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Abstract

In field theories conserved dipole moment can arise from global dipole symmetry, which
is interpreted and as a higher moment generalization of global phase symmetry U(1). In
this thesis we will first see various symmetries, like dipole symmetry, spatial rotations etc.,
and will derive the conserved currents and the algebra they satisfy. Afterwards, we will
study the gauge symmetries of these transformations in the background of Aristotelian
Geometry, which describes the geometry of absolute time and space. Equipped with the
aforementioned elements, we will examine the behavior of quantum anomalies with guide
tools like the Wess — Zumino consistency conditions.

Hepiinyn

e Bewpleg mediov M OlaTnPOVUEVT SUTOMKY] pom) Umopel va TpokvyeL omd KaBoAkn

OUTOMKY] GLULETPLO, TTOL EPUNVEDETOL KO O VYNADTEPNC POTY|G YEVIKEVOT TNG KABOAKNG

ovppetpiag ebong U(1). XZe avth v epyocio Ba dodue apyikd dibpopeg cuppetpies,

OTMG M SUTOAIKY], O YOPIKES GTPOPEG KAT., Kot Oa EAYOLLLE TOL 10T POVUEVA PEVUOTOL KO

™V dAyefpa TOL KAVOTOOVV. ZTN GLVEXELWN, Ba LeAeTGOVE TIG cvupEeTpies Pabuidag

TOV LETAGYNUOTICUOV aT®V o€ vrTofabpo Apiototédretag empetpiag, n omoia meptyplpet
™V YEOUETPiO TOL amdOALTOL XPOVOL Kot Ydpov. Epodiacuévol pe ta mpoavapepfivia

otoyeia, Bo eEETAGOVLE TNV CLUTEPLPOPE TOV KPOVTIKMOV AVOUOAM®VY LE 00N Y0 pYOLEi®V

OT®G 01 cLVONKeC cuvémelog Wess — Zumino.
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Chapter 1

Introduction to Dipole Symmetry

1.1 Noether’s Theorem

In this thesis the central object of our attention will be fractons, quasiparticles that repre-
sent a new hypothetical phase of matter . Fractons are characterized by their peculiar quan-
tum behavior of having restricted mobility. For further elaboration on the physical proper-
ties of fractons see [1, 2, 3, 4]. The features of this emergent topological quasiparticle can
have physical implications to a wide spectrum of research areas, from elasticity [5, 6, 7,
8, 9], hydrodynamics [10, 11, 12, 13, 14, 15], phase transitions [16, 17, 18, 19, 20, 21, 22]
and quantum information [2, 23, 24, 25] to quantum field theory [26, 27, 28, 29, 30, 31],
gravitation [32, 33, 34, 35, 36, 37, 38, 39, 40] and holography [41, 42, 43, 44, 45].

It can be seen that in some theories this limited mobility of isolated fracton particles
is equivalent to the conservation of their dipole moment. To see this heuristically, note

—

that for a point particle at Z(t), with charge ¢ and dipole moment d(t) = ¢¥(t), conser-

vation of dipole moment cf(t) = 0 is the same as Z(t) = 0. For more details on this see
[46, 47, 48, 49] and for a broad review on fractons see [50, 51, 52]. To study the quan-
tum features of fractons, we will need to encode the conservation of dipole moment in
a field-theoretic manner. This is done through the use of Noether’s Theorem that con-
nects conserved quantities with corresponding symmetries. For more details on Noether’s
Theorem see [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].

This chapter will be heavily based on [64], focusing on a generic complex scalar field
¢ = ¢(x), with x = (¢, ), and some real Lagrangian (density)

L=L(x,¢,0,0,0.0,0,c.c.),

where c.c. means the complex conjugate of the preceding terms inside the parenthesis. Let
us review the basic theoretical concepts we will need to move forward. We call a variation
of the field ¢(z) a class of functions ¢ (z) such that ¢._o(z) = ¢(z) and we will work to
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first order in ¢, sometimes called “infinitesimal’ order, so we write
be(7) = ¢(x) + edd(x) + O(e?)

by denoting

de |
We would like to write other e-dependent quantities in a similar manner. For a variation
¢(x) of the field, the Lagrangian

L(z) = L(z,d(x), 0ud(x), 0,0,0(x), c.c.)

0¢()

1s also varied to
Le(z) = L(x, (), 0,0(x),0,0,0(x),c.c.)

and written as

L.(x) = L(z) + edL(x) + O(?)

with the infinitesimal change, to first order in €, being represented again by

OL.(z
Oe

~—

0L(x)

e=0

For a real Lagrangian £ = L(z, ¢, 9,6, 9,,0,, c.c.), using'

<a_c)*_az (az >*_ oL
)  9¢*" \90u0))  0(9.9%) )

changes to first order in € by

or or or
5e =500 %% 9 5oy 95
562+ 50,9 Y * 560.0,0)

"Let £(z,w) be analytic for both z,w € C. Define £L(Re z,Im z) = L(z,2*) Vz € C (see Section 6.1
of [58]). Then we can show that

0,0, (6¢) + c.c. (1.1)

- 8Rez_281mz

0L(z,z") 1( oL . oL
0z T2

0L(z,z") _1( oL L oL
Oz* “ 2\ dRez Z@Imz

If £ € R, then

OL(z,2*)\"  0L(z,z")
0z 0z



Then, through the relation?
oL oL

0(0,0,9)  0(0,0.0)

it can be seen that

oL oL oL
o2~ 5 -4 - M s )
oL oL oL '
+0 |87 558 ~ Ve o

Similarly to the above, the action functional

S[é] = S[Re &, Re d] = S[d, ¢*] = / 1 £(2)[6, 6],

R

of the complex scalar ¢ under an arbitrary variation ¢.(z) of the field, also changes from
S = S[g, d*] to Sc = Sc[¢, ¢*] = S[¢., ¢¥] and we write

S. =S+ €68 + O(e?),

with infinitesimal change

Using the concept of the functional derivative (see [54, 57, 53, 55, 65]) we can easily see

that (55:/dd“x <%{Sx}5¢($)+ Mi?x)(sd)*(x)) :/ddﬂxé/l(x).

Taking variations d¢ that vanish on the boundary of the region of integration R and using
1.1 we get?

05 9L 5, % o025
6¢ 8¢ Ma(augb) g V8(8M6V¢) (1 3)
05 0L, 0L o L

So*  O¢*  "0(0,0%) 0(0,0,9*)

*LetL=L(A,,)and A, =35 (A, +A4,,) If wedefine £(A,,) = L(A,,)), we can show that

oL oc
9A,, ~ 0A

1% vp

3For complex scalar fields ¢, since the Lagrangian depends on both the field ¢ and its complex conjugate
¢* separately, to calculate the functional derivative of the action, we need to choose two types of variations
of ¢. The first type should be such that §¢ = d¢*, while the second should be chosen such that §¢p = —do*.
The logic is similar to that in footnote 2 and we can see that everything works well as if we had two totally
independent fields ¢ and ¢* in the Lagrangian £. This means that ¢ and ¢* can actually be treated as
independent fields as far as matters of the action and the Lagrangian are concerned. For more details, see
Section 6.1 of [58].



The fields ¢ that extremize the action, meaning 6.5 = 0 for any variation d¢ or, equiva-

lently,
6S[0.67) _ 8S[9.97] _
09 0¢* ’
are usually said to be on-shell and they are off-shell otherwise. So for on-shell fields ¢ we
get the following equations

55 oL oL oL

e e 4 0,0y =0
o¢p 9o TO(0.0) " T0(0,0,0)
5S  oc oL oL

— =) 40,0, =0
op*  d¢* "0(0.0%) T 0(0,0,9%)

known by everyone as Euler-Lagrange equations or equations of motion.

In using Noether’s Theorem to link symmetries to conserved currents, we will work
with specific transformations where the spacetime point x and the field ¢ change simul-
taneously as one transformation. In particular, we take 2’ = 2/(x) and ¢/ = ¢'(z), where
the function ¢’ is usually declared in the form ¢'(2’) = T|[¢](x) with T[¢] some func-
tional of ¢. We will also assume that the inverses z(z) and 7~ ![¢] exist*. Obviously,
to get the transformation ¢'(z) we use the inverse transformation = z(z’) and ob-
tain ¢'(2') = T[¢|(z(x’)). We usually see the total transformation being denoted as
r — o, ¢(xr) — ¢'(2’). For a Lagrangian £ = L(z, ¢, 0,¢,0,0,¢, c.c.) the transfor-
mation x — ', ¢(x) — ¢'(«’) induces a corresponding transformation to the Lagrangian
L(x) = L'(x') given by

L, ¢(), 0,0 (@), 0,0,0 (o)), c.c.) = I (w,2') L, 6(x), D,6(), 8,0,0(x), c.c.

(1.4)
ox

the Jacobian of the transformation = = z(z’). To identify the transformed Lagrangian £’
explicitly we write the above expression with respect to 2’ and ¢'. This is obviously done
using the inverses z(z') and 7 ![¢]. Trying to write ¢ in terms of ¢’ we will find that

¢(x) =T ¢ o a')().

The transformed action is defined as

S/[¢,,¢,*] = /l dd-l—lx/ ﬁl(l’/)[gﬁ/, 925,*],

with
J(z,2") =

where R’ = 2/(R), and we can see that

S'l¢!, ¢"] = S[o, ¢7].
4This means that 2’ (z(2')) = 2/ V2’ and T[T [¢]] = ¢ Vo
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This means that if ¢ is a field that extremizes the action S with Lagrangian £, then the
corresponding transformed field ¢’ will extremize the action S’ with Lagrangian £'. We
will call the transformation z — 2/, ¢(z) — ¢'(2’) a symmetry of the action S or the
Lagrangian £ (or even a symmetry of our “physical theory”) if the functional form of S’
is “the same as that of S meaning

S10,0") = I = [ a1 L)oo
for any original region R, which reduces to the condition
L =L

We see that for a symmetry transformation if ¢ satisfies the Euler-Lagrange equations with
Lagrangian £, then ¢’ will satisfy the same equations of motion with the same Lagrangian

L.

A continuous transformation x — 2’; ¢(x) — ¢'(«’) will have an infinitesimal ver-
sion of the form 2’ (x), ¢L(z') = Tc[¢](z(z)), where the € generates the “infinitesimal”
part of the transformation. Working again to infinitesimal order we have

2l (z) =z + e€(x) + O(e?), (1.5)

where £(z) = 0x.(x)/0¢|._, (for the above equation note that, by definition, z/_(z) =
x). For the inverse transformation z.(z’), we can easily show that

ro(7') = o' — (') + O(2).
In addition, if we write
Tl0l(z) = é(x) + eK[¢](z) + O(€?)
(note again To_o[¢](z) = ¢(z)), we can find that
T @l(z) = ¢(x) — eKlg](x) + O(€?).
For the transformed field ¢., we write
$e(7) = ¢(z) + edp(z) + O(e?), (1.6)

where, of course,

0p(x) = 06 (1) /0l g = =" (2)0uo(x) + K[¢](x) (1.7)

(again, by definition, ¢!_,(x) = ¢(z)), while for the inverse transformation, ¢.(z) =
T ¢ o x'](x) for any arbitrary function ¢'(x), we can prove that

() = ¢'(x) + e[€"(2)0,d (z) — K[¢]()] + O(€%).
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In a similar way to the above equations, since ¢’ () is a variation of the original field ¢(x),
for L.(z) = L(z, ¢.(x),0,¢.(x), 0,0,¢.(x), c.c.) we will again write

L.(x) = L(x) + e6L(x) + O(€?)

with 0L(x) being given by 1.2, where we set 1.7 in §¢(z). We also have for the trans-
formed action

5. = / a1 £ (),
R

/
€

where R, = z/(R), the expansion
S.=85+e5S + O(e)

with
6S = / Az [0,(" () L(w)) + 6L(x)] .
R

Using the relation
det(I + €A) =1+ etr(A) + O(e?),

which is true for any n x n matrix A, we get

J(z,2') =

det (%) ’ =1—ed&"(x) + O(e)
for small enough e. This equation together with the definition 1.4 gives us for £.(z) =
L.z, ¢(x), 0up(x), 0,0,¢(x), c.c.) the expansion
Li(x) = L(x) = e[0,(6"(x) L(x)) + 6L(x)] + O(€?).
If our transformation is a symmetry, then
L(z)=L(x) Ve

or, an equivalent condition,

5L = —0,(€"L). (1.8)

For a symmetry we also have S, = 9, so clearly S = 0 for any region R, which is the
same as condition 1.8. Now we define the Noether current of a symmetry transformation
by

oL oL oL
= 0p + 0,(00) — 0y =——=0¢p +cc.| +E"L. 1.9
Using 1.3 and definition 1.9, equation 1.2 becomes
65 1ad M
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For a symmetry transformation, which satisfies 1.8, the above gives us the following re-
lationship
0 '“——§5¢+cc (1.11)
Lt = 5 .C. .
Hence, for symmetry transformations of on-shell fields ¢ equation 1.11 proves the con-
servation of the Noether current

07" =0 on-shell. (1.12)

Note that the conservation law derived in this section, comprising the well-known Noether’s
Theorem, holds for fields that are on-shell only. Also the Noether current can actually be
defined up to a constant multiplicative factor. This is important, because we will define
the corresponding Noether charge of a symmetry

Q= /ddxjo,

which is determined up to a factor too and is conserved on-shell

@ =0 on-shell
dt

as well. So the “algebra” between charges of different symmetries will be specified up to
multiplicative factors as well.

