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ABSTRACT

In the realm of modern network communications, ensuring the security of data trans-
mission is paramount, yet typical cryptographic methods fall short of providing uncon-
ditional security due to their vulnerability to sophisticated attacks. Quantum Key Distri-
bution (QKD) offers a massive shift by leveraging the fundamental principles of quantum
mechanics to facilitate the secure exchange of cryptographic keys, ensuring unbreakable
encryption regardless of computational advancements.

This thesis explores the advancements in QKD, particularly focusing on the evolution from
traditional QKD protocols to Measurement-Device-Independent QKD (MDI-QKD). MDI-
QKD addresses critical security concerns by outsourcing the measurement process to a
potentially untrusted third party, thus neutralizing the threat posed by imperfect measure-
ment devices and extending the effective communication range between users.

Building on this foundation, this thesis introduces an extension of an existing MDI-QKD
protocol to a three-user configuration, aiming to establish a secure Quantum Conference
Key Agreement (QCKA) among the users. This proposed protocol utilizes coherent states,
balanced beam-splitters and photon detectors to distribute a common key securely to three
users.

This thesis is structured to provide a comprehensive overview of the transition from typical
to quantum cryptography, the quantum mechanical and optical principles underlying QKD
and the various types of QKD systems and their security challenges. Detailed descriptions
of the proposed three-party phase encoding protocol are presented, including a rigorous
security proof and the derivation of the related Secure Key Rate (SKR) formula.

SUBJECT AREA: Multiple user MDI QKD protocol

KEYWORDS: Cryptography, QKD, MDI, QCKA





ΠΕΡΙΛΗΨΗ

Στο σύγχρονο κόσμο των τηλεπικοινωνιών, η ασφαλής μεταφορά των δεδομένων είναι
ένα ζήτημα ύψιστης αξίας. Ωστόσο, οι μέθοδοι της κλασικής κρυπτογραφίας δεν μπορούν
πάντα να τη παρέχουν, καθώς είναι αρκετά ευάλωτες σε επιθέσεις. Η Κβαντική Διανο-
μή Κλειδιών (ΚΔΚ) χρησιμοποιώντας τις βασικές αρχές της Κβαντικής Μηχανικής για τη
δημιουργία των κρυπτογραφικών κλειδιών, εξασφαλίζει μια ασυναγώνιστα δυνατή κρυ-
πτογράφηση απέναντι σε επιθέσεις ανεξαρτήτως των υπολογιστικών ικανοτήτων τους.

Η συγκεκριμένη διπλωματική εργασία ερευνά τις εξελίξεις στο τομέα της Κβαντικής Διανο-
μής Κλειδιών, εστιάζοντας στην εξέλιξη απο τα κλασικά πρωτόκολλα Κβαντικής Διανομής
Κλειδιών σε Measurement Device Independent (MDI) πρωτόκολλα. Τα MDI πρωτόκολλα
αντιμετωπίζουν σημαντικά ζητήματα ασφάλειας, καθώς αναθέτουν τη διαδικασία μέτρησης
των κβαντικών καταστάσεων σε ένα δυνητικά μη αξιόπιστο τρίτο μέλος μέσα στο σχήμα
της επικοινωνίας. Με αυτό το τρόπο εξουδετερώνουν τις απειλές που μπορεί να προέρ-
χονται από τις ατελής (imperfect) συσκευές του συστήματος και αυξάνουν την θεωρητική
απόσταση που μπορούν να έχουν τα δύο μέλη που θέλουν να επικοινωνήσουν.

Με αφορμή αυτή την ιδέα, προτείνεται μια επέκταση ενός κλασικού MDI πρωτοκόλλου
Κβαντικής Διανομής Κλειδιών (δύο χρηστών) σε ένα τριών χρηστών, με τελικό στόχο τη
διασφάλιση της δημιουργίας ενός κλειδιού μεταξύ και των τριών χρηστών με τη χρήση
της τεχνολογίας του Quantum Conference Key Agreement (QCKA). Το πρωτόκολλο που
προτείνεται κάνει χρήση coherent κβαντικών καταστάσεων, balanced beam-splitters και
ανιχνευτών φωτονίων για να διανεμηθεί με ασφάλεια το κοινό κλειδί.

Η διπλωματική αυτή είναι δομημένη με τέτοιο τρόπο ώστε να παρέχει μια λεπτομερή επι-
σκόπηση στους λόγους και στον τρόπο για τον οποίο γίνεται η μετάβαση από τη κλασική
στη κβαντική κρυπτογραφία, τις αρχές της κβαντικής μηχανικής και της κβαντικής οπτικής
στις οποίες βασίζεται η Κβαντική Διανομή Κλειδιών και τους διάφορους τύπους συστημά-
των της με τις αντίστοιχες προκλήσεις ασφαλείας τους. Τέλος, παρουσιάζεται μια λεπτο-
μερής ανάλυση των βημάτων του πρωτοκόλλου που προτείνεται, καθώς και η αντίστοιχη
μελέτη για την ασφάλεια του και τον τρόπο με τον οποίο μπορούμε να εξάγουμε τον τύπο
του ρυθμού δημιουργίας ασφαλών κλειδιών (Secure Key Rate).

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: MDI Πρωτόκολλο ΚΔΚ πολλών χρηστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κρυπτογραφία, Κβαντκή Διανομή Κλειδιών, MDI, QCKA
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Multi-User Measurement Device Independent Quantum Key Distribution Protocol

1. INTRODUCTION

Security and cryptography are crucial aspects of our everyday network communications.
Since traditional networking methods are vulnerable to a variety of attacks, classic data
encryption cannot provide unconditional security for its party members. Quantum Key
Distribution (QKD) protocols enable legitimate party members to share secret keys with
unconditional security. In contrast to traditional cryptographic methods that rely on the
computational complexity of mathematical functions, the security of QKD is based on
quantum physical laws. For this reason, the encryption can be considered computationally
unbreakable by quantum means.

Four decades after the introduction of the first QKD protocol, BB84 [3], the field has much
evolved driven for the need for provable unconditional security in realistic use cases. The
introduction of the first Measurement Device Independent (MDI) protocol [4] has marked
the QKD field for two reasons. First, the Measurement Unit (MU) was moved to a third
party which can be untrusted and under the control of an eavesdropper, and whose im-
perfections do not affect the security of the protocol. The second reason, is the increase
of achievable distance between two users. The latter, is a key point for the cutting-edge at
the moment Twin-Field (TF) protocols, which can be considered as variations of the first
MDI protocols.

In this thesis, we propose an extension of one of the two-user phase encodingMDI protocol
[5] to a three-user scenario. The aim is to distribute a common key to all of them, following
the steps of the original protocol ,i.e., Alice, Bob1 and Bob2 send out signals, they wait
for MU’s successful announcements of detection, and then they perform the standard
post-processing on their sifted data. The task of distributing a common key to multiple
users in a secure way, is also known under the name of Conference Key Agreement
(CKA). In Quantum CKA protocols, both device dependent and device independent have
been devised [6–8] exploiting the correlations of multipartite entangled states. Recently, a
multi-party TF MDI protocol [6] has been proposed without the need of entanglement and
in addition this asks for the same physical resources as in this work, namely, coherent
states, Balanced Beam-Splitters (BBS) and photon-detectors. On the other hand, the
exact experimental settings and steps of the two protocols differ as presented in Chapter
7.

The road-map of this work is as follows. In Chapter 2 we describe how and why we
transitioned from the Typical to the Quantum cryptography. In Chapter 3 and Chapter 4
we analyze the basic Quantum mechanic principles and the Quantum optic principles that
are used in the QKD field, respectively. In Chapter 5, we name the different QKD system
types, we present the concept of the Quantum Conference Key Agreement and talk about
the attacks and security in a QKD system. In Chapter 6, we make an introduction into the
field of MDI-QKD and its various ways that we can encode information in this. In Chapter
7, we propose a three user party phase encoding protocol, giving detailed information
about the steps of the protocol and we sketch the security proof deriving the formula that
connects the Secure Key Rate (SKR) with measurable quantities. Lastly, in Chapter 8,

23 N. Stefanakos
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we give a synopsis on what we accomplish with our work and we discuss about future
possibilities.

N. Stefanakos 24
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2. CLASSIC AND QUANTUM CRYPTOGRAPHY

2.1 Typical cryptography

In conventional cryptography, we want to make a message unreadable by anyone except
the conversation party members. At first we have themessage (M) that we want to send,
the so called plain-text. Using an encryption block and with the help of a key (K), we
generate an encrypted text. This encrypred text we call the Cipher-text (C). Then, we
send the Cipher-text through an insecure channel and the key through a secure channel
to the receiver. The receiver possess a decryption block, that with the help of the key,
has the ability to reverse the changes implemented on the starting message and recon-
struct the original plain-text. This process can be mathematically written with the following
equations. For the encryption procedure:

EK(M) = C ,

where EK is the encryption block. For the decryption procedure:

DK(C) =M ,

whereDK is the decryption block. The Key (K) is usually generated from a key generation
machine that picks it randomly from a key-space. With the word key-space we mean the
amount of all possible keys that the key generator can produce.

There are two categories of cryptographic algorithms:

• Symmetric algorithms: The symmetric algorithms are algorithms that use the same
key for both the encryption and the decryption of the message. Often they are called
secret-key algorithms. The reason is that during the whole procedure they try to key
their key secret from any eavesdropper. As in the event that the key is compromised,
anyone could decrypt and read their conversation or encrypt a malicious message
and send it to the members. One very strong algorithm in this category is the AES-
256, where 256 denotes its key length in bits. This algorithm due to its big key length
can be assumed quantum secure. This can be easily proven if we try to brute force
the encryption key with a quantum search algorithm as the Grover Algorithm and
still needing to perform 2128 algorithmic iterations.

• Asymmetric algorithms: As their name hints, the asymmetric algorithms have an
“asymmetric” behaviour considering their encrypting and decrypting keys. That is,
because they use different keys in their encryption and decryption blocks. This type
of algorithms have a public key for the encryption of the plain-text and a secret key for
the decryption of the cipher-text. As an example, we’ll describe the communication
between two users that use the RSA asymmetric algorithm. Below we present a
pseudocode that describes the process that each user needs to do to create their
public (encryption) and secret (decryption) key.

25 N. Stefanakos
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Algorithm 1 The structure of RSA algorithm
Choose: p, q
Require: p, q = prime ▷ Require p, q be prime numbers
Compute:
1: n← p× q ▷ n gives the key length in bits
2: λ(n)← lcm(p− 1, q − 1)
Compute:
3: k ← 0
4: e← 1
5: while k ̸= 1 do ▷We need gcd(e, λ(n)) = 1
6: e← e+ 1
7: k ← gcd(e, λ(n))
8: d← e−1mod(λ(n))
9: end while
Encryption:
10: c(m)← memod(n)
Decrytpion:
11: m(c)← cdmod(n)

To choose what cryptographic algorithm we need to use is not a simple task and depends
on the needs of each application. These two categories have their own advantages and
disadvantages, some of them are:

1. Processing time/Speed: Usually symmetric algorithms tend to need a lot fewer
resources than the asymmetric algorithms, as they need only one key for the en-
cryption and decryption of the message.

2. Implementation complexity: Symmetric algorithms require a secure channel to
exchange the secret key. This can some times become a problem in conventional
cryptography with a number of attacks that can compromise the channel.

3. Security against classic computers: Symmetric algorithms don’t give the same
level of security as the asymmetric ones. As the use of one key can lead to the com-
promise of the whole communication, if it gets stolen. On the other hand, asymmetric
algorithms using a private key for the decryption of the cipher-text, can guarantee in
a lot more cases a foolproof communication.

