) = T [ϕ](x(x′)). We usually see the total transformation being denoted as
x → x′, ϕ(x) → ϕ′(x′). For a Lagrangian L = L(x, ϕ, ∂µϕ, ∂µ∂νϕ, c.c.) the transfor-
mation x→ x′, ϕ(x) → ϕ′(x′) induces a corresponding transformation to the Lagrangian
L(x) → L′(x′) given by

L′(x′, ϕ′(x′), ∂µϕ
′(x′), ∂µ∂νϕ

′(x′), c.c.) ≡ J(x, x′)L(x, ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), c.c.)
(1.4)

with
J(x, x′) =

∣∣∣∣det( ∂x∂x′
)∣∣∣∣

the Jacobian of the transformation x = x(x′). To identify the transformed Lagrangian L′

explicitly we write the above expression with respect to x′ and ϕ′. This is obviously done
using the inverses x(x′) and T −1[ϕ]. Trying to write ϕ in terms of ϕ′ we will find that

ϕ(x) = T −1[ϕ′ ◦ x′](x).

The transformed action is defined as

S ′[ϕ′, ϕ′∗] ≡
∫
R′
dd+1x′ L′(x′)[ϕ′, ϕ′∗],

where R′ = x′(R), and we can see that

S ′[ϕ′, ϕ′∗] = S[ϕ, ϕ∗].

4This means that x′(x(x′)) = x′ ∀x′ and T −1[T [ϕ]] = ϕ ∀ϕ.
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This means that if ϕ is a field that extremizes the action S with Lagrangian L, then the
corresponding transformed field ϕ′ will extremize the action S ′ with Lagrangian L′. We
will call the transformation x → x′, ϕ(x) → ϕ′(x′) a symmetry of the action S or the
Lagrangian L (or even a symmetry of our “physical theory”) if the functional form of S ′

is “the same as that of S” meaning

S ′[ϕ′, ϕ′∗] = S[ϕ′, ϕ′∗] ≡
∫
R′
dd+1x′ L(x′)[ϕ′, ϕ′∗]

for any original region R, which reduces to the condition

L′ = L.

We see that for a symmetry transformation if ϕ satisfies the Euler-Lagrange equations with
Lagrangian L, then ϕ′ will satisfy the same equations of motion with the same Lagrangian
L.

A continuous transformation x → x′, ϕ(x) → ϕ′(x′) will have an infinitesimal ver-
sion of the form x′ϵ(x), ϕ

′
ϵ(x

′) = Tϵ[ϕ](xϵ(x′)), where the ϵ generates the “infinitesimal”
part of the transformation. Working again to infinitesimal order we have

x′ϵ(x) = x+ ϵξ(x) +O(ϵ2), (1.5)

where ξ(x) ≡ ∂x′ϵ(x)/∂ϵ|ϵ=0 (for the above equation note that, by definition, x′ϵ=0(x) =
x). For the inverse transformation xϵ(x′), we can easily show that

xϵ(x
′) = x′ − ϵξ(x′) +O(ϵ2).

In addition, if we write

Tϵ[ϕ](x) = ϕ(x) + ϵK[ϕ](x) +O(ϵ2)

(note again Tϵ=0[ϕ](x) = ϕ(x)), we can find that

T −1
ϵ [ϕ](x) = ϕ(x)− ϵK[ϕ](x) +O(ϵ2).

For the transformed field ϕ′
ϵ, we write

ϕ′
ϵ(x) = ϕ(x) + ϵδϕ(x) +O(ϵ2), (1.6)

where, of course,

δϕ(x) ≡ ∂ϕ′
ϵ(x)/∂ϵ|ϵ=0 = −ξµ(x)∂µϕ(x) +K[ϕ](x) (1.7)

(again, by definition, ϕ′
ϵ=0(x) = ϕ(x)), while for the inverse transformation, ϕϵ(x) =

T −1
ϵ [ϕ′ ◦ x′ϵ](x) for any arbitrary function ϕ′(x), we can prove that

ϕϵ(x) = ϕ′(x) + ϵ [ξµ(x)∂µϕ
′(x)−K[ϕ′](x)] +O(ϵ2).
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In a similar way to the above equations, since ϕ′
ϵ(x) is a variation of the original field ϕ(x),

for Lϵ(x) ≡ L(x, ϕ′
ϵ(x), ∂µϕ

′
ϵ(x), ∂µ∂νϕ

′
ϵ(x), c.c.) we will again write

Lϵ(x) = L(x) + ϵδL(x) +O(ϵ2)

with δL(x) being given by 1.2, where we set 1.7 in δϕ(x). We also have for the trans-
formed action

Sϵ ≡
∫
R′

ϵ

dd+1x′ Lϵ(x′),

where R′
ϵ = x′ϵ(R), the expansion

Sϵ = S + ϵδS +O(ϵ2)

with
δS =

∫
R

dd+1x [∂µ(ξ
µ(x)L(x)) + δL(x)] .

Using the relation
det(I + ϵA) = 1 + ϵ tr(A) +O(ϵ2),

which is true for any n× n matrix A, we get

J(x, x′) =

∣∣∣∣det( ∂x∂x′
)∣∣∣∣ = 1− ϵ∂′µξ

µ(x′) +O(ϵ2)

for small enough ϵ. This equation together with the definition 1.4 gives us for L′
ϵ(x) ≡

L′
ϵ(x, ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), c.c.) the expansion

L′
ϵ(x) = L(x)− ϵ[∂µ(ξ

µ(x)L(x)) + δL(x)] +O(ϵ2).

If our transformation is a symmetry, then

L′
ϵ(x) = L(x) ∀ϵ

or, an equivalent condition,
δL = −∂µ(ξµL). (1.8)

For a symmetry we also have Sϵ = S, so clearly δS = 0 for any region R, which is the
same as condition 1.8. Now we define the Noether current of a symmetry transformation
by

jµ ≡
[

∂L
∂(∂µϕ)

δϕ+
∂L

∂(∂µ∂νϕ)
∂ν(δϕ)− ∂ν

∂L
∂(∂µ∂νϕ)

δϕ+ c.c.

]
+ ξµL. (1.9)

Using 1.3 and definition 1.9, equation 1.2 becomes

δL =

(
δS

δϕ
δϕ+ c.c.

)
+ ∂µj

µ − ∂µ(ξ
µL). (1.10)
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For a symmetry transformation, which satisfies 1.8, the above gives us the following re-
lationship

∂µj
µ = −δS

δϕ
δϕ+ c.c. (1.11)

Hence, for symmetry transformations of on-shell fields ϕ equation 1.11 proves the con-
servation of the Noether current

∂µj
µ = 0 on-shell. (1.12)

Note that the conservation law derived in this section, comprising thewell-knownNoether’s
Theorem, holds for fields that are on-shell only. Also the Noether current can actually be
defined up to a constant multiplicative factor. This is important, because we will define
the corresponding Noether charge of a symmetry

Q =

∫
ddx j0,

which is determined up to a factor too and is conserved on-shell
dQ

dt
= 0 on-shell

as well. So the “algebra” between charges of different symmetries will be specified up to
multiplicative factors as well.

There is an alternative way to prove Noether’s Theorem, that is of great practical and
conceptual interest in many applications and will be important to us later. We start by
taking the transformation x′ϵ(x) and ϕ′

ϵ(x
′) = Tϵ[ϕ](xϵ(x′)), which we call global trans-

formation, and create a new local transformation, by the substitution ϵ → ϵ η(x), where
η = η(x) is a “well-behaved” real function of x. In particular, the transformations x′ϵ(x)
and Tϵ[ϕ](x) become

x′localϵ (x) ≡ x′ϵ η(x)(x)

T local
ϵ [ϕ](x) ≡ Tϵ η(x)[ϕ](x).

Now the substitution ϵ→ ϵ η(x) induces the resulting substitutions ξ(x) → η(x) ξ(x) and
K[ϕ](x) → η(x)K[ϕ](x), so δϕ(x) → η(x) δϕ(x). The distinction between global and
local transformations will be important. We will also need to define the auxiliary quantity

jµν = − ∂L
∂(∂µ∂νϕ)

δϕ+ c.c. (1.13)

which is obviously symmetric, i.e. jµν = jνµ. For a global transformation the infinites-
imal change (to first order) of the Lagrangian was given by 1.2, according to which we
have for the local transformation

δLlocal =

[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
+ ∂µ∂ν

∂L
∂(∂µ∂νϕ)

]
δϕlocal

+ ∂µ

[
∂L

∂(∂µϕ)
δϕlocal +

∂L
∂(∂µ∂νϕ)

∂ν(δϕlocal)− ∂ν
∂L

∂(∂µ∂νϕ)
δϕlocal

]
+ c.c.
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and since δϕlocal = η δϕ gives us

δLlocal = η δL+ ∂µη (j
µ − ξµL)− ∂µ(∂νη j

µν)

which holds for any function η = η(x). Hence, for “appropriate” choices of η(x), meaning
such that it vanishes on the boundary of the region of integration R (localized on a small
region), we get ∫

R

dd+1x δLlocal =

∫
R

dd+1x η [δL+ ∂µ(ξ
µL − jµ)]

We also know that
δSlocal =

∫
R

dd+1x [∂µ(ξ
µ
localL) + δLlocal]

with ξlocal = η ξ, so

δSlocal =

∫
R

dd+1x δLlocal =

∫
R

dd+1x η [δL+ ∂µ(ξ
µL − jµ)] .

Thus we conclude that for the transformed action Sϵ=ϵ(x), where we converted ϵ from a
constant to a function of x, the following identity holds

δSϵ
δϵ

∣∣∣∣
ϵ=0

= −∂µjµ + δL+ ∂µ(ξ
µL).

According to 1.10 we also have

δSϵ
δϵ

∣∣∣∣
ϵ=0

=
δS

δϕ
δϕ+ c.c.

Now if the action is symmetric with respect to the original global symmetry, i.e. Sϵ =
S ∀ϵ = constant, then relationship 1.8 is true and we get

δSϵ
δϵ

∣∣∣∣
ϵ=0

= −∂µjµ.

The above equation clearly reproduces the previous results 1.11 and 1.12.

1.2 Noether currents

It is time to put Noether’s Theorem to use by calculating the Noether currents of vari-
ous symmetries. We will study symmetry transformations for which there is a complex
function f = f(x) such that

ϕ′
ϵ(x

′
ϵ) = eϵf(x)ϕ(x). (1.14)

8



From eqs 1.5, 1.6 and 1.14 we get

δϕ(x) = −ξµ(x)∂µϕ(x) + f(x)ϕ(x)

Also those specific symmetries we impose on our Lagrangian will obey the equation

J(x′, x) = 1,

so
L′(x′) = L(x),

We will take our Lagrangian to be of the form

L = L(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.) (1.15)

where ϕ̇ ≡ ∂tϕ. Then the (Noether) currents for our Lagrangian will be

j0 =

[
∂L
∂ϕ̇

δϕ+ c.c.

]
+ ξ0L (1.16a)

ji =

[
∂L

∂(∂iϕ)
δϕ+

∂L
∂(∂i∂jϕ)

∂j(δϕ)− ∂j
∂L

∂(∂i∂jϕ)
δϕ+ c.c.

]
+ ξiL. (1.16b)

The approach followed here is, of course, not manifestly covariant at the moment. For
instance, the current jµ = (j0, ji) is not a tensor quantity under general coordinate trans-
formations anymore. This and similar issues will be remedied in Chapter 3 by putting our
theory in a more general framework. The conservation law of the current jµ = (j0, ji) is
again

∂µj
µ = ∂tj

0 + ∂ij
i = 0 on-shell.

Note that the expression ∂µjµ is again non-covariant, but we will keep using it purely
for notational convenience. That is we will continue to use the regular tensor calculus
terminology and conventions as a book keeping device.

First is time translation

t→ t′ = t+ c, xi → x′i = xi, ϕ′(x′) = ϕ(x).

We get the ϵ-form, or “infinitesimal” form, of the above transformation by setting c = ϵ,
giving us

t→ t′ = t+ ϵ, xi → x′i = xi, ϕ′(x′) = ϕ(x).

From the infinitesimal form of time translation we obtain for this symmetry

ξ0 = 1, ξi = 0, f = 0.

For space translation

t→ t′ = t, xi → x′i = xi + ai, ϕ′(x′) = ϕ(x)

9



we set ai = ϵδik, representing space translation in the k-direction, and get the infinitesimal
form

t→ t′ = t, xi → x′i = xi + ϵδik, ϕ′(x′) = ϕ(x),

which gives us
ξ0 = 0, ξi = δik, f = 0.

Putting it all together as spacetime translation we get

ξµ(ν) = δµν , f = 0

with ν = 0 representing translation in the “time”-direction and ν = k representing trans-
lation in the spatial k-direction. The currents we get from spacetime translations form
the energy-momemtum tensor T µν , where T

µ
0 is the time translation current and T µk is

the current for space translation in the k-direction. Explicitly, we see that the energy-
momentum tensor is

T 0
ν = −

[
∂L
∂ϕ̇

∂νϕ+ c.c.

]
+ δ0νL

T iν = −
[

∂L
∂(∂iϕ)

∂νϕ+
∂L

∂(∂i∂jϕ)
∂j∂νϕ− ∂j

∂L
∂(∂i∂jϕ)

∂νϕ+ c.c.

]
+ δiνL

and its conservation is written as

∂µT
µ
ν = 0 on-shell.

The next symmetry we look at is spatial rotation

t→ t′ = t, xi → x′i = Ri
jx

i, ϕ′(x′) = ϕ(x).

To obtain the infinitesimal form of spatial rotation, we do the following steps. We write
Ri

j = Ri
j (⃗a) for some vector a⃗ ∈ Rd, using the fact that rotation matrices belong to the

Lie group SO(d). Then we take a curve a⃗(ϵ) = ϵv⃗ + O(ϵ2) (connected to the identity
point) and get

Ri
j(ϵ) ≡ Ri

j (⃗a(ϵ)) = Ri
j(ϵv⃗ +O(ϵ2)) = Ri

j (⃗0) + ϵvk∂kR
i
j (⃗0) +O(ϵ2)

or just, in a simpler notation,

Ri
j(ϵ) = δij − ϵΩi

j +O(ϵ2).

Since for any rotation matrix R ∈ SO(d) it holds by definition that RTR = I , or in index
notation

R k
i δklR

l
j = δij ⇒ Rk

iR
l
jδkl = δij ,

10



by setting R = R(ϵ) we find

Rk
i(ϵ)R

l
j(ϵ)δkl = δij ⇒ (δki − ϵΩk

i +O(ϵ2)) (δlj − ϵΩl
j +O(ϵ2)) δkl = δij

⇒ δij − ϵ(Ωij + Ωji) +O(ϵ2) = δij

⇒ Ω(ij) = 0.

Note that we lowered the index of Ω using δij , i.e. Ωij = δikΩ
k
j . In general, latin indices

will be raised and lowered using δij and δij . The reason for this lies in the fact that our
geometry of space for fractons is essentially Newtonian/Eucledian, a matter that will be
developed in greater detail later. Now, given that the Ω’s are antisymmetric, to get the
infinitesimal form of a rotation in the k-l plane, we set (Ωkl)ij = 2δk[iδ

l
j] = δki δ

l
j − δkj δ

l
i, so

our rotation takes becomes

(Rkl)ij(ϵ) = δij − ϵ(Ωkl)ij +O(ϵ2) = δij − ϵδim(Ωkl)mj +O(ϵ2)

= δij − ϵδim(δkmδ
l
j − δkj δ

l
m) +O(ϵ2)

= δij − ϵ(δkiδlj − δkj δ
li) +O(ϵ2)

or
(Rkl)ij(ϵ) = δij + ϵ(δkj δ

li − δkiδlj) +O(ϵ2)

Hence, the infinitesimal form of spatial rotation is

t→ t′ = t, xi → x′i = xi + ϵ(xkδli − xlδki) +O(ϵ2), ϕ′(x′) = ϕ(x),

from which follows that

ξ0 = 0, ξi = (xkδli − xlδki), f = 0.