There is an alternative way to prove Noether’s Theorem, that is of great practical and
conceptual interest in many applications and will be important to us later. We start by
taking the transformation z/(x) and ¢.(z') = T[¢](z(z")), which we call global trans-
formation, and create a new /ocal transformation, by the substitution ¢ — en(x), where
n = n(x) is a “well-behaved” real function of z. In particular, the transformations z’(z)
and 7.[¢](x) become

xélocal(x) = xén(:v) (l’)

Tl () = Teyw ] (2)-

Now the substitution € — e 7(z) induces the resulting substitutions &(x) — n(z) {(x) and
Klo|(x) — n(z) K[¢](x), so dp(x) — n(x)d¢(x). The distinction between global and
local transformations will be important. We will also need to define the auxiliary quantity

oL
gt = —————dp + c.c. (1.13)
0(0,0,)
which is obviously symmetric, i.e. 7** = j“*. For a global transformation the infinites-
imal change (to first order) of the Lagrangian was given by 1.2, according to which we

have for the local transformation

oL oL oL
5£10ca1 - |:a_¢ — aﬂa(au(ﬁ) -+ (%&,m 5¢local
oL oL or
+ au {a(a_ﬂ¢> dPlocal + Wﬁu((sﬁblocal) - 0ym§¢local + c.c.



and since d@jocal = 1 0 gives us
(5clocal =" oL + a;ﬂ? (]“ - g‘uﬁ) - a,u(aunjlw)

which holds for any function 7 = n(x). Hence, for “appropriate” choices of (), meaning
such that it vanishes on the boundary of the region of integration R (localized on a small
region), we get

/ dd+1x 6£local = / ddﬂxn [6£ + 8u(§u£ - j'u)]
R

R

We also know that
5Slocal = / dd—Hx [ali(g{:)cal‘c) + 5510031]
R

with glocal =T éa SO
5Sl0cal = / A2 8 Ligeas = / Az n[0L + 0,(6"L — )] .
R R

Thus we conclude that for the transformed action S._.(,), where we converted ¢ from a
constant to a function of z, the following identity holds

4]
a = —0,j" + 9L+ 0,(¢"L).
de |
According to 1.10 we also have
0S5, 08
(56 o = %(5(? + c.c.

Now if the action is symmetric with respect to the original global symmetry, i.e. S, =
S Ve = constant, then relationship 1.8 is true and we get

05,
de

_ pu
= —0.J".
e=0

The above equation clearly reproduces the previous results 1.11 and 1.12.

1.2 Noether currents

It is time to put Noether’s Theorem to use by calculating the Noether currents of vari-
ous symmetries. We will study symmetry transformations for which there is a complex
function f = f(z) such that

¢.(al) = eI (a). (1.14)



From eqs 1.5, 1.6 and 1.14 we get
6p(x) = —&"(2)0u9(x) + f(x)d(x)
Also those specific symmetries we impose on our Lagrangian will obey the equation
J(' x) =1,

SO

L(a) = L(x),
We will take our Lagrangian to be of the form
L= L(¢, 6,0, 0,050, c.c.) (1.15)

where ¢ = 9,¢. Then the (Noether) currents for our Lagrangian will be

3= B—géqﬁ + c.c.] +E0L (1.16a)
i | 9L oL | - 8—£ i
o [8(@@ 9+ 5o ) ~ lgpa gt tee| HEL (1L16D)

The approach followed here is, of course, not manifestly covariant at the moment. For
instance, the current j* = (j°, j°) is not a tensor quantity under general coordinate trans-
formations anymore. This and similar issues will be remedied in Chapter 3 by putting our
theory in a more general framework. The conservation law of the current j* = (5%, 5%) is
again

0uj" = 0,j° + 0ij =0 on-shell.

Note that the expression d,7* is again non-covariant, but we will keep using it purely
for notational convenience. That is we will continue to use the regular tensor calculus
terminology and conventions as a book keeping device.

First is time translation
t—=t =t4+ec, 28—=2"=2" ¢)=0¢).

We get the e-form, or “infinitesimal” form, of the above transformation by setting ¢ = ¢,
giving us ‘ A
t—>t'=t+e o —2"=2" @) =q¢).

From the infinitesimal form of time translation we obtain for this symmetry
Ef=1, ¢&€=0, f=0.
For space translation
t—t'=t 2 —=2"=2"+d, ¢)=e¢)

9



we set a’ = €d!, representing space translation in the k-direction, and get the infinitesimal
form
t—=t=t o —=a"=a"+e0, ¢)=0dx),
which gives us
=0, €=3, f=0.

Putting it all together as spacetime translation we get
g =dt f=0

with v = 0 representing translation in the “time”-direction and v = k representing trans-
lation in the spatial k-direction. The currents we get from spacetime translations form
the energy-momemtum tensor 7%, , where T is the time translation current and 7% is
the current for space translation in the k-direction. Explicitly, we see that the energy-
momentum tensor is

T° = — [% l,qb—i—c.c.] + 6L
d¢
4 oL oL oL :
- 0,0+ ——=——0;0,6 — 0j————0,0 + c.c.| + 'L
{a(a@) ¢ 9(0,0;¢) "’ ¢ 10(8,0;0) i

and its conservation is written as

0,T", =0 on-shell.

The next symmetry we look at is spatial rotation
t—t =t o' —2"= Rijxi, &' (2") = ¢(x).

To obtain the infinitesimal form of spatial rotation, we do the following steps. We write
Rij = Rij(c?) for some vector @ € R?, using the fact that rotation matrices belong to the
Lie group SO(d). Then we take a curve d(e¢) = et + O(€?) (connected to the identity
point) and get

R'.(e) = Rij(ﬁ(e)) = Rij(eﬁ%— O(?)) = Rij(ﬁ) + evkﬁkRij(ﬁ) + O(€?)

J

or just, in a simpler notation,
iy i 2
R';(€) = 65 — e, + O(€7).

Since for any rotation matrix R € SO(d) it holds by definition that RT R = I, or in index
notation
Rikéklle - 6

v

= Rkile(skl = 0y,

10



by setting R = R(¢) we find

Rki(e)le(e)ékl =0y = (6F — %, + O(?)) (6; — tej +0()) 6,y = 0y
= 0 — (2 + Q) + O(e?) = 0ij

Note that we lowered the index of Q using 4,;, i.e. Q;; = 0,,2;. In general, latin indices

will be raised and lowered using 6% and 0;;- The reason for this lies in the fact that our
geometry of space for fractons is essentially Newtonian/Eucledian, a matter that will be
developed in greater detail later. Now, given that the (2’s are antisymmetric, to get the
infinitesimal form of a rotation in the k- plane, we set (Q"),; = 20}.0%) = 976} — 670, so
our rotation takes becomes

(RM)'j(€) = 05 — e(QM); + O(e?) = §; — ed"™(QY),,,; + O(€?)
=5 — e5im(5fn§§- - 5;“(5571) + O(€?)
= 5; — 6(5]“5;- — 5?5”) + O(é?)

> (Rkl)ij(e) = (5} + 6(5?(5” — 51”5;) + O(€?)
Hence, the infinitesimal form of spatial rotation is
t—=t =t 2 =2 =" 4 (a5 — ') 1 O(?), ¢(2)) = ¢(2),
from which follows that
=0, &= —lk),  f=0.
The current for spatial rotation in the k-/ plane is calculated to be

0 0 0
Jkl :kal _.TlTk

; ; ; oL oL
J%l = l‘szl — I’szk + ak¢m - alﬁbm + c.c.

with conservation law
d,J"; =0 on-shell.

Now we study phase rotation
¢'(x) = e“¢()
or, written in a similar way to the previous symmetries,

t—t' =t 2 == &) =e(2).

11



The phase rotation transformation is also called U(1) transformation, because phase ro-
tation is essentially spanned from the elements of the Lie group U(1). To identify the
infinitesimal form of the U (1) transformation, we set & = ¢ and get

t—t' =t 2 ==, &) =e“p(x)
from which is apparent that
=0, &=0, f=i

The U(1) current is shown to be

J? =g a_; + c.c.
o

(1.17)
4 oL oL oL
J' =i —=+1i0j¢p ——— — 900 ——=—— + c.c.
* 000 T q000) P a00,0)
with conservation law
0,J" =0 on-shell.
For later use, we need the following definition (see 1.13 where d¢ = i¢)
<. oL
JY = —ip———— + c.c. 1.18
*50.0) (19

with the property J¥ = Jii.

Finally, we focus our attention to a more exotic kind of symmetry, the one that char-
acterizes fractons in a fundamental level and so the “star of the show”. The dipole trans-
formation is defined by

¢'(x) = 7 ¢ ()
or, using the familiar notation,
t—>t =t o= =2 o' (z) = eiﬁixigﬁ(aﬁ),
where, of course, 3; = 4,57 for some vector 3 € Re. After setting ' = €% or, equiva-
lently, 3; = €6¥, we get the infinitesimal form of dipole symmetry for the k-direction

t—t =t o2 =2 ¢)=e"px),
from which results that 4
=0 &=0 [f=i
Using the defined quantity 1.18, we can easily obtain the Noether current for dipole sym-
metry

Jk() — :L,kJO
with conservation of dipole current

9,J" =0 on-shell,

(1.19)

12



Chapter 2

Theories with Dipole Symmetry

2.1 Lagrangians with Dipole Symmetry

We are very familiar with theories that are invariant under spacetime translation, spatial
rotation (even spacetime/Lorentz rotation) and also U(1) (phase) rotation but dipole sym-
metric theories are anything but abundant in the literature. So the purpose of this section
will be to identify a class of real (as always) Lagrangians that exhibit the desired behavior
of dipole symmetry. Again in this chapter we will lean closely to the approach laid out in
[64] and will, of course, continue to study Lagrangians of the form 1.15.

We start by considering a Lagrangian that has U(1) and dipole symmetry like in Sec-
tion 1.2. For both of these symmetries we found that £ = 0, so L = 0 and d¢ = f¢.
Putting these in 1.1 (mind the form 1.15) we have the (off-shell) relation

oL oL oL
0,0, c.=0.
FoSe + 0 10) 20 U)oy + 0005 s + e =0
For U(1) symmetry, f = i and we get
8£ 8£
— 10,0, .c. = 2.1
while, for dipole symmetry, f = iz" and we find
oL oL
) 210 c.=0. 2.2
o0 T8 00,8) T 22

Now using 1.17 and 1.19 we get (off-shell)

O, I = 20, T + JF — 9,J".

13



Obviously, given that on-shell we have the conservation laws
0, J" = 9,J" =0 on-shell,
we find the on-shell relationship
J* = 9,0  on-shell.
We can do even better than this. It can be seen through a bit of algebra that (off-shell)

oL , oL
900r0) + 200, ———— + c.c.,

9 (0x0;9)
so for Lagrangians with dipole symmetry it is true that

JE— 9, 0% = i¢

JE = 8;J% (2.3)

which now holds off-shell as well. We conclude that a Lagrangian that has U (1) symmetry
satisfies 2.1, while a Lagrangian with dipole symmetry satisfies 2.2, which can also be
written more compactly as in 2.3.

We proceed by taking our Lagrangian to be a polynomial of the field and its deriva-
tives. Most commonly, this is realized in the form

L=K-YV

with a kinetic term K = K(¢, ¢, c.c.) and an interaction term V = V(¢, d;¢, 0;0,0, c.c.)
containing no time derivatives of the field. The interaction term is usually of the form

V:V(0)+V(2)+V(4)+... ’
where V) is a real (obviously) function of ¢*¢ = |¢|?, meaning
VO =v0(g'e),

and the V(™’s contain all the n-th order in spatial derivatives terms of the Lagrangian
with no time derivatives in them. Next we should note that for theories with first order
in time equations of motion (like the Schrodinger equation) the kinetic term is written as
K = iqb*gz.ﬁ + c.c., while for theories second order in time (remember the Klein-Gordon
equation) the kinetic term is K = ¢*@. It is clear that both K and V(© are by themselves
real with U(1) and dipole symmetry.