4. Security against quantum computers: As the asymmetric algorithms can be bro-
ken with a brute-force attack, the use of a quantum computer makes their security
obsolete. In comparison, a symmetric algorithm with a large key can be proven more
reliable against quantum machines (AES-256).

N. Stefanakos 26
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2.2 From typical to Quantum cryptography

Conventional cryptographic systems, while robust against current computational capa-
bilities, are vulnerable to attacks by quantum computers. Quantum algorithms, such
as Shor’s algorithm, can efficiently solve the mathematical problems underlying public-
key cryptography, rendering these systems insecure. Unlike typical cryptography, whose
security depends on computational complexity, the security of quantum cryptography is
based on the fundamental principles of quantum mechanics. This provides unconditional
security, meaning that no amount of computational power can break the encryption. The
most prominent application of quantum cryptography is QKD, which allows two or more
parties to generate a shared secret key. Protocols like BB84 and E91 utilize quantum
states to detect eavesdropping, ensuring secure key exchange. The algorithms that are
used are symmetric, as the members of the communication party use the same key for
the encryption and the decryption of the messages.

Quantum cryptographic protocols inherently detect eavesdropping and any attempt to in-
tercept the quantum states introduces detectable disturbances. This phenomenon can
alert the communicating parties to the presence of an eavesdropper. Unfortunately, these
technologies are still in the early stages of development and deployment. Current sys-
tems require highly specialized equipment, such as single-photon sources and detectors,
which are not yet widely available. Integrating quantum cryptographic systems with exist-
ing communication infrastructure poses significant challenges. This includes developing
compatible hardware and protocols to ensure seamless operation alongside conventional
cryptographic systems.

27 N. Stefanakos





Multi-User Measurement Device Independent Quantum Key Distribution Protocol

3. ELEMENTS OF QUANTUM MECHANICS IN QKD

In this chapter we’ll discuss some of the quantum mechanic laws that are essential in the
field of Quantum Cryptography, such as the Uncertainty principle, entanglement and the
non-cloning theorem.

3.1 Quantum Harmonic Oscillator

The Quantum Harmonic Oscillator is one of the most important and well-studied systems
in quantum mechanics, as it provides a foundation for more complex quantum systems
and is integral to both theoretical and applied quantum physics. It serves as a fundamental
model for understanding a wide range of physical phenomena, from the behavior of atoms
in a lattice, to the modes of light in a cavity. In this work we are interested in the quantum
harmonic oscillator since its Hamiltonian coincides with the Hamiltonian of photonic states.

The Hamiltonian of a quantum harmonic oscillator describes the total energy of the system
and is given by:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 , (3.1)

where p̂ is the momentum operator, x̂ is the position operator, m is the mass of the particle,
and ω is the angular frequency of the oscillator. The position andmomentum operators can
be expressed in terms of the creation (â†) and annihilation (â) operators, which describe
the creation and annihilation of photons in the vacuum, respectively:

â† =

√
πmω

h

(
x̂− i

mω
p̂

)
â =

√
πmω

h

(
x̂+

i

mω
p̂

)
.

If we calculate the quantity â†â, we get:

â†â =
πmω

h

(
x̂− i

mω
p̂

)(
x̂+

i

mω
p̂

)
=
πmω

h

(
x̂2 +

ix̂p̂

mω
− ip̂x̂

mω
+

p̂2

(mω)2

)
=
πmω

h

(
x̂2 +

i[x̂, p̂]

mω
+

p̂2

(mω)2

)
.

We know that [x̂, p̂] = i h
2π
, so now we have:

29 N. Stefanakos



Multi-User Measurement Device Independent Quantum Key Distribution Protocol

â†â =
πmω

h

(
x̂2 − h

2πmω
+

p̂2

(mω)2

)
=
(πmω

h

)( 2

mω2

)(
1

2
mω2x̂2 +

1

2

p̂2

m
− hω

4π

)
.

Finally, using equation 3.1, we get:

â†â =
2π

hω

(
Ĥ − hω

4π

)

Ĥ =
hω

2π

(
â†â+

1

2

)
. (3.2)

We now define the number operator as:

N̂ = â†â , (3.3)

where we know that:

â† |n⟩ =
√
n+ 1 |n+ 1⟩

â |n⟩ =
√
n |n− 1⟩ .

If we replace equation 3.3 in equation 3.2, we have:

Ĥ =
hω

2π

(
N̂ +

1

2

)
. (3.4)

To find the eigenstates of the energy, we apply the Hamiltonian (equation 3.4) to a number
state |n⟩:

Ĥ |n⟩ = hω

2π

(
N̂ +

1

2

)
|n⟩ . (3.5)

Using the property of the number operator:

N̂ |n⟩ = n |n⟩ ,

we can write that:

Ĥ |n⟩ = hω

2π

(
n+

1

2

)
|n⟩ . (3.6)
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And finally we conclude that the eigenstates of the energy for the Harmonic oscillator are
expressed in terms of |0⟩ as:

|n⟩ = (â†)
n

√
n!
|0⟩ (3.7)

The equation 3.7 is called number state and can express a quantum state if we have one
photon, two photons, etc.

3.2 Uncertainty principle

The uncertainty principle (or Heisenberg’s uncertainty principle), was proposed from W.
Heisenberg and is regarded as one of the principles of quantum mechanics. It states that
certain pairs of physical properties, such as position andmomentum, cannot be simultane-
ously measured to arbitrary precision. In the context of QKD, this principle underlines the
security of the communication protocols by ensuring that any attempt at eavesdropping in-
evitably introduces detectable disturbances. The uncertainty principle for the quadrutures
of an electromagnetic field can be mathematically expressed as:

∆x∆p ≥
1

2

(
h

2π

)
,

where ∆x is the uncertainty in position, ∆p is the uncertainty in momentum and h is
Planck’s constant.

In the realm of quantum information, this principle is often discussed in terms of non-
commuting observables, such as the components of a qubit. For example, the uncertainty
in measuring a qubit in the X-basis versus the Z-basis illustrates this principle and is given
form the mathematical expression that follows:

∆X∆Z ≥
∣∣∣∣ 12i ⟨ψ| [X,Z] |ψ⟩

∣∣∣∣ , (3.8)

where [X,Z] = XZ − ZX.

3.3 Entanglement

Quantum entanglement provides the fundamental basis for the security of several key
distribution protocols in the QKD field. The entanglement is a phenomenon where two
or more quantum particles become linked such that the state of one particle instanta-
neously influences the state of the other(s), regardless of the distance separating them.
This unique property is pivotal for detecting any eavesdropping attempts. When two party
members (Alice and Bob) share entangled particles, any interception or measurement by
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an eavesdropper (Eve) will inevitably disturb the entangled state. These disturbances are
detectable through statistical correlations in the measurement outcomes, allowing Alice
and Bob to identify and mitigate security threats.

Some typical entanglement-based protocols are:

• The Ekert 91 (or E91): a protocol that leverages the principles of quantum entan-
glement and Bell’s inequalities to ensure secure key distribution.

• The BBM92: a protocol that follows the steps of the typical BB84 protocol, with the
main difference that it is using entangled photon pairs instead of single photons to
reinforce its security against eavesdropping.

Similarly, MDI-QKD leverages entanglement to eliminate vulnerabilities associated with
measurement devices. By using an untrusted intermediary to perform BSMs on entan-
gled states sent by Alice and Bob, MDI-QKD ensures that any attempt to tamper with the
measurement results is detectable, thereby providing a high level of security even with
potentially compromised devices. Thus, entanglement not only enhances the robustness
of QKD systems but also extends their practical applicability, making it a vital element in
the development and implementation of secure quantum communication networks.

3.4 Non-cloning theorem

The non-cloning theorem is a fundamental principle of quantum mechanics that states
it is impossible to create an exact copy of an arbitrary unknown quantum state. It is an
essential component of the quantum mechanics theory, as if it were possible to clone
wavefunctions, it would be possible to circumvent the uncertainty of quantum measure-
ments by making a very large number of copies of a wavefunction, measuring different
properties of each copy, and reconstructing the exact state of the original wavefunction.
A quick proof of this principle is shown below:

Let us assume that we have two arbitrary quantum states |ψ⟩ and |ϕ⟩, a blank state |0⟩
and a unitary matrix U, that can clone arbitrary quantum states. First, we assume that the
cloning machine exists and it has to satisfy these equations:

U(|ϕ⟩ ⊗ |0⟩) = |ϕ⟩ ⊗ |ϕ⟩
U(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩

Then we take the inner product of our states before the cloning procedure:

(|ϕ⟩ ⊗ |0⟩) · (|ψ⟩ ⊗ |0⟩) = ⟨ϕ|ψ⟩ ⟨0|0⟩ = ⟨ϕ|ψ⟩

And after the cloning procedure:

(|ϕ⟩ ⊗ |ϕ⟩) · (|ψ⟩ ⊗ |ψ⟩) = ⟨ϕ|ψ⟩ ⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2
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But since unitary matrices conserve inner products, we have that:

⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2

Which, can only give two solutions:

⟨ϕ|ψ⟩ = 0

⟨ϕ|ψ⟩ = 1

That means that |ψ⟩ and |ϕ⟩ can be either orthogonal or equal but not arbitrary. So there
can not exist a unitary matrix that can clone arbitrary quantum states. This principle is in
contrast with classical principles.
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4. ELEMENTS OF QUANTUM OPTICS IN QKD

QKD leverages the quantum properties of photons, such as superposition and entangle-
ment, in order to perform the exchange of cryptographic keys between parties. For this
reason we describe various subjects within quantum optics that are essential to QKD,
including coherent states, the results of two interfering states in a beam splitter and the
Hong–Ou–Mandel (HOM) effect. These topics illustrate how quantum optics principles
are harnessed to enable secure communication and highlight the sophisticated techniques
used in modern QKD systems.

4.1 Coherent states

Coherent states [9] are specific states of the quantum harmonic oscillator that closely re-
semble classical states. These states were first introduced by R. J. Glauber in the context
of quantum optics and have since become fundamental to various areas of quantum me-
chanics and quantum information theory. They can be described as the eigenstates of the
annihilator operator α̂.

â |α⟩ = α |α⟩ , (4.1)

where α = |α|eiθα .

Coherent states can only be produced using high quality lasers, because they need to
have a well defined amplitude (|α|) and phase (θα). Their name is derived from the fact
that their fields are perfectly coherent and they come as close as quantum mechanics
allows to wavelike states of the electromagnetic oscillator.

It can be easily proven, using equation 4.1, that the vacuum |0⟩ is a coherent state if we
assume that α = 0. For this reason we can say that the vacuum is a zero amplitude
coherent state. We can also write the mean energy of a coherent state, using equation
3.2:

⟨Ĥ⟩ = ⟨α| Ĥ |α⟩

= ⟨α| hω
2π

(
â†â+

1

2

)
|α⟩

=
hω

2π

(
⟨α| â†â |α⟩+ 1

2

)
=
hω

2π

(
|α|2 + 1

2

)
.

If we consider that α =
√
µ the above equation is written as:
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⟨Ĥ⟩ = hω

2π

(
µ+

1

2

)
. (4.2)

So, the mean energy of a coherent state can be expressed in relation with the intensity of
the photons (µ).

4.2 Coherent States in a Beam Splitter

The Bell state measurement (BSM) [10], is the projection of two qubits onto four orthogonal
maximally entangled states. It is an important tool in the field of MDI-QKD, as we explain
in later chapters. In this section, we’ll describe how these measurements are calculated
in the concept of an MDI scheme between two users Alice and Bob.

To begin with, Alice and Bob create coherent states
∣∣√µeiθ〉 and send them to Charlie.

Then, Charlie performs a BSM with the two Coherent State pulses he received and an-
nounces the result to Bob and Alice. An in-depth analysis on how the Bell States are
created is shown in the equations below.