The current for spatial rotation in the k-l plane is calculated to be

J0
kl = xkT

0
l − xlT

0
k

J ikl = xkT
i
l − xlT

i
k +

[
∂kϕ

∂L
∂(∂i∂lϕ)

− ∂lϕ
∂L

∂(∂i∂kϕ)
+ c.c.

]
with conservation law

∂µJ
µ
kl = 0 on-shell.

Now we study phase rotation

ϕ′(x) = eiαϕ(x)

or, written in a similar way to the previous symmetries,

t→ t′ = t, xi → x′i = xi, ϕ′(x′) = eiαϕ(x).

11



The phase rotation transformation is also called U(1) transformation, because phase ro-
tation is essentially spanned from the elements of the Lie group U(1). To identify the
infinitesimal form of the U(1) transformation, we set α = ϵ and get

t→ t′ = t, xi → x′i = xi, ϕ′(x′) = eiϵϕ(x)

from which is apparent that

ξ0 = 0, ξi = 0, f = i.

The U(1) current is shown to be

J0 = iϕ
∂L
∂ϕ̇

+ c.c.

J i = iϕ
∂L

∂(∂iϕ)
+ i∂jϕ

∂L
∂(∂i∂jϕ)

− iϕ ∂j
∂L

∂(∂i∂jϕ)
+ c.c.

(1.17)

with conservation law
∂µJ

µ = 0 on-shell.
For later use, we need the following definition (see 1.13 where δϕ = iϕ)

J̃ ij = −iϕ ∂L
∂(∂i∂jϕ)

+ c.c. (1.18)

with the property J̃ ij = J̃ ji.

Finally, we focus our attention to a more exotic kind of symmetry, the one that char-
acterizes fractons in a fundamental level and so the “star of the show”. The dipole trans-
formation is defined by

ϕ′(x) = eiβix
i

ϕ(x)

or, using the familiar notation,

t→ t′ = t, xi → x′i = xi, ϕ′(x′) = eiβix
i

ϕ(x),

where, of course, βi ≡ δijβ
j for some vector β⃗ ∈ Rd. After setting βi = ϵδki or, equiva-

lently, βi = ϵδki , we get the infinitesimal form of dipole symmetry for the k-direction

t→ t′ = t, xi → x′i = xi, ϕ′(x′) = eiϵx
k

ϕ(x),

from which results that
ξ0 = 0, ξi = 0, f = ixk.

Using the defined quantity 1.18, we can easily obtain the Noether current for dipole sym-
metry

Jk0 = xkJ0

Jki = xkJ i − J̃ki.
(1.19)

with conservation of dipole current

∂µJ
kµ = 0 on-shell,
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Chapter 2

Theories with Dipole Symmetry

2.1 Lagrangians with Dipole Symmetry

We are very familiar with theories that are invariant under spacetime translation, spatial
rotation (even spacetime/Lorentz rotation) and also U(1) (phase) rotation but dipole sym-
metric theories are anything but abundant in the literature. So the purpose of this section
will be to identify a class of real (as always) Lagrangians that exhibit the desired behavior
of dipole symmetry. Again in this chapter we will lean closely to the approach laid out in
[64] and will, of course, continue to study Lagrangians of the form 1.15.

We start by considering a Lagrangian that has U(1) and dipole symmetry like in Sec-
tion 1.2. For both of these symmetries we found that ξµ = 0, so δL = 0 and δϕ = fϕ.
Putting these in 1.1 (mind the form 1.15) we have the (off-shell) relation

fϕ
∂L
∂ϕ

+ ∂t(fϕ)
∂L
∂ϕ̇

+ ∂i(fϕ)
∂L

∂ (∂iϕ)
+ ∂i∂j(fϕ)

∂L
∂ (∂i∂jϕ)

+ c.c. = 0.

For U(1) symmetry, f = i and we get

iϕ
∂L
∂ϕ

+ iϕ̇
∂L
∂ϕ̇

+ i∂iϕ
∂L

∂ (∂iϕ)
+ i∂i∂jϕ

∂L
∂ (∂i∂jϕ)

+ c.c. = 0, (2.1)

while, for dipole symmetry, f = ixk and we find

iϕ
∂L

∂(∂iϕ)
+ 2i∂jϕ

∂L
∂ (∂i∂jϕ)

+ c.c. = 0. (2.2)

Now using 1.17 and 1.19 we get (off-shell)

∂µJ
kµ = xk∂µJ

µ + Jk − ∂iJ̃
ki.
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Obviously, given that on-shell we have the conservation laws

∂µJ
kµ = ∂µJ

µ = 0 on-shell,

we find the on-shell relationship

Jk = ∂iJ̃
ki on-shell.

We can do even better than this. It can be seen through a bit of algebra that (off-shell)

Jk − ∂iJ̃
ki = iϕ

∂L
∂(∂kϕ)

+ 2i∂iϕ
∂L

∂ (∂k∂iϕ)
+ c.c.,

so for Lagrangians with dipole symmetry it is true that

Jk = ∂iJ̃
ki, (2.3)

which now holds off-shell as well. We conclude that a Lagrangian that hasU(1) symmetry
satisfies 2.1, while a Lagrangian with dipole symmetry satisfies 2.2, which can also be
written more compactly as in 2.3.

We proceed by taking our Lagrangian to be a polynomial of the field and its deriva-
tives. Most commonly, this is realized in the form

L = K − V

with a kinetic term K = K(ϕ, ϕ̇, c.c.) and an interaction term V = V(ϕ, ∂iϕ, ∂i∂jϕ, c.c.)
containing no time derivatives of the field. The interaction term is usually of the form

V = V (0) + V (2) + V (4) + · · · ,

where V (0) is a real (obviously) function of ϕ∗ϕ = |ϕ|2, meaning

V (0) = V (0)(ϕ∗ϕ),

and the V (n)’s contain all the n-th order in spatial derivatives terms of the Lagrangian
with no time derivatives in them. Next we should note that for theories with first order
in time equations of motion (like the Schrödinger equation) the kinetic term is written as
K = iϕ∗ϕ̇ + c.c., while for theories second order in time (remember the Klein-Gordon
equation) the kinetic term is K = ϕ̇∗ϕ̇. It is clear that both K and V (0) are by themselves
real with U(1) and dipole symmetry.

Remembering that we demand, of course, our Lagrangian to be real and U(1) sym-
metric, a fairly general choice for V (2) is

V (2) = aϕ∗2∂iϕ∂iϕ+ bϕ∗∂i∂iϕ+ c∂iϕ∗∂iϕ+ c.c., (2.4)
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where a, b and c are complex functions of ϕ∗ϕ. If we expand the above expression fully
we get

V (2) = (aϕ∗2∂iϕ∂iϕ+ a∗ϕ2∂iϕ∗∂iϕ
∗) + (bϕ∗∂i∂iϕ+ b∗ϕ∂i∂iϕ

∗) + d∂iϕ∗∂iϕ,

where d is a real function of ϕ∗ϕ. Now, given that we want V (2) to be dipole symmetric,
we essentially impose on it the condition 2.2. Putting the above equation in 2.2 by setting
L = V (2) we find the following constraint

2ia|ϕ|2ϕ∗∂iϕ+ 2ibϕ∗∂iϕ+ id∂iϕ
∗ϕ+ c.c. = 0.

By expanding this equation we can see that it can be rewritten in an equivalent way as

(2ia|ϕ|2 + 2ib− id)ϕ∗∂iϕ+ c.c. = 0.

We can extract a solution to this constraint equation easily by taking the first term to vanish,
which gives us

b = −a|ϕ|2 + d

2
,

so

V (2) = [aϕ∗2(∂iϕ∂iϕ− ϕ∂i∂iϕ) + c.c.] + d(∂iϕ∗∂iϕ+
1

2
ϕ∗∂i∂iϕ+

1

2
ϕ∂i∂iϕ

∗).

For this solution, after defining the new quantities

Xij ≡ ∂iϕ∂jϕ− ϕ∂i∂jϕ

Yij ≡ ∂iϕ
∗∂jϕ+ ϕ∗∂i∂jϕ

and renaming d→ 2b, the Lagrangian term 2.4 becomes

V (2) = (aϕ∗2X i
i + c.c.) + b(Y i

i + c.c.)

with a a complex and b a real function of ϕ∗ϕ. We can, indeed, check that the term V (2) is
dipole symmetric. By doing a (finite) dipole transformation

ϕ→ eiβix
i

ϕ

we find

Xij → ei2βix
i

Xij

Yij → Yij + iβj(ϕ
∗∂iϕ+ c.c.),

which leads to
V (2) → V (2).
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Using similar techniques to the above we could find a general form for the Lagrangian
term V (4). However, we will not dedicate our efforts to finding a general choice for V (4),
but we will use the helpful mathematical object

Xij = ∂iϕ∂jϕ− ϕ∂i∂jϕ

we have already defined and its transformation under a dipole transformation

Xij → ei2βix
i

Xij

to construct a dipole symmetric term that is 4th order in spatial derivatives (and no time
derivatives)

V (4) = κ(X ij)∗Xij + λ(X i
i)
∗Xj

j

with κ and λ real constants.

If we take K = iϕ∗ϕ̇ + c.c., V (0) = m2|ϕ|2, V (2) = 0 and V (4) = κ(X ij)∗Xij +
λ(X i

i)
∗Xj

j we get a Lagrangian of the form

L = (iϕ∗ϕ̇+ c.c.)−m2|ϕ|2 − κ(X ij)∗Xij − λ(X i
i)
∗Xj

j

and for K = ϕ̇∗ϕ̇

L = ϕ̇∗ϕ̇−m2|ϕ|2 − κ(X ij)∗Xij − λ(X i
i)
∗Xj

j,

where m is the mass parameter of our scalar field ϕ. Similar expressions have appeared
for field theory descriptions of fractons in [50, 66, 13, 67, 64].

2.2 Symmetry Algebra

In this section we will calculate the symmetry algebra of our symmetries. Given a La-
grangian L = L(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.) we can define the conjugate momenta

π ≡ ∂L
∂ϕ̇

and π∗ ≡ ∂L
∂ϕ̇∗

and we can see that the conjugate momenta are functions of the form

π = π(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.)

π∗ = π∗(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.)

as well. By assuming the ability to invert these functions with respect to the “velocity”
fields ϕ̇ and ϕ̇∗ and getting relations of the form

ϕ̇ = ϕ̇(ϕ, ∂iϕ, ∂i∂jϕ, π, c.c.) (2.5)
ϕ̇∗ = ϕ̇∗(ϕ, ∂iϕ, ∂i∂jϕ, π, c.c.) (2.6)
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we are ready to perform a Legendre transformation to our Lagrangian (field density) L
and get its corresponding Hamiltonian (field density)H defined as

H = (πϕ̇+ π∗ϕ̇∗)− L.

Note that here π and π∗ play the role of independent variables, while ϕ̇ and ϕ̇∗ have become
the dependent variables (functions) of 2.5. We have also set the functions ϕ̇ and ϕ̇∗ in the
Lagrangian L and made it a function of the form

L = L(ϕ, ∂iϕ, ∂i∂jϕ, π, c.c.),

so the Hamiltonian is actually defined as

H = H(ϕ, ∂iϕ, ∂i∂jϕ, π, c.c.).

From the entire procedure it is now apparent why our initial Lagrangian did not depend
on terms like ∂iϕ̇ and ϕ̈, i.e. derivatives of ϕ̇.

We will now try to extend the usual Poisson brackets definition of particle mechanics
to a suitable definition for fields. See also [54, 53, 68]. In particle mechanics we worked
with the phase space coordinates q⃗ = {qi} and p⃗ = {pi}with i = 1, . . . , n, so for functions
f = f(q⃗, p⃗) and g = g(q⃗, p⃗) we defined their Poisson bracket as

{f, g}(q⃗, p⃗) =
n∑
i=1

(
∂f(q⃗, p⃗)

∂qi
∂g(q⃗, p⃗)

∂pi
− ∂f(q⃗, p⃗)

∂pi

∂g(q⃗, p⃗)

∂qi

)
.

In field theory the discrete finite index i ∈ {1, . . . , n} ⊂ N is replaced by the continuous
space index x⃗ ∈ Rd and another discrete finite index r ∈ {1, . . . , k} ⊂ N, i.e. i →
{x⃗, r}, and the new quantities of interest are now ϕ⃗ = {ϕr(x⃗)} and π⃗ = {πr(x⃗)}. So for
functionals F = F [ϕ⃗, π⃗] and G = G[ϕ⃗, π⃗] we define

{F,G}[ϕ⃗, π⃗] =
∫
ddx

k∑
r=1

(
δF [ϕ⃗, π⃗]

δϕr(x⃗)

δG[ϕ⃗, π⃗]

δπr(x⃗)
− δF [ϕ⃗, π⃗]

δπr(x⃗)

∂G[ϕ⃗, π⃗]

δϕr(x⃗)

)
.

Since
δϕr(x⃗)

δϕs(y⃗)
= δrsδ(x⃗− y⃗) and

δϕr(x⃗)

δπs(y⃗)
= 0,

we can show for any functional F = F [ϕ⃗, π⃗] that, using a simplified obvious notation,

{ϕr(x⃗), F} =
δF

δπr(x⃗)
.

Similarly, we can see that
{πr(x⃗), F} = − δF

δϕr(x⃗)
.
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If we had functionals of the form

F [ϕ⃗, π⃗] =

∫
ddyF(y⃗)[ϕ⃗, π⃗],

then it is true that
δF [ϕ⃗, π⃗]

∂ϕr(x⃗)
=

∫
ddy

δF(y⃗)[ϕ⃗, π⃗]

δϕr(x⃗)

(and similarly for πr(x⃗)). For F and G of the above form we can prove that their Poisson
brackets become

{F,G}[ϕ⃗, π⃗] =
∫
ddx

∫
ddy {F(x⃗),G(y⃗)}[ϕ⃗, π⃗].

In using the preceding equation we often have to also make use of the following easily
proven relationships

{ϕr(x⃗), πs(y⃗)} = δrsδ(x⃗− y⃗), {ϕr(x⃗), ϕs(y⃗)} = 0, {πr(x⃗), πs(y⃗)} = 0.

In our dynamical complex scalar field theory with dynamical variables ϕ(t)(x⃗) ≡
ϕ(t, x⃗) = ϕ(x), ϕ∗(t)(x⃗) ≡ ϕ∗(t, x⃗) = ϕ∗(x), π(t)(x⃗) ≡ π(t, x⃗) = π(x) and π∗(t)(x⃗) ≡
π∗(t, x⃗), in order to use these time-dependent functions of space in the above Poisson
bracket we write

{F,G}[ϕ(t), π(t), c.c.] =
∫
ddx

(
δF [ϕ(t), π(t), c.c.]

δϕr(t, x⃗)

δG[ϕ(t), π(t), c.c.]

δπr(t, x⃗)
−

−δF [ϕ(t), π(t), c.c.]
δπr(t, x⃗)

∂G[ϕ(t), π(t), c.c.]

δϕr(t, x⃗)

)
+

+

∫
ddx

(
δF [ϕ(t), π(t), c.c.]