Remembering that we demand, of course, our Lagrangian to be real and U(1) sym-
metric, a fairly general choice for V) is

VO = 0¢"20 40ip + b§* 060 + ¢ ¢ 0,0 + c.c., (24)
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where a, b and ¢ are complex functions of ¢*¢. If we expand the above expression fully
we get

VO = (ag20 606 + a" 20 ¢ 9i6") + (b6" D'Dip + b 606" + dI'6" Dy,

where d is a real function of ¢*¢. Now, given that we want V(? to be dipole symmetric,
we essentially impose on it the condition 2.2. Putting the above equation in 2.2 by setting
L =V we find the following constraint

2ial|?¢*0;p + 2ibg* 0 + id0;d* ¢ + c.c. = 0.
By expanding this equation we can see that it can be rewritten in an equivalent way as
(2ialg|? + 2ib — id)¢* D¢ + c.c. = 0.

We can extract a solution to this constraint equation easily by taking the first term to vanish,
which gives us

d
b= —alo|® + =
alof’ + 3,

SO
, . 4 | R 1,
VO = [ap?(8¢0;¢ — ¢ 0;0) + c.c.] + d(D'¢*D;p + 507006 + 500'0:").
For this solution, after defining the new quantities

Xij = 0i90;0 — ¢0,0;¢
Yij = 0i9°0;0 + $0,0;9

and renaming d — 20, the Lagrangian term 2.4 becomes
V& = (ap™ X' + c.c.) +b(Y + c.c.)

with @ a complex and b a real function of ¢*¢. We can, indeed, check that the term V) is
dipole symmetric. By doing a (finite) dipole transformation

o — ewixiqﬁ
we find

Xij — 6i2ﬂixiXij
Y;j — Y;j + Zﬁj (¢*a@¢ + C.C.),

which leads to
V@ p@,
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Using similar techniques to the above we could find a general form for the Lagrangian
term V). However, we will not dedicate our efforts to finding a general choice for V),
but we will use the helpful mathematical object

Xij = 0;00;¢ — ¢9,0;¢
we have already defined and its transformation under a dipole transformation
Xij — 6i2ﬂi$iXZ“

to construct a dipole symmetric term that is 4th order in spatial derivatives (and no time
derivatives)

VO = g(X9) X, + MX) XY
with x and )\ real constants.

If we take K = i¢* ¢ + c.c., VO = m?[¢|%, V@ = 0 and VO = x(X9)*X,; +
A(X7)* X7, we get a Lagrangian of the form

L= (i¢*d+ c.c.) —m?|o]> — k(X7 Xy — MX)* X,
and for K = ¢*¢
L=0¢"¢—m?o]> — k(X)X — MX)* X7,

where m is the mass parameter of our scalar field ¢. Similar expressions have appeared
for field theory descriptions of fractons in [50, 66, 13, 67, 64].

2.2 Symmetry Algebra

In this section we will calculate the symmetry algebra of our symmetries. Given a La-
grangian £ = L(¢, ¢, 0;¢, 0;0;¢, c.c.) we can define the conjugate momenta

oL . 0L
— and 7= -
d¢ d¢*
and we can see that the conjugate momenta are functions of the form

m =1(9,6,0:6,0:0;0, c.c.)

Tt =1(¢, 0, 00, i0s0, c.c.)

as well. By assuming the ability to invert these functions with respect to the “velocity”
fields ¢ and ¢* and getting relations of the form

¢ = ¢(p, 0:0, 000, , c.c.) (2.5)

¢" = ¢"(,0:9,0:0;0,,c.c.) (2.6)

™
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we are ready to perform a Legendre transformation to our Lagrangian (field density) £
and get its corresponding Hamiltonian (field density) H defined as

= (1) +7"¢") —

Note that here 7 and 7* play the role of independent variables, while ¢ and gb* have become
the dependent variables (functions) of 2.5. We have also set the functions ¢ and ¢* in the
Lagrangian £ and made it a function of the form

L= £(¢7 a’b¢7 aza]¢7 T, C'C')a
so the Hamiltonian is actually defined as
H = H(gb, &qb, &@gb, T, C.C.).

From the entire procedure it is now apparent why our initial Lagrangian did not depend
on terms like 0; gzﬁ and <;5 i.e. derivatives of ng

We will now try to extend the usual Poisson brackets definition of particle mechanics
to a suitable definition for fields. See also [54, 53, 68]. In particle mechanics we worked
with the phase space coordinates ¢ = {¢'} and p'= {p;} withi = 1, ..., n, so for functions
f = f(q,p) and g = g(q, p) we defined their Poisson bracket as

(3f (¢:p) 99(q;p)  0f(g:p) 99(d, 15))
aq' Op; Op; aq'

{f,91(d.p) = Z

i=1

In field theory the discrete finite index 7 € {1,...,n} C N is replaced by the continuous
space index ¥ € R? and another discrete finite index r € {1,..., k} C N, ie. i —

{Z, r}, and the new quantities of interest are now ¢ = {¢"(%)} and 7@ = {m,(%)}. So for
functionals F' = F[¢, 7] and G = G[¢, 7] we define

(reyga - [ o Z ( B0 I ) '

Since

09" () 09" (%)
— =0.,0( —y) and — =0,
5¢*(7) = o (7))
we can show for any functional F' = F[(E, 7| that, using a simplified obvious notation,
OF
S~ F o
(0@.F) = 5
Similarly, we can see that
(), F} = 52
7T7‘ xz I = - —
o¢" (%)



If we had functionals of the form
FIG.A = [ dyF@16.7,

then it is true that

OF[6.7] _ / o, T @6 7]
99" (I) 69" (Z)

(and similarly for 7,.(Z)). For F' and G of the above form we can prove that their Poisson

brackets become

(F.GY6.A = [ d's [ aty(F@).60)Ho7

In using the preceding equation we often have to also make use of the following easily
proven relationships

{¢"(@), m()} = 050(7 — 9), {9"(%),¢°(1)} =0, {m(Z),m:(¥)} = 0.

In our dynamical complex scalar field theory with dynamical variables ¢(¢)(Z) =

¢(t,T) = ¢(x), ¢*(1)(T) = ¢" (£, T) = ¢"(x), 7(£)(F) = 7(t, T) = (z) and 7*(1)(F) =
7*(t,Z), in order to use these time-dependent functions of space in the above Poisson
bracket we write

Flo(t), n(t), c.c]0G[o(t), 7(t), c.c.]

{F,G}o(t),n(t),c.c] = /ddx (5 5¢’”’(t 7) 5 (4, 7)
_OF[9(t), m(t), c.c.] OG[o(t), (t),CC]) N
57Tr(taf) 5¢r<7 )
i (SF[o@), 7(t), c.c]6G[p(t), (1), c.c.]
e[ (s o (1,7)
_OF[9(t), m(t), c.c.] 0G[¢(t), 7 (t), c.c ])
omx(t, T) 69 (t, T) '
In this formalism, it is apparent that the following equations hold (simplifying the notation)
tolt, 7). Fy = &jth) (6, 2). Iy = _5¢fth)
{gb*(t,f),F}: 571_3(51—;) {W*(t’f)7F}:_5¢f£f)'

Again for functionals of the form

F(r)lo(t), wt),ce) = [ diy Fr. o), 7). cc)
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we get

SF(7)[o(t), 7 (t), c.c.] _ / ity SF (T, 9)[o(t), 7(t), c.c]

69(t,7) 5o(t, )
(similarly for 7, ¢* and 7*), hence for functionals '(7) and G(7) of that form their Poisson
brackets become

{F(7), G(7)}o(t), 7(t), c.c] Z/ddiv/ddy{}"(ﬂ ), G(T,9) Ho(t), (1), c.c.].

For the above calculation we will need the relationships

{o(t,2),7(t, 9} = {o"(t, 2), 7" (t, §)} = 6(Z —¥),
{¢(tvf)7¢*(t7g)} = {W(t,f),ﬂ*(t,g)} =
={o(t, @), 7" (t,§)} = {67 (¢, %), 7(t,9)} = 0.

Before proceeding, we need to take a look at the Lagrangian L( No(t), d(t), c.c.] =

[ d%zL(t, T)[p(t), p(t), c.c.] and the Hamiltonian H (¢)[¢(t), (1), c.c.] = [ d?xH[p(t), 7 (t), c.c.].
We can see that (simplified notation again)

(S.L(t) and 7°(t,7) = (.SL(t) :
6¢(t, T) 6¢*(t, T)
For on-shell fields ¢ the Euler-Lagrange equations can be rewritten as

IL(t) dL(t)
0¢(t, 7) 0¢*(t, T)

Now we vary the Hamiltonian

H—/ddx’}{—/ddx(ﬂé—l—ﬂ*é*)—L

7(t,T) =

on-shell.

7(t,7) = and 7°(t,7) =

and get

§H = / Az (676 + 10 + 67" P* + T6PT) —

5L 5L 5L
_ de
/ x(&b dg* 8¢ S )

6H = /dd {(——5¢+¢5w) (—;if gt w)}

This means that

or

. SH() SL()  GH(?)
o(t, ) = or(t, 7) 3o(t,7) 0ot )
o GH@® SL(t) SH(D)
VT = o D) St ) e (ta)
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For on-shell fields ¢ we get

dH(t) . dH (t)

— d (%) = ——F% -shell.

50, 7) and 7(t,7) 507 (4, T) on-she

Thus the Euler-Lagrange equations for on-shell fields ¢ in the Lagrangian formalism be-
come Hamilton’s equations of motion in the Hamiltonian formalism

#(t,T) =

L SH( o GH(@)
¢<t,l’) - (Sﬂ(t,f) W(t,l’) - _(5¢(t,l_")
o'(t,3) = &iH<—t(tic> D) =~ g

If we have a functional of the form F'(t) = F(t)[¢(t), 7(t), c.c.], then we can show that
for on-shell fields ¢

F(t)={F(t),Ht)} + al;—it) on-shell.

Looking back at the currents 1.16 we see that they are of the form j* = j#(t, Z)[o(t), 7(t), c.c.],
so the corresponding charge is

Q) = Q)[B(t), m(t), ] = / & 108, 2)[ (1), 7(2), c.c..

In particular, from 1.7 and 1.16a we have

Qt) = /ddx [(m6¢ + m*6¢*) + °L]

with ‘ ‘
0¢ = —&%0 — £'9i0 + K9],
so we can prove that (again see [54, 53, 68])

{o(t, ), Q)} = 09(t,7),  {¢"(t, 1), Q(t)} = 6¢"(t, 7).
Again we have the on-shell equation

Q) ={Q(t), H(t)} + %t(t) on-shell. (2.7)
For the transformations we studied in Section 1.2 we had £# = ¢#(%) and f = f(Z), which
means that ¢ = d¢(Z)[¢(t), 7(t), c.c]. Also for our Lagrangians £ = L(¢, ¢, i, 9;0;¢, c.c.)
it is apparently true that £(t,Z) = L(Z)[¢(t), 7(t), c.c|. Putting these together we con-
clude that the charges of those transformations are of the form Q(t) = Q[¢(t), 7(t), c.c.]
and thus 0Q(t) /0t = 0. Now given the fact that the transformations we studied in Section
1.2 are all symmetries, then Q(t) = 0 on-shell. These facts hold true for our Hamiltonian

20



aswell,i.e. H(t) = H[p(t),n(t),c.c.],s0 OH (t)/0t = 0, and from 2.7 we can deduce that
H(t) = 0 on-shell. This similarity is expected, since, as we will see below, the Hamilto-
nian is, up to a constant multiplicative factor, the charge of time-translation, a symmetry
of our Lagrangian. Summarizing we have for our transformations

0Q(t) _oH() _
ot ot

and because they are symmetries they satisfy the on-shell relations
Q(t) = H(t) =0 on-shell.
Hence, from 2.7 we find that
{Q),H(t)} =0 on-shell

for the charge of any of our symmetries.

Since, in general, Q(t) = Q(t)[¢(t), m(t), c.c.], charges of transformations are eligi-
ble to put in Poisson brackets. From Section 1.2 we see that the charges of our studied
symmetries are, up to a multiplicative factor,

H= / dizH (2.82)
P, = / diz P (2.8b)
M;; = — / A"z (2;P; — z,;P;) (2.8¢)
QO — / g IO (2.8d)
D; = / diz x;J° (2.8¢)

with U(1) charge density
O = i(gm — ¢'r)
and momentum density
P; = i(0ipm + 0;p*1").
In equations 2.8a to 2.8e we have the energy charge for time translation, the momentum
charge for spatial translation, the angular momentum charge for spatial rotation, the U (1)

charge for U (1) phase rotation and the dipole charge for the dipole transformation, respec-
tively. These charges () are conserved for on-shell fields ¢, i.e.

() = constant on-shell,
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since they are charges of symmetries. Additionally, we know that the on-shell Poisson
bracket of the Hamiltonian /' with any of the above symmetry charges () vanishes, mean-
ing

{Q,H} =0 on-shell.