Consider a state |α⟩, we can write it as:

|α⟩ = eαα̂
†−α∗α̂ |0⟩ = e−

|α|2
2 eαα̂

†
e−α∗α̂ |0⟩

⇒ |α⟩ = e−
|α|2
2 e|α|e

iθα̂† |0⟩ , (4.3)

where α is the Euler formula |α|eiθ

Let us consider α =
√
µ, so the |α⟩ state is written as:

|α⟩ = e−
|√µ|2

2 e
√
µeiθα̂† |0⟩ .

Alice prepares the state:
|αA⟩ = e−

|√µ|2
2 e

√
µeiθα̂†

A |0⟩

and Bob prepares the state:

|αB⟩ = e−
|√µ|2

2 e
√
µeiθα̂†

B |0⟩

and broadcast them to Charlie. When these states interfere in the BS we get the following
state:

|αBS⟩ = |αA⟩ · |αB⟩

⇒ |αBS⟩ = e−
|√µ|2

2 e
√
µeiθα̂†

A |0⟩ · e−
|√µ|2

2 e
√
µeiθα̂†

B |0⟩ . (4.4)

N. Stefanakos 36



Multi-User Measurement Device Independent Quantum Key Distribution Protocol

We know that:
α̂†
A =

√
2

2
(α̂†

0 + α̂†
1) (4.5)

α̂†
B =

√
2

2
(−α̂†

0 + α̂†
1) , (4.6)

we denote as α̂†
0 the part of the equation that corresponds to DetectorD0 and α̂†

1 to Detector
D1.

Using Equations 4.4, 4.5 and 4.6 we get:

|αBS⟩ = e−µe
√
µ(

√
2

2
eiθA (α̂†

0+α̂†
1)+

√
2
2
eiθB (−α̂†

0+α̂†
1)) |00⟩

= e−µe
√
2µ
2

Θ̂ |00⟩ ,
(4.7)

where Θ̂ = (eiθA(α̂†
0 + α̂†

1) + eiθB(−α̂†
0 + α̂†

1)).

The result of the measurement onto the state |αBS⟩ from the Detectors (D0, D1) of Charlie,
is called Bell State.

4.3 Probability of a Single Photon Detection

To calculate the probability of each detection, we have to consider that a coherent state,
if we are using the Folk representation, has a Poissonian photon statistics. Keeping that
in mind, the probability is calculated as follows.

Using Poissonian photon statistics, we know that the probability to measure n photons
can be described as:

pn =
|α|2n

n!
e−|α|2 .

Using that α =
√
µ, we have:

pn =
µn

n!
e−µ.

Since the photon detectors cannot usually distinguish the number of photons, the proba-
bility for a ”click”, i.e., firing of a photon detector is:

Pclick = 1− p0

⇒ Pclick = 1− µ0

0!
e−µ
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Figure 4.1: Illustration of the relation between the intensity of the coherent state (µ) and the proba-
bility of detection, according to the equation 4.8.

⇒ Pclick = 1− e−µ . (4.8)

In figure 4.1, we present the relation between the probability of detection and the intensity
of the coherent state (µ), as expressed by the equation 4.8.

4.4 HOM effect

The Hong–Ou–Mandel [10] (HOM) effect, is a quantum interference phenomenon that
occurs when two indistinguishable photons are incident on a beam splitter, as seen in
the figure that follows (4.2). This effect is a fundamental demonstration of the quantum
nature of light and has significant applications in quantum information science, including
QKD. In MDI-QKD, the HOM effect is essential. When Alice and Bob send photons to
an untrusted intermediary (Charlie), the HOM effect allows Charlie to perform quantum
interference measurements that are critical for ensuring the security of the protocol. A
basic principle of the HOM effect is when two identical photons enter a 50/50 beam splitter
from different input ports, they interfere in such a way that they exit from the same output
port. A mathematical explanation of this effect is presented below.

Assume a Beam splitter operator:

UBS = At |d2⟩ ⟨l|+ Ar |d1⟩ ⟨l|+ Ar |d2⟩ ⟨r|+ At |d1⟩ ⟨r| ,
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Figure 4.2: Illustration of the HOM effect.

where At is the transmission amplitude coefficient, Ar is the reflection amplitude coeffi-
cient, the ⟨l| state denotes that the photonic signal comes from the left port and the ⟨r|
state denotes that it comes from the right port of the Beam Splitter. Also, we know that
|At|2 + |Ar|2 = 1.

If we have two photons at the Beam splitter (BS) inputs, following the above equation, we
can write the joint output state of the BS as follows:

|Ψ⟩out = (UBS |l⟩)⊗ (UBS |r⟩)
= ((At |d2⟩ ⟨l|+ Ar |d1⟩ ⟨l|+ Ar |d2⟩ ⟨r|+ At |d1⟩ ⟨r|) |l⟩)
× ((At |d2⟩ ⟨l|+ Ar |d1⟩ ⟨l|+ Ar |d2⟩ ⟨r|+ At |d1⟩ ⟨r|) |r⟩)
= (At |d2⟩ ⟨l|l⟩+ Ar |d1⟩ ⟨l|l⟩+ Ar |d2⟩ ⟨r|l⟩+ At |d1⟩ ⟨r|l⟩)
× (At |d2⟩ ⟨l|r⟩+ Ar |d1⟩ ⟨l|r⟩+ Ar |d2⟩ ⟨r|r⟩+ At |d1⟩ ⟨r|r⟩)
= (At |d2⟩+ Ar |d1⟩)(Ar |d2⟩+ At |d1⟩)
= (AtAr |d2⟩ |d2⟩+ At

2 |d2⟩ |d1⟩+ Ar
2 |d1⟩ |d2⟩+ ArAt |d1⟩ |d1⟩)

Now, we have to replace Ar = cos θ and At = i sin θ and if we consider that in a 50/50 BS,
cos θ = sin θ = 1√

2
, we finally get:

|Ψ⟩out = (i sin θ cos θ |d2⟩ |d2⟩+ (i sin θ)2 |d2⟩ |d1⟩+ cos θ2 |d1⟩ |d2⟩+ i cos θ sin θ |d1⟩ |d1⟩)

= (i
1√
2

1√
2
|d2⟩ |d2⟩ −

(
1√
2

)2

|d2⟩ |d1⟩+
(

1√
2

)2

|d1⟩ |d2⟩+ i
1√
2

1√
2
|d1⟩ |d1⟩)

= (
i

2
|d2⟩ |d2⟩ −

1

2
|d2⟩ |d1⟩+

1

2
|d1⟩ |d2⟩+

i

2
|d1⟩ |d1⟩)

= (
i

2
|d2⟩ |d2⟩+

i

2
|d1⟩ |d1⟩)
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This result means that the output beam can either exit from the left exit and hit Detector 1
( i
2
|d1⟩ |d1⟩) or it can exit from the right exit and hit Detector 2 ( i

2
|d2⟩ |d2⟩).
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5. BASICS OF QKD

5.1 QKD Systems

The QKD technology can be divided into two categories of systems. Those that the users
communicate directly with each other and those that need a remote node, to create a
trusted key.

1. Direct communication technology

• Device-Dependent QKD (DD-QKD): This is the first QKD system that has been
proposed. Usually in this system the source is placed on Alice and the detector
on Bob.

2. Remote node technology

• Source-Device-Independent QKD (SDI-QKD): In this system Alice and Bob
are assigned with the role of the detectors and Charlie (Remote Node) is the
source. This technologymainly uses entanglement based protocols and schemes,
as those that we present in the following section.

• Measurement-Device-Independent QKD (MDI-QKD): This system was pro-
posed to counter the inefficiencies of faulty measurement devices, strengthen
the security of QKD protocols (as we exaplin in later sections) and help increase
the effective distance that a QKD system can operate. It applies to the users
the role of the source and to the trusted node the role of the detector.

We present a figure with the architecture of each type in figure 5.1.

5.2 Quantum Conference Key Agreement

QCKA is an advanced cryptographic protocol designed to allowmultiple parties to securely
agree on a shared secret key using the principles of quantummechanics. Unlike traditional
QKD, which involves two parties, QCKA extends the capabilities of QKD to a multi-user
scenario, facilitating secure communication within a group.

QCKA could be achieved with the help of standard two-party QKD schemes, generating
a set of N-1 pair-wise keys either via prepare-and-send schemes or via shared entangled
Bell pairs. Using though this method needs more resources and adds complexity to the
system. On top of that, with the increase on the number of users we notice an exponential
decrease on the probability of the protocol’s success.

The first protocols proposed for the QCKA focused on themultipartite correlations between
the N-party GHZ states. TheGHZ states take their name from the scientists that conceived
them, Greenberger, Horne and Zeilinger. The N-party GHZ states can be written as:
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Figure 5.1: Presentation of the QKD system schemes.

|GHZN⟩ =
1√
2
(|0...0⟩+ |1...1⟩)

,where |0⟩, |1⟩ is the Z-basis, composed by the eigenstates of the Pauli operator σz. For
reference a 3-party GHZ state can be expressed as:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩)

Another type of protocols emerged, that do not rely on the correlation provided by the GHZ
states. Instead they exploit the multipartite entanglement of the W states. The W states
for N-users can be express as:

|WN⟩ =
1√
N
(|0...001⟩+ |0...010⟩+ |0...100⟩+ ...+ |1...000⟩)

For reference a 3-party W state can be written as:

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)

Some of the disadvantages of using an entanglement based CKA protocol are presented
below:

• Implementing QCKA protocols requires sophisticated quantum technologies, includ-
ing reliable sources of multi-partite entangled states, high-efficiency detectors, and
robust quantum channels.

• Quantum systems are highly sensitive to noise and decoherence, which can de-
grade the entangled states and affect the protocol’s performance. Developing error
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correction techniques and improving quantum hardware are crucial for overcoming
these challenges.

• Integrating QCKA into existing communication infrastructures involves significant ef-
fort. It requires the development of compatible hardware, protocols, and interfaces
to ensure seamless operation alongside classical communication systems

5.3 Attacks and Imperfect Devices in QKD

In this section, we’ll review the results of using imperfect devices. Also we’ll analyze the
attacks that an eavesdropper can do in order to learn more information about the secret
key.

5.3.1 Types of Attacks in QKD

An eavesdroppers main objective, in a Quantum system, is to temper with the quantum
channels in order to find correlations and eventually learn information about the secret
key. All the possible attacks that an eavesdropper can perform, can be grouped into three
categories.

1. The category of Individual Attacks. In this category we assume that the eaves-
dropper (Eve) can attack in each round of the protocol individually. This is happen-
ing because we do not allow Eve to have a Quantum Memory. For that reason, she
is bound to measure each quantum information she was able to intercept in every
around, without prior knowledge.

2. The Collective Attacks category. This category, resembles a lot of the Individual
Attacks one, with the only difference that now we allow Eve to possess a Quantum
memory. Now, Eve can store the Quantum information she intercepts in each round
and perform a collective attack on all that she stored in the end. With this method she
can more easily find correlations between each round and finally uncover valuable
information about the key.

3. The Coherent Attacks category. In this category, we don’t make any assumption
for the behaviour of Eve and her capabilities. She has to abide though by the laws
of Quantum Mechanics.

5.3.2 Examples of attacks in QKD

In QKD schemes, adversaries aim to intercept or tamper with the key exchange process
without being detected by the communicating parties. The robustness of QKD lies in its
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ability to detect any such interference through the inherent properties of quantummechan-
ics. In this section, we’ll present some of the possible attacks that can happend in a QKD
system.