δϕ∗r(t, x⃗)

δG[ϕ(t), π(t), c.c.]

δπ∗
r(t, x⃗)

−

−δF [ϕ(t), π(t), c.c.]
δπ∗

r(t, x⃗)

∂G[ϕ(t), π(t), c.c.]

δϕ∗r(t, x⃗)

)
.

In this formalism, it is apparent that the following equations hold (simplifying the notation)

{ϕ(t, x⃗), F} =
δF

δπ(t, x⃗)
{π(t, x⃗), F} = − δF

δϕ(t, x⃗)

{ϕ∗(t, x⃗), F} =
δF

δπ∗(t, x⃗)
{π∗(t, x⃗), F} = − δF

δϕ∗(t, x⃗)
.

Again for functionals of the form

F (τ)[ϕ(t), π(t), c.c.] =

∫
ddyF(τ, y⃗)[ϕ(t), π(t), c.c.]
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we get
δF (τ)[ϕ(t), π(t), c.c.]

δϕ(t, x⃗)
=

∫
ddy

δF(τ, y⃗)[ϕ(t), π(t), c.c.]

δϕ(t, x⃗)

(similarly for π, ϕ∗ and π∗), hence for functionalsF (τ) andG(τ) of that form their Poisson
brackets become

{F (τ), G(τ)}[ϕ(t), π(t), c.c.] =
∫
ddx

∫
ddy {F(τ, x⃗),G(τ, y⃗)}[ϕ(t), π(t), c.c.].

For the above calculation we will need the relationships

{ϕ(t, x⃗), π(t, y⃗)} = {ϕ∗(t, x⃗), π∗(t, y⃗)} = δ(x⃗− y⃗),

{ϕ(t, x⃗), ϕ∗(t, y⃗)} = {π(t, x⃗), π∗(t, y⃗)} =

={ϕ(t, x⃗), π∗(t, y⃗)} = {ϕ∗(t, x⃗), π(t, y⃗)} = 0.

Before proceeding, we need to take a look at the Lagrangian L(t)[ϕ(t), ϕ̇(t), c.c.] =∫
ddxL(t, x⃗)[ϕ(t), ϕ̇(t), c.c.] and theHamiltonianH(t)[ϕ(t), π(t), c.c.] =

∫
ddxH[ϕ(t), π(t), c.c.].

We can see that (simplified notation again)

π(t, x⃗) =
δL(t)

δϕ̇(t, x⃗)
and π∗(t, x⃗) =

δL(t)

δϕ̇∗(t, x⃗)
.

For on-shell fields ϕ the Euler-Lagrange equations can be rewritten as

π̇(t, x⃗) =
δL(t)

δϕ(t, x⃗)
and π̇∗(t, x⃗) =

δL(t)

δϕ∗(t, x⃗)
on-shell.

Now we vary the Hamiltonian

H =

∫
ddxH =

∫
ddx (πϕ̇+ π∗ϕ̇∗)− L

and get

δH =

∫
ddx (δπϕ̇+ πδϕ̇+ δπ∗ϕ̇∗ + π∗δϕ̇∗)−

−
∫
ddx

(
δL

δϕ
δϕ+

δL

δϕ∗ δϕ
∗ +

δL

δϕ̇
δϕ̇+

δL

δϕ̇∗
δϕ̇∗
)
,

or
δH =

∫
ddx

[(
−δL
δϕ
δϕ+ ϕ̇δπ

)
+

(
− δL

δϕ∗ δϕ
∗ + ϕ̇∗δπ∗

)]
.

This means that

ϕ̇(t, x⃗) =
δH(t)

δπ(t, x⃗)

δL(t)

δϕ(t, x⃗)
= − δH(t)

δϕ(t, x⃗)

ϕ̇∗(t, x⃗) =
δH(t)

δπ∗(t, x⃗)

δL(t)

δϕ∗(t, x⃗)
= − δH(t)

δϕ∗(t, x⃗)
.
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For on-shell fields ϕ we get

π̇(t, x⃗) = − δH(t)

δϕ(t, x⃗)
and π̇∗(t, x⃗) = − δH(t)

δϕ∗(t, x⃗)
on-shell.

Thus the Euler-Lagrange equations for on-shell fields ϕ in the Lagrangian formalism be-
come Hamilton’s equations of motion in the Hamiltonian formalism

ϕ̇(t, x⃗) =
δH(t)

δπ(t, x⃗)
π̇(t, x⃗) = − δH(t)

δϕ(t, x⃗)

ϕ̇∗(t, x⃗) =
δH(t)

δπ∗(t, x⃗)
π̇∗(t, x⃗) = − δH(t)

δϕ∗(t, x⃗)
.

If we have a functional of the form F (t) = F (t)[ϕ(t), π(t), c.c.], then we can show that
for on-shell fields ϕ

Ḟ (t) = {F (t), H(t)}+ ∂F (t)

∂t
on-shell.

Looking back at the currents 1.16we see that they are of the form jµ = jµ(t, x⃗)[ϕ(t), π(t), c.c.],
so the corresponding charge is

Q(t) = Q(t)[ϕ(t), π(t), c.c.] =

∫
ddx j0(t, x⃗)[ϕ(t), π(t), c.c.].

In particular, from 1.7 and 1.16a we have

Q(t) =

∫
ddx

[
(πδϕ+ π∗δϕ∗) + ξ0L

]
with

δϕ = −ξ0ϕ̇− ξi∂iϕ+K[ϕ],

so we can prove that (again see [54, 53, 68])

{ϕ(t, x⃗), Q(t)} = δϕ(t, x⃗), {ϕ∗(t, x⃗), Q(t)} = δϕ∗(t, x⃗).

Again we have the on-shell equation

Q̇(t) = {Q(t), H(t)}+ ∂Q(t)

∂t
on-shell. (2.7)

For the transformations we studied in Section 1.2 we had ξµ = ξµ(x⃗) and f = f(x⃗), which
means that δϕ = δϕ(x⃗)[ϕ(t), π(t), c.c]. Also for our LagrangiansL = L(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.)
it is apparently true that L(t, x⃗) = L(x⃗)[ϕ(t), π(t), c.c]. Putting these together we con-
clude that the charges of those transformations are of the form Q(t) = Q[ϕ(t), π(t), c.c.]
and thus ∂Q(t)/∂t = 0. Now given the fact that the transformations we studied in Section
1.2 are all symmetries, then Q̇(t) = 0 on-shell. These facts hold true for our Hamiltonian
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as well, i.e. H(t) = H[ϕ(t), π(t), c.c.], so ∂H(t)/∂t = 0, and from 2.7 we can deduce that
Ḣ(t) = 0 on-shell. This similarity is expected, since, as we will see below, the Hamilto-
nian is, up to a constant multiplicative factor, the charge of time-translation, a symmetry
of our Lagrangian. Summarizing we have for our transformations

∂Q(t)

∂t
=
∂H(t)

∂t
= 0

and because they are symmetries they satisfy the on-shell relations

Q̇(t) = Ḣ(t) = 0 on-shell.

Hence, from 2.7 we find that

{Q(t), H(t)} = 0 on-shell

for the charge of any of our symmetries.

Since, in general, Q(t) = Q(t)[ϕ(t), π(t), c.c.], charges of transformations are eligi-
ble to put in Poisson brackets. From Section 1.2 we see that the charges of our studied
symmetries are, up to a multiplicative factor,

H =

∫
ddxH (2.8a)

Pi =

∫
ddxPi (2.8b)

Mij = −
∫
ddx (xiPj − xjPi) (2.8c)

Q(0) =

∫
ddx J0 (2.8d)

Di =

∫
ddxxiJ

0 (2.8e)

with U(1) charge density
J0 = i(ϕπ − ϕ∗π∗)

and momentum density
Pi ≡ i(∂iϕπ + ∂iϕ

∗π∗).

In equations 2.8a to 2.8e we have the energy charge for time translation, the momentum
charge for spatial translation, the angular momentum charge for spatial rotation, the U(1)
charge for U(1) phase rotation and the dipole charge for the dipole transformation, respec-
tively. These charges Q are conserved for on-shell fields ϕ, i.e.

Q = constant on-shell,
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since they are charges of symmetries. Additionally, we know that the on-shell Poisson
bracket of the HamiltonianH with any of the above symmetry chargesQ vanishes, mean-
ing

{Q,H} = 0 on-shell.
Now we are ready to find the Poisson bracket algebra of our charges. After many calcu-
lations we finally find

{Mij,Mkl} = i(δikMjl − δjkMil − δilMjk + δjlMik) (2.9a)
{Mij, Pk} = i(δikPj − δjkPi) (2.9b)
{Mij, Dk} = i(δikDj − δjkDi) (2.9c)
{Pi, Dj} = iδijQ

(0) (2.9d)

with the rest vanishing. Actually, as already noted above, the Poisson brackets of H with
the other charges vanish only on-shell. For specific Hamiltonians this could even be true
off-shell. An example would be to take L = ϕ̇∗ϕ̇ − κ(X ij)∗Xij − λ(X i

i)
∗Xj

j as our
Lagrangian, which would give the HamiltonianH = π∗π + κ(X ij)∗Xij + λ(X i

i)
∗Xj

j .

For a continuous transformation x → x′, ϕ(x) → ϕ′(x′) with infinitesimal version
x′ϵ(x), ϕ

′
ϵ(x

′) = Tϵ[ϕ](xϵ(x′)) we had for the transformed field ϕ′
ϵ

ϕ′
ϵ(x) = ϕ(x) + ϵδϕ(x) +O(ϵ2), (2.10)

where
δϕ(x) = −ξµ(x)∂µϕ(x) +K[ϕ](x). (2.11)

We can define the generator of the transformation as the operator δ that when it acts on
fields ϕ gives

δ(ϕ) = δϕ = −ξµ∂µϕ+K[ϕ],

meaning
δ = −ξµ∂µ +K.

Actually, the generator is again defined up to a constant multiplicative factor, as is the
charge. For more information on transformation generators see [69, 70, 71, 56, 72, 68,
63, 59, 58, 57]. For more mathematical exposition of Lie Groups and Lie Algebras see
[73, 74, 75, 76].

We can now do for the generators the same thing we did for our symmetry transfor-
mations. We will denote the generator of a transformation as we did for its corresponding
charge. Going again back to Section 1.2 we find that the generators of our studied sym-
metry transformations are

H = i∂t (2.12a)
Pi = i∂i (2.12b)

Mij = −(xiPj − xjPi) (2.12c)
Q(0) = 1 (2.12d)
Di = xi = xiQ

(0) (2.12e)

22



and the commutator algebra of our generators is

[Mij,Mkl] = i(δikMjl − δjkMil − δilMjk + δjlMik)

[Mij, Pk] = i(δikPj − δjkPi)

[Mij, Dk] = i(δikDj − δjkDi)

[Pi, Dj] = iδijQ
(0)

(2.13a)
(2.13b)
(2.13c)
(2.13d)

with the rest vanishing. Notice that the generators and the charges satisfy the same sym-
metry algebra, as was expected given the mutual mathematical correspondence to each
other. This time, however, the vanishing of the generatorH with the rest of the generators
happens in general, not only on-shell. Actually, there is no explicit reference to the fields ϕ
in the form of the generators. The only dependence of the generators on the fields ϕ is that
the later constitute their domain of definition as functions and that the functional form of
the generators originates in how these fields were transformed infinitesimally. For these
reasons it is also clear why our generators are independent of time, something true for
charges only on-shell. We are starting to see how going away from a field-centric descrip-
tion to a field independent description is characterized by many advantages. For instance,
with generators we managed to find the symmetry algebra of our fracton theory without
any reference to the Lagrangian or Hamiltonian formalism. We only needed to know the
required symmetries of our theory. Also the calculations needed in using generators are
much less cumbersome with much less background details than with charges.

2.3 Gauging procedure

We will now introduce the basic concepts needed to pass from a description based on
dynamical matter fields ϕ to a description based on new auxiliary non-dynamical fields,
usually called background fields. This is done through the very commonly used tech-
nique of the gauging procedure. For more information on gauging see [72, 57, 63, 58].
We will start by describing the gauging procedure for our original Lagrangian L(0) =
L(0)(ϕ, ϕ̇, ∂iϕ, ∂i∂jϕ, c.c.) with corresponding original action

S(0) = S(0)[ϕ, ϕ∗] =

∫
dd+1xL(0)(x)[ϕ, ϕ∗].

We take our original action S(0) to be symmetric under a global U(1) phase rotation

ϕ′(x) = e−iαϕ(x).

This means that the action S(0) = S(0)[ϕ, ϕ∗] is invariant under U(1) transformation, so

L(0)(ϕ′(x), ϕ̇′(x), ∂iϕ
′(x), ∂i∂jϕ

′(x), c.c.) = L(0)(ϕ(x), ϕ̇(x), ∂iϕ(x), ∂i∂jϕ(x), c.c.),
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meaning L(0) is invariant under U(1) too. In the infinitesimal version

ϕ′
ϵ(x) = e−iϵϕ(x) = ϕ(x)− iϵϕ(x) +O(ϵ2)

we get δL(0) = 0, so δS(0) = 0. If we transform our field ϕ with a local U(1) phase
rotation

ϕ′(x) = e−iα(x)ϕ(x),

then our Lagrangian and action are not necessarily symmetric, so

L(0)(ϕ′(x), ϕ̇′(x), ∂iϕ
′(x), ∂i∂jϕ

′(x), c.c.) ̸= L(0)(ϕ(x), ϕ̇(x), ∂iϕ(x), ∂i∂jϕ(x), c.c.).

According to Sections 1.1 and 1.2, in the infinitesimal form

ϕ′
ϵ(x) = eiϵΛ(x)ϕ(x) = ϕ(x)− iϵΛ(x)ϕ(x) +O(ϵ2)

we find
δL(0) = −∂µΛJµ + ∂i(∂jΛJ̃

ij)

or
δL(0) = −J0∂tΛ− (J i − ∂jJ̃

ji) ∂iΛ + J̃ ij∂i∂jΛ. (2.14)

To make our action symmetric under a local U(1) phase rotation, we should also
make our Lagrangian invariant under it. To achieve this we must create a new Lagrangian
L with additional fields, the gauge fields, that also transform under a local U(1) phase
rotation in such a way so that the new Lagrangian is invariant. This means that our goal is
to add new terms to our original Lagrangian L(0) such that the final Lagrangian L satisfies
δL = 0 under a local U(1) phase rotation. From equation 2.14 we see that our first step
should be to add a term that counteracts the non-vanishing objects in δL(0). We take this
term to be first order in the new gauge fields and denote it L(1). In particular, we define it
as

L(1) = J0At + (J i − ∂jJ̃
ji)Ai +

1

2
J̃ ijaij

and say that the “currents” J0, J i−∂jJ̃
ji and J̃ ij are coupled with the gauge fields At, Ai

and aij , respectively. Here the gauge field aij is symmetric, i.e. aij = aji. Under a local
U(1) transformation we have

δL(1) = J0δAt + (J i − ∂jJ̃
ji) δAi +

1

2
J̃ ijδaij + δϕL(1),

where δϕL(1) is the infinitesimal change to L(1) due to the change induced to the fields ϕ.
To counteract δL(0) in 2.14 we demand the gauge fields transform as

At → At + ∂tΛ, Ai → Ai + ∂iΛ and aij → aij − 2∂i∂jΛ

with gauge parameter Λ = Λ(x), which gives

δL(1) = −δL(0) + δϕL(1),

24



so
δ(L(0) + L(1)) = δL(0) + δL(1) = δϕL(1).