Now we are ready to find the Poisson bracket algebra of our charges. After many calcu-
lations we finally find

{Mij, Mya} = i(05 My — 056 My — 03 My, + 0 My, (2.92)
{Mij, P} = i(6i Py — 01 P) (2.9b)
{M;j, Dy} = (0 Dy — ;6 D) (2.9¢)

{P;, D;} = i6,;Q" (2.9d)

with the rest vanishing. Actually, as already noted above, the Poisson brackets of H with
the other charges vanish only on-shell. For specific Hamiltonians this could even be true
off-shell. An example would be to take £ = ¢*¢ — r(X¥)*X;; — M\(X%;)*X7; as our
Lagrangian, which would give the Hamiltonian H = 7*7 + x(XY)*X;; + \(X";)*X7;.

For a continuous transformation x — 2/, ¢(x) — ¢'(2’) with infinitesimal version
zl(x), ¢L(x") = T[o](x.(x")) we had for the transformed field ¢’

¢u(2) = d(z) + edg(z) + O(€), (2.10)

where

0¢(x) = =" (2)9uo(x) + K[g] (). (2.11)
We can define the generator of the transformation as the operator ¢ that when it acts on
fields ¢ gives

6(¢) = ¢ = =00 + K9],
meaning
0=—-¢"0,+K.

Actually, the generator is again defined up to a constant multiplicative factor, as is the
charge. For more information on transformation generators see [69, 70, 71, 56, 72, 68,

63, 59, 58, 57]. For more mathematical exposition of Lie Groups and Lie Algebras see
[73, 74,75, 76].

We can now do for the generators the same thing we did for our symmetry transfor-
mations. We will denote the generator of a transformation as we did for its corresponding
charge. Going again back to Section 1.2 we find that the generators of our studied sym-
metry transformations are

H = i0, (2.12a)
P, = i0; (2.12b)
Mij = — (2P — 2, P)) (2.12¢)
QY =1 (2.12d)
D; =z; = ;QY (2.12¢)
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and the commutator algebra of our generators is

[Mij, Mya] = (i My — 06 Mip — 6 M + 0 M) (2.13a)
[Mij, Pe] = (04 Py — 0 P;) (2.13b)
[M;;, D] = ( sz dikD;) (2.13c)

[Pi, Dj] = (2.13d)

with the rest vanishing. Notice that the generators and the charges satisfy the same sym-
metry algebra, as was expected given the mutual mathematical correspondence to each
other. This time, however, the vanishing of the generator H with the rest of the generators
happens in general, not only on-shell. Actually, there is no explicit reference to the fields ¢
in the form of the generators. The only dependence of the generators on the fields ¢ is that
the later constitute their domain of definition as functions and that the functional form of
the generators originates in how these fields were transformed infinitesimally. For these
reasons it is also clear why our generators are independent of time, something true for
charges only on-shell. We are starting to see how going away from a field-centric descrip-
tion to a field independent description is characterized by many advantages. For instance,
with generators we managed to find the symmetry algebra of our fracton theory without
any reference to the Lagrangian or Hamiltonian formalism. We only needed to know the
required symmetries of our theory. Also the calculations needed in using generators are
much less cumbersome with much less background details than with charges.

2.3 Gauging procedure

We will now introduce the basic concepts needed to pass from a description based on

dynamical matter fields ¢ to a description based on new auxiliary non-dynamical fields,

usually called background fields. This is done through the very commonly used tech-

nique of the gauging procedure. For more information on gauging see [72, 57, 63, 58].

We will start by describing the gauging procedure for our original Lagrangian £(©) =
) (¢, ¢, 80, 0;0;¢, c.c.) with corresponding original action

SO = 5Op ¢ = /ddﬂm LO(z)[¢, ¢*].
We take our original action S(®) to be symmetric under a global U (1) phase rotation

¢'(x) = e ¢(2).

This means that the action S(® = S©)[¢, ¢*] is invariant under U(1) transformation, so

LOH (z),d (x), ¢ (x), 0,0;¢' (x), c.c.) = LO(p(2), o(x), 0;0(x), 0;0;¢(x), c.c.),
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meaning £ is invariant under U(1) too. In the infinitesimal version

Fe(z) = e7O(2) = d(x) — iep(z) + O()

we get L0 = 0, so 65 = 0. If we transform our field ¢ with a local U(1) phase
rotation

¢'(x) = e g(a),

then our Lagrangian and action are not necessarily symmetric, so

LOG (), (x), 08 (), 0:0;¢ (), c.c.) # LO(G(), (), Db, 8:0;0(x), c.c.).

According to Sections 1.1 and 1.2, in the infinitesimal form

di(w) = M Do(2) = ¢lx) — ieA(2)d () + O(?)

we find »
SLO = 9, A" + 0;(9;AT7)

or
ILO = —J°0N — (J' = 8;J7) O\ + TU 9,0, (2.14)

To make our action symmetric under a local U(1) phase rotation, we should also
make our Lagrangian invariant under it. To achieve this we must create a new Lagrangian
L with additional fields, the gauge fields, that also transform under a local U(1) phase
rotation in such a way so that the new Lagrangian is invariant. This means that our goal is
to add new terms to our original Lagrangian £(*) such that the final Lagrangian £ satisfies
0L = 0 under a local U(1) phase rotation. From equation 2.14 we see that our first step
should be to add a term that counteracts the non-vanishing objects in 6£(*). We take this
term to be first order in the new gauge fields and denote it £V In particular, we define it
as

, ~ 1=,
LY = JOA, 4 (J' — 0;7) A; + §J”aij

and say that the “currents” J, J* — 9;.J7" and J¥ are coupled with the gauge fields A, A;
and a,;, respectively. Here the gauge field a;; is symmetric, 1.e. a;; = aj. Under a local
U (1) transformation we have

) .. 1 ~..
LY = JOSA, + (J' — 0;J7) 5 A; + 57700 + oL,

where 64,LY) is the infinitesimal change to £() due to the change induced to the fields ¢.
To counteract §£(?) in 2.14 we demand the gauge fields transform as

At — At + 8,5/\, AZ — Az + &A and Qjj —> Q35 — 2&8]/\
with gauge parameter A = A(z), which gives

LY = —6L£0 45,0
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We managed to construct a new Lagrangian £*) 4+ £ that is still not invariant under
local U(1) phase rotations. The next step is to add to our Lagrangian another term £
that is second order in the gauge fields. Using this iterative gauging procedure we will
eventually end up with our final Lagrangian £ = £© + £ + ... + £ that will be
invariant under local U(1) phase rotations, i.e. £ = 0 forany A = A(z). A similar
discussion of this procedure can be found in Section 3.3 of [57]. For more applications of
gauge theory on fractons see [66, 77, 78, 79].

Let us denote by @ all the matter fields of a theory (like ® = (¢, ¢*)) and by A all
of its gauge fields (like A = (A, A;, aij)). What we have managed with gauging our
theory is adding to the original action S(®) [®] a new term S[®; A] such that the total action
S[®; A] = S©[®] 4 S[®; A] is invariant under any local U/ (1) phase rotation. Here, since
U (1) phase rotation is an internal symmetry of our physical system, meaning 2’ = = and
& =0, we have

0=06S = /dd“ ( 0Dy + 5—55A,) = 0pS + 045,
6Dy

dA,
hence
I S[P; Al = —045[P; A]. (2.15)
If we choose fields ¢ that are on-shell with respect to the total action S, meaning
05
— =0
0Dy,

with the gauge fields A left arbitrary, we get
JpS[P; A] =0 on-shell,
so from 2.15 we find the on-shell equation

ﬁ(SAl =0 on-shell,

. _ d+1
5,48[(1),_/4] —/d w(SAl

where the gauge fields A are free to be chosen by us and the A are defined for our spe-
cific local symmetry transformation. This way get a new current-like quantities that are

conserved on-shell. We can even get back our original currents by setting A = 0 in the
above, which gives

545[®; Al azo = 645V [®; Al 4o = / Az 5,0 / Az 6L® =0 on-shell.
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In the above example we have

045(®; Alla=0 = / A" (J°ON + (J' = 0;J7) ik — J70,0;)
= /dd+1x (—0:J°N = 0;(J* — 0;J7") A — 8;0;J9 )
=— / d™™z9,J*A =0 on-shell

for any A = A(z) and we get back the conservation law
0, J" =0 on-shell.

We see that by gauging our theory, we essentially transfer the dynamical properties
of the original theory to the new gauge fields. We can use these gauge fields to get back
our original conservation laws and that is why gauge fields are also called source fields.
They are not part of the dynamics of the gauged action, since they are freely chosen when
we take the matter fields to be on-shell, which makes gauge fields function as background
fields as well. We can use this trick to encode any kind of conservation law to the gauge
fields and their gauge transformation. For instance, for the dipole symmetric theories we
study, the conservation of the dipole current

d,J" =0 on-shell
can be written as ~

J'=0;J7" on-shell. (2.16)
To represent this conservation law in our gauged action we can define the first order La-
grangian term as

LW = JOA, + JA; + %Jﬁ'ﬂ‘ai]—
with new gauge fields A;, A; and a;;. In the local U(1) phase rotation we will have
OLW = JOSA, + J6A; + %jijaaij + gsL0
with gauge transformations
Ay — A+ 0N, A — A+ 0 A+ and  a;; — a;; + 0 + 0,

where we introduced an additional Stiickelberg field v; = ;(x). For information on
Stueckelberg fields see [80, 81]. The extra gauge parameter v); exists to reveal relation
2.16 through the gauging procedure and for that reason it is called dipole shift. In more
detail we have

045[®; Al[a=0 = /ddﬁx [JOON + T (Ol + i) + T 0]
_ / A (—Op A — DTN + Jiapy — 0, 94

= / A" [=0, TN + (J' = 8;7)eh] = 0 on-shell
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for any A = A(x) and ¢); = ¢;(x) and we regain our U(1) and dipole conservation laws

0u,J" =0 on-shell
J'=0;J7" on-shell.
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Chapter 3

Aristotelian Geometry

3.1 Second order formulation

Now we are finally ready to tackle the matter of writing our dipole symmetric theories in a
covariant fashion. The geometrical background of these theories should reflect the almost
friction-like behavior of fractons. It turns out [82, 83, 84, 77, 67, 64] that for physical
systems, like fractons, with spacetime translation symmetry and spatial rotation symmetry,
but no boost symmetry, the most ideal geometric construction is the Aristotelian geometry,
a term first introduced by Roger Penrose in [85] and later mentioned in [86] and in his
famous book [87]. Relevant background on the mathematics of differential geometry can
be found in [88, 89]. You can also look at [90] or the unofficial notes made for this course
[91]. For more information on Aristotelian geometries and Newton-Cartan geometries in
general see [92], Chapter 5 of [93], Chapter 12 of [94], [95, 96, 97, 98, 99, 100]. The
contents of this chapter will be influenced substantially by the work in [67].

We start by introducing the basic features of an Aristotelian geometry. First we take a
(d+1)-dimensional manifold M and equip it with a nowhere-vanishing 1-form (field) n,,
called the clock form. We also equip our manifold with a nowhere-vanishing rank (0, 2)
symmetric tensor h,, called spatial metric. This tensor is degenerate (non-invertible) with
a 1-dimensional kernel spanned by a nowhere-vanishing vector v, i.e.

v"h,,, = 0.

We normalize v* such that
vtn, = 1.

Using the above quantities, we define the spatial inverse metric h*", a rank (2,0) symmet-
ric tensor that is degenerate with a 1-dimensional kernel spanned by n,,, 1.e.

n, " = 0.
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The tensor 1#" is the inverse of £, in the following sense

[T S VT
h**h,., = ot —v'n,.

Before proceeding forward, we should try to interpret the physical meaning of the
mathematical objects we have just defined. In the geometry of Aristotelian spacetime,
represented by the (d + 1)-dimensional manifold M, the lack of spacetime boosts, like
Galilean and Lorentz boosts, creates a clear distinction between space and time coordi-
nates. This distinction is produced by the clock form 7, the spatial metric /,,, and the
relationship between them. Specifically, the clock form 7, exists to extract the “time part”
of a tensorial quantity through index contractions. For example, if we have a vector X*,
then we say that this vector point to the future if X#n, > 0 and the past if X*n, < 0.
However, when X*#n,, = 0, then we say that our vector X* is purely spatial. For a discus-
sion of this matter see Lectures 9 and 13 from [101] or from the unofficial lecture notes
for the course [102]. You can also look at Chapter 8 of [93] or Chapter 6 of [103]. The
vector v# plays a similar role to n,, since, by equation v#n, = 1, it can be interpreted
as the velocity of a reference frame at rest, i.e. moving purely in the “time direction”,
and will be called rest velocity. This velocity of an observer can equally extract the “time
component” of a tensorial quantity through appropriate index contractions. Now for an
arbitrary rank (r, s) tensor 7°#_ , if

R

then the tensor 77+, is spatial in the v index. Finally, if a tensor is spatial in all of its

indices, then it is called purely spatial or just spatial. From these definitions, it is evident
that 2, and """ are indeed spatial tensors, as their name suggests.