• Photon-Number-Splitting Attack: Ideally a QKD system would use a true sin-
gle photon source, which never generates more than one photon in each output
pulse. However, an attenuated laser diode is often used instead. The coherent
states/pulses from an attenuated laser are superpositions of several photons. For
these, the same information is redundantly encoded on all the photons in the pulse,
thus creating the conditions for Eve to attack the system through a photon-number-
splitting attack. Eve then can subtract one photon and keep it for herself, while
forwarding the remaining photons to the QKD receiver. During the public discus-
sion, Eve will learn the encoding basis and will then be able to reliably measure the
photons she captured. This way, Eve gains full information whereas the QKD re-
ceiver interprets the undetected photons as a normal loss due to the communication
channel, leaving Eve undetected.

• Trojan-horse Attack: Eve can inject light into the sending module to probe and
retrieve information about the encoding devices, thus realizing a quantum version of
the “Trojan-horse attack”. Light injected by Eve passes through the same devices
encoding information on the quantum signals and some of this light is then reflected
back to Eve due to the non-zero reflectivity of the electro-optic components.

• Bright-light Attack: A crucial part of most QKD systems are the single-photon de-
tectors, used in the QKD receiver to detect the weak optical signals sent by the trans-
mitter through the communication channel. The most common single-photon detec-
tors are the Avalanche Photodiodes (APDs). The APD are reverse-biased above the
breakdown voltage so that a single photon can trigger a self-sustained avalanche
easily detectable by a sudden increase in the output current. However, any detector
necessarily spends part of its time below the breakdown voltage, because at some
point the detection avalanche has to be quenched to reset the detector to the ini-
tial conditions. When this happens, the detector enters the linear mode, where it is
not sensitive to single-photon light anymore. Eve can exploit this linearity to control
the output of the detectors and determine, unnoticed, bits of the final key. In some
cases, Eve can even push a single-photon detector into the linear mode by sending
bright-light into the receiver module, to then exploit her controlling abilities and steal
key bits.

• Back-flash Attack: In case of a detection event, the secondary photons emitted by
the APD during the avalanche of charge carriers can travel from the detectors back
to Eve through the communication channel. This consists a passive way that allows
Eve to learn the bit values associated with detection events and is the so-called
back-flash attack.
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5.3.3 Imperfections in devices

Although using a system with perfect devices would be ideal, it is not that easy to be
achieved. Devices in the source or detector side can have flaws that compromise the
integrity and the security of a Quantum Distribution system [11]. Some of the possible
results of using imperfect devices are presented below.

1. One result of a faulty source device is the phenomenon of tagging. Sometimes
a faulty source can incorporate information, about the base that was used in the
preparation phase, into the qubits. Eve can take advantage of this in order to learn
more about the secret key.

2. An imperfect detector has the tendency to misfire. When a detector misfires, the
probability that a qubit is detected successfully is basis dependent. Eve can exploit
this vulnerability if she control when the detector misfires. If Eve can control when
the detector misfires, she can eavesdrop some qubits and then actively cause the
detector to fire depending on what she measured.

3. Another result of using imperfect devices is the ability of Eve to hide the disturbance
of her eavesdropping. This happens when the source device and the detector device
are not aligned correctly to omit or detect a qubit in the proper basis.

5.4 Security in QKD

Security in QKD is of most important because it ensures the integrity and confidentiality
of the communication between parties. As outlined before QKD leverages the principles
of quantum mechanics, such as the uncertainty principle and quantum entanglement, to
detect any eavesdropping attempts. Given the increasing threats to data privacy and the
potential vulnerabilities of classical cryptographic methods, the robust security provided by
QKD is crucial for safeguarding sensitive information in an era of growing cyber threats. In
this section, we’ll analyse what makes aQKD protocol secure and which are the algorithms
that help its robustness.

5.4.1 Basic principles of a secure protocol

There are some conditions that a multiparty protocol needs to satisfy in order to be con-
sidered secure [7].

• A protocol needs to be correct. A correct protocol has to satisfy the inequality that
follows:

p(KeyA = KeyB1 = ... = KeyBn) ≥ 1− ϵcorrect
,where p(KeyA = KeyB1 = ... = KeyBn) is the probability that all the keys are
identical and ϵcorrect symbolizes the degree of the protocols correctness.
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• A protocol needs to be secret. To satisfy the secrecy requirement, we need Alice’s
key to be randomly chosen among a set of possible strings and the eavesdropper
to not have any information about the key, except for a probability symbolized with
ϵsecret. This requirement can be written as the inequality that follows:

p(Ω)
1

2
∥ ρKAE|Ω − τKA

⊗ ρE|Ω ∥≤ ϵsecret

,where p(Ω) is the possibility of the event Ω that the protocol does not abort, ρKAE|Ω
is a shared state between Alice and Eve when we have the event Ω, τKA

is the
maximally mixed state of all the possible Alice’s keys and ρE|Ω is the state that Eve
has in the end of the protocol.

• A protocol needs to be complete. In order to fulfill the requirement of completeness,
a protocol needs to have an honest implementation such that the possibility that it
does not abort is greater than 1− ϵcomplete.

To summarize, for a protocol to be considered secure it needs to satisfy two conditions:

1. It needs to be ϵcorrect & secret. That is, it needs to meet the requirements of Correct-
ness and Secrecy.

2. It needs to meet the requirements of Completeness

5.4.2 Resolving errors with CSS codes

Due to attacks, such as those that were described before, and the imperfections in the
quantum channels, the raw key generated in QKD protocols often contains errors and
usually some information of the secret key is leaked to the adversaries. The most used
way to counter this phenomenon is the employment of entanglement distillation and error
correction techniques to produce a final key that is secure and error-free. As entanglement
distillation, we refer to the process by which Alice and Bob improve the quality and security
of the raw key by reducing the error rate and eliminating any information potentially leaked
to an eavesdropper. This is achieved through the processes of error correction and privacy
amplification.

• Error correction is the process where Alice and Bob compare portions of their raw
key to identify and correct discrepancies. Classical error-correcting codes are used
at this stage to reconcile their keys.

• Privacy amplification we characterize the process where Alice and Bob try to mini-
mize any information an eavesdropper might have obtained. This involves applying
a hash function to the corrected key, reducing its length but ensuring that the final
key is secure.
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The most known quantum error-correcting codes are called CSS or Calderbank-Shor-
Steane [12,13] as they were named after their inventors. CSS codes combine two classical
linear codes, typically one for bit-flip errors (C1) and another for phase-flip errors (C2),
where we know that C2 ⊂ C1 ⊂ F2

n. CSS codes can correct both bit-flip and phase-flip
errors. By performing syndrome measurements, Alice and Bob can detect and correct
errors without directly measuring the quantum state, thus preserving the superposition
and entanglement properties.
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6. MEASUREMENT DEVICE INDEPENDENT QKD

AnMDI scheme consists, as was mentioned in a previous chapter, of two parts. The Users
(Bob and Alice) and the MU (Charlie). The main differences from a typical QKD scheme,
is that the MU is located in a remote location away from the users and that it can work with
a compromised MU by an adversary. A typical MDI-QKD protocol usually works following
the steps that follow below:

1. At first, Bob and Alice prepare quantum states that contain information and send
them to a remote location, known as Charlie.

2. After that, the two states arrive at Charlie’s location where a BS is placed, to create
an interference between them.

3. Lastly, Charlie performs a measurement and announces the results to the users.

6.1 Different MDI-QKD schemes

In this section, we will describe the three main schemes that an MDI-QKD system can
operate. These are the One-Mode, Two-Mode and Mode Pairing scheme.

1. Two-Mode was the first scheme that was proposed, and it took its name from the
fact that it needs two different types of pulses (Reference and Signal) to arrive at
the MU one after the other. This scheme although it can provide a stable optical
interference, using the Reference pulses in-front of the Signals, it depends heavily
on coincidence that prevents it from increasing the Key Rate.

2. Second came the One-Mode scheme. This scheme encodes information into one
pulse that sends across the channel. To make this scheme work successfully we
need global phase locking, to prevent a destructive phase difference between the
interfering coherent states of the two parties. One main MDI-QKD scheme that be-
longs to this category is the Twin-Field QKD, that can either encode the information
in the phase or the intensity of the pulse.

3. Lastly, a new scheme has been proposed, theMode Pairing scheme. This scheme
depends neither in coincidence or phase locking. To achieve that, in this schemeBob
and Alice, through a post processing operation, match their clicked pulses together
and use them as Reference or Source, depending on their needs.

We present in figure 6.1 the main MDI-QKD scheme types.

49 N. Stefanakos



Multi-User Measurement Device Independent Quantum Key Distribution Protocol

Figure 6.1: Presentation of the main MDI-QKD scheme types [1].

6.2 Typical MDI protocols

There are two main ways that one can encode information into a pulse. By using the
phase, with Phase encoding and the polarization of the laser beam with Polarization en-
coding. In what follows we describe the first MDI protocols which have pubished in 2012
by Lo et al. These are now considered as the basic MDI protocols, since the last years
one can find in the literature many publications with more advanced schemes.

6.2.1 Architecture of the phase encoding protocol

A simple phase encoding protocol usually follows an architecture as shown in figure 6.2.

Now, we are going to explain what each module in the architecture of the figure 6.2 means.
The source can be a Weak Coherent State (WCS) laser that produces coherent states.
These states can take random values, for example the logical 0 (phase 0 for base X, π

2

for base Y) or the logical 1 (phase π for base X and phase 3π
2
for base Y) with the help of

the Phase Modulator (PM). The IM is the Intensity Modulator and can be used to create
the concept of decoy states [14], especially useful to reinforce the security of a protocol.
Last, the coherent states interfere onto a BS and the outputs are guided into two Single
Photon Detectors (SPDs) D0 and D1.
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Figure 6.2: Architecture of a Phase Encoding Protocol, where BS is the beam splitter, PM is the
phase modulator and IM is the intensity modulator.

6.2.2 Architecture of the polarization encoding protocol

The architecture of a polarization encoding protocol is similar to the one of phase encoding.
The main difference is the use of the Polarization Beam Splitters (PBSs). The figure 6.3
that follows, displays this difference.

As mentioned above the architectures of polarization and phase encoding schemes are
similar. Their only two differences are:

1. In the polarization scheme the Phase Modulator (PM) is replaced with a Polarization
Modulator (PolM). This change can provide more possible random states. For ex-
ample, |0⟩, |1⟩, |+⟩ and |−⟩. Where we have the horizontal polarization denote by the
state |0⟩, vertical polarization denote by the state |1⟩ and the diagonal polarizations,
45 degrees denote by the state |+⟩ and -45 degrees by |−⟩.

2. Two Polarization Beam Splitters (PBS) are added, that project the input beams into
Horizontal or Vertical polarization states.

6.3 The phase encoding MDI-QKD protocol

In the following subsections, we focus more in detail on how the phase encoding protocol
works and in the next chapter we introduce an expansion of it, that makes possible a
communication between three members.
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Figure 6.3: Architecture of a Polarization Encoding Protocol, where BS is the beam splitter, PBS are
the polarization beam splitters, PolM is the polarization modulator and IM is the intensity modulator.

6.3.1 Steps of a phase encoding protocol

First, we describe the typical protocol emphasizing on its individual steps. A phase en-
coding protocol usually follows the steps that are presented below.

1. Alice and Bob prepare two different categories of pulses, one that can be described
as the signal pulse and one as the reference pulse. The signal pulse is the one
that contains the valuable information and will be used for the key generation. The
reference pulse is used for the global phase locking. Alice and Bob randomly apply
phase modulation on the signal pulse, and choose from four different phases (0, π/2,
π, 3π/2). Those four phases are divided into pairs that define the bases X (0, π) and
Y (π/2, 3π/2).

2. Alice and Bob send their pulses to Charlie that has a Measuring Unit (MU). Charlie
performs measurements onto the pulses and announces if the measurements were
successful or not. With the term successful measurement we consider the event
when we have a detection on only one of the two detectors. Also, if the measurement
was successful, he announces the type of the detection (0 or 1).