We managed to construct a new Lagrangian L(0) + L(1) that is still not invariant under
local U(1) phase rotations. The next step is to add to our Lagrangian another term L(2)

that is second order in the gauge fields. Using this iterative gauging procedure we will
eventually end up with our final Lagrangian L = L(0) + L(1) + · · · + L(n) that will be
invariant under local U(1) phase rotations, i.e. δL = 0 for any Λ = Λ(x). A similar
discussion of this procedure can be found in Section 3.3 of [57]. For more applications of
gauge theory on fractons see [66, 77, 78, 79].

Let us denote by Φ all the matter fields of a theory (like Φ = (ϕ, ϕ∗)) and by A all
of its gauge fields (like A = (At, Ai, aij)). What we have managed with gauging our
theory is adding to the original action S(0)[Φ] a new term S̃[Φ;A] such that the total action
S[Φ;A] = S(0)[Φ]+ S̃[Φ;A] is invariant under any local U(1) phase rotation. Here, since
U(1) phase rotation is an internal symmetry of our physical system, meaning x′ = x and
ξµ = 0, we have

0 = δS =

∫
dd+1x

(
δS

δΦk

δΦk +
δS

δAl
δAl

)
= δΦS + δAS,

hence
δΦS[Φ;A] = −δAS[Φ;A]. (2.15)

If we choose fields Φ that are on-shell with respect to the total action S, meaning

δS

δΦk

= 0

with the gauge fields A left arbitrary, we get

δΦS[Φ;A] = 0 on-shell,

so from 2.15 we find the on-shell equation

δAS[Φ;A] =

∫
dd+1x

δS

δAl
δAl = 0 on-shell,

where the gauge fields A are free to be chosen by us and the δA are defined for our spe-
cific local symmetry transformation. This way get a new current-like quantities that are
conserved on-shell. We can even get back our original currents by setting A = 0 in the
above, which gives

δAS[Φ;A]|A=0 = δAS
(1)[Φ;A]|A=0 =

∫
dd+1x δAL(1) = −

∫
dd+1x δL(0) = 0 on-shell.
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In the above example we have

δAS[Φ;A]|A=0 =

∫
dd+1x (J0∂tΛ + (J i − ∂jJ̃

ji) ∂iΛ− J̃ ij∂i∂jΛ)

=

∫
dd+1x (−∂tJ0Λ− ∂i(J

i − ∂jJ̃
ji) Λ− ∂i∂jJ̃

ijΛ)

= −
∫
dd+1x ∂µJ

µΛ = 0 on-shell

for any Λ = Λ(x) and we get back the conservation law
∂µJ

µ = 0 on-shell.

We see that by gauging our theory, we essentially transfer the dynamical properties
of the original theory to the new gauge fields. We can use these gauge fields to get back
our original conservation laws and that is why gauge fields are also called source fields.
They are not part of the dynamics of the gauged action, since they are freely chosen when
we take the matter fields to be on-shell, which makes gauge fields function as background
fields as well. We can use this trick to encode any kind of conservation law to the gauge
fields and their gauge transformation. For instance, for the dipole symmetric theories we
study, the conservation of the dipole current

∂µJ
iµ = 0 on-shell

can be written as
J i = ∂jJ̃

ji on-shell. (2.16)
To represent this conservation law in our gauged action we can define the first order La-
grangian term as

L(1) = J0At + J iAi +
1

2
J̃ ijaij

with new gauge fields At, Ai and aij . In the local U(1) phase rotation we will have

δL(1) = J0δAt + J iδAi +
1

2
J̃ ijδaij + δϕL(1)

with gauge transformations
At → At + ∂tΛ, Ai → Ai + ∂iΛ + ψi and aij → aij + ∂iψj + ∂jψi,

where we introduced an additional Stückelberg field ψi = ψi(x). For information on
Stueckelberg fields see [80, 81]. The extra gauge parameter ψi exists to reveal relation
2.16 through the gauging procedure and for that reason it is called dipole shift. In more
detail we have

δAS[Φ;A]|A=0 =

∫
dd+1x [J0∂tΛ + J i(∂iΛ + ψi) + J̃ ij∂iψj]

=

∫
dd+1x (−∂tJ0Λ− ∂iJ

iΛ + J iψi − ∂jJ̃
jiψi)

=

∫
dd+1x [−∂µJµΛ + (J i − ∂jJ̃

ji)ψi] = 0 on-shell
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for any Λ = Λ(x) and ψi = ψi(x) and we regain our U(1) and dipole conservation laws

∂µJ
µ = 0 on-shell

J i = ∂jJ̃
ji on-shell.
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Chapter 3

Aristotelian Geometry

3.1 Second order formulation

Nowwe are finally ready to tackle the matter of writing our dipole symmetric theories in a
covariant fashion. The geometrical background of these theories should reflect the almost
friction-like behavior of fractons. It turns out [82, 83, 84, 77, 67, 64] that for physical
systems, like fractons, with spacetime translation symmetry and spatial rotation symmetry,
but no boost symmetry, the most ideal geometric construction is the Aristotelian geometry,
a term first introduced by Roger Penrose in [85] and later mentioned in [86] and in his
famous book [87]. Relevant background on the mathematics of differential geometry can
be found in [88, 89]. You can also look at [90] or the unofficial notes made for this course
[91]. For more information on Aristotelian geometries and Newton-Cartan geometries in
general see [92], Chapter 5 of [93], Chapter 12 of [94], [95, 96, 97, 98, 99, 100]. The
contents of this chapter will be influenced substantially by the work in [67].

We start by introducing the basic features of an Aristotelian geometry. First we take a
(d+1)-dimensional manifoldM and equip it with a nowhere-vanishing 1-form (field) nµ
called the clock form. We also equip our manifold with a nowhere-vanishing rank (0, 2)
symmetric tensor hµν called spatial metric. This tensor is degenerate (non-invertible) with
a 1-dimensional kernel spanned by a nowhere-vanishing vector vµ, i.e.

vµhµν = 0.

We normalize vµ such that
vµnµ = 1.

Using the above quantities, we define the spatial inverse metric hµν , a rank (2,0) symmet-
ric tensor that is degenerate with a 1-dimensional kernel spanned by nµ, i.e.

nµh
µν = 0.
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The tensor hµν is the inverse of hµν in the following sense

hµκhκν = δµν − vµnν .

Before proceeding forward, we should try to interpret the physical meaning of the
mathematical objects we have just defined. In the geometry of Aristotelian spacetime,
represented by the (d + 1)-dimensional manifold M, the lack of spacetime boosts, like
Galilean and Lorentz boosts, creates a clear distinction between space and time coordi-
nates. This distinction is produced by the clock form nµ, the spatial metric hµν and the
relationship between them. Specifically, the clock form nµ exists to extract the “time part”
of a tensorial quantity through index contractions. For example, if we have a vector Xµ,
then we say that this vector point to the future if Xµnµ > 0 and the past if Xµnµ < 0.
However, whenXµnµ = 0, then we say that our vectorXµ is purely spatial. For a discus-
sion of this matter see Lectures 9 and 13 from [101] or from the unofficial lecture notes
for the course [102]. You can also look at Chapter 8 of [93] or Chapter 6 of [103]. The
vector vµ plays a similar role to nµ, since, by equation vµnµ = 1, it can be interpreted
as the velocity of a reference frame at rest, i.e. moving purely in the “time direction”,
and will be called rest velocity. This velocity of an observer can equally extract the “time
component” of a tensorial quantity through appropriate index contractions. Now for an
arbitrary rank (r, s) tensor T ···µ···

···ν··· , if

nµT
···µ···

···ν··· = 0,

then we will say that this tensor is spatial in the µ index. Similarly, if

vνT ···µ···
···ν··· = 0,

then the tensor T ···µ···
···ν··· is spatial in the ν index. Finally, if a tensor is spatial in all of its

indices, then it is called purely spatial or just spatial. From these definitions, it is evident
that hµν and hµν are indeed spatial tensors, as their name suggests.

We have understood how space and time end up becoming distinguishable from each
other at the framework of a more classical geometry like the Aristotelian spacetime. There
is, nonetheless, a certain missing conceptual ingredient we will need to provide to get to
this nature of absolute space and absolute time. Given that we have separated space and
time using the clock form nµ and the rest velocity vµ, we could interpret our spacetime as
a collection of “space slices” (again see [101, 102, 92, 93, 103]). This family of space-
like hypersurfaces represents “space” at different “instants of time” and is the appropriate
structure for which hµν and hµν become proper metric and inversemetric respectively. The
spatial metric hµν and the spatial inverse metric hµν can even be extended to spacetime
objects by combining them with the clock form nµ and the rest velocity vµ. In particular,
we could define symmetric tensors

γµν ≡ nµnν + hµν
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and
γµν ≡ vµvν + hµν ,

from which follows that
γµκγκν = δµν .

Due to the fact that both γµν and γµν are symmetric invertible tensors, we could consider
γµν as the spacetime metric of our overall (d + 1)-dimensional Aristotelian manifold M
and γµν as its inverse metric. Although trying to unify space and time in an Aristotelian
geometry by use of the above derived tensors seems counterproductive, it is only a tem-
porary trick we need to make in order to be able to define integration in our Aristotelian
manifold. Thus, for conceptual reasons, we will avoid mention of the words metric and
inverse metric for γµν and γµν , but we will use them when it is a mathematical neces-
sity. We will also make use of the standard notation γ ≡ det γ, where det γ means the
determinant of γµν .

The final piece to our geometric construction is the determination of a suitable con-
nection. The appropriate choice is different from the usual Levi-Civita connection of
General Relativity, as expected from the above peculiar components of Aristotelian ge-
ometry. The main feature we require for our Aristotelian connection is it being clock form
and spatial metric compatible, i.e. ∇κnµ = 0 and∇κh

µν = 0. A connection that satisfies
this property is given by the following connection coefficients

Γκµν = vκ∂µnν +
1

2
hκλ(∂µhλν + ∂νhλµ − ∂λhµν),

where we use the convention

∇ ∂
∂xµ

(
∂

∂xν

)
≡ Γκµν

∂

∂xκ
.

Note that to show the results presented in this chapter, we will have to make extensive use
of the defining equations of Aristotelian geometry and their consequences. For example,
the equation vκnκ = 1, gives us ∂µvκnκ = −vκ∂µnκ. Other derived equations of the
same nature are ∂µhκλnλ = −hκλ∂µnλ and ∂µhκλvλ = −hκλ∂µvλ. Of course, there
exist similar equations for any kind of derivative operator, including the Lie derivative
and the covariant derivative. Now, for the Aristotelian connection defined above, the
corresponding covariant derivative can, indeed, be shown to satisfy

∇κnµ = 0

and
∇κh

µν = 0.

Given this Aristotelian covariant derivative we can also prove through calculations that

hµκ∇νv
κ =

1

2
£vhµν
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and
∇κhµν = −n(µ£vhν)κ.

By defining the antisymmetric tensor

F n
µν ≡ ∂µnν − ∂νnµ,

the torsion (tensor) T κµν = 2Γκ[µν] can be written as

T κµν = vκF n
µν .

Finally, using the identity

∂ detM
∂Mκλ

= (M−1)κλ detM, (3.1)

holding true for any (real) invertible matrixM 1, we obtain

Γκκµ + F n
µκv

κ =
1
√
γ
∂µ
√
γ.

The curvature (tensor) of our Aristotelian geometry has the usual form

Rκ
λµν = ∂µΓ

κ
νλ − ∂νΓ

κ
µλ + ΓκµρΓ

ρ
νλ − ΓκνρΓ

ρ
µλ

and we can easily see that nκRκ
λµν = 0. We notice that, contrary to the Levi-Civita con-

nection of General Relativity, the Aristotelian connection is not spacetime metric com-
patible and not torsion-free. There is actually no way to make Aristotelian geometry tor-
sionless given the constraint that it is clock form compatible. The way we expressed
mathematically Aristotelian geometry in this section is sometimes called second order
formulation.

3.2 Coupling to background sources

Having described the basic mathematical elements of Aristotelian geometry, we are finally
ready to introduce the required machinery needed to describe the fundamental behavior of
any non-relativistic fracton field theory. This is done though the gauging trick we studied
in Section 2.3, where we showed how the conservation laws of a physical theory can be
encoded to background source gauge fields.

1To prove this, first note that

det(I + ϵA) = 1 + ϵ trA+O(ϵ2).

Then the desired equation follows by the definition of partial differentiation.
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Before proceeding further, we must take the time to explain how diffeomorphism
invariance is taken care of with gauging. Imagine we had a field theory on a flat spacetime
with metric ηµν , a set of fields Φ, a Lagrangian

L(0) = L(0)(Φ, ∂µΦ, ∂µ∂νΦ; ηµν)

and an action
S(0)[Φ] =

∫
dd+1xL(0)(x)[Φ; η].

Our current theory is, obviously, not covariant or, equivalently, not diffeomorphism in-
variant. We can make our theory diffeomorphism invariant by substituting the flat metric
ηµν with an arbitrary metric gµν . We must also convert the partial derivative ∂µ acting
on the (in general) tensor fields Φ to the Levi-Civita covariant derivative ∇̃µ. After these
changes we will have a new Lagrangian

L = L(Φ, ∇̃µΦ, ∇̃µ∇̃νΦ; gµν)

and a new action
S[Φ; g] =

∫
dd+1x

√
|g|L(x)[Φ; g],

where g ≡ det g. Note that there is gµν dependence even in the Levi-Civita covariant
derivative. This new gauged action is diffeomorphism invariant and the metric gµν plays
the role of the gauge field. The conserved current of diffeomorphism invariance is a gen-
eralized energy-momentum tensor T µν that, in many cases, coincides with the canonical
energy-momentum tensor of Noether’s Theorem by just gauge fixing gµν = ηµν .

To derive the conservation law we take an infinitesimal diffeomorphism x′µϵ (x) =
xµ+ϵξµ+O(ϵ2) that is the identity everywhere except for a small region inside the region
of integration in the action. This means that the pulledback action S[x′∗Φ; x′∗g] will have
the same region of integration as S[Φ; g]. As the action is diffeomorphism invariant, i.e.

S[x′∗Φ; x′∗g] = S[Φ; g],

we find to infinitesimal order that

0 = δS =

∫
dd+1x

(
δS

δΦk

δΦk +
δS

δgµν
δgµν

)
.

We take the matter fields Φ to be on-shell, so

δS =

∫
dd+1x

δS

δgµν
δgµν on-shell.

But under this infinitesimal pullback we have

δgµν = £ξgµν

32



and we can show that
£ξgµν = 2∇̃(µξν),

which gives us

δS =

∫
dd+1x

δS

δgµν
2∇̃(µξν)

=

∫
dd+1x

√
|g| 2√

|g|
δS

δgµν
∇̃µξν on-shell

or
δS =

∫
dd+1x

√
|g|T µν∇̃µξν on-shell

with
T µν ≡ 2√

|g|
δS

δgµν

the generalized energy-stress tensor (up to a multiplicative constant factor), which obvi-
ously is symmetric T µν = T νµ. Now diffeomorphism invariance gives us

δS =

∫
dd+1x

√
|g|T µν∇̃µξν

= −
∫
dd+1x

√
|g| ∇̃µT

µνξν = 0 on-shell

for any ξµ = ξµ(x), which results in the generalized conservation law

∇̃µT
µν = 0 on-shell.