We have understood how space and time end up becoming distinguishable from each
other at the framework of a more classical geometry like the Aristotelian spacetime. There
is, nonetheless, a certain missing conceptual ingredient we will need to provide to get to
this nature of absolute space and absolute time. Given that we have separated space and
time using the clock form n,, and the rest velocity v*, we could interpret our spacetime as
a collection of “space slices” (again see [101, 102, 92, 93, 103]). This family of space-
like hypersurfaces represents “space” at different “instants of time” and is the appropriate
structure for which i, and /**” become proper metric and inverse metric respectively. The
spatial metric ,, and the spatial inverse metric 2 can even be extended to spacetime
objects by combining them with the clock form n,, and the rest velocity v*. In particular,
we could define symmetric tensors

Vow = Ml + hw
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and
Y = ot + b

from which follows that
VY = 05

Due to the fact that both ,,, and v are symmetric invertible tensors, we could consider
7, as the spacetime metric of our overall (d + 1)-dimensional Aristotelian manifold M
and y*" as its inverse metric. Although trying to unify space and time in an Aristotelian
geometry by use of the above derived tensors seems counterproductive, it is only a tem-
porary trick we need to make in order to be able to define integration in our Aristotelian
manifold. Thus, for conceptual reasons, we will avoid mention of the words metric and
inverse metric for v, and 7, but we will use them when it is a mathematical neces-
sity. We will also make use of the standard notation v = det~, where dety means the
determinant of ,,,,.

The final piece to our geometric construction is the determination of a suitable con-
nection. The appropriate choice is different from the usual Levi-Civita connection of
General Relativity, as expected from the above peculiar components of Aristotelian ge-
ometry. The main feature we require for our Aristotelian connection is it being clock form
and spatial metric compatible, i.e. V.n, = 0 and V7" = 0. A connection that satisfies
this property is given by the following connection coefficients

1
I, = v"0un, + §h“(8uh/\l, + 0,hy,, — O\h,,),

) 0
Vi () =g

Note that to show the results presented in this chapter, we will have to make extensive use
of the defining equations of Aristotelian geometry and their consequences. For example,
the equation v"n,, = 1, gives us J,v"n, = —v"0,n,. Other derived equations of the
same nature are 9,h"*ny = —h™9,ny and 9, hov* = —h.\0,0 . Of course, there
exist similar equations for any kind of derivative operator, including the Lie derivative
and the covariant derivative. Now, for the Aristotelian connection defined above, the
corresponding covariant derivative can, indeed, be shown to satisfy

where we use the convention

Vin, =0

and
V.h* = 0.

Given this Aristotelian covariant derivative we can also prove through calculations that
. 1
h Vo, 0" = §£vh,w
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and
V,JL,W = —n(ufvhu),{.

By defining the antisymmetric tensor
Fﬁy = 0,n, — Oyny,

the torsion (tensor) 7, = 2I't . can be written as

[nv]
T, =v"F,,.
Finally, using the identity

Odet M B

= (MY det M 1
R ( )" det M, (3.1)

holding true for any (real) invertible matrix M, we obtain

K n, K 1
Fn,u—i_F;mU :ﬁﬁuﬁ

The curvature (tensor) of our Aristotelian geometry has the usual form

RH)\;UJ = a,urg)\ - aVFZ)\ + F/’jprﬁ)\ o FSpFﬁ)\
and we can easily see that n,, 2", = 0. We notice that, contrary to the Levi-Civita con-
nection of General Relativity, the Aristotelian connection is not spacetime metric com-
patible and not torsion-free. There is actually no way to make Aristotelian geometry tor-
sionless given the constraint that it is clock form compatible. The way we expressed
mathematically Aristotelian geometry in this section is sometimes called second order
formulation.

3.2 Coupling to background sources

Having described the basic mathematical elements of Aristotelian geometry, we are finally
ready to introduce the required machinery needed to describe the fundamental behavior of
any non-relativistic fracton field theory. This is done though the gauging trick we studied
in Section 2.3, where we showed how the conservation laws of a physical theory can be
encoded to background source gauge fields.

I'To prove this, first note that
det(I +eA) =1+ etr A+ O(e?).

Then the desired equation follows by the definition of partial differentiation.
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Before proceeding further, we must take the time to explain how diffeomorphism
invariance is taken care of with gauging. Imagine we had a field theory on a flat spacetime
with metric 7),,,,, a set of fields ®, a Lagrangian

LY = £0,0,8,0,0,;n,.,)

and an action

ﬂ%@:/d“%ﬂ%@@my

Our current theory is, obviously, not covariant or, equivalently, not diffeomorphism in-
variant. We can make our theory diffeomorphism invariant by substituting the flat metric
1., With an arbitrary metric g,,,. We must also convert the partial derivative d,, acting
on the (in general) tensor fields ® to the Levi-Civita covariant derivative \Y - After these
changes we will have a new Lagrangian

L=L(D, %M(I), 6u6u@§ Guv)

and a new action
Stosg) = [ e Viglete): gl

where ¢ = detg. Note that there is g,, dependence even in the Levi-Civita covariant
derivative. This new gauged action is diffeomorphism invariant and the metric g, plays
the role of the gauge field. The conserved current of diffeomorphism invariance is a gen-
eralized energy-momentum tensor 7 that, in many cases, coincides with the canonical
energy-momentum tensor of Noether’s Theorem by just gauge fixing g,, = 7.

To derive the conservation law we take an infinitesimal diffeomorphism z/*(z) =
o# +e& + O(€?) that is the identity everywhere except for a small region inside the region
of integration in the action. This means that the pulledback action S[z"*®; 2™*¢g| will have
the same region of integration as S[®; g|. As the action is diffeomorphism invariant, i.e.

Sl ®; 2" g] = S[P; g],

we find to infinitesimal order that

59 59
_ _ d+1
0=265= /d x (—5q)k5<1>k i 5gm,) .

We take the matter fields ® to be on-shell, so

68 = / d™ ﬁ(sgw on-shell.
00

But under this infinitesimal pullback we have
0Guw = £eGuw
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and we can show that B
£eguw = 2V (48,

which gives us
05 o
5S = /dd“x —2V (&,
5glw (uSv)

on-shell

0S8
= [ d"™a\/lg ——<—V,&
/ | \/|g 5g;w g
or

65 = / A a/|g| TV €,  on-shell

with
2 65

B \/W 0 G

the generalized energy-stress tensor (up to a multiplicative constant factor), which obvi-
ously is symmetric 7" = T"*. Now diffeomorphism invariance gives us

0S = /dd+1$\/ ‘g‘ Tuu%ufu
=— / A e\/g| V, T"€, = 0 on-shell

for any &# = &#(x), which results in the generalized conservation law

6“T‘“’ =0 on-shell.

It should be noted that in curved spacetime a conservation law must be written with
respect to a covariant derivative, the generalization of the common derivative notion of
flat spacetime. The conservation of the energy-momentum tensor 7+ is the result of
diffeomorphism invariance of our theory, a symmetry that appeared only after introducing
the gauge field g,,,,. The metric g,, is thus the background source of the energy-momentum
tensor 7. In fact, from

8,8 = /ddﬂx\/]g]T“”(SgW

we can clearly see that the energy-momentum tensor 7#* is coupled to the metric g,,,,. For
more information on this definition of the energy-momentum tensor 7*" and the func-
tion of the metric g, as its background source and as a gauge field for diffeomorphism
invariance see [104, 93, 103, 105, 56, 106, 107, 108, 109, 110].

We are now ready to tackle the problem of gauging our Aristotelian Geometry with
the appropriate background source fields. Firstly, as we are interested in theories invariant
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to spacetime translation and spatial rotation, we must couple the corresponding currents
to a metric-like quantity that achieves diffeormorphism invariance for the resultant theory.
This role will be fulfilled by the clock form n,, and the spatial metric h,,,, [82, 83, 84]. Next,
we need to introduce the gauge field for the U(1) symmetry, which, of course, is 4, a
gauge field that had appeared in the non-covariant case too. The gauge transformation
corresponding to the U(1) symmetry should be covariant now, so we take

Ay — A, + VA,

Looking back to the non-covariant case again, we see that for dipole symmetry we
need two kinds of background fields, the A, and a spatial symmetric tensor a,,, i.c. a
tensor that obeys a,, = a,, and v*a,, = 0. We will also need a spatial 1-form ),
meaning v*1,, = 0, and its “spatial covariant derivative”. The covariant derivative of a
spatial tensor is not actually spatial itself. To make a spatial tensor out of a non-spatial
one we can use the spatial tensor

ht = h*"h,, = 6L —vtn,,

which is spatial because v h% = 0 and n,h!, = 0. The it functions like a spatial projector,
since contracting it with any tensor 7% ,,... gives a spatial tensor

! !

_ I v e
TW o = Y R T

satisfying B B
T, =0 and n,T"",.=0.

If T is already spatial, then the action of the spatial projector h* on 71" leaves is invariant,
meaning T = T. This means that from the spatial 1-form ¢, with non-spatial V1, we
can get its spatial covariant derivative hﬁ' hY'v .. Then the dipole shift transformation
will be written as

Ay = A+, G = + WY (Vb + V).

It should be emphasized that of all the gauge fields introduced only A, changes under a
U(1) transformation, while A, and a,,, are the only ones that change under a dipole shift.

Instead of the dipole gauge field a,, that is affected only by a dipole shift transfor-
mation, we will actually use a modified version that also reflects the dipole behavior. This
proxy quantity will include A,,, but should stay U(1) invariant, so we combine both a,,,
and the U (1) invariant field strength

F.=0,A, —0,A,
into the modified dipole gauge field

1
AMV = nyvﬁFﬁ)\h)\u + §(h5FH)\h>\M + aunhﬁu)y
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where n, A", = 0. If we define Y* = h*"1),, then n,y* = 0 and v, = h,0". We
also have A#h™ = h* and hl’jh,ﬂ, = hy,. Under a dipole shift transformation the field
strength changes as

F;w — F,uzz + auwu - &ﬂﬂu = F;w + V,uwzz - vuwua

since ¢, T, = 0. Also under dipole shift we find A*, — A*, + V" + 1,1, V0 b M.
We can show that
V, 0t = ="V, hoh™ = h, Vv hMW.

Using the above relationship we find that under dipole shift A*, changes as
AF, — AP, + V0" + 0tV ok

As already mentioned the modified dipole gauge field A*, is invariant under U(1) trans-
formations. We can also define a modified dipole field strength

Ft,=V,A%, -V, A", + Fl’fyv’\A”,\ + Qn[MAA,,]Vw“,
which satisfies n,, F'*,, = 0 and is U(1) invariant, but under a dipole shift changes as
Ff = F*u + (R + FlL Va0 — 20, V, Vao") ¢

As someone might have already noticed, it is not possible to construct a quantity out of
the gauge fields A, and a,,, the only gauge fields that change under a dipole shift, that is
dipole shift invariant. This restriction will show up in our work later.

3.3 First order formulation

In the previous sections we studied the second order formulation of Aristotelian geome-
try. We will now develop Aristotelian geometry in its first order formulation using the
language of orthonormal bases, also known as vielbeins. For an introduction to vielbeins
see [104, 89, 93]. We will use greek indices p, latin indices a and, occasionally, barred
latin indices @ withrange ¢ =0,1,...,d, a=1,...,d and a=0,1,...,d, respec-
tively. We first start by looking at the spatial metric /,,,, and its spatial inverse metric h*".
There exist local spatial 1-form vielbein fields e and local spatial vector vielbein fields
e, such that the metric h satisfies h = ., e* ® €’ (in a local neighborhood of any point in
the manifold) and the inverse metric & satisfies h = 6 ¢, ® e, (in a local neighborhood
of any point in the manifold). In a coordinate basis 0, = 0/Jz* these equations become

a_ b pv __ cab_p v
hu, = dapene, and W = 0%efey.

The vielbeins e” and e, with coordinate components e;; and e (in some manifold chart),
given they are spatial, must obey the equations

moa L
e, =0 and nyep = 0.
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Also, since e” is the duel spatial basis of e,, we have e?(e,) = f or
a Mt sa
ene, = Op-

We should not forget that the 1-form n and the vector v were chosen with the normalization
n(v) =1or

n,ot =1
in mind. If we now define e = n and e,y = v, we will have the 1-forms e® and
vectors 5 (@ = 0, 1,. .., d) with (coordinate) components e, and ;. Using these objects
the above equations take the compact form ef,e;’ = 0f. The existence of a right inverse

implies the existence of a left inverse and vice verse, and these inverses are equal to each
other and unique. This statement produces the partner equation ee® = §* that can be
written as

vhn, + ebel = oY

or, using the spatial projector h, as

B ohpl
ht = eller.

The spacetime metric vy, = n,n, + hy, 01y =n®@n+h = e ® e’ can be written
in coordinate components as )

Y = al?ezezbn
which together with the equations ef,e; = 0f and eje;, = 0/ leads us to the realization that
e® and e; are regular spacetime vielbeins of Aristotelian geometry.