3. In a scenario that the measurement was not successful Alice and Bob discard their
data and begin the process from step 1. If it was successful, they keep them and
broadcast the bases they used. If their bases don’t match, they discard them and
begin from the start again. If they do match, they begin to create the sifted key.

4. Alice and Bob continue to follow these three steps until they create a sifted key that’s
large enough for their needs.
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5. When they create the sifted key, they proceed to estimate two parameters of the
channel, the Bit Error Rate (BER) and the Phase Error Rate. To achieve that, they
use a piece of the sifted key as the test bits for the BER estimation and the remaining
bits to estimate the phase error rate. If these two parameters are too high, Alice and
Bob abort the protocol.

6. Alice and Bob choose on an error correcting code and a hash function that they will
both use, depending on the values of the two parameters (BER and Phase Error
Rate). Lastly, they perform error correction and privacy amplification before they
finally share the key.

6.3.2 Results of the measurement

To further understand how Alice and Bob create the shifted key, we need to explain what
Charlie announces in each successful detection depending on the phase (Basis) Alice and
Bob used. As described in Section 4.2, Charlie performs a BSM with the two coherent
states that Alice and Bob sent to him. Using Equation 4.7, we can assign the four phase
values of the θA and θB and we finally get the following table.

Table 6.1: Results of the Bell State Measurements for two users.

A\B 0 π π/2 3π/2

0
D0 D1 D0 D1 D0 D1 D0 D1

0
√
2µ

√
2µ 0 √

µ
√
µ

√
µ

√
µ

π
D0 D1 D0 D1 D0 D1 D0 D1
√
2µ 0 0

√
2µ

√
µ

√
µ

√
µ

√
µ

π/2
D0 D1 D0 D1 D0 D1 D0 D1
√
µ

√
µ

√
µ

√
µ 0

√
2µ

√
2µ 0

π
D0 D1 D0 D1 D0 D1 D0 D1
√
µ

√
µ

√
µ

√
µ

√
2µ 0 0

√
2µ

In table 6.1 we color:

• with red the events that are discarded by the system because we have a detection
in both the detectors.

• with light blue when we have a detection on detector 1 (detection type 1).
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• with pink when we have a detection on detector 0 (detection type 0).

A detailed analysis on the calculations of the table 6.1 can be found in Appendix A.1.

6.3.3 Security of a typical MDI protocol

To prove the security strength of a phase encoding protocol, we’ll follow the steps of Ref.
[5]. First, we consider a virtual protocol in which Bob and Alice make pulses with a joined
systems state. In this protocol Eve has full control and knowledge of the whole system,
creating a worst case scenario. Then we will try to give an equation that can approximately
calculate the SKR of such protocol.

|Ψ′⟩ = 1

2
(|0z⟩E|0z⟩B|0z⟩A

∣∣Φ(+)
x (|
√
αA⟩)

〉 ∣∣Φ(+)
x (|
√
αB⟩)

〉
+|0z⟩E|0z⟩B|1z⟩A

∣∣Φ(+)
y (
∣∣√−iαA

〉
)
〉 ∣∣Φ(+)

y (
∣∣√−iαB

〉
)
〉

+|1z⟩E|1z⟩B|0z⟩A
∣∣Φ(+)

x (|
√
αA⟩)

〉 ∣∣Φ(+)
y (
∣∣√−iαB

〉
)
〉

+|1z⟩E|1z⟩B|1z⟩A
∣∣Φ(+)

y (
∣∣√−iαA

〉
)
〉 ∣∣Φ(+)

x (|
√
αB⟩)

〉
).

(6.1)

Below, we will explain what each parameter in the above state means.

• The first system denoted by E (|K⟩E) is used to inform Eve if Alice and Bob have
used the same base. If Alice and Bob used the same base then the system is |0z⟩E
and if they used different bases the system is |1z⟩E.

• The second system denoted by B (|K⟩B) is used to inform Bob if he used the same
base as Alice. As before, if Bob used the same base as Alice then the system is
|0z⟩B and if he used different a base the system is |1z⟩B.

• The third system denoted by A (|K⟩A) is used by Alice. She measure it to determine
the base to use. If the system is |0z⟩A then Alice used the X base and if it |1z⟩A
she used the Y base. The outcome of the measurement is sent to Eve after she
announces the measurement outcome at the MU.

• The systems
∣∣∣Φ(+)

x (
∣∣√αA

〉
)
〉
,
∣∣∣Φ(+)

x (
∣∣√αB

〉
)
〉
,
∣∣∣Φ(+)

y (
∣∣√−iαA

〉
)
〉
and

∣∣∣Φ(+)
y (
∣∣√−iαB

〉
)
〉

are sent to Eve and contain the valuable information for the key generation.

Eve then post-selects the pulses that will be used for the key generation. As described
before the key generation process is accomplished only when Bob and Alice use the same
base. Following this assumption we will write again the state for the virtual protocol (Equa-
tion 6.1), focusing only on the systems that Bob and Alice used the same base.
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|Ψ⟩ = 1√
2
(|0z⟩A

∣∣Φ(+)
x (|
√
αA⟩)

〉 ∣∣Φ(+)
x (|
√
αB⟩)

〉
+|1z⟩A

∣∣Φ(+)
y (
∣∣√−iαA

〉
)
〉 ∣∣Φ(+)

y (
∣∣√−iαB

〉
)
〉
).

(6.2)

To be able to calculate the key generation rate, we need to focus on the approximation of
the Phase error rate, as this can not be experimentally calculated. The Phase error rate
is the rate of errors on the bits when we measure a state with the wrong base. To give an
example, in this protocol we have a Phase error rate on the Y basis, denoted as δph,y, if
Charlie chose to measure on the Y basis when Bob and Alice prepared and sent pulses
in the X basis.

We are going to bound the phase and bit error rates. Let γ(t|α) be the number of events
that a measurement was accomplished and ”t”, ”α” be two variables that indicate the exis-
tence of an error and the base that was used, respectively. ”t” and ”α” can take the value
of 0 and 1.

• To find the value of ”t”, Bob measures his system (|K⟩B) using the X base. If there
is an error ”t” is 1 and if there is not t is 0.

• To find α, Alice measures her system (|K⟩A). If α = 0 then Charlie uses the wrong
base for the measurement and we have a Phase error rate. If α = 1 Charlie uses
the same base and we have a Bit error rate.

Following this assumption, the number of events that we have a phase error denoted as
δph, is equal to δph = γ(t = 1|α = 0). Similarly, the number of events we have bit errors
are δbit = γ(t = 1|α = 1). Below, there is going to be an analysis on some equations that
we need in order to bound the bit and phase error rates, using the help of [15,16].

Easily we can assume that as the protocol uses only two bases, the number of measure-
ment events with phase error is going to be approximately half of the total.

γ(α = 0) ≈ 1/2 .

Another useful equation can be found if we try to find the total number of events that Bobs
measurement gives an error (t=1). And can be approximately assumed that it is the half
of the total bit and phase error rates.

γ(t = 1) ≈ δbit + δph
2

. (6.3)

Two more useful equations are:

γ(a = 1|t = 1) ≈ δbit
δbit + δph

γ(a = 0|t = 0) ≈ 1− δbit
2− δbit − δph

.

(6.4)
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Before we continue, it is essential to bound the total number of successful events in base
X (γx) and Y (γy). At first let us write the possibility ρ as:

ρ = |ϕ⟩ ⟨ψ| .

Now we can write that:

⟨X⟩ = Tr(ρX) = γx

⟨Y ⟩ = Tr(ρY ) = γy

⟨Z⟩ = Tr(ρZ) = γz .

And we know that:

γ2x + γ2y + γ2z ≤ 1

⇒ γ2x + γ2y ≤ 1− γ2z .

We also know that γ2z ≤ 1 and we conclude that:

γ2x + γ2y ≤ 1 .

Another way to write the above equation is:

⟨X⟩2 + ⟨Y ⟩2 ≤ 1 .

Keeping in mind that ⟨X⟩ can take values of either 1 or -1, we have:

⟨X⟩ = 1Prob(−1)− 1Prob(1)

⇒⟨X⟩ = (1− Prob(1))− 1Prob(1)

⇒⟨X⟩ = 1− 2Prob(1)

⇒⟨X⟩ = 1− 2γ ,

when Prob(1) = γ and:

Prob(1) + Prob(−1) = 1⇒ Prob(−1) = 1− Prob(1) .

Combining all the above equations we get that:

(1− 2γx)
2 + (1− 2γy)

2 ≤ 1 . (6.5)

Last, we’ll assume a parameter ”∆” that can be described as the possibility the measure-
ment of the Quantum coin to be |1x⟩. The Quantum coin is measured along the X Base.
What proposed before, can be written as ∥ ⟨1x|Ψ⟩ ∥2 = ∆. Knowing that, we can write:

γ(t = 0)γx(a = 1|t = 0) + γ(t = 1)γx(a = 1|t = 1) ≈ ∆ . (6.6)

If we use the equations 6.3, 6.4, 6.5 and 6.6, we conclude to the final equation that bounds
the bit and phase error rates, of either the X or the Y base.√

(1− δbit)(1− δph) +
√
δbit · δph ≥ 1− 2∆ . (6.7)
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Finally, we have everything we need to write the equation of the Key Generation Rate (G)
along the X basis.

Gx = γx,suc · (1− f(δx,bit)h(δx,bit)− h(δy,ph)) . (6.8)

Similarly we can write the Key Generation Rate along the Y basis, all we need to do is
interchange the X base with the Y base parameters.

Gy = γy,suc · (1− f(δy,bit)h(δy,bit)− h(δx,ph)) , (6.9)

where γsuc is the number of successful events, h(δbit) is the rate of the sifted key that has
to be sacrificed, in order to perform the error correcting code (in order to match Bob’s key
with Alice’s), f(δbit) is the inefficiency of the error correcting code and h(δph) is the cost of
performing privacy amplification.
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7. PROPOSAL FOR A THREE USER MDI-QKD PROTOCOL

In this chapter, we’ll propose an extension on the basic protocol, that allows a commu-
nication between a three member party. There is going to be a mention on its security
and on the fact that a connection (between at least two members) can be established re-
gardless of the base that the members use. First, we are going to focus our attention on
the architecture of the protocol. The architecture of this protocol and the layout of Beam
splitters that the Interference Unit needs, is displayed in figure 7.1.

As we now have three users that send pulses to Charlie, we need three detectors to
satisfy all the different combinations on the MU. In accordance with the typical protocol
these combinations denote the type of the detection.

7.1 Steps of a 3-party protocol

The steps that need to take place don’t differ from the typical approach that was presented
before and are shown below. As we have three members now, we’ll name the first two
members as Bob1 and Bob2 and the third as Alice.

1. As with the typical protocol, the three users prepare two different categories of
pulses, the reference and the signal pulse. Then they randomly apply phase mod-
ulation on the signal pulse, choosing from four different phases (0, π/2, π, 3π/2).
These phases can be grouped into pairs, defining the two bases X (0, π) and Y (π/2,
3π/2).

2. The party members send their pulses to Charlie that has a Measuring Unit (MU).
Charlie performs measurements onto the pulses and announces if the measure-
ments were successful or not. Also, if the measurement was successful, he an-
nounces the type of detection (0, 1, 2 or 3). In table 7.1 we color:

• with light orange when we have a detection on detectors 2 and 3 (detection
type 0).

• with light red when we have a detection on detector 1 (detection type 1).
• with light green when we have a detection on detector 2 (detection type 2).
• with light blue when we have a detection on detector 3 (detection type 3).