It should be noted that in curved spacetime a conservation law must be written with
respect to a covariant derivative, the generalization of the common derivative notion of
flat spacetime. The conservation of the energy-momentum tensor T µν is the result of
diffeomorphism invariance of our theory, a symmetry that appeared only after introducing
the gauge field gµν . Themetric gµν is thus the background source of the energy-momentum
tensor T µν . In fact, from

δgS =

∫
dd+1x

√
|g|T µνδgµν

we can clearly see that the energy-momentum tensor T µν is coupled to the metric gµν . For
more information on this definition of the energy-momentum tensor T µν and the func-
tion of the metric gµν as its background source and as a gauge field for diffeomorphism
invariance see [104, 93, 103, 105, 56, 106, 107, 108, 109, 110].

We are now ready to tackle the problem of gauging our Aristotelian Geometry with
the appropriate background source fields. Firstly, as we are interested in theories invariant
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to spacetime translation and spatial rotation, we must couple the corresponding currents
to a metric-like quantity that achieves diffeormorphism invariance for the resultant theory.
This role will be fulfilled by the clock formnµ and the spatial metric hµν [82, 83, 84]. Next,
we need to introduce the gauge field for the U(1) symmetry, which, of course, is Aµ, a
gauge field that had appeared in the non-covariant case too. The gauge transformation
corresponding to the U(1) symmetry should be covariant now, so we take

Aµ → Aµ +∇µΛ.

Looking back to the non-covariant case again, we see that for dipole symmetry we
need two kinds of background fields, the Aµ and a spatial symmetric tensor aµν , i.e. a
tensor that obeys aµν = aνµ and vµaµν = 0. We will also need a spatial 1-form ψµ,
meaning vµψµ = 0, and its “spatial covariant derivative”. The covariant derivative of a
spatial tensor is not actually spatial itself. To make a spatial tensor out of a non-spatial
one we can use the spatial tensor

hµν ≡ hµκhκν = δµν − vµnν ,

which is spatial because vνhµν = 0 andnµhµν = 0. The hµν functions like a spatial projector,
since contracting it with any tensor T µ···ν··· gives a spatial tensor

T̃ µ···ν··· ≡ hµµ′ · · · h
ν′

ν · · ·T µ′···ν′···

satisfying
vν T̃ µ···ν··· = 0 and nµ T̃

µ···
ν··· = 0.

If T is already spatial, then the action of the spatial projector hµν on T leaves is invariant,
meaning T̃ = T . This means that from the spatial 1-form ψµ with non-spatial ∇µψν we
can get its spatial covariant derivative hµ′µ hν

′
ν ∇µ′ψν′ . Then the dipole shift transformation

will be written as

Aµ → Aµ + ψµ, aµν → aµν + hµ
′

µ h
ν′

ν (∇µ′ψν′ +∇ν′ψµ′).

It should be emphasized that of all the gauge fields introduced only Aµ changes under a
U(1) transformation, while Aµ and aµν are the only ones that change under a dipole shift.

Instead of the dipole gauge field aµν that is affected only by a dipole shift transfor-
mation, we will actually use a modified version that also reflects the dipole behavior. This
proxy quantity will include Aµ, but should stay U(1) invariant, so we combine both aµν
and the U(1) invariant field strength

Fµν ≡ ∂µAν − ∂νAµ

into the modified dipole gauge field

Aµν ≡ nνv
κFκλh

λµ +
1

2
(hκνFκλh

λµ + aνκh
κµ),
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where nµAµν = 0. If we define ψµ ≡ hµνψν , then nµψµ = 0 and ψµ = hµνψ
ν . We

also have hµκhκν = hµν and hκµhκν = hµν . Under a dipole shift transformation the field
strength changes as

Fµν → Fµν + ∂µψν − ∂νψµ = Fµν +∇µψν −∇νψµ,

since ψκT κµν = 0. Also under dipole shift we findAµν → Aµν+∇νψ
µ+nνψκ∇λv

κhλµ.
We can show that

∇νv
µ = −vκ∇νhκλh

λµ = hνκ∇λv
κhλµ.

Using the above relationship we find that under dipole shift Aµν changes as

Aµν → Aµν +∇νψ
µ + nνψ

κ∇κv
µ.

As already mentioned the modified dipole gauge field Aµν is invariant under U(1) trans-
formations. We can also define a modified dipole field strength

F κ
µν ≡ ∇µA

κ
ν −∇νA

κ
µ + F n

µνv
λAκλ + 2n[µA

λ
ν]∇λv

κ,

which satisfies nκF κ
µν = 0 and is U(1) invariant, but under a dipole shift changes as

F κ
µν → F κ

µν +
(
Rκ

λµν + F n
µν∇λv

κ − 2n[µ∇ν]∇λv
κ
)
ψλ.

As someone might have already noticed, it is not possible to construct a quantity out of
the gauge fields Aµ and aµν , the only gauge fields that change under a dipole shift, that is
dipole shift invariant. This restriction will show up in our work later.

3.3 First order formulation

In the previous sections we studied the second order formulation of Aristotelian geome-
try. We will now develop Aristotelian geometry in its first order formulation using the
language of orthonormal bases, also known as vielbeins. For an introduction to vielbeins
see [104, 89, 93]. We will use greek indices µ, latin indices a and, occasionally, barred
latin indices ā with range µ = 0, 1, . . . , d, a = 1, . . . , d and ā = 0, 1, . . . , d, respec-
tively. We first start by looking at the spatial metric hµν and its spatial inverse metric hµν .
There exist local spatial 1-form vielbein fields ea and local spatial vector vielbein fields
ea such that the metric h satisfies h = δab e

a ⊗ eb (in a local neighborhood of any point in
the manifold) and the inverse metric h̃ satisfies h̃ = δab ea ⊗ eb (in a local neighborhood
of any point in the manifold). In a coordinate basis ∂µ ≡ ∂/∂xµ these equations become

hµν = δabe
a
µe
b
ν and hµν = δabeµae

ν
b .

The vielbeins ea and ea with coordinate components eaµ and eµa (in some manifold chart),
given they are spatial, must obey the equations

vµeaµ = 0 and nµe
µ
a = 0.
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Also, since ea is the duel spatial basis of ea, we have ea(eb) = δab or

eaµe
µ
b = δab .

We should not forget that the 1-form n and the vector v were chosen with the normalization
n(v) = 1 or

nµv
µ = 1

in mind. If we now define eā=0 ≡ n and eā=0 ≡ v, we will have the 1-forms eā and
vectors eā (ā = 0, 1, . . . , d) with (coordinate) components eāµ and e

µ
ā . Using these objects

the above equations take the compact form eāµe
µ

b̄
= δā

b̄
. The existence of a right inverse

implies the existence of a left inverse and vice verse, and these inverses are equal to each
other and unique. This statement produces the partner equation eµāeāν = δµν that can be
written as

vµnν + eµae
a
ν = δµν

or, using the spatial projector hµν , as

hµν = eµae
a
ν .

The spacetime metric γµν = nµnν + hµν or γ = n ⊗ n + h = δāb̄ e
ā ⊗ eb̄ can be written

in coordinate components as
γµν = δāb̄e

ā
µe
b̄
ν ,

which together with the equations eāµe
µ

b̄
= δā

b̄
and eµāeāν = δµν leads us to the realization that

eā and eā are regular spacetime vielbeins of Aristotelian geometry.

When we want to translate a tensor T from greek coordinate indices µ to barred
latin vielbein indices and vice versa, we need to use eāµ and eµā . For instance, we will
have T ā···ν··· = eāµT

µ···
ν···, T µ···b̄··· = eν

b̄
T µ···ν··· and T µ···b̄··· = eµāT

ā···
b̄···, T ā···ν··· =

eb̄νT
ā···

b̄···. In particular, we have T ā=0···
ν··· = eā=0

µ T µ···ν··· = nµT
µ···

ν··· and T µ···b̄=0 =
eν
b̄=0

T µ···ν··· = vνT µ···ν···. But if a tensor T µ···ν··· is spatial, then as we know it satisfies

nµT
µ···

ν··· = 0 and vνT µ···ν··· = 0,

which can be written as

T ā=0···
ν··· = 0 and T µ···b̄=0 = 0.

Notice that for spatial tensors T ā···b̄··· only the pure latin index components T a···b··· are
non-vanishing. This means that we can declare spatial tensors in vielbein language by just
writing T a···b···. As an example, the spatial metric hµν , the spatial inverse metric hµν and
the spatial projector hµν all obey hā=0,ν = hā=0,b̄=0 = hā=0,ν = hā=0,b̄=0 = hā=0

ν = hµā=0 =
hā=0
b̄=0

= 0. In pure latin indices we get

haν = eaµh
µν = eaν hab = eaµe

b
νh

µν = δab

haν = eµahµν = eaν hab = eµae
ν
bhµν = δab

haν = eaµh
µ
ν = eaν hµb = eνbh

µ
ν = eµb ,
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where eaν ≡ δab̄eν
b̄
= δabeνb and eaν ≡ δab̄e

b̄
ν = δabe

b
ν . In fact, since γāb̄ = δāb̄ and γāb̄ =

δāb̄, all (pure) latin indices will be raised and lowered using δab and δab, respectively, as can
be seen from T ···

···
a
··· ≡ δab̄T ···

···b̄··· = δabT ···
···b··· and T ···

a
···
··· ≡ δab̄T

···b̄···
··· = δabT

···b···
···.

To calculate covariant derivatives in the vielbein language we make extensive use
of the spin connection ωāb̄µ, the vielbein equivalent of the connection coefficients Γκµν in
the coordinate basis language. The spin connection ωāb̄µ is defined implicitly through the
following relation

∇µeb̄ = ωāb̄µeā, (3.2)

from which we can prove that
∇µe

ā = −ωāb̄µeb̄.

Using the above and following the usual procedure for calculating the covariant derivative
in coordinate indices, we can show that in mixed coordinate-vielbein indices the covariant
derivative of a tensor T µ···ā···ν···b̄··· becomes

∇κT
µ···ā···

ν···b̄··· ≡∇κ (T
µ···ā···

ν···b̄···) ≡ (∇κT )
µ···ā···

ν···b̄···

=∂κT
µ···ā···

ν···b̄··· + Γµκµ′T
µ′···ā···

ν···b̄··· + · · ·+ ωāā′κT
µ···ā′···

ν···b̄··· + · · ·

− Γν
′

κνT
µ···ā···

ν′···b̄··· − · · · − ωb̄
′

b̄κT
µ···ā···

ν···b̄′··· − · · · .

For a spatial tensor T we find for pure latin indices

∇κT
µ···a···

ν···b··· =∂κT
µ···a···

ν···b··· + Γµκµ′T
µ′···a···

ν···b··· + · · ·+ ωaa′κT
µ···a′···

ν···b··· + · · ·
− Γν

′

κνT
µ···a···

ν′···b··· − · · · − ωb
′
bκT

µ···a···
ν···b′··· − · · · .

Whenwe change orthonormal basis, meaning going from an initial choice of vielbeins
eā and eā to another one e′ā

′
and e′ā′ , we can write this as eā → e′ā

′
= Λā

′
āe
ā and eā →

e′ā′ = Λ′ā
ā′eā, with Λāb̄ = Λāb̄(x) and Λ′ā

b̄ = Λ′ā
b̄(x) being local smooth functions

of spacetime. This functions are similar to the regular Lorentz transformations of flat
Minkowski spacetime. In general, they must satisfy Λāκ̄Λ

′κ̄
b̄ = δā

b̄
and the Lorentz-like

relation Λk̄ āΛ
l̄
b̄δk̄l̄ = δāb̄, given that γāb̄ = δāb̄. From the definition 3.2 we can find that

the spin connection ωāb̄µ changes under eā → e′ā
′
= Λā

′
āe
ā (and, of course, eā → e′ā′ =

Λ′ā
ā′eā) as ωāb̄µ → ω′ā′

b̄′µ = Λā
′
āΛ

′b̄
b̄′ω

ā
b̄µ − ∂µΛ

ā′
k̄Λ

′k̄
b̄′ . It is also worth mentioning

that under a change of coordinate basis ωāb̄µ changes as ωāb̄µ → ωāb̄µ′ =
∂xµ

∂x′µ
′ ω

ā
b̄µ, so

the spin connection is an 1-form with respect to its greek index. We will be interested
exclusively to spatial rotations, i.e. transformations Λāb̄ such that Λā=0

b̄ = δ0
b̄
, Λāb̄=0 = δā0

and Λab = Ra
b with R ∈ SO(d) satisfying Rk

aR
l
bδkl = δab and detR = 1, and having

R′ ∈ SO(d) as its inverse. Under this spatial rotations only pure latin indices will change.
Specifically, for the vielbeins we will have

ea → e′
a
= Ra

be
b and ea → e′a = R′b

aeb,
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while for the spin connection we find

ωabµ → ω′a
bµ = Ra

kR
′l
bω

k
lµ − ∂µR

a
kR

′k
b.

It can be shown that the spin connection ωāb̄µ is related to the connection coefficients
Γκµν by the equation

ωāb̄µ = eāκ∂µe
κ
b̄ + eāκΓ

κ
µλe

λ
b̄ . (3.3)

For the Aristotelian connection coefficients

Γκµν = vκ∂µnν +
1

2
hκλ(∂µhλν + ∂νhλµ − ∂λhµν),

relation 3.3 gives us

ωā=0
b̄=0,µ = ωā=0

bµ = 0, ωab̄=0,µ =
1

2
eaκ£vhκµ

and
ωabµ =

1

2

(
eaκ∂µe

κ
b − ebκ∂µe

κ
a

)
− eκ[ae

λ
b]∂κhλµ,

from which we see that
ωabµ = −ωbaµ.

We can now prove for the spatial tensors hµν , hµν and hµν the following

∇µhab = ∇µh
ab = ∇µh

ν
a = 0 and ∇µh

a
ν = −1

2
nνe

aκ£vhκµ.

We will now continue our analysis by identifying the proper background sources our
Aristotelian geometry should be coupled to in the first order formulation. In the second
order formulation we had nµ and hµν representing diffeomorphism invariance. Now in
the first order formulation diffeomorphism invariance will be represented by nµ and eaµ.
For the vielbeins we also have the spatial rotation transformation

ea → Ra
be
b.

The U(1) symmetry is again imposed by the gauge field Aµ (the only one changing under
U(1) transformations) with gauge transformation

Aµ → Aµ +∇µΛ

and Λ the U(1) gauge parameter. The dipole gauge field aµν is spatial and symmetric, so

aµν = aabe
a
µe
b
ν

or
aab = aµνe

µ
ae
ν
b

38



with aab = aba symmetric. The dipole shift parameter ψµ is spatial too, so

ψµ = eaµψa

or
ψa = eµaψµ.

We can show that the U(1) gauge field Aµ and the (spatial) dipole gauge field aab change
under a dipole shift transformation as

Aµ → Aµ + eaµψa, aab → aab + eµa∇µψb + eµb∇µψa.

In the vielbein language the modified dipole gauge field Aµν , which satisfies nµAµν = 0,
is spatial only in the µ index, so

Aµν = eµaA
a
ν

or
Aaµ = eaκA

κ
µ,

which gives us
Aaµ = nµv

κFκλe
λa +

1

2
(hκµFκλe

λa + aakekµ).

Under a dipole shift we can prove the modified dipole gauge field Aaµ changes as

Aaµ → Aaµ +∇µψ
a +

1

2
nµe

aκ£vhκλeλkψk.