When we want to translate a tensor 7' from greek coordinate indices 4 to barred
latin vielbein indices and vice versa, we need to use ez and e. For instance, we will
have T, =T, ., T . =T, and TH7. =T, TV, =
ebT% 5 . In particular, we have 7707, = =0T, =n, T, and TH5 ) =

eg_o T .. =v"TH",. .. But if a tensor T#,... is spatial, then as we know it satisfies

n,J"",.=0 and 0v"T"",. =0,
which can be written as
7%, =0 and T 5_,=0.

Notice that for spatial tensors 7% ;.. only the pure latin index components 7% ;... are
non-vanishing. This means that we can declare spatial tensors in vielbein language by just
writing 7'*".... As an example, the spatial metric /,,,, the spatial inverse metric A*” and
the spatial projector i/ all obey h*=0" = hO=00=0 = h, o, = hy_g50 = hE" = hi_y =
hgjg = 0. In pure latin indices we get

A — eZhuV = W hab — ezel;huu — 5ab
v
hal/ - egh;w = €Eav hab - egeb h/uz - 5ab
a _ app _ a TN 7S N TR '
h, = e,h, =€, hy = e hl; = ey,
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where ¢ = 6“563 = §%¢¥ and e,, = d, B = dupe’. In fact, since 7,; = 6,5 and Aob =
5, all (pure) latln 1nd1ces w111 be raised and lowered using 6% and d, respectively, as can
be seen from T 2. = §T e = = §T .. and T, .. =90 gT"‘b“'... =0T 0.

To calculate covariant derivatives in the vielbein language we make extensive use
of the spin connection w”;,,, the vielbein equivalent of the connection coefficients [, in
the coordinate basis language. The spin connection w®;, is defined implicitly through the
following relation

V65 = w,ea, (3.2)

from which we can prove that

a __ a_ b
Vet = —w,e’.
Using the above and following the usual procedure for calculating the covariant derivative
in coordinate indices, we can show that in mixed coordinate-vielbein indices the covariant
derivative of a tensor 7+ %", becomes

When we change orthonormal basis, meaning going from an 1n1t1a1 choice of vielbeins
e and e to another one ¢’* "and ¢/ 4/, we can write this as ¢ — ¢/ = A% ¢ and e; —

= Nues, with A% = A%(x) and A’*; = A'%(z) being local smooth functions
of spacetime. This functions are similar to the regular Lorentz transformations of flat
Minkowski spacetime. In general, they must satisfy A%A""; = 67 and the Lorentz-like

relation AF Ao = Jap» given that 7z = dgp From the deﬁnltlon 3.2 we can find that
the spin connection w?;, changes under e* — ¢’ = A" ae (and, of course, e¢; — €'z =
Nez) asw, — w’a/glu = Aa/aA/bg,w%u — 9, A", A""5. Tt is also worth mentioning
ozt
—/M,Cd b SO
the spin connection is an 1-form with respect to its greek index. We will be interested
exclusively to spatial rotations, i.e. transformations A%; such that A*=% = 67, A%_, = 4§
and A%, = R% with R € SO(d) satisfying R*,R'}0;; = 0., and det R = 1, and having
R’ € SO(d) as its inverse. Under this spatial rotations only pure latin indices will change.
Specifically, for the vielbeins we will have

that under a change of coordinate basis w?;,, changes as w%, — W%, =

a b
e =" =R%e® and e, — ¢, = R ey,
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while for the spin connection we find

a a a ptl k& a ptk
Wipy — W bp:RkR pw lu—a#RkR b-

It can be shown that the spin connection w?,, is related to the connection coefficients
"7, by the equation 7 ) )
W, = exoyuer + eZF’;Ae%. (3.3)

For the Aristotelian connection coefficients
1
FZV — v"0,n, + §h'{)\(auh’)\y + 8Vh/\u — 0,\hW),

relation 3.3 gives us

_ _ 1
a=0_ _a=0 a_ — 08
W0y =W T =0, Whoo, = 56 £,hy
and )
o a K b K K A
Wb 5 (Q@aueb - eﬁa/iea) - e[aeb}a‘ihkﬂ’

from which we see that

ab __ _ ba
CL)“— Wy

We can now prove for the spatial tensors h,,,, h** and 1 the following

1
Viha =V,h* =V, ,hZ =0 and V,h!= — 5" Loy

We will now continue our analysis by identifying the proper background sources our
Aristotelian geometry should be coupled to in the first order formulation. In the second
order formulation we had n, and h,, representing diffeomorphism invariance. Now in
the first order formulation diffeomorphism invariance will be represented by n,, and €;;.
For the vielbeins we also have the spatial rotation transformation

e — RYe’.

The U(1) symmetry is again imposed by the gauge field A, (the only one changing under
U (1) transformations) with gauge transformation

A, — A, +V,A
and A the U(1) gauge parameter. The dipole gauge field a,,, is spatial and symmetric, so
a b

Ay = Aab€),€,,

or
14
Aah = Qpupehey
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with a,, = ay, symmetric. The dipole shift parameter ¢, is spatial too, so

Y = €Z¢a
or

¢a - €g¢u‘
We can show that the U (1) gauge field A, and the (spatial) dipole gauge field a,, change
under a dipole shift transformation as

Ay = Ay +eta,  Qap = Gap + bV 0 + €y V.

In the vielbein language the modified dipole gauge field A*,, which satisfies n, A", = 0,
is spatial only in the i index, so
Ar, =ell A%,

or
At =€l A",
which gives us
Aa _ K Aa 1 hEE Aa ak
u=n, v Foe™ + 5( nFae™ +a Ckp)-
Under a dipole shift we can prove the modified dipole gauge field A%, changes as
1
A%, — A%+ V00 + §n”e““£0hm\ezwk.

The modified field strength F**
SO

w»> Which obeys n,. '™, = 0, is spatial only in the x index,

K Kk Ta
Ff = egFp

or
a __ _aTrkK
F =e ",

which gives us

F*,, =0,A" — 0,A%, + w“kMAk,, — w“k,,Aku + n[uAb,,]eZ;Evhme’\“.
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Chapter 4

Aristotelian Anomalies

4.1 Symmetry and Conservation Laws

4.1.1 Second order formulation

The main objective of this chapter is to identify the quantum anomalies that characterize a
theory with Aristotelian geometry, such as the fracton theories we study in this thesis. For
that purpose we will focus on the symmetries of our theory imposed by the corresponding
background source gauge fields we have introduced so far. For more information on the
techniques used in this chapter see [56, 111, 112, 113, 114, 115, 116, 117]. The notation
and methodology of this chapter will be again heavily based on [67]. Let us start with
the second order background sources n,,, h,,, A, and A*,. First we have our action
S[®;ny, by, Ay, A*,] with @ any matter fields, like the complex scalar fields we studied
previously. We then form the generating functional, also known as partition function,
given by the functional integral

Z[nu, huw Auv A“,,] = /DCI) e S5y Ay, AR
and define the connected generating functional
Wing, hy, Ay, A% = —ilog Ziny,, hy,, A, AR
The currents coupled to the background fields are defined by the variation of W as

1
SW = /dd“x\/f_y l—e“énu + (v(“w”) + 57’“”) Shyw + JHOA, + JHAOAN, | (4.1)

with v = det(y,,) = det(n,n, + h,,). In the above we have the energy current e,
momentum current 7#, stress tensor 7/, U(1) current J* and dipole current J*,. We
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can raise or lower greek indices by using h,,, and h*”, e.g. we can define 7, = h,, 7",
JW = pvrJF,.. We take 7, 7" and J* to be spatial tensors, and 7#" and J*¥ to be
symmetric.

We are considering dipole symmetric theories equipped with appropriate gauge fields
such that the total action is invariant under diffeomorphism, U (1) and dipole transforma-
tions. Under infinitesimal diffeomorphism transformations z/(z) = = + €(z) + O(€?)
we know that tensors T change as T — T + €5 T + O(e?) with

8T = £T,

where £# is the gauge parameter for infinitesimal diffeomorphism transformations. For
that reason the Lie derivative of our background sources are of great importance. Some
examples are the following

£eny, = Vi (ngg™) + E”FQM

£§hm, = gﬁvﬁhuy + 2hn(uvy)§”

£eAy = Vu(AL") + £ Frp
The gauge parameter for an infinitesimal U (1) transformation is A, while for an infinites-
imal dipole transformation the gauge parameter is ¢,,. The total transformation can be
denoted as X = (&, A, 1),) and we can see that the action of the total transformation X
on the backround gauge fields is a sum of the action of the individual transformations it is
comprised from, i.e.

(5)2:55—1-51\-1-(51/).

In particular, for our background gauge fields n,,, h,,, A, and A*, we have

dgn, = £eny, (4.2a)
Oshu = £ehyw (4.2b)
d¢ Ay =£A, + 0N+, (4.2¢)
0 A¥, = £ AY, + Vot 40"V ok, (4.2d)

When there are no quantum anomalies in our theory, the (connected) generating func-
tional W is invariant under diffeomorphism, U(1) and dipole transformations, i.e.

5gW = 0.

To find 6 ¢ W we just substitute equations 4.2 in 4.1 and from the symmetry condition
d¢W = 0 we find with integration by parts the conservation laws'

Ve = —fol — (" + 75Y) V0t hy, (4.3a)
V; (v + T 4+ 1Y) = f Y — BV ot T, (4.3b)
VIt =0 (4.3¢)
VL = g, (43d)

A guide on how to prove equation 4.3d is laid out below.
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where we made the following auxiliary definitions
V;L =V, + 0"
fu=—Fe — huw AT+ F ey — ny A5V 0
T = —AF T

It is worth looking closer to how equation 4.3d is derived. First we can show that

SpW = /dd“xﬁf(wy,

where
KY=J"— V;JW + h”"V,fv’\J“)\nM.

Using the fact that J#¥ is spatial and symmetric, K is simplified to
K'=J" =V, J".
Also 1, 1s spatial satisfying the condition v#¢),, = 0, leading to
htK” = 0.
Now we should notice that if for some tensor 7" we have
n, " .. =0,

then
hoTe =T

We can easily see that this holds true also for the following
hEN T =N, TR

and
RN T =N T

Putting everything together we reach our final result

V" =

4.1.2 First order formulation

Now we will approach the same problem from the first order formulation side, where the
first order background sources are n,,, €5, A, and A?,,. The generating function will be of
the form Wn,,, hy, A,, A*,] with the currents being given by its infinitesimal variation

SW = / A/ (= ony, + TV 8el + JFOA, + JH,GA%,) (4.4)
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with v = det(y,,) = det(n,n, + 5ab€Z€,Ii), T, = (V" + T + 74")e,, and
Jt, = JH el

a*

We are considering dipole symmetric theories equipped with appropriate gauge fields
such that the total action is invariant under diffeomorphism, spatial SO(d), U(1) and
dipole transformations. Under infinitesimal spatial SO(d) transformations R%,(z) =
8¢ — eQ%(z) + O(e?) with Qg = —,, only the background fields e, and e will be
affected. Specifically, we will have

o€, = —Q“bez and dget = Qe

where %, is the gauge parameter for infinitesimal spatial SO(d) transformations. The
gauge parameter for an infinitesimal diffeomorphism transformation is £¥, for an infinites-
imal U (1) transformation is A, while for an infinitesimal dipole transformation the gauge
parameter is ¢),. The gauge parameter £ is a vector, A a function and 1), a 1-form. The
gauge parameter ()%, will be taken to be a spatial (1, 1) tensor.

The total transformation can be denoted as X = (&*,Q%, A, 1,) and we can again
see that the action of the total transformation X on the backround gauge fields is a sum of
the action of the individual transformations it is comprised from, i.e.

5X:5§+5Q+6A+5w.

In particular, for our background gauge fields n,,, e}, A, and A%, we have?

den, = £eny, (4.5a)

el = et — Qe (4.5b)

Ox A =£eA, + O\ + elthy (4.5¢)
1

63 A, = £:A%, — QAP + V0" + §nue“”£UhHAeg¢b. (4.5d)

Some miscellaneous variations we should note are

5)2'aab = £§aab + Qcaacb + chaac + €gv;ﬂ/1b + egvuwa
5Xwabu = £5w“b# + V#Qab.

The action of the Lie derivative £ in this chapter must be interpreted only in the fol-
lowing way. When we have a tensor with mixed greek and latix indices 7" " ,....., then
£ TH 4, p... 1s the Lie derivative we get if we had fixed the latin indices and considered
TH%", p.. to be a tensor only with respect to its greek indices. For example, we con-
sider €y and A“, to be 1-forms, while a,; are functions. The spin connection w,, was
already a 1-form with respect to its greek index, but was not a tensor with respect to its

2Explanation on the use of the Lie derivative £¢ will be given below.
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latin indices. This is reflected on its peculiar transformation under spatial SO(d) rotations
dowy, = V,02%. Under these guidelines, it should be easy to see how the variation of the
first order background fields 4.5 reproduces the variation of the second order background
fields 4.2. We must also notice how the spatial SO(d) rotation of the spatial vielbeins e,
and e is a symmetry hidden in the second order formulation. It only emerges in the first
order formulation through the spatial vielbeins e}, and e/,.