3. In a scenario that the measurement was not successful the members discard their
data and begin the process from step 1. If it was successful, they keep them and
broadcast the bases they used. If their bases don’t match, they discard them and
begin from step 1 again. If their bases match, depending on the detection type and
their bit value, they check if they need to perform a bit flip. The bit flip is done in
regards to the bits of Alice (see table 7.1 for more information). After the bit flip
procedure they create the sifted key.
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Figure 7.1: The architecture of the 3-Party Phase Encoding Scheme (A) and the structure of the
Interference Unit (B).

4. The members continue to follow these three first steps until they create a sifted key
that’s large enough for their needs.

5. When they create the sifted key, they proceed to estimate two parameters of the
channel, the Bit Error Rate (BER) and the Phase Error Rate with respect to Alice,
as we explain in section 7.3. To achieve that, they use a piece of the sifted key and
use it as the test bits for the BER estimation and estimate the phase error rate using
the remaining bits. If these two parameters are too high, the party members abort
the protocol.

In the pair-wise case (see section 7.4) the party members perform one last step. They
choose on an error correcting code and a hash function that they will both use, depending
on the values of the two parameters (BER and Phase Error Rate). Then, they perform error
correction and privacy amplification before they finally share the key. In the case where
all three users use the same base, this step can not be performed as we will explain in
section 7.3.

7.2 Interference Unit and Bell State Measurement

One major component that had to be changed was the BS, as now we don’t have two light
pulses but three. For that reason, we need to replace it for an ”Interference Unit”. The
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”Interference Unit” has to perform a three dimensional rotation on the three beams. The
rotation matrix (R) that is used, is a rotation on each of the three axis in a three dimensional
space. We use the Lie algebra orthogonal group as our rotation matrices.

Lx =

0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 , Lz =

0 −1 0
1 0 0
0 0 0


R = eX · eY · eZ (7.1)

,where eX , eY , eZ are the exponential matrices and X = π/4Lx, Y = π/4Ly, Z = π/4Lz

After the ”Interference Unit”, the three input pulses are rotated and give three output
pulses. These output pulses can be easily found using the following equation.

α̂†
B1

α̂†
B2

α̂†
A

 = RT ·

α̂†
1

α̂†
2

α̂†
3

 (7.2)

In Appendix B we give a detailed explanation on how to find the output beam equations
using equation 7.2.

When the three pulses interfere in the BS, they create the state that follows:

|αBS⟩ = eKe
√
µΛ̂ |000⟩ , (7.3)

where K = −3µ
2
and Λ̂ = eiθB1α̂†

B1 + eiθB2α̂†
B2 + eiθAα̂†

A. Then Charlie performs a measure-
ment onto the above state.

If all users send pulses in the same base, we have the table 7.1, that follows. In the table
7.1 we assumed that the users chose the base X (0, π) for their pulses. The results are
exactly the same, if they had chosen base Y (π

2
, 3π

2
). Also, by examining the table 7.1 we

notice that the results do not disclose the value of the bit that was used during the making
of the pulses by the users. A detailed analysis on the calculations of the table can be
found in Appendix A.2.1.

7.3 Security of the three party protocol

At first, we wanted to prove the security of our proposed protocol taking into consideration
and following the methodology that was presented in the previous section. Unfortunately,
we faced some serious obstacles. The main reason was the lack of CSS codes for a three
member QKD scheme. As explained in a previous chapter, without the help of CSS codes
we are not able to perform the procedures of error correction and privacy amplification.
And furthermore, the theory of entanglement distillation for three-partite entangled states
is not fully developed.
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Table 7.1: Results of the Bell State Measurements for three users, using the same base. Due to the
small value of µ, we can only assume that in the results of the table, a detection can take place when
the intensity of the pulse that arrives at the detector has a factor greater than 1.

User Detector Detection Type

B1 B2 A D1 D2 D3

0 0 0 0.71
√
µ 0.5

√
µ 1.5

√
µ Type 3

0 0 π 0.71
√
µ 1.5

√
µ 0.5

√
µ Type 2

0 π 0 1.70
√
µ 0.22

√
µ 0.22

√
µ Type 1

0 π π 0.32
√
µ 1.20

√
µ 1.20

√
µ Type 0

π 0 0 0.32
√
µ 1.20

√
µ 1.20

√
µ Type 0

π 0 π 1.70
√
µ 0.22

√
µ 0.22

√
µ Type 1

π π 0 0.71
√
µ 1.5

√
µ 0.5

√
µ Type 2

π π π 0.71
√
µ 0.5

√
µ 1.5

√
µ Type 3
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Figure 7.2: The architecture of the protocol [2], based on whom we prove the security of our 3-Party
Phase Encoding protocol.

Due to the limitations that were described above we’ll prove the security of our protocol
using the method in Ref. [2]. Let us first perform a quick review on how this protocol works
and how its security was proven. To begin with, we present the architecture of this protocol
in figure 7.2.

This protocol is a typical prepare and measure CKA protocol. Below we present the steps.

1. Alice prepares the same sequence of 2n qubits and sends it to Bob and Charlie.
This sequence can contain states from two bases (|0⟩, |1⟩) and (|+⟩, |−⟩) in a random
manner.

2. Bob and Charlie receive the sequence and choose a basis (|0⟩ , |1⟩) or (|+⟩ , |−⟩)
for the measurement. They do this process for each qubit independently. And the
choice of the basis is independent between them.

3. Alice announces which basis she used for each qubit. Then, Bob and Charlie an-
nounce which basis they used for the measurement of that qubit. At the end of this
process only the qubits that were prepared and measured with the same base are
kept.

4. If the preparation and measurement of a qubit was in the basis (|0⟩ , |1⟩), then Alice
assigns:

• bit 0 (ai = 0) in the bit-stream when the qubit was |0⟩
• bit 1 (ai = 1) when the qubit was |1⟩

Following the same method we can create Bob’s bits:

• bit 0 (bi = 0) when we have the qubit |0⟩
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• bit 1 (bi = 1) when we have the qubit |1⟩

and Charlie’s bits:

• bit 0 (ci = 0) when we have the qubit |0⟩
• bit 1 (ci = 1) when we have the qubit |1⟩

5. If the preparation and measurement of a qubit was in the basis (|+⟩ , |−⟩), then Alice
assigns:

• bit 0 (αi = 0) in the bit-stream when the qubit was |+⟩
• bit 1 (αi = 1) when the qubit was |−⟩.

Exactly as before, we create Bob’s bits:

• bit 0 (βi = 0) when we have the qubit |+⟩
• bit 1 (βi = 1) when we have the qubit |−⟩

and Charlie’s bits:

• bit 0 (γi = 0) when we have the qubit |+⟩
• bit 1 (γi = 1) when we have the qubit |−⟩.

From this point forward we are going to describe the key generation process, using
the bit-streams a, b and c of the base (|0⟩ , |1⟩).

6. Alice randomly chooses half of the qubits that were transmitted on base (|0⟩ , |1⟩),
creating a subset denoted with S. Then, Alice, Bob and Charlie publicly announce
their bits (ai, bi, ci) and calculate their bit error rate using the following equation.

q1 = max

(
B_E(A−B)

S
,
B_E(A−C)

S

)
, (7.4)

where B_E(A−B) is the number of bit errors between Alice and Bob and B_E(A−C) is
the number of bit errors between Alice and Charlie.

7. Alice randomly chooses half of the qubits that were transmitted on base (|+⟩ , |−⟩),
creating a subset denoted with S’. Then, Alice, Bob and Charlie publicly announce
their bits (αi, βi, γi) and calculate their bit error rate using the following equation.

q2 =
B_E(α,β,γ)

S ′ , (7.5)

where B_E(α,β,γ) is the number of bit errors that only two out of three users have a
bit disagreement. Practically the total number of errors between the users.

8. Alice, Bob and Charlie agree on an error correcting (linear) code C1.
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9. Using a parity check matrix H1 for the linear code C1, a syndrome is created (H1a⃗)
and publicly announced by Alice. This syndrome can be used to find the position
of the errors in the bit-stream. a⃗ is the vector containing the second half of the bits
from step 4.

10. Bob and Charlie calculate their error vectors f⃗ and f⃗ ′ such that:

H1f⃗ = H1⃗b−H1a⃗⇒ (⃗b− f⃗ = a⃗)

H1f⃗ ′ = H1c⃗−H1a⃗⇒ (c⃗− f⃗ ′ = a⃗)

11. Finally, Alice chooses a subspace (C2) of C1, with dimensions nh(q2), where h(...) is
the binary entropy. Finding and using this subspace C2 is crucial for the secret key
generation rate.

Before we present the final equation for the key generation rate, we need to perform a
quick review on the CSS code. As with the Ref. [2], we’ll define the quantum state vector

|v⃗⟩ = |v1⟩ ⊗ |v2⟩ ⊗ ...⊗ |vn⟩

We have two binary linear codes C1 and C2, so we can write that:
1√
|C2|

∑
|v⃗ + w⃗⟩ ,

where v⃗ ∈ C1, w⃗ ∈ C2 and C2 ⊂ C1 ⊂ F n
2 . F n

2 is the binary vector space on n bits.

If we parametrize the CSS code for x⃗ and z⃗, we have:
1√
|C2|

∑
(−1)(z⃗·x⃗) |x⃗+ v⃗ + w⃗⟩

We assume that a linear code has a length of n. In our protocol the bit-stream is of length
2n. For that reason we need a linear code CC of length 2n. So, now the parametrized
CSS code is written as:

1√
|C2|

∑
(−1)(z⃗·x⃗) |x⃗+ v⃗ + w⃗⟩ |x⃗+ v⃗ + w⃗⟩

For a random z⃗ the above equation is written as:

1

2n|C2|
∑
z⃗∈Fn

2

( ∑
w⃗1∈C2

(−1)(z⃗·w⃗1) |x⃗+ v⃗ + w⃗1⟩ |x⃗+ v⃗ + w⃗1⟩

)

×

( ∑
w⃗2∈C2

(−1)(z⃗·w⃗2) |x⃗+ v⃗ + w⃗2⟩ |x⃗+ v⃗ + w⃗2⟩

)

=
1

|C2|
∑
w⃗∈C2

|x⃗+ v⃗ + w⃗⟩ |x⃗+ v⃗ + w⃗⟩ ⟨x⃗+ v⃗ + w⃗| ⟨x⃗+ v⃗ + w⃗| ,
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which is exactly the same argument as with reference [17]. We can easily write the above
equation as:

1

4n

∑
x⃗∈Fn

2

∑
v⃗∈Fn

2

ρ(x⃗, v⃗)

=
1

2n

∑
α⃗∈Fn

2

|α⃗α⃗⟩ ⟨α⃗α⃗| .

The second part of the above equation shows that the states |00⟩ or |11⟩ if we send them
n times, have the same probability. And this is how Alice works in this protocol.

Here we conclude the theoretical analysis on the bit error rate and we’ll proceed on the
calculation of the phase error rate. We assume an H2 parity check matrix for C⊥

2 and then
an H ′

2 parity check matrix for (C2C2)
⊥. Both H2 and H ′

2 have dimensions of n-dim(C2).
Also, we assume a phase error:

Zz1 ⊗ Zz2 ⊗ ...⊗ Zz2n .

After the phase error correction process we know the quantity (h⃗ih⃗i, e⃗), for i=1,...,n −
dim(C2), where e⃗ = (z1, z2, ..., z2n) ∈ F n

2 . Now, we can consider a new phase error:

Zz′1 ⊗ Zz′2 ⊗ ...⊗ Zz′2n

that has the same effect onto the state if:

zi + zn+i = z′i + z′n+i .

Following this assumption, in order to correct the phase errors we need to find the binary
vector:

e⃗′ = (ei + en+i, ..., en + e2n) .

We can easily observe that:

(h⃗ih⃗i, e⃗) = (h⃗i, e⃗′) .

And as we know, finding e⃗′ from (h⃗i, e⃗′) is the decoding process of the linear code C⊥
2 . Also,

the probability ei + en+i = 1 can be calculated from q2.