The modified field strength F κ
µν , which obeys nκF κ

µν = 0, is spatial only in the κ index,
so

F κ
µν = eκaF

a
µν

or
F a

µν = eaκF
κ
µν ,

which gives us

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ωakµA

k
ν − ωakνA

k
µ + n[µA

b
ν]e

κ
b£vhκλeλa.
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Chapter 4

Aristotelian Anomalies

4.1 Symmetry and Conservation Laws

4.1.1 Second order formulation

The main objective of this chapter is to identify the quantum anomalies that characterize a
theory with Aristotelian geometry, such as the fracton theories we study in this thesis. For
that purpose we will focus on the symmetries of our theory imposed by the corresponding
background source gauge fields we have introduced so far. For more information on the
techniques used in this chapter see [56, 111, 112, 113, 114, 115, 116, 117]. The notation
and methodology of this chapter will be again heavily based on [67]. Let us start with
the second order background sources nµ, hµν , Aµ and Aµν . First we have our action
S[Φ;nµ, hµν , Aµ, A

µ
ν ] with Φ any matter fields, like the complex scalar fields we studied

previously. We then form the generating functional, also known as partition function,
given by the functional integral

Z[nµ, hµν , Aµ, A
µ
ν ] ≡

∫
DΦ eiS[Φ;nµ,hµν ,Aµ,Aµ

ν ]

and define the connected generating functional

W [nµ, hµν , Aµ, A
µ
ν ] ≡ −i logZ[nµ, hµν , Aµ, Aµν ].

The currents coupled to the background fields are defined by the variation ofW as

δW =

∫
dd+1x

√
γ

[
−ϵµδnµ +

(
v(µπν) +

1

2
τµν
)
δhµν + JµδAµ + JµλδA

λ
µ

]
(4.1)

with γ = det(γµν) = det(nµnν + hµν). In the above we have the energy current ϵµ,
momentum current πµ, stress tensor τµν , U(1) current Jµ and dipole current Jµλ. We

40



can raise or lower greek indices by using hµν and hµν , e.g. we can define πµ ≡ hµνπ
ν ,

Jµν ≡ hνκJµκ. We take πµ, τµν and Jµν to be spatial tensors, and τµν and Jµν to be
symmetric.

We are considering dipole symmetric theories equipped with appropriate gauge fields
such that the total action is invariant under diffeomorphism, U(1) and dipole transforma-
tions. Under infinitesimal diffeomorphism transformations x′(x) = x + ϵξ(x) + O(ϵ2)
we know that tensors T change as T → T + ϵδξT +O(ϵ2) with

δξT = £ξT,

where ξµ is the gauge parameter for infinitesimal diffeomorphism transformations. For
that reason the Lie derivative of our background sources are of great importance. Some
examples are the following

£ξnµ = ∇µ(nκξ
κ) + ξκF n

κµ

£ξhµν = ξκ∇κhµν + 2hκ(µ∇ν)ξ
κ

£ξAµ = ∇µ(Aκξ
κ) + ξκFκµ.

The gauge parameter for an infinitesimal U(1) transformation is Λ, while for an infinites-
imal dipole transformation the gauge parameter is ψµ. The total transformation can be
denoted as X̂ = (ξµ,Λ, ψµ) and we can see that the action of the total transformation X̂
on the backround gauge fields is a sum of the action of the individual transformations it is
comprised from, i.e.

δX̂ = δξ + δΛ + δψ.

In particular, for our background gauge fields nµ, hµν , Aµ and Aµν we have

δX̂nµ = £ξnµ
δX̂hµν = £ξhµν
δX̂Aµ = £ξAµ + ∂µΛ + ψµ

δX̂A
µ
ν = £ξAµν +∇νψ

µ + nνψ
κ∇κv

µ.

(4.2a)
(4.2b)
(4.2c)
(4.2d)

When there are no quantum anomalies in our theory, the (connected) generating func-
tionalW is invariant under diffeomorphism, U(1) and dipole transformations, i.e.

δX̂W = 0.

To find δX̂W we just substitute equations 4.2 in 4.1 and from the symmetry condition
δX̂W = 0 we find with integration by parts the conservation laws1

∇′
µϵ
µ = −fµvµ − (τµν + τµνd )∇µv

κhκν (4.3a)
∇′
µ (v

µπν + τµν + τµνd ) = fµh
µν − hνκ∇κv

µπµ (4.3b)
∇′
µJ

µ = 0 (4.3c)
∇′
µJ

µν = hνµJ
µ, (4.3d)

1A guide on how to prove equation 4.3d is laid out below.
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where we made the following auxiliary definitions

∇′
µ ≡ ∇µ + F n

µνv
ν

fµ ≡ −F n
µνϵ

ν − hµκA
κ
λJ

λ + F ν
µκJ

κλhλν − nµA
κ
λJ

λ
ν∇κv

ν

τµνd ≡ −AµκJκν .

It is worth looking closer to how equation 4.3d is derived. First we can show that

δψW =

∫
dd+1x

√
γ Kνψν ,

where
Kν ≡ Jν −∇′

µJ
µν + hνκ∇κv

λJµλnµ.

Using the fact that Jµν is spatial and symmetric,Kν is simplified to

Kν ≡ Jν −∇′
µJ

µν .

Also ψµ is spatial satisfying the condition vµψµ = 0, leading to

hµνK
ν = 0.

Now we should notice that if for some tensor T we have

nµT
µ···

··· = 0,

then
hµνT

ν···
··· = T µ······.

We can easily see that this holds true also for the following

hµκ∇νT
κ···

··· = ∇νT
µ···

···

and
hµκ∇′

νT
κ···

··· = ∇′
νT

µ···
···.

Putting everything together we reach our final result

∇′
µJ

µν = hνµJ
µ.

4.1.2 First order formulation

Now we will approach the same problem from the first order formulation side, where the
first order background sources are nµ, eaµ, Aµ and Aaµ. The generating function will be of
the formW [nµ, hµν , Aµ, A

µ
ν ] with the currents being given by its infinitesimal variation

δW =

∫
dd+1x

√
γ
(
−ϵµδnµ + τµaδe

a
µ + JµδAµ + JµaδA

a
µ

)
(4.4)
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with γ = det(γµν) = det(nµnν + δabe
a
µe
b
ν), τµa ≡ (vµπν + τµν + τµνd )eνa and

Jµa = Jµνe
ν
a.

We are considering dipole symmetric theories equipped with appropriate gauge fields
such that the total action is invariant under diffeomorphism, spatial SO(d), U(1) and
dipole transformations. Under infinitesimal spatial SO(d) transformations Ra

b(x) =
δab − ϵΩa

b(x) + O(ϵ2) with Ωab = −Ωba, only the background fields eaµ and eµa will be
affected. Specifically, we will have

δΩe
a
µ = −Ωa

be
b
µ and δΩe

µ
a = Ωb

ae
µ
b ,

where Ωa
b is the gauge parameter for infinitesimal spatial SO(d) transformations. The

gauge parameter for an infinitesimal diffeomorphism transformation is ξµ, for an infinites-
imal U(1) transformation is Λ, while for an infinitesimal dipole transformation the gauge
parameter is ψa. The gauge parameter ξµ is a vector, Λ a function and ψa a 1-form. The
gauge parameter Ωa

b will be taken to be a spatial (1, 1) tensor.

The total transformation can be denoted as X̂ = (ξµ,Ωa
b,Λ, ψa) and we can again

see that the action of the total transformation X̂ on the backround gauge fields is a sum of
the action of the individual transformations it is comprised from, i.e.

δX̂ = δξ + δΩ + δΛ + δψ.

In particular, for our background gauge fields nµ, eaµ, Aµ and Aaµ we have2

δX̂nµ = £ξnµ
δX̂e

a
µ = £ξeaµ − Ωa

be
b
µ

δX̂Aµ = £ξAµ + ∂µΛ + eaµψa

δX̂A
a
µ = £ξAaµ − Ωa

bA
b
µ +∇µψ

a +
1

2
nµe

aκ£vhκλeλbψb.

(4.5a)
(4.5b)
(4.5c)

(4.5d)

Some miscellaneous variations we should note are

δX̂aab = £ξaab + Ωc
aacb + Ωc

baac + eµa∇µψb + eµb∇µψa

δX̂ω
a
bµ = £ξωabµ +∇µΩ

a
b.

The action of the Lie derivative £ξ in this chapter must be interpreted only in the fol-
lowing way. When we have a tensor with mixed greek and latix indices T µ···a···ν···b···, then
£ξT µ···a···ν···b··· is the Lie derivative we get if we had fixed the latin indices and considered
T µ···a···ν···b··· to be a tensor only with respect to its greek indices. For example, we con-
sider eaµ and Aaµ to be 1-forms, while aab are functions. The spin connection ωabµ was
already a 1-form with respect to its greek index, but was not a tensor with respect to its

2Explanation on the use of the Lie derivative £ξ will be given below.
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latin indices. This is reflected on its peculiar transformation under spatial SO(d) rotations
δΩω

a
bµ = ∇µΩ

a
b. Under these guidelines, it should be easy to see how the variation of the

first order background fields 4.5 reproduces the variation of the second order background
fields 4.2. We must also notice how the spatial SO(d) rotation of the spatial vielbeins eaµ
and eµa is a symmetry hidden in the second order formulation. It only emerges in the first
order formulation through the spatial vielbeins eaµ and eµa .

When there are no quantum anomalies in our theory, the generating functionalW is
invariant under diffeomorphism, spatial SO(d), U(1) and dipole transformations, i.e.

δX̂W = 0.

To find δX̂W we just substitute equations 4.5 in 4.4 and from the symmetry condition
δX̂W = 0 we find with integration by parts the conservation laws

∇′
µϵ
µ = −fµvµ − τµa∇µv

νeaν (4.6a)
∇′
µτ

µ
a = eµafµ − nµτ

µ
be
b
νe
κ
a∇κv

ν (4.6b)
∇′
µJ

µ = 0 (4.6c)
∇′
µJ

µ
a = eaµJ

µ. (4.6d)

Invariance of the generating functionalW under spatialSO(d) rotations gives us τµ[aeb]µ =
−Jµ[aAb]µ, which holds identically. From this redundant conservation law we are re-
minded again of the hidden nature of the spatial SO(d) rotation symmetry.

4.2 Aristotelian Symmetry Algebra

In this section we will derive how the symmetry transformations of our Aristotelian ge-
ometry form a Lie algebra. We will focus on the more fundamental first order formulation
of Aristotelian geometry from now on. Specifically, we need to demonstrate that for any
transformations X̂ and X̂ ′ they satisfy

[δX̂′ , δX̂ ] = δ[X̂′,X̂], (4.7)

having thus a closed algebra. However, the commutator

[X̂ ′, X̂] = (ξµ
[X̂′,X̂]

,Ωa
b[X̂′,X̂],Λ[X̂′,X̂], ψa[X̂′,X̂])

is not specified yet. We will define it as

ξµ
[X̂′,X̂]

≡ £ξ′ξµ = [ξ′, ξ]µ

Ωa
b[X̂′,X̂] ≡ £ξ′Ωa

b − £ξΩ′a
b + Ωa

cΩ
′c
b − Ω′a

cΩ
c
b

Λ[X̂′,X̂] ≡ £ξ′Λ− £ξΛ′

ψa[X̂′,X̂] ≡ £ξ′ψa − £ξψ′
a + ψbΩ

′b
a − ψ′

bΩ
b
a,

(4.8a)

(4.8b)
(4.8c)
(4.8d)

44



where we also made use of the identity

£V U = [V, U ]

for any vectors V and U . The action of the operators δX̂ on the background gauge fields
nµ, eaµ, Aµ and Aaµ was already identified in Section 4.1.2. We will also need to see how
the gauge transformations X̂ act on the gauge parameters ξµ, Ωa

b, Λ and ψa themselves.
To fulfill this necessity we will make the following definition

δX̂′ξ
µ ≡ £ξ′ξµ = [ξ′, ξ]µ

δX̂′Ω
a
b ≡ £ξ′Ωa

b − £ξΩ′a
b + Ωa

cΩ
′c
b − Ω′a

cΩ
c
b

δX̂′Λ ≡ £ξ′Λ− £ξΛ′

δX̂′ψa ≡ £ξ′ψa − £ξψ′
a + ψbΩ

′b
a − ψ′

bΩ
b
a.

(4.9a)
(4.9b)
(4.9c)
(4.9d)

From the above definitions 4.8 and 4.9 we see that

ξµ
[X̂′,X̂]

= δX̂′ξ
µ

Ωa
b[X̂′,X̂] = δX̂′Ω

a
b

Λ[X̂′,X̂] = δX̂′Λ

ψa[X̂′,X̂] = δX̂′ψa

or
[X̂ ′, X̂] = δX̂′X̂.

We can write all these preliminary definitions in a more abstract but compact form. To
achieve this goal, from now on we will also make frequent use of matrix notation by
denoting tensors like Ωa

cΩ
′c
b and ψbΩ′b

a as just ΩΩ′ and ψΩ′, respectively. Hence all of
our definitions can be presented in a readable fashion as

ξ[X̂′,X̂] ≡ δX̂′ξ ≡ £ξ′ξ = [ξ′, ξ] (4.10a)
Ω[X̂′,X̂] ≡ δX̂′Ω ≡ £ξ′Ω− £ξΩ′ + [Ω,Ω′] (4.10b)
Λ[X̂′,X̂] ≡ δX̂′Λ ≡ £ξ′Λ− £ξΛ′ (4.10c)
ψ[X̂′,X̂] ≡ δX̂′ψ ≡ £ξ′ψ − £ξψ′ + ψΩ′ − ψ′Ω, (4.10d)

where [Ω,Ω′] represents the tensor [Ω,Ω′]ab ≡ (ΩΩ′)a b − (Ω′Ω)a b ≡ Ωa
cΩ

′c
b − Ω′a

cΩ
c
b.

We will now try to calculate the action of the commutator [δX̂′′ , δX̂′ ] while acting on
the gauge parameters ξµ, Ωa

b, Λ and ψa, in order to show that [δX̂′′ , δX̂′ ] = δ[X̂′′,X̂′]. For
this purpose we will need the property

[£V , £U ]T = £[V,U ]T
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for any tensor T and any vectors V and U , where, obviously, [£V , £U ]T = £V £UT −
£U£V T . Let us calculate δX̂′′δX̂′ξµ first. We have in our compact notation

δX̂′′δX̂′ξ = δX̂′′£ξ′ξ = £δX̂′′ξ′ξ + £ξ′δX̂′′ξ = ££ξ′′ξ′ξ + £ξ′£ξ′′ξ
= £[ξ′′,ξ′]ξ + £ξ′£ξ′′ξ = [£ξ′′ , £ξ′ ]ξ + £ξ′£ξ′′ξ = £ξ′′£ξ′ξ.

Alternatively, we could just define ξ̃ ≡ ξ[X̂′,X̂] and write

δX̂′′δX̂′ξ = δX̂′′ξ[X̂′,X̂] = δX̂′′ ξ̃ = £ξ′′ ξ̃ = £ξ′′ξ[X̂′,X̂] = £ξ′′£ξ′ξ.

Since we now have that
δX̂′′δX̂′ξ = £ξ′′£ξ′ξ

we can form [δX̂′′ , δX̂′ ]ξµ and find

[δX̂′′ , δX̂′ ]ξ = £ξ′′£ξ′ξ − £ξ′£ξ′′ξ = [£ξ′′ , £ξ′ ]ξ = £[ξ′′,ξ′]ξ = £ξ[X̂′′,X̂′]
ξ = δ[X̂′′,X̂′]ξ

and we just showed that
[δX̂′′ , δX̂′ ]ξ = δ[X̂′′,X̂′]ξ.