When there are no quantum anomalies in our theory, the generating functional W is
invariant under diffeomorphism, spatial SO(d), U(1) and dipole transformations, i.e.

5 W =0.

To find ¢ W we just substitute equations 4.5 in 4.4 and from the symmetry condition
0x W = 0 we find with integration by parts the conservation laws

V’ue“ = —futt =71,V 0% (4.62)
V;LT“CL =elf, — nuT“be enV,.v” (4.6b)
V,J'=0 (4.6¢)
V' = eau " (4.6d)

Invariance of the generating functional W under spatial SO(d) rotations gives us 7,5, =
—J# (4 Ay, which holds identically. From this redundant conservation law we are re-
minded again of the hidden nature of the spatial SO(d) rotation symmetry.

4.2 Aristotelian Symmetry Algebra

In this section we will derive how the symmetry transformations of our Aristotelian ge-
ometry form a Lie algebra. We will focus on the more fundamental first order formulation
of Aristotelian geometry from now on. Specifically, we need to demonstrate that for any
transformations X and X’ they satisty

[0%:,0%] = 0% x5 (4.7)
having thus a closed algebra. However, the commutator
[X/ X] (g[X’X]’Q b[X’X]? % 71/JaX/ X )
is not specified yet. We will define it as
§o g =Ll =[6.€)" (4.8a)
Qab{j{/jq = £§/Qab - £§Q/ab + Q. — Q.05 (4.8b)
A[X/7X} = ££/A — £§A/ (48C)
wa[X/7X} = ££/2/}a - ££'l/];{ + wa/ba - wl/)Qba7 (48d)
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where we also made use of the identity
£,U = [V, U]

for any vectors V' and U. The action of the operators J ¢ on the background gauge fields
Ny, €, A, and A?,, was already identified in Section 4.1.2. We will also need to see how
the gauge transformations X act on the gauge parameters &, 2%, A and v, themselves.
To fulfill this necessity we will make the following definition

St = £t = €, €] (4.92)
5)2,Qab = ££/Qab — £§Q/ab -+ Qachcb — QIQCQCb (49b)
5X,A = ££/A — £§A/ (49C)
Oxitha = £etba — £ty + 20 — Y324, (4.9d)

From the above definitions 4.8 and 4.9 we see that

o = 0"

Qi) = 0%

Ao = O

Varxr %) = OV

or o )
X', X] =64, X.

We can write all these preliminary definitions in a more abstract but compact form. To
achieve this goal, from now on we will also make frequent use of matrix notation by
denoting tensors like Q%)% and 1,2, as just € and ¥V, respectively. Hence all of
our definitions can be presented in a readable fashion as

) = 06 = £ = [¢,¢] (4.10a)
Qo) = 000 = £ — £ + [, Q] (4.10b)
Ao = 0 A = £ — £ (4.10¢)
Vg = g = £t — £ + U — YL, (4.10d)

where [, '] represents the tensor [, 2']%, = (QQ)*, — (VQ)", = Q2.0 — Q2.0%.

We will now try to calculate the action of the commutator [0 .,
the gauge parameters £/, 2%, A and 1),, in order to show that [0,
this purpose we will need the property

d ] while acting on
6X’] = (5[5(,,7)2,}. For

[£V, £U]T - £[V,U}T
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for any tensor 7" and any vectors V' and U, where, obviously, [£y, £y]T = £y £yT —
£ufyT. Let us calculate 6 ¢, 0 ¢, first. We have in our compact notation

O5n05:€ = Ognterl = 5,08 + £e03n = £r,08 + £erken§
pr— £[£//’§/]§ —"_ £€l£§l/£ prm— |:£,‘£Il7 £§/j|€ —"_ £§/£§N§ prm— £§//£§/§,

Alternatively, we could just define f =¢ (X7 X] and write

0058 = 0gulii %) = 05n€ = £en€ = L0 31 = Lender€.
Since we now have that
0xn0x/E = £enter§

we can form [0 ¢/, 6¢,]¢* and find
[6X,,, 5;2,]5 == £§//£§/§ - £§/£§//§ == [£f”7£f/]§ == £[£//’£/]€ == £§[)§'”,X/]€ — 6[)2—//7)”(/}5

and we just showed that
[0, 05:]€ = Opxm €.
In calculating 0,0 ¢, A we have
d¢nbe N =05, (£§/A — £§A,) = £5)‘<”5/A + £e05n N — £5)‘<”5A, — £§5X”A/
= £jer )N + £ (£er A — £e\") — Llen g N — £e(£er A — £ ")
= [£§//, £§/]A + fg/fg///\ — £§/£§AN — [fg//, fg]A, — £§£5//A/ + £§£§/AH
- ££//£5/A - £§’£§A,/ - £€”£€A, + ££££/A//
= fg//ng + fgfg/A”
+ [~ £t N + (X = X))
In the last line of the above equation the symbol (X’ <> X”) in the overall bracket |- - - |
means that we add all the other terms in the bracket [- - - | but with X" and X" exchanged,
e.g. in this case (X' <> X") = —£¢£:\". Since
5X//5X/A - ££”££’A + ££££/A”
+ [~ £ £ N + (X X)),

where the terms in the bracket [- - - | are symmetric under the exchange X’ ++ X", we get

[0, 0/ IA = 0303 N = 0050 A = (£enfe N + £edog N') — (£ fer A + £k N)
= [£er, £ ]A — £e(£n N — £ N") = £jen A — £ g0 51
= ££[X//7X/]A - ££A[X”,X’} = 5[X”,X/]A

and we proved that
[6X//, 5X/]A - 5[X//7X/]A-
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We can follow the same procedure for 2%, and 1,. In total, we get
003§ = Eene€
O30/ Q = £enfeQ + £(£0 — Q'Q") — Q(£Q" — QU'Q")
+ (£§/QII + QIIQI)Q + [Q//ngl o QHQQ/
— £ (£ - QQ" + Q"Q) + (X' < X))
(5)(,,5)2,/\ = £§//£§/A + fgfg//\// + {—£§/£§AN + (X/ < X”)]
Oxend ) = £enfenh + £e(£)" +"Q) — Y (£Q" — A'QY)
+ (£§/¢// + wl/Q/)Q + [—@ZJ’QQ” o £§¢/Q”
+ Lo (— £y + Q" — Q) + (X & X)),
From the above we can prove that
[0, 036 = On 31§
050, 0512 = O 2
[(SX//, 5X/]A - 6[)2//7)2/}/\
[0, 03,80 = O30 1.
or ) )
05, 03] X = 050 31 X
It is now easy to derive the Jacobi identity
[X”’ [X,>X]] + [X,> [XaXHH + [Xv [Xlle/H = 0.
Here are the simple steps

(X7 (X7, X = —[[X7, K], X = =00 g X" = ~ [0, 03] X" =
— 003 X" + 0304 X"
= 0/ [X, X" + 64 [X', X"
— —[X",[X, X")] + [X, [X", X"]]
= —[X",[X, X")] — [X,[X", X"].
To show that [d%,, 03] = O/ ¢ We can calculate the action of the commutator
[0/, 0] while acting on the background gauge fields n,, e, A, and a.. In compact

notation we will denote the background gauge fields as n, e, A and a. Also the compact
notation for e/ will be € and for (Q7),* = Q% will be Q7, e.g. (7€) * = (7). €, =
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ey, = (eQ)*,. After a lot of computation we arrive at the following compact relations

O, 0gn = £afen
dgi0ge = fefee + (£ + U Q)e
[ £:(Qe) + (X < X))
0403 A= fafeA— OfN — (£ +'Q)e
+ [£ON + £c(Y'e) + (X & X))
Sgbga = £ofea — a(£ — Q) — [a(£9 — Q)"
— V(£ + Q) — [EV (£t + /)]
+ (VYY) + (QTeVy)T + (eVY'Q) + (eVY'Q)T
+(QaY) + £:(0%a + (QTa)T + eV + (eVy)T)
+ (X + X'),
from which we, indeed, find
0%/, 0%]n = 0% 50
[0, 0x]e = 050 xp€
[0, 0%]A =05 1A
0%, 0%la = O 50,

resulting in the closed algebra

[0%:,0%] = O -

In summary, everything we did so far in this section was to show that our Aristotelian
symmetry transformations form a Lie algebra and the Wess-Zumino consistency condi-

tions
[0, 0x]W = b5 )W

hold true.

We can now identify the commutator algebra of our Aristotelian symmetry generators.
We will follow the approach of [118] and write ¢ ¢ in the form

8¢ = i€hn, H —i€"e" P, + %(Q“b W™ ) My — (A +E"A)Q© — i(1h® + &M A% ,) D,

Afterwards, we substitute this form into [0, d +-] and find after many cumbersome calcu-
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lations

[0/, 05] = S0 57 + €1€" (el [Pa, Bo] — (e — nuel)[H, Pa) +iCpy)

+ ; (@ 4+ &) ny — (W + E70)E ) [ Moy, H]
(O e e e — (O 4 e (Mo, ] — 206 P)
47 (O ) (2 4+ €7, (Mo, Mo — 4i6uc M
2 (O ) €V AS) — (0 )+ € AD)) (Mo De] — 2i60cDy)
(€ 4 €A - '“nu(A +EA) [H,QU)
F e (N 4 €VA,) — el (A + €°4,)) [P, QU
— 5@+ sﬂw“m(A' FEUA) — (4 €4u,) (A + €°A,)) [May, Q)
+ (0" + AN + 67 A) — (W + AT (A + €A, )) [Da: Q]
(€ (0 + € AZ) — (0 + € AD) ((H. D] + Ll b Dy)

2 a
gret (0 + € ALY — el (Y + € AY)) ([Pa, Dy) — i6,0Q°)
T4 EHAL) (P + €V ALY [Da, Dy,

+ 4

—

(4.15)

where we defined the auxiliary quantity

1
Cw = —F, H + 2T, P, — QR“’)WM@ + FDa.

We will call C,,,, the curvature operator. In deriving the commutator algebra we will need
the following identities

5){'/(Qab + guwabﬂ) _ £§/(Qab + fuwabu) + QQl[ac(Qb]c + guwb}cu>
O (A+ €Ay = £ (A + € Ay) + ey,
O (" + EMAY) = £ (¥° + €AY — Q7 (y° + €1 A)
1
+ (% + Wy )P + S e el Ry,

The above calculation 4.15 must satisfy the Lie algebra condition 4.7, giving us the Aris-
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totelian symmetry algebra

[Map, Mea] = i(0acMpg — 0peMag — SaaMpe + 0paMac) (4.16a)
[May, Pe] = i(0acPy — 0pcFa) (4.16b)
[Map, D] = (5acDb 0peDa) (4.16¢)

[Pa, Dy) = (4.16d)
[P, By = ze“ Cuv (4.16¢)
[H, Po] = v eCiu (4.16f)
[H,D,] = —§eg bofvhpon (4.16g)

with the rest vanishing. We can observe now that equations 4.16a to 4.16d are identical to
the familiar 2.13 we derived in flat spacetime in Chapter 2. The new components to our
symmetry algebra are equations 4.16e to 4.16g whose form exposes the exotic character-
istics of Aristotelian geometry, present especially in the curvature operator C,,,,.

4.3 Quantum Anomalies

4.3.1 Wess-Zumino conditions

After having carefully studied all the fundamental features of Aristotelian geometry and its
symmetries, we are finally ready to tackle the important matter of its quantum anomalies.
Let us look at the generating functional

W =Winy, e}, A,, A%,

with background source gauge fields n,, ef;, A, and A?,. It can be shown that under

our Aristotelian transformations X = (&", 0%, A, 1, ), the generating functional changes
infinitesimally as

SxW = / A" ey (€D, + Q%R + AU + 1,8 | (4.17)

where D,,, R®,, U and S are local functional of the background fields, meaning they all
have the form

g = g(m>[nu»BZ’AuvAau]'

Here the symbols D, R, U and & were chosen because they represent diffeomorphism,
spatial SO(d) rotation, U(1) and dipole shift transformations, respectively. As we have
already explained, if IV is invariant under our Aristotelian transformations, i.e. ;W = 0,
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then our Aristotelian theory is symmetric under these Aristotelian transformations and it
has no quantum anomalies, i.e. D, = R?, =U = 8% = 0. On the other hand, if

SeW #0

our Aristotelian theory has quantum anomalies, so some of D,,, RP,, U or S* do not vanish.
We will try to find these Aristotelian anomalies using as our main tool the Wess-Zumino
conditions

Again, for more details on quantum anomalies see the relevant literature [56, 111, 112,
113,114, 115, 116, 117].

First consider
S W = / A" ey (9D, + Q%R + AU + 1,8Y) .