Considering all of the above, we conclude that the SKR can be calculated from the below
equation:

G = 1− h(q1)− h(q2) , (7.6)

where h() is the binary entropy, h(q1) is the amount of bits that we need for the error
correction and h(q2) is the amount of bits for the privacy amplification.
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Figure 7.3: First assumption in order for our protocol to match with that of [2].

Having completed the review of the protocol Ref. [2], we are ready to apply this proof to
the three-party MDI phase encoding protocol. Before we proceed, will have to take some
assumptions so that there is a matching for the two protocols.

1. First, we take the assumption that the channel between Alice and Charlie has no
errors. One way we can come close to this assumption is if we place Alice close
enough to the MU (Charlie). Another way, would be if we placed Alice on the MU,
this move though would transformed our protocol from an MDI, to a typical multiparty
QKD protocol. Using this assumption, we can say that Alice and Charlie are virtually
one entity, as shown in figure 7.3. This assumption was introduced to make every
user perform error correction on the bit-stream of Alice, as was described in step 6
of the protocol.

2. Second, we have to reverse the way that the states are transmitted. Instead of going
from the users (Bob1 and Bob2) to the MU (Charlie-Alice entity), they are transmitted
the other way (from the Charlie-Alice entity to the users), as shown in figure 7.4.

3. Lastly, we need to make the bases (X and Y) indistinguishable from each other,
in order to reduce the basis flaw. This can be quantified by a simple measure of
distance between density matrices of the same degree of mixedness. A detailed
analysis on the subject, is presented in appendix C that shows the relation of the
basis flow and the intensity of the photons (µ). A graph on this relation is presented
in figure 7.5.

Now that our protocol matches that of Ref. [2], we can easily implement the security proof
that was described in this subsection and calculate the SKR using the equations 7.4, 7.5
and 7.6. Finally, we conclude that our protocol is indeed secure.
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Figure 7.4: Second assumption in order for our protocol to match with that of [2].

Figure 7.5: Presentation of the Basis correlation in relation to the intensity of the coherent states.
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7.4 Pair-wise QKD with the proposed setting

In case we have two users transmitting in the same base and a third transmitting in a
different one, this protocol can establish a connection between those two with the same
base. Using the Equation 7.3, as before, we present a table that underlines a pairwise
QKD scheme. We present in the table (7.2) below, the results when two users transmit in
the base X and one in the base Y (left table) and when two users transmit in the base Y
and one in the base X (right table).

Table 7.2: Results of the Bell State Measurements for three users, in the pair-wise case.

User Detector

B1 B2 A D1 D2 D3

0 0 π
2

0.71
√
µ 1.12

√
µ 1.12

√
µ

0 π π
2

1.22
√
µ 0.87

√
µ 0.87

√
µ

π 0 π
2

1.22
√
µ 0.87

√
µ 0.87

√
µ

π π π
2

0.71
√
µ 1.12

√
µ 1.12

√
µ

0 0 3π
2

0.71
√
µ 1.12

√
µ 1.12

√
µ

0 π 3π
2

1.22
√
µ 0.87

√
µ 0.87

√
µ

π 0 3π
2

1.22
√
µ 0.87

√
µ 0.87

√
µ

π π 3π
2

0.71
√
µ 1.12

√
µ 1.12

√
µ

User Detector

B1 B2 A D1 D2 D3

π
2

π
2

0 0.55
√
µ 0.92

√
µ 1.36

√
µ

π
2

3π
2

0 1.3
√
µ 1.1

√
µ 0.39

√
µ

3π
2

π
2

0 1.3
√
µ 1.1

√
µ 0.39

√
µ

3π
2

3π
2

0 0.55
√
µ 0.92

√
µ 1.36

√
µ

π
2

π
2

π 0.55
√
µ 0.92

√
µ 1.36

√
µ

π
2

3π
2

π 1.3
√
µ 1.1

√
µ 0.39

√
µ

3π
2

π
2

π 1.3
√
µ 1.1

√
µ 0.39

√
µ

3π
2

3π
2

π 0.55
√
µ 0.92

√
µ 1.36

√
µ

In table 7.2 when two users transmit in base Xwe have the following two types of detection:

1. Detection type 0: When we have a detection on detectors 2 and 3 (colored with
blue).

2. Detection type 1: When we have a detection on detector 1 (colored with light blue).

If the users transmit in base Y we have the following two types of detection:
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1. Detection type 0: When we have a detection on detector 3 (colored with blue).

2. Detection type 1: When we have a detection on detectors 1 and 2 (colored with
light blue).

The above results are the same regardless of which two users use the same base. It can
be Bob1 and Bob2, Bob1 and Alice or Bob2 and Alice.

7.5 Security in the pair-wise case

To prove the security of the pair-wise scenario of our protocol, we can easily compare
it to the proof of the typical MDI protocol (Section 6.3.3). As we can observe that both
protocols are exactly the same, from the number of members that will create a secret key
to the implementation of the key generation procedure.
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8. CONCLUSIONS

In this thesis, we have introduced and analyzed a multi-user MDI-QKD phase encoding
protocol. Our work extends the current understanding and capabilities of QKD by ad-
dressing the complexities associated with multi-user scenarios and providing a robust
framework for secure key distribution among three parties.

Firstly, we proposed an innovative phase encoding protocol designed to distribute a com-
mon key among three users. This protocol was constructed with the goal of maintaining
high security standards while accommodating the practical constraints of multi-user QKD
systems.

Our analysis demonstrated that the proposed protocol functions effectively when all users
employ the same basis. We further extended our investigation to scenarios where only
two of the three users use the same basis, showing that the protocol remains functional
and secure under these conditions. This flexibility is crucial for practical implementations
where synchronization and coordination among multiple users can pose significant chal-
lenges.

For the scenario where all three users use the same basis, we established security by com-
paring and transforming our protocol to another multiparty MDI-QKD protocol [2] without
entanglement that fitted our needs. This comparative analysis underscored the robust-
ness of our approach, confirming that it provides the expected security guarantees.

In the case where only two users use the same basis, we demonstrated security by draw-
ing parallels with the typical phase encoding protocol [5]. By leveraging well-established
security principles from typical QKD, we ensured that our multi-user protocol inherits the
strong security properties necessary for reliable key distribution.

The contributions of this thesis are multifaceted: we not only introduced a new protocol but
also provided comprehensive security proofs for different operational scenarios, thereby
paving the way for practical and secure multi-user QKD implementations. Our work ad-
dresses key challenges in the field and sets the stage for future research to build upon
these foundations, exploring further expansion on the number of users, while keeping the
communication secure.
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ABBREVIATIONS - ACRONYMS

QKD Quantum Key Distribution

DD Device Dependent

SDI Source Device Independent

MDI Measurement Device Independent

MU Measurement Unit

TF Twin Field

QCKA Quantum Conference Key Agreement

SKR Secure Key Rate

HOM Hong-Ou-Mandel

BSM Bell State Measurement

BS Beam Splitter

APDs Avalanche Photodiodes

WCS Weak Coherent State

PM Phase Modulator

IM Intensity Modulator

SPDs Single Photon Detectors

PBSs Polarizing Beam Splitters

PolM Polarization Modulator

BER Bit Error Rate
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APPENDIX A. DETAILED CALCULATIONS ON MEASUREMENT
OUTCOMES

In this Appendix, we will write in depth the calculations of the BSMs in the cases of a two
member and three member phase encoding MDI-QKD protocol. Before we continue we’ll
introduce the Euler’s formula, as it will be very useful in the calculations below. The Euler’s
formula is written as:

eiθ = cos θ + i sin θ

For the various values of θ, we have:

θ = 0⇒ eiθ = 1

θ = π ⇒ eiθ = −1

θ =
π

2
⇒ eiθ = i

θ =
3π

2
⇒ eiθ = −i

A.1 Two member phase encoding MDI-QKD

In this section we’ll give the equations that produce the results of Table 6.1. First, we’ll use
the equation 4.7, that gives the state that Charlie has after the pulses of Bob and Alice
interfere. The first we’ll explore what happens if both Alice and Bob sent pulses in the
same basis.

1. Base X (0, π):

• If Alice and Bob chose phase 0 (θA = 0, θB = 0):

|αC⟩ = e−µe
√
2µ
2

(1·(α̂†
0+α̂†

1)+1·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

1 |00⟩

∗ A signal arriving at Detector 1 (α̂†
1) with intensity

√
2µ.

∗ No signal arriving at Detector 0.
• If Alice and Bob chose phase π (θA = π, θB = π):

|αC⟩ = e−µe
√
2µ
2

((−1)·(α̂†
0+α̂†

1)+(−1)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

1 |00⟩

75 N. Stefanakos



Multi-User Measurement Device Independent Quantum Key Distribution Protocol

∗ A signal arriving at Detector 1 (α̂†
1) with intensity

√
2µ.

∗ No signal arriving at Detector 0.
• If Alice chose phase 0 (θA = 0) and Bob chose phase π (θB = π):

|αC⟩ = e−µe
√

2µ
2

(1·(α̂†
0+α̂†

1)+(−1)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

0 |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
2µ.

∗ No signal arriving at Detector 1.
• If Alice chose phase π (θA = π) and Bob chose phase 0 (θB = 0):

|αC⟩ = e−µe
√
2µ
2

((−1)·(α̂†
0+α̂†

1)+1·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

0 |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
2µ.

∗ No signal arriving at Detector 1.

2. Base Y (π
2
, 3π

2
):

• If Alice and Bob chose phase π
2
(θA = π

2
, θB = π

2
):

|αC⟩ = e−µe
√

2µ
2

(i·(α̂†
0+α̂†

1)+i·(−α̂†
0+α̂†

1)) |00⟩

= e−µei
√
2µα̂†

1 |00⟩

∗ A signal arriving at Detector 1 (α̂†
1) with intensity

√
2µ.

∗ No signal arriving at Detector 0.
• If Alice and Bob chose phase 3π

2
(θA = 3π

2
, θB = 3π

2
):

|αC⟩ = e−µe
√

2µ
2

((−i)·(α̂†
0+α̂†

1)+(−i)·(−α̂†
0+α̂†

1)) |00⟩

= e−µei
√
2µα̂†

1 |00⟩

∗ A signal arriving at Detector 1 (α̂†
1) with intensity

√
2µ.

∗ No signal arriving at Detector 0.
• If Alice chose phase π

2
(θA = π

2
) and Bob chose phase 3π

2
(θB = 3π

2
):

|αC⟩ = e−µe
√
2µ
2

(i·(α̂†
0+α̂†

1)+(−i)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

0 |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
2µ.

∗ No signal arriving at Detector 1.
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• If Alice chose phase 3π
2
(θA = 3π

2
) and Bob chose phase π

2
(θB = π

2
):

|αC⟩ = e−µe
√
2µ
2

((−i)·(α̂†
0+α̂†

1)+i·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µα̂†

0 |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
2µ.

∗ No signal arriving at Detector 1.

Now, we’ll write the equations if the two users chose different bases:

1. Alice in base X (0, π) and Bob in base Y (π
2
, 3π

2
):

• If Alice chose phase 0 (θA = 0) and Bob chose phase π
2
(θB = π

2
):

|αC⟩ = e−µe
√

2µ
2

(1·(α̂†
0+α̂†

1)+i·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(1−i)+α̂†

1(1+i)) |00⟩

= e−µe
√
µ(

√
2
2
(1−i)α̂†

0+
√
2

2
(1+i)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 1 (α̂†
1) with intensity

√
µ.