In calculating δX̂′′δX̂′Λ we have

δX̂′′δX̂′Λ = δX̂′′ (£ξ′Λ− £ξΛ′) = £δX̂′′ξ′Λ + £ξ′δX̂′′Λ− £δX̂′′ξΛ
′ − £ξδX̂′′Λ

′

= £[ξ′′,ξ′]Λ + £ξ′(£ξ′′Λ− £ξΛ′′)− £[ξ′′,ξ]Λ′ − £ξ(£ξ′′Λ′ − £ξ′Λ′′)

= [£ξ′′ , £ξ′ ]Λ + £ξ′£ξ′′Λ− £ξ′£ξΛ′′ − [£ξ′′ , £ξ]Λ′ − £ξ£ξ′′Λ′ + £ξ£ξ′Λ′′

= £ξ′′£ξ′Λ− £ξ′£ξΛ′′ − £ξ′′£ξΛ′ + £ξ£ξ′Λ′′

= £ξ′′£ξ′Λ + £ξ£ξ′Λ′′

+ [−£ξ′£ξΛ′′ + (X̂ ′ ↔ X̂ ′′)]

In the last line of the above equation the symbol (X̂ ′ ↔ X̂ ′′) in the overall bracket [· · · ]
means that we add all the other terms in the bracket [· · · ] but with X̂ ′ and X̂ ′′ exchanged,
e.g. in this case (X̂ ′ ↔ X̂ ′′) = −£ξ′′£ξΛ′. Since

δX̂′′δX̂′Λ = £ξ′′£ξ′Λ + £ξ£ξ′Λ′′

+ [−£ξ′£ξΛ′′ + (X̂ ′ ↔ X̂ ′′)],

where the terms in the bracket [· · · ] are symmetric under the exchange X̂ ′ ↔ X̂ ′′, we get

[δX̂′′ , δX̂′ ]Λ = δX̂′′δX̂′Λ− δX̂′δX̂′′Λ = (£ξ′′£ξ′Λ + £ξ£ξ′Λ′′)− (£ξ′£ξ′′Λ + £ξ£ξ′′Λ′)

= [£ξ′′ , £ξ′ ]Λ− £ξ(£ξ′′Λ′ − £ξ′Λ′′) = £[ξ′′,ξ′]Λ− £ξΛ[X̂′′,X̂′]

= £ξ[X̂′′,X̂′]
Λ− £ξΛ[X̂′′,X̂′] = δ[X̂′′,X̂′]Λ

and we proved that
[δX̂′′ , δX̂′ ]Λ = δ[X̂′′,X̂′]Λ.
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We can follow the same procedure for Ωa
b and ψa. In total, we get

δX̂′′δX̂′ξ = £ξ′′£ξ′ξ
δX̂′′δX̂′Ω = £ξ′′£ξ′Ω + £ξ(£ξ′Ω′′ − Ω′Ω′′)− Ω(£ξ′Ω′′ − Ω′Ω′′)

+ (£ξ′Ω′′ + Ω′′Ω′)Ω + [Ω′′£ξΩ′ − Ω′′ΩΩ′

− £ξ′(£ξΩ′′ − ΩΩ′′ + Ω′′Ω) + (X̂ ′ ↔ X̂ ′′)]

δX̂′′δX̂′Λ = £ξ′′£ξ′Λ + £ξ£ξ′Λ′′ + [−£ξ′£ξΛ′′ + (X̂ ′ ↔ X̂ ′′)]

δX̂′′δX̂′ψ = £ξ′′£ξ′ψ + £ξ(£ξ′ψ′′ + ψ′′Ω′)− ψ(£ξ′Ω′′ − Ω′Ω′′)

+ (£ξ′ψ′′ + ψ′′Ω′)Ω + [−ψ′ΩΩ′′ − £ξψ′Ω′′

+ £ξ′(−£ξψ′′ + ψΩ′′ − ψ′′Ω) + (X̂ ′ ↔ X̂ ′′)].

From the above we can prove that

[δX̂′′ , δX̂′ ]ξ = δ[X̂′′,X̂′]ξ

[δX̂′′ , δX̂′ ]Ω = δ[X̂′′,X̂′]Ω

[δX̂′′ , δX̂′ ]Λ = δ[X̂′′,X̂′]Λ

[δX̂′′ , δX̂′ ]ψ = δ[X̂′′,X̂′]ψ.

or
[δX̂′′ , δX̂′ ]X̂ = δ[X̂′′,X̂′]X̂.

It is now easy to derive the Jacobi identity

[X̂ ′′, [X̂ ′, X̂]] + [X̂ ′, [X̂, X̂ ′′]] + [X̂, [X̂ ′′, X̂ ′]] = 0.

Here are the simple steps

[X̂ ′′, [X̂ ′, X̂]] = −[[X̂ ′, X̂], X̂ ′′] = −δ[X̂′,X̂]X̂
′′ = −[δX̂′ , δX̂ ]X̂

′′ =

= −δX̂′δX̂X̂
′′ + δX̂δX̂′X̂ ′′

= −δX̂′ [X̂, X̂ ′′] + δX̂ [X̂
′, X̂ ′′]

= −[X̂ ′, [X̂, X̂ ′′]] + [X̂, [X̂ ′, X̂ ′′]]

= −[X̂ ′, [X̂, X̂ ′′]]− [X̂, [X̂ ′′, X̂ ′]].

To show that [δX̂′ , δX̂ ] = δ[X̂′,X̂] we can calculate the action of the commutator
[δX̂′ , δX̂ ] while acting on the background gauge fields nµ, eaµ, Aµ and aab. In compact
notation we will denote the background gauge fields as n, e, A and a. Also the compact
notation for eµa will be ẽ and for (ΩT )b

a = Ωa
b will be ΩT , e.g.

(
ΩT ẽ

)
a
µ = (ΩT )a

beµb =
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eµbΩ
b
a = (ẽΩ)µa. After a lot of computation we arrive at the following compact relations

δX̂′δX̂n = £ξ′£ξn
δX̂′δX̂e = £ξ′£ξe+ (£ξΩ′ + Ω′Ω)e

+ [−£ξ(Ω′e) + (X̂ ↔ X̂ ′)]

δX̂′δX̂A = £ξ′£ξA− ∂£ξΛ′ − (£ξψ′ + ψ′Ω)e

+ [£ξ∂Λ′ + £ξ(ψ′e) + (X̂ ↔ X̂ ′)]

δX̂′δX̂a = £ξ′£ξa− a(£ξΩ′ − ΩΩ′)− [a(£ξΩ′ − ΩΩ′)]T

− ẽ∇(£ξψ′ + ψ′Ω)− [ẽ∇(£ξψ′ + ψ′Ω)]T

+ [(ΩT ẽ∇ψ′) + (ΩT ẽ∇ψ′)T + (ẽ∇ψ′Ω) + (ẽ∇ψ′Ω)T

+ (ΩTaΩ′) + £ξ(Ω′Ta+ (Ω′Ta)T + ẽ∇ψ′ + (ẽ∇ψ′)T )

+ (X̂ ↔ X̂ ′)],

from which we, indeed, find

[δX̂′ , δX̂ ]n = δ[X̂′,X̂]n

[δX̂′ , δX̂ ]e = δ[X̂′,X̂]e

[δX̂′ , δX̂ ]A = δ[X̂′,X̂]A

[δX̂′ , δX̂ ]a = δ[X̂′,X̂]a,

resulting in the closed algebra

[δX̂′ , δX̂ ] = δ[X̂′,X̂].

In summary, everything we did so far in this section was to show that our Aristotelian
symmetry transformations form a Lie algebra and the Wess-Zumino consistency condi-
tions

[δX̂′ , δX̂ ]W = δ[X̂′,X̂]W

hold true.

We can now identify the commutator algebra of ourAristotelian symmetry generators.
We will follow the approach of [118] and write δX̂ in the form

δX̂ = iξµnµH− iξµeaµPa+
i

2
(Ωab+ ξµωabµ)Mab− i(Λ+ ξµAµ)Q

(0)− i(ψa+ ξµAaµ)Da.

Afterwards, we substitute this form into [δX̂′ , δX̂ ] and find after many cumbersome calcu-
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lations

[δX̂′ , δX̂ ] = δ[X̂′,X̂] + ξµξ′ν
(
eaµe

b
ν [Pa, Pb]− (nµe

a
ν − nνe

a
µ)[H,Pa] + iCµν

)
+

1

2

(
(ωab + ξµωabµ)ξ

′νnν − (ω′ab + ξ′µωabµ)ξ
νnν
)
[Mab, H]

− 1

2

(
(Ωab + ξµωabµ)ξ

′νecν − (Ω′ab + ξ′µωabµ)ξ
νecν
)
([Mab, Pc]− 2iδacPb)

+
1

4

(
Ωab + ξµωabµ

) (
Ω′cd + ξ′µωcdµ

)
([Mab,Mcd]− 4iδacMbd)

− 1

2

(
(Ωab + ξµωabµ)(ψ

′c + ξ′νAcν)− (Ω′ab + ξ′µωabµ)(ψ
c + ξνAcν)

)
([Mab, Dc]− 2iδacDb)

− (ξµnµ(Λ
′ + ξ′νAν)− ξ′µnµ(Λ + ξνAν)) [H,Q

(0)]

+
(
ξµeaµ (Λ

′ + ξ′νAν)− ξ′µeaµ (Λ + ξνAν)
)
[Pa, Q

(0)]

− 1

2

(
(Ωab + ξµωabµ)(Λ

′ + ξ′νAν)− (Ω′ab + ξ′µωabµ)(Λ + ξνAν)
)
[Mab, Q

(0)]

+
(
(ψa + ξµAaµ)(Λ

′ + ξ′νAν)− (ψ′a + ξ′µAaµ)(Λ + ξνAν)
)
[Da, Q

(0)]

− (ξµnµ(ψ
′a + ξ′νAaν)− ξ′µnµ(ψ

a + ξνAaν)) ([H,Da] +
i

2
eρae

bσ£vhρσDb)

+
(
ξµeaµ(ψ

′b + ξ′νAbν)− ξ′µeaµ(ψ
b + ξνAbν)

)
([Pa, Db]− iδabQ

0)

+ (ψa + ξµAaµ)(ψ
′b + ξ′νAbν)[Da, Db],

(4.15)

where we defined the auxiliary quantity

Cµν ≡ −F n
µνH + 2T aµνPa −

1

2
Rab

µνMab + F a
µνDa.

We will call Cµν the curvature operator. In deriving the commutator algebra we will need
the following identities

δX̂′(Ω
ab + ξµωabµ) = £ξ′(Ωab + ξµωabµ) + 2Ω′[a

c(Ω
b]c + ξµωb]cµ)

δX̂′(Λ + ξµAµ) = £ξ′(Λ + ξµAµ) + ξµeaµψ
′
a

δX̂′(ψ
a + ξµAaµ) = £ξ′(ψa + ξµAaµ)− Ω′a

b(ψ
b + ξµAbµ)

+ (Ωa
b + ξµωabµ)ψ

′b +
1

2
ξµnµψ

′beaρeσb £vhρσ.

The above calculation 4.15 must satisfy the Lie algebra condition 4.7, giving us the Aris-
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totelian symmetry algebra

[Mab,Mcd] = i(δacMbd − δbcMad − δadMbc + δbdMac)

[Mab, Pc] = i(δacPb − δbcPa)

[Mab, Dc] = i(δacDb − δbcDa)

[Pa, Db] = iδabQ
(0)

[Pa, Pb] = −ieµaeνbCµν
[H,Pa] = ivµeνaCµν

[H,Da] = − i

2
eρae

bσ£vhρσDb

(4.16a)
(4.16b)
(4.16c)
(4.16d)
(4.16e)
(4.16f)

(4.16g)

with the rest vanishing. We can observe now that equations 4.16a to 4.16d are identical to
the familiar 2.13 we derived in flat spacetime in Chapter 2. The new components to our
symmetry algebra are equations 4.16e to 4.16g whose form exposes the exotic character-
istics of Aristotelian geometry, present especially in the curvature operator Cµν .

4.3 Quantum Anomalies

4.3.1 Wess-Zumino conditions

After having carefully studied all the fundamental features of Aristotelian geometry and its
symmetries, we are finally ready to tackle the important matter of its quantum anomalies.
Let us look at the generating functional

W = W [nµ, e
a
µ, Aµ, A

a
µ]

with background source gauge fields nµ, eaµ, Aµ and Aaµ. It can be shown that under
our Aristotelian transformations X̂ = (ξµ,Ωa

b,Λ, ψa), the generating functional changes
infinitesimally as

δX̂W =

∫
dd+1x

√
γ
(
ξµDµ + Ωa

bRb
a + ΛU + ψaSa

)
, (4.17)

where Dµ, Rb
a, U and Sa are local functional of the background fields, meaning they all

have the form
G = G(x)[nµ, eaµ, Aµ, Aaµ].

Here the symbols D, R, U and S were chosen because they represent diffeomorphism,
spatial SO(d) rotation, U(1) and dipole shift transformations, respectively. As we have
already explained, ifW is invariant under our Aristotelian transformations, i.e. δX̂W = 0,

50



then our Aristotelian theory is symmetric under these Aristotelian transformations and it
has no quantum anomalies, i.e. Dµ = Rb

a = U = Sa = 0. On the other hand, if

δX̂W ̸= 0

our Aristotelian theory has quantum anomalies, so some ofDµ,Rb
a, U orSa do not vanish.

We will try to find these Aristotelian anomalies using as our main tool the Wess-Zumino
conditions

[δX̂′ , δX̂ ]W = δ[X̂′,X̂]W.

Again, for more details on quantum anomalies see the relevant literature [56, 111, 112,
113, 114, 115, 116, 117].

First consider

δX̂W =

∫
dd+1x

√
γ
(
ξµDµ + Ωa

bRb
a + ΛU + ψaSa

)
.

Note that Dµ,Ra
b, U and Sa are not necessarily tensor quantities. Acting with δX̂′ on the

above equation we get

δX̂′δX̂W =

∫
dd+1x δX̂′

√
γ
(
ξµDµ + Ωa

bRb
a + ΛU + ψaSa

)
+

∫
dd+1x

√
γ
(
ξµ δX̂′Dµ + Ωa

b δX̂′Rb
a + Λ δX̂′U + ψa δX̂′Sa

)
+

∫
dd+1x

√
γ
(
δX̂′ξ

µDµ + δX̂′Ω
a
bRb

a + δX̂′ΛU + δX̂′ψa Sa
)
.

But we also have

δ[X̂′,X̂]W =

∫
dd+1x

√
γ
(
ξµ
[X̂′,X̂]

Dµ + Ωa
b[X̂′,X̂] R

b
a + Λ[X̂′,X̂] U + ψa[X̂′,X̂] S

a
)

=

∫
dd+1x

√
γ
(
δX̂′ξ

µDµ + δX̂′Ω
a
bRb

a + δX̂′ΛU + δX̂′ψa Sa
)
.

Thus, if we define the quantity

FX̂′X̂ ≡
∫
dd+1x δX̂′

√
γ
(
ξµDµ + Ωa

bRb
a + ΛU + ψaSa

)
+

∫
dd+1x

√
γ
(
ξµ δX̂′Dµ + Ωa

b δX̂′Rb
a + Λ δX̂′U + ψa δX̂′Sa

)
,

we get

δX̂′δX̂W = FX̂′X̂ + δ[X̂′,X̂]W.

Using this the Wess-Zumino conditions take the form

FX̂′X̂ − FX̂X̂′ = −δ[X̂′,X̂]W. (4.18)

51



For the calculations going forward we will need to know δX̂
√
γ explicitly. From 3.1

we have
∂γ

∂γµν
= γ γµν

and we can see that this gives us

δX̂
√
γ =

1

2

√
γ γµνδX̂γµν .