Note that D,,, R%,, U and S are not necessarily tensor quantities. Acting with d¢, on the
above equation we get

%%W:/Wﬂwmﬁ@@VHMWﬁﬂu+%y)
+ / A a7 (8454 Dy + Q% 03 R + NSl + 1, 05,S7)
+ /dd“xﬁ (648" Dy + 6 Q% R + S AU + 64110, S) .
But we also have
Qymwﬂz/d“%yi<&%ﬂ%+ﬂﬂwxﬂ@fhkﬂmu+¢%@m8ﬂ
= /d‘”lxﬁ (646" Dy + 6 Q% R + S0 AU + 64,0, S°) .
Thus, if we define the quantity
Feg = / A2 /7 (€D + Q%R + AU + ¥, 8°)
+ / A" /g (€46 Dy + Q%6 R + AS U + 1, 65,.8%)
we get
030xW = Fig + 00 yW-

Using this the Wess-Zumino conditions take the form
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For the calculations going forward we will need to know ¢ ¢ /7 explicitly. From 3.1
we have
2
=77
Vv

Nz

and we can see that this gives us

1 v
5Xﬁ = 5\/7}/’}/'u 5)2’7#%
Now, given that v, = n,n, + h,,, and we know that

dgn, = £eny,

and

dshu = £ehy
we get

O Y = £V
SO

]' 4
0V = SV -

It is instructive to see why d ¢ h,,, = £¢h,, in the first order formulation, the steps being
laid out in detail below

dohu =0 (5@6262) = 0gp O ¢ eZelb, + dab €, (5)*(62
= Oap (£5ez - Q“Ceﬁ) elb, + dape, (£§efj — deel‘f)
= Oup £gez e?, + 5,11,62;5562 — 5aancefLeg — 5abeZdee,ﬂl
= £ ((5abeZeg) — cheielb, - eZQade,‘f
= £ehy — 2Q(ab)eZeg
= £¢hy, since Qg = 0.

In fact, since
5Qnu = (Sghm, = (59./4‘u = 5914”,, = 0,

if we had a local functional of the form
g’im)\m - gﬂk(m> [n/u huw Au: AMV]?
it would obey
599’“}... = 0.

Similarly, since
5¢nu = 5¢€Z = 0,
if we had
G a =G (@) [y, €],
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then
0pG" A =0,

while since

(51\77,,u = (5,\6“

© = §pF, = 62 A%, =0,

a local functional
g”'”A... = Q”A(x) [TL“, 62, ij, Aa#}

would satisfy
51\95'”)\... = 0.

From all the above the operator
0g = 0g + 0q + 0p + Oy

will give us
OV = 06V = £V

We are now ready to break apart the Wess-Zumino conditions to equivalent partial
conditions that D, R%,, i and S* should satisfy. This is done by taking transformations
X' and X such that only one of its gauge parameters in non-zero. For example, we will
start with X' = (0,0, A’,0) and X = (0,0, A, 0). This gives us

[X/, X] =0, 5[X/’X}W =0, 5)2/'7;11/ = 55(’7“1/ =0,
FX’X :/dd+1IﬁA5A/Z/{, FXX’ :/dd+1IﬁA/5AU

and putting these in 4.18 we find
/derlQJﬁ (A 6A/Z/{ — A/ 6AZ/{) =0.
As another example, we take X' = (&™"0,0,0) and X = (0,0,A,0) and find

(X7, X] = (0,0, A5 5,0), A gy = £, Oz W = /ddﬂxﬁfe/\%
O Vv = £V Ox Y = 0,
Fgig = /dd+15L‘ (5)2,\/51\1/{ + ﬁA(%}-,M), Fegr = /dd+1$\/’7§W 5ADW

which give us the partial condition

Ser ( / dd“xﬁAu) — / d /v " 5,D,, = 0. (4.19)
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Following similar steps to the above, we should get a total of (g) + 4 = 10 partial condi-
tions. After calculations, these partial conditions turn out to be

/dd+1l‘\/”_y (A 5A/Z/{ — N 5/\]/[) =0 (4.203)
/ A zy/y (AdoU — Q% 0AR’,) =0 (4.20b)
/ A /7 (A Sl — ¢, 04S*) =0 (4.20¢)

Ser ( / dd+1xﬁAu> — / ™oy " 6,D, =0 (4.20d)
/ddﬂxﬁ [(Qab (SQ/Rba — Qlab 59Rba) +
+(QabQ/bc . Q/abec)Rca]

/ A /P, (248 + 008 — Q% 5y R’,) =0 (4.20f)

0 (4.20¢)

Ser ( / dd“xﬁQ“bRba) — / d /v " 5D, =0 (4.20g)
/ A" o\ /y (e 0 S™ — 1l 5,8) = 0 (4.20h)

Jer ( / dd“xﬁwasa) — / Az /4 " 5,D, =0 (4.20i)
o ([wnion) o ([ revreon,)s

+ / A"y £:£" D, = 0. (4.207)

4.3.2 Candidate Anomalies

In this section we will try to find solutions to the partial conditions 4.20. In doing that, we
will assume that D,,, R, U and S* are tensor quantities. Specifically, we will take D,
to be an 1-form, R%, a spatial (1, 1) tensor, I a scalar and S* a spatial vector. Of course,
under these conditions any gravitational anomalies are excluded from our current study.
We must also note that if we have the integral of a scalar F = F(x)[n,, h., A,, A*,] in
the form

/ddﬂxﬁf,

we know that due to covariance it will be diffeomorphism invariant, so

5 (/ dd“xﬁ]-") =0 Ve
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Using this property, conditions like 4.19 are simplified to
/ d™ /4 E" 6, D, = 0.
From the preceding discussion, the partial conditions 4.20 are reduced to
/ d™ /Y (ASald — N 5\U) =0
/dd“xﬁ (Ado U — Q’“béARba) =0
/ d™a /Ay (A Syl — ), 5,S8*) =0
/ A" /v " 55D, =0
/ Ay [(Q% 6 RY — Q% 6oR") +
Q50" — Q/abeC)Rca}
/dd“xﬁ P (Q“bSb + 008" — Q% (5¢/Rba) =0
/ A xy/y 5D, =0
[ (wades® — 08,57 = 0
/ d™ /" 6,D, =0
/ d™ a5 £ D, = 0.

0

(4.21a)
(4.21b)
(4.21c¢)

(4.21d)

(4.21e)
(4.21f)

(4.21g)
(4.21h)
(4.21i)

(4.21j)

Let us try to simplify and draw conclusions from the above partial conditions 4.21.

Firstly, we can easily see that equations 4.21d, 4.21g, 4.21i lead to
aD,, = 00D, = 64D, =0,
which are satisfied for D, of the form
Dy = Du()[rw, hiea .
Putting {# = §16(x — z¢) in 4.21j, we get
VA DL D, + 0, (VTEM D) =0 VE™,
Setting £'* = ! in some chart of our manifold, we find

8# (ﬁpu) =0
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or, inside this randomly chosen coordinate chart,

1
DN = WCM

for some constants c,. We know that /7 is a tensor density of weight 1, i.e.

VT =07

/

with J = det ((2_35) the Jacobian. This means that in another chart we will have
T

1 1
/ ! /
Du = \/76“ = Jﬁcﬂ
with c;L constants. If a D is a non-zero 1-form, then there exists some non-zero c,, in the
original chart and we have

1 d,o1 c
D=J—c=JLt—"—c,=JLD,.
g ﬁu Cuﬁu Cu !

It is clear that for D to be an 1-form, transforming as

D Ox”

O
all the constants ¢, must vanish. From these arguments we see that
D, =0.
Now we will look at equations 4.21b, 4.21e, 4.21f and analyze the action of dg. To

start, notice that

(SQTL“ = 59]1“,, = (5914# = (59(1“1, = (5914‘“,, = 0,

while
doe), = —Q“bez doel = Qbaeg
c c a a b
5Qaab =0 alep + Q bQac 6914 = —Q bA @

and we even have

St = 6 A = 0

Sertpa = Qathy
(SQ/Qab — _Q/achb + Q/chaC.
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From these relations we can see that R¢;, should be of the form
R = enepRY,  with RY, = R, (7)1, hex, A, A5
Similarly, we should have
S =e, 8" with S = S"(z)[ng, hier, Aw, A5

and
U =U(x)nw, hir, Aw, A%,

Under these assumptions we will have
Sl =0, 6qRY = —Q%R%+ Q4R and 58" = Q48P
which turn equations 4.21b, 4.21e, 4.21f into

/dd+1xﬁ Qab(SA/Rba =0
/dd+1xﬁ (QabQ/bc o Q/abeC)Rca =0

/dd—Hl’ﬁ Qab 5¢/Rba =0.

If we set ,, = 5{‘;(51’,](5 (x — x¢) in the above relations we get

5AR[ab} =0
(Q/bCRca o Q/acRcb> _ (Q/C@Rbc o Q/chac> =0 (422)
Oy Riar) = 0,

respectively. Putting 0, = df’ 9y in 4.22 we find
Ok Rita) — O Rika) — OkaRpp) + 01a Ry = 0.

Then setting in the above £ = b and summing on b we obtain the condition

R[ab] = 0.
However, R is already antisymmetric from the relation 4.17, so we deduce that
Ra = 0.

Finally, after assuming that D,,, R%,, U and S* are tensor quantities, our analysis
shows that the partial conditions 4.21 will take the simplified form

/ d™ /5 (ASald — N 5\U) =0 (4.23a)
/ d™ /5 (A Sypld — 1), 6,S") = 0 (4.23b)
/ A 2\ /y (Ve O S* — ¥l 5,8) = 0 (4.23c)
R% =0 (4.23d)

D, =0. (4.23¢)
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We can easily identify a class of solutions to the above equations. Firstly, to satisfy 4.23¢
it is easiest to choose 6,5* = 0, meaning

S =elSh with S = 8"(x)[ng, hel.

This will automatically satisfy 6,5 = 0, which means that conditions 4.23a and 4.23b
become

/ A /v (ASald — N 5\U) =0 (4.24a)
dpUd = 0. (4.24b)
But to satisfy 4.24b U/ must be of the form
U =U(x)[ng, hi,

which automatically satisfies 4.24a. To summarize, our solutions are of the form

U =U(x) [, by, (4.25a)
S"=etSh with 8" = (@) [, hol, (4.25b)
R =0, (4.25¢)
D, =0. (4.25d)

We must mention that, as there are no dipole symmetric quantities that depend only on
our background fields, the only way for ¢/ and S to be dipole shift invariant is to be
independent of A, and A*,, the background sources of the dipole shift transformation.
The solutions
U=U(x)ng, hi

and

S =e,§" with S = S"(z)[n, heal
constitute essentially a purely geometric class of solutions that depend only on the funda-
mental mathematical structure of Aristotelian geometry, its clock form 7, and its spatial
metric /1, Such solutions emerge due to the peculiar characteristics of Aristotelian ge-
ometry, like its Aristotelian connection not being metric compatible and torsion-free. We
saw a similar behavior in the Aristotelian algebra 4.16 with the emergence of the new
commutation relations 4.16e to 4.16g.

We should emphasize that, geometric solutions for ¢/ and S can be chosen indepen-
dently from each other. This means that we can have i/ # 0 and S* = 0,/ = 0 and
8%+ 0, or,U # 0 and S # 0. Some examples for non-vanishing ¢/ and S are’

U = Fl, h* W™

U = hy, £,
U = n,n, £,h"
U=yv,"

3The relation £,n u = 1", restricts the number of dissimilar geometric solutions.
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and

S*=e"£n, = —ez £,h"'n,

St = eMEL R £,

At even or odd spacetime dimensions d + 1 we can use the Levi-Civita tensor €,,....,.,
to find even more choices for &/ and . For information on the Levi-Civita tensor see

[89,104,93]. Ateven spacetime dimensions d+1 = 2k we can define geometric quantities
like

. SHAIp2 2k —1 M2k T R Rl
U=c¢ quz kafw%
. SMIH2 2k —1 M2k noo .. n
U=c¢ £UFu1,u2 £UFM2k—1M2k
and
a __ 0 1234 2k —1 A2k n R "
S = eulg Moy FM3M4 Fu%—ll@k
a __ G 123 Ha 2k —1 h2k noo,,, n
S = emé nu2£UF#3M4 £”FM2k71M2k'

At odd spacetime dimensions d + 1 = 2k + 1 we can find

U = chih2 Hae—1K2kb2k+1 0 F

M1 p2 fik—1izr,  PH2k41
— SH1p2 B2k —1 B2k H2k+1 noo .. n
U € £UFM1#2 £vFH2k—1#2k Mpiop 41
and

a _ _pap2pok—1H2kM2k+1 B, R @
S € FMM H2k—1 M2k €N2k+1

@ pap2eHok—1H2kH2k+1 (R n a
S € ‘£va#2 £UFM2k—1N2k 6M2k+1'
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