Now, given that γµν = nµnν + hµν , and we know that

δX̂nµ = £ξnµ

and
δX̂hµν = £ξhµν

we get
δX̂γµν = £ξγµν ,

so
δX̂

√
γ =

1

2

√
γ γµν£ξγµν .

It is instructive to see why δX̂hµν = £ξhµν in the first order formulation, the steps being
laid out in detail below

δX̂hµν = δX̂
(
δabe

a
µe
b
ν

)
= δab δX̂ e

a
µe
b
ν + δab e

a
µ δX̂e

b
ν

= δab
(
£ξeaµ − Ωa

ce
c
µ

)
ebν + δabe

a
µ

(
£ξebν − Ωb

de
d
ν

)
= δab £ξeaµ ebν + δabe

a
µ£ξebν − δabΩ

a
ce
c
µe
b
ν − δabe

a
µΩ

b
de
d
ν

= £ξ
(
δabe

a
µe
b
ν

)
− Ωbce

c
µe
b
ν − eaµΩade

d
ν

= £ξhµν − 2Ω(ab)e
a
µe
b
ν

= £ξhµν , since Ω(ab) = 0.

In fact, since
δΩnµ = δΩhµν = δΩAµ = δΩA

µ
ν = 0,

if we had a local functional of the form

Gκ···λ··· = Gκ···λ···(x)[nµ, hµν , Aµ, Aµν ],

it would obey
δΩGκ···λ··· = 0.

Similarly, since
δψnµ = δψe

a
µ = 0,

if we had
Gκ···λ··· = Gκ···λ···(x)[nµ, eaµ],
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then
δψGκ···λ··· = 0,

while since
δΛnµ = δΛe

a
µ = δΛFµν = δΛA

a
µ = 0,

a local functional
Gκ···λ··· = Gκ···λ···(x)[nµ, eaµ, Fµν , Aaµ]

would satisfy
δΛGκ···λ··· = 0.

From all the above the operator

δX̂ = δξ + δΩ + δΛ + δψ

will give us
δX̂γµν = δξγµν = £ξγµν .

We are now ready to break apart the Wess-Zumino conditions to equivalent partial
conditions that Dµ, Ra

b, U and Sa should satisfy. This is done by taking transformations
X̂ ′ and X̂ such that only one of its gauge parameters in non-zero. For example, we will
start with X̂ ′ = (0, 0,Λ′, 0) and X̂ = (0, 0,Λ, 0). This gives us

[X̂ ′, X̂] = 0, δ[X̂′,X̂]W = 0, δX̂′γµν = δX̂γµν = 0,

FX̂′X̂ =

∫
dd+1x

√
γ Λ δΛ′U , FX̂X̂′ =

∫
dd+1x

√
γ Λ′ δΛU

and putting these in 4.18 we find∫
dd+1x

√
γ (Λ δΛ′U − Λ′ δΛU) = 0.

As another example, we take X̂ ′ = (ξ′µ, 0, 0, 0) and X̂ = (0, 0,Λ, 0) and find

[X̂ ′, X̂] = (0, 0,Λ[X̂′,X̂], 0), Λ[X̂′,X̂] = £ξ′Λ, δ[X̂′,X̂]W =

∫
dd+1x

√
γ £ξ′ΛU ,

δX̂′γµν = £ξ′γµν , δX̂γµν = 0,

FX̂′X̂ =

∫
dd+1x (δX̂′

√
γ ΛU +

√
γΛ δX̂′U) , FX̂X̂′ =

∫
dd+1x

√
γ ξ′µ δΛDµ,

which give us the partial condition

δξ′

(∫
dd+1x

√
γ ΛU

)
−
∫
dd+1x

√
γ ξ′µ δΛDµ = 0. (4.19)
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Following similar steps to the above, we should get a total of
(
4
2

)
+ 4 = 10 partial condi-

tions. After calculations, these partial conditions turn out to be∫
dd+1x

√
γ (Λ δΛ′U − Λ′ δΛU) = 0∫

dd+1x
√
γ
(
Λ δΩ′U − Ω′a

b δΛRb
a

)
= 0∫

dd+1x
√
γ (Λ δψ′U − ψ′

a δΛSa) = 0

δξ′

(∫
dd+1x

√
γ ΛU

)
−
∫
dd+1x

√
γ ξ′µ δΛDµ = 0∫

dd+1x
√
γ
[
(Ωa

b δΩ′Rb
a − Ω′a

b δΩRb
a)+

+(Ωa
bΩ

′b
c − Ω′a

bΩ
b
c)Rc

a

]
= 0∫

dd+1x
√
γ ψ′

a

(
Ωa

bSb + δΩSa − Ωa
b δψ′Rb

a

)
= 0

δξ′

(∫
dd+1x

√
γ Ωa

bRb
a

)
−
∫
dd+1x

√
γ ξ′µ δΩDµ = 0∫

dd+1x
√
γ (ψa δψ′Sa − ψ′

a δψSa) = 0

δξ′

(∫
dd+1x

√
γ ψaSa

)
−
∫
dd+1x

√
γ ξ′µ δψDµ = 0

δξ′

(∫
dd+1x

√
γ ξµDµ

)
− δξ

(∫
dd+1x

√
γ ξ′µDµ

)
+

+

∫
dd+1x

√
γ £ξξ′µDµ = 0.

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.20e)

(4.20f)

(4.20g)

(4.20h)

(4.20i)

(4.20j)

4.3.2 Candidate Anomalies

In this section we will try to find solutions to the partial conditions 4.20. In doing that, we
will assume that Dµ, Ra

b, U and Sa are tensor quantities. Specifically, we will take Dµ

to be an 1-form, Ra
b a spatial (1, 1) tensor, U a scalar and Sa a spatial vector. Of course,

under these conditions any gravitational anomalies are excluded from our current study.
We must also note that if we have the integral of a scalar F = F(x)[nµ, hµν , Aµ, A

µ
ν ] in

the form ∫
dd+1x

√
γ F ,

we know that due to covariance it will be diffeomorphism invariant, so

δξ

(∫
dd+1x

√
γ F
)

= 0 ∀ξµ.
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Using this property, conditions like 4.19 are simplified to∫
dd+1x

√
γ ξ′µ δΛDµ = 0.

From the preceding discussion, the partial conditions 4.20 are reduced to∫
dd+1x

√
γ (Λ δΛ′U − Λ′ δΛU) = 0 (4.21a)∫

dd+1x
√
γ
(
ΛδΩ′U − Ω′a

bδΛRb
a

)
= 0 (4.21b)∫

dd+1x
√
γ (Λ δψ′U − ψ′

a δΛSa) = 0 (4.21c)∫
dd+1x

√
γ ξ′µ δΛDµ = 0 (4.21d)∫

dd+1x
√
γ
[
(Ωa

b δΩ′Rb
a − Ω′a

b δΩRb
a)+

+(Ωa
bΩ

′b
c − Ω′a

bΩ
b
c)Rc

a

]
= 0 (4.21e)∫

dd+1x
√
γ ψ′

a

(
Ωa

bSb + δΩSa − Ωa
b δψ′Rb

a

)
= 0 (4.21f)∫

dd+1x
√
γ ξ′µ δΩDµ = 0 (4.21g)∫

dd+1x
√
γ (ψa δψ′Sa − ψ′

a δψSa) = 0 (4.21h)∫
dd+1x

√
γ ξ′µ δψDµ = 0 (4.21i)∫

dd+1x
√
γ £ξξ′µDµ = 0. (4.21j)

Let us try to simplify and draw conclusions from the above partial conditions 4.21.
Firstly, we can easily see that equations 4.21d, 4.21g, 4.21i lead to

δΛDµ = δΩDµ = δψDµ = 0,

which are satisfied for Dµ of the form

Dµ = Dµ(x)[nκ, hκλ].

Putting ξµ = δµκδ(x− x0) in 4.21j, we get
√
γ ∂νξ

′µDµ + ∂µ (
√
γ ξ′µDν) = 0 ∀ξ′µ.

Setting ξ′µ = δµκ in some chart of our manifold, we find

∂µ (
√
γDν) = 0
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or, inside this randomly chosen coordinate chart,

Dµ =
1
√
γ
cµ

for some constants cµ. We know that√γ is a tensor density of weight 1, i.e.√
γ′ = J−1√γ

with J ≡ det
(
∂x′

∂x

)
the Jacobian. This means that in another chart we will have

D′
µ =

1√
γ′
c′µ = J

1
√
γ
c′µ

with c′µ constants. If a D is a non-zero 1-form, then there exists some non-zero cµ in the
original chart and we have

D′
µ = J

1
√
γ
c′µ = J

c′µ
cµ

1
√
γ
cµ = J

c′µ
cµ

Dµ.

It is clear that for D to be an 1-form, transforming as

D′
µ =

∂xν

∂x′µ
Dν ,

all the constants cµ must vanish. From these arguments we see that

Dµ = 0.

Now we will look at equations 4.21b, 4.21e, 4.21f and analyze the action of δΩ. To
start, notice that

δΩnµ = δΩhµν = δΩAµ = δΩaµν = δΩA
µ
ν = 0,

while

δΩe
a
µ = −Ωa

be
b
µ δΩe

µ
a = Ωb

ae
µ
b

δΩaab = Ωc
aacb + Ωc

baac δΩA
a
µ = −Ωa

bA
b
µ

and we even have

δΩ′ξµ = δΩ′Λ = 0

δΩ′ψa = Ω′b
aψb

δΩ′Ωa
b = −Ω′a

cΩ
c
b + Ω′c

bΩ
a
c.
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From these relations we can see thatRa
b should be of the form

Ra
b = eaµe

ν
bRµ

ν with Rµ
ν = Rµ

ν(x)[nκ, hκλ, Aκ, A
κ
λ].

Similarly, we should have
Sa = eaµSµ with Sµ = Sµ(x)[nκ, hκλ, Aκ, Aκλ]

and
U = U(x)[nκ, hκλ, Aκ, Aκλ].

Under these assumptions we will have
δΩU = 0, δΩRa

b = −Ωa
cRc

b + Ωc
bRa

c and δΩSa = Ωa
bSb,

which turn equations 4.21b, 4.21e, 4.21f into∫
dd+1x

√
γ Ωa

bδΛ′Rb
a = 0∫

dd+1x
√
γ (Ωa

bΩ
′b
c − Ω′a

bΩ
b
c)Rc

a = 0∫
dd+1x

√
γ Ωa

b δψ′Rb
a = 0.

If we set Ωab = δk[aδ
l
b]δ(x− x0) in the above relations we get

δΛR[ab] = 0(
Ω′b

cRca − Ω′a
cRcb

)
−
(
Ω′caRb

c − Ω′cbRa
c

)
= 0 (4.22)

δψR[ab] = 0,

respectively. Putting Ω′
ab = δk[aδ

l
b] in 4.22 we find

δkbR[la] − δlbR[ka] − δkaR[lb] + δlaR[kb] = 0.

Then setting in the above k = b and summing on b we obtain the condition
R[ab] = 0.

However,Rab is already antisymmetric from the relation 4.17, so we deduce that
Rab = 0.

Finally, after assuming that Dµ, Ra
b, U and Sa are tensor quantities, our analysis

shows that the partial conditions 4.21 will take the simplified form∫
dd+1x

√
γ (Λ δΛ′U − Λ′ δΛU) = 0∫

dd+1x
√
γ (Λ δψ′U − ψ′

a δΛSa) = 0∫
dd+1x

√
γ (ψa δψ′Sa − ψ′

a δψSa) = 0

Ra
b = 0

Dµ = 0.

(4.23a)

(4.23b)

(4.23c)

(4.23d)
(4.23e)
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We can easily identify a class of solutions to the above equations. Firstly, to satisfy 4.23c
it is easiest to choose δψSa = 0, meaning

Sa = eaµSµ with Sµ = Sµ(x)[nκ, hκλ].

This will automatically satisfy δΛSa = 0, which means that conditions 4.23a and 4.23b
become ∫

dd+1x
√
γ (Λ δΛ′U − Λ′ δΛU) = 0 (4.24a)

δψU = 0. (4.24b)

But to satisfy 4.24b U must be of the form

U = U(x)[nκ, hκλ],

which automatically satisfies 4.24a. To summarize, our solutions are of the form

U = U(x)[nκ, hκλ],
Sa = eaµSµ with Sµ = Sµ(x)[nκ, hκλ],

Ra
b = 0,

Dµ = 0.

(4.25a)
(4.25b)
(4.25c)
(4.25d)

We must mention that, as there are no dipole symmetric quantities that depend only on
our background fields, the only way for U and Sa to be dipole shift invariant is to be
independent of Aµ and Aµν , the background sources of the dipole shift transformation.
The solutions

U = U(x)[nκ, hκλ]
and

Sa = eaµSµ with Sµ = Sµ(x)[nκ, hκλ]
constitute essentially a purely geometric class of solutions that depend only on the funda-
mental mathematical structure of Aristotelian geometry, its clock form nµ and its spatial
metric hµν . Such solutions emerge due to the peculiar characteristics of Aristotelian ge-
ometry, like its Aristotelian connection not being metric compatible and torsion-free. We
saw a similar behavior in the Aristotelian algebra 4.16 with the emergence of the new
commutation relations 4.16e to 4.16g.

We should emphasize that, geometric solutions for U and Sa can be chosen indepen-
dently from each other. This means that we can have U ̸= 0 and Sa = 0, U = 0 and
Sa ̸= 0, or, U ̸= 0 and Sa ̸= 0. Some examples for non-vanishing U and Sa are3

U = F n
µν h

µκhνλ F n
κλ

U = hµν £vhµν

U = nµnν £vhµν

U = ∇µv
µ

3The relation £vnµ = Tκ
κµ restricts the number of dissimilar geometric solutions.

58



and

Sa = eaµ £vnµ = −eaµ £vhµνnν
Sa = eaµF n

µνh
νκ £vnκ.

At even or odd spacetime dimensions d + 1 we can use the Levi-Civita tensor εµ1···µd+1

to find even more choices for U and Sa. For information on the Levi-Civita tensor see
[89, 104, 93]. At even spacetime dimensions d+1 = 2kwe can define geometric quantities
like

U = εµ1µ2···µ2k−1µ2kF n
µ1µ2

· · ·F n
µ2k−1µ2k

U = εµ1µ2···µ2k−1µ2k£vF n
µ1µ2

· · · £vF n
µ2k−1µ2k

and

Sa = eaµ1ε
µ1µ2µ3µ4···µ2k−1µ2knµ2F

n
µ3µ4

· · ·F n
µ2k−1µ2k

Sa = eaµ1ε
µ1µ2µ3µ4···µ2k−1µ2knµ2£vF n

µ3µ4
· · · £vF n

µ2k−1µ2k
.

At odd spacetime dimensions d+ 1 = 2k + 1 we can find

U = εµ1µ2···µ2k−1µ2kµ2k+1F n
µ1µ2

· · ·F n
µ2k−1µ2k

nµ2k+1

U = εµ1µ2···µ2k−1µ2kµ2k+1£vF n
µ1µ2

· · · £vF n
µ2k−1µ2k

nµ2k+1

and

Sa = εµ1µ2···µ2k−1µ2kµ2k+1F n
µ1µ2

· · ·F n
µ2k−1µ2k

eaµ2k+1

Sa = εµ1µ2···µ2k−1µ2kµ2k+1£vF n
µ1µ2

· · · £vF n
µ2k−1µ2k

eaµ2k+1
.
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