• If Alice chose phase 0 (θA = 0) and Bob chose phase 3π
2
(θB = 3π

2
):

|αC⟩ = e−µe
√
2µ
2

(1·(α̂†
0+α̂†

1)+(−i)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(1+i)+α̂†

1(1−i)) |00⟩

= e−µe
√
µ(

√
2

2
(1+i)α̂†

0+
√
2

2
(1−i)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

• If Alice chose phase π (θA = π) and Bob chose phase π
2
(θB = π

2
):

|αC⟩ = e−µe
√
2µ
2

((−1)·(α̂†
0+α̂†

1)+i·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(−α̂†
0(i+1)+α̂†

1(i−1)) |00⟩

= e−µe
√
µ(−

√
2
2
(i+1)α̂†

0+
√
2

2
(i−1)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

• If Alice chose phase π (θA = π) and Bob chose phase 3π
2
(θB = 3π

2
):

|αC⟩ = e−µe
√
2µ
2

((−1)·(α̂†
0+α̂†

1)+(−i)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(i−1)−α̂†

1(i+1)) |00⟩

= e−µe
√
µ(

√
2
2
(i−1)α̂†

0−
√
2

2
(i+1)α̂†

1) |00⟩
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∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

2. Alice in base Y (π
2
, 3π

2
) and Bob in base X (0, π):

• If Alice chose phase π
2
(θA = π

2
) and Bob chose phase 0 (θB = 0):

|αC⟩ = e−µe
√

2µ
2

(i·(α̂†
0+α̂†

1)+1·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(i−1)+α̂†

1(i+1)) |00⟩

= e−µe
√
µ(

√
2

2
(i−1)α̂†

0+
√
2

2
(i+1)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

• If Alice chose phase π
2
(θA = π

2
) and Bob chose phase π (θB = π):

|αC⟩ = e−µe
√
2µ
2

(i·(α̂†
0+α̂†

1)+(−1)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(i+1)+α̂†

1(i−1)) |00⟩

= e−µe
√
µ(

√
2

2
(i+1)α̂†

0+
√
2
2
(i−1)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

• If Alice chose phase 3π
2
(θA = 3π

2
) and Bob chose phase 0 (θB = 0):

|αC⟩ = e−µe
√
2µ
2

((−i)·(α̂†
0+α̂†

1)+1·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(−α̂†
0(1+i)+α̂†

1(1−i)) |00⟩

= e−µe
√
µ(−

√
2

2
(1+i)α̂†

0+
√
2

2
(1−i)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.

• If Alice chose phase 3π
2
(θA = 3π

2
) and Bob chose phase π (θB = π):

|αC⟩ = e−µe
√
2µ
2

((−i)·(α̂†
0+α̂†

1)+(−1)·(−α̂†
0+α̂†

1)) |00⟩

= e−µe
√
2µ
2

(α̂†
0(1−i)−α̂†

1(1+i)) |00⟩

= e−µe
√
µ(

√
2

2
(1−i)α̂†

0−
√
2

2
(1+i)α̂†

1) |00⟩

∗ A signal arriving at Detector 0 (α̂†
0) with intensity

√
µ.

∗ A signal arriving at Detector 0 (α̂†
1) with intensity

√
µ.
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A.2 Three member phase encoding MDI-QKD

Using equation 7.3 and those of Appendix B we will calculate the parameter Λ̂, for the
various phases, to find the intensity on each detector.

A.2.1 Three user communication

If all three users chose the same base, for example Base X (0, π), we have:

• If Alice, Bob1, Bob2 chose phase 0 (θA = θB1 = θB2 = 0):

Λ̂ =

(
1

2
− 1

2
+

1√
2

)
α̂†
1 +

(
1− 1

2

)
α̂†
2 +

(
1 +

1

2

)
α̂†
3

=

√
2

2
α̂†
1 +

1

2
α̂†
2 +

3

2
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.5

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.5

√
µ.

• If Alice chose phase π (θA = π) and Bob1, Bob2 chose phase 0 (θB1 = θB2 = 0):

Λ̂ =

(
1

2
− 1

2
− 1√

2

)
α̂†
1 +

(
1 +

1

2

)
α̂†
2 +

(
1− 1

2

)
α̂†
3

= − 1√
2
α̂†
1 +

3

2
α̂†
2 +

1

2
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.5

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.5

√
µ.

• If Alice and Bob1 chose phase 0 (θA = θB1 = 0) and Bob2 chose phase π (θB2 = π):

Λ̂ =

(
1

2
+

1

2
+

1√
2

)
α̂†
1 +

(
1− 1

2

)
α̂†
2 +

(
1

2
− 1

)
α̂†
3

=

(√
2 + 1√
2

)
α̂†
1 +

(
2−
√
2

2
√
2

)
α̂†
2 −

(
2−
√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:
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∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.70

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.222

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.22

√
µ.

• If Alice and Bob2 chose phase π (θA = θB2 = π) and Bob1 chose phase 0 (θB1 = 0):

Λ̂ =

(
1

2
+

1

2
− 1√

2

)
α̂†
1 +

(
1√
2
+

1

2

)
α̂†
2 +

(
− 1√

2
− 1

2

)
α̂†
3

=

(√
2− 1√
2

)
α̂†
1 +

(
2 +
√
2

2
√
2

)
α̂†
2 −

(
2 +
√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.32

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.20

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.20

√
µ.

• If Alice and Bob2 chose phase 0 (θA = θB2 = 0) and Bob1 chose phase π (θB1 = π):

Λ̂ =

(
−1

2
− 1

2
+

1√
2

)
α̂†
1 +

(
− 1√

2
+

1

2

)
α̂†
2 +

(
1√
2
− 1

2

)
α̂†
3

=

(
1−
√
2√

2

)
α̂†
1 −

(
2 +
√
2

2
√
2

)
α̂†
2 +

(
2 +
√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.32

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.20

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.20

√
µ.

• If Alice and Bob1 chose phase π (θA = θB1 = π) and Bob2 chose phase 0 (θB2 = 0):

Λ̂ =

(
−1

2
− 1

2
− 1√

2

)
α̂†
1 +

(
1

2
− 1√

2

)
α̂†
2 +

(
1√
2
− 1

2

)
α̂†
3

=

(√
2 + 1√
2

)
α̂†
1 +

(√
2− 2

2
√
2

)
α̂†
2 +

(
2−
√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.70

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.22

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.22

√
µ.
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• If Alice chose phase 0 (θA = 0) and Bob1, Bob2 chose phase π (θB1 = θB2 = π):

Λ̂ =

(
−1

2
+

1

2
+

1√
2

)
α̂†
1 −

(
1 +

1

2

)
α̂†
2 +

(
1

2
− 1

)
α̂†
3

=
1√
2
α̂†
1 −

3

2
α̂†
2 +

1

2
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.5

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.5

√
µ.

• If Alice, Bob1, Bob2 chose phase π (θA = θB1 = θB2 = π):

Λ̂ =

(
−1

2
+

1

2
− 1√

2

)
α̂†
1 −

(
1− 1

2

)
α̂†
2 −

(
1 +

1

2

)
α̂†
3

= −
√
2

2
α̂†
1 −

1

2
α̂†
2 −

3

2
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.5

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.5

√
µ.

It can be easily proven that the results in the Y base are exactly the same as in the X base,
if we add the imaginary i before each α̂†.

A.2.2 Pair-wise case

In the pair-wise case, we follow the same procedure as before, with the difference that
one of the users is in the ”wrong” base. Starting with two users in base X and one in base
Y, we have:

• If Bob1 and Bob2 chose phase 0 (θB1 = θB2 = 0) and Alice chose phase π
2
(θA = π

2
):

Λ̂ =

(
1

2
− 1

2
+

i√
2

)
α̂†
1 +

(
1− i

2

)
α̂†
2 +

(
1 +

i

2

)
α̂†
3

=
i√
2
α̂†
1 +

(
2− i
2

)
α̂†
2 +

(
2 + i

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:
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∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.12

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.12

√
µ.

• If Bob1 chose phase 0 (θB1 = 0), Bob2 chose phase π (θB2 = π) and Alice chose
phase π

2
(θA = π

2
):

Λ̂ =

(
1

2
+

1

2
+

i√
2

)
α̂†
1 +

(
1√
2
− i

2

)
α̂†
2 −

(
1√
2
+
i

2

)
α̂†
3

=

(√
2 + i√
2

)
α̂†
1 +

(
2− i

√
2

2
√
2

)
α̂†
2 −

(
2− i

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.22

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.87

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.87

√
µ.

• If Bob1 chose phase π (θB1 = π), Bob2 chose phase 0 (θB2 = 0) and Alice chose
phase π

2
(θA = π

2
):

Λ̂ =

(
−1

2
− 1

2
+

i√
2

)
α̂†
1 −

(
1√
2
+
i

2

)
α̂†
2 +

(
1√
2
+
i

2

)
α̂†
3

=

(
i −
√
2√

2

)
α̂†
1 −

(
2 + i

√
2

2
√
2

)
α̂†
2 +

(
2 + i

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.22

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.87

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.87

√
µ.

• If Bob1 and Bob2 chose phase π (θB1 = θB2 = π) and Alice chose phase π
2
(θA = π

2
):

Λ̂ =

(
−1

2
+

1

2
+

i√
2

)
α̂†
1 −

(
1 +

i

2

)
α̂†
2 −

(
1− i

2

)
α̂†
3

=
i√
2
α̂†
1 −

(
2 + i

2

)
α̂†
2 −

(
2− i
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.
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∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.12

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.12

√
µ.

• If Bob1 and Bob2 chose phase 0 (θB1 = θB2 = 0) and Alice chose phase 3π
2
(θA = 3π

2
):

Λ̂ =

(
1

2
− 1

2
− i√

2

)
α̂†
1 +

(
1 +

i

2

)
α̂†
2 +

(
1− i

2

)
α̂†
3

= − i√
2
α̂†
1 +

(
2 + i

2

)
α̂†
2 +

(
2− i
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.12

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.12

√
µ.

• If Bob1 chose phase 0 (θB1 = 0), Bob2 chose phase π (θB2 = π) and Alice chose
phase 3π

2
(θA = 3π

2
):

Λ̂ =

(
1

2
+

1

2
− i√

2

)
α̂†
1 +

(
1√
2
+
i

2

)
α̂†
2 −

(
1√
2
+
i

2

)
α̂†
3

=

(√
2− i√
2

)
α̂†
1 +

(
2 + i

√
2

2
√
2

)
α̂†
2 −

(
2 + i

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.22

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.87

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.87

√
µ.

• If Bob1 chose phase π (θB1 = π), Bob2 chose phase 0 (θB2 = 0) and Alice chose
phase 3π

2
(θA = 3π

2
):

Λ̂ =

(
−1

2
− 1

2
− i√

2

)
α̂†
1 −

(
1√
2
− i

2

)
α̂†
2 +

(
1√
2
− i

2

)
α̂†
3

= −

(√
2 + i√
2

)
α̂†
1 −

(
2− i

√
2

2
√
2

)
α̂†
2 +

(
2− i

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.22

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.87

√
µ.
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∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.87

√
µ.

• If Bob1 and Bob2 chose phase π (θB1 = θB2 = π) and Alice chose phase 3π
2
(θA = 3π

2
):

Λ̂ =

(
−1

2
+

1

2
− i√

2

)
α̂†
1 −

(
1− i

2

)
α̂†
2 −

(
1 +

i

2

)
α̂†
3

= − i√
2
α̂†
1 −

(
2− i
2

)
α̂†
2 −

(
2 + i

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.71

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.12

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.12

√
µ.

If we study the case where we have two users in base Y and one in base X, we have:

• If Bob1 and Bob2 chose phase π
2
(θB1 = θB2 =

π
2
) and Alice chose phase 0 (θA = 0):

Λ̂ =

(
i

2
− i

2
+

1√
2

)
α̂†
1 +

(
i − 1

2

)
α̂†
2 +

(
i +

1

2

)
α̂†
3

=
1√
2
α̂†
1 +

(
2i − 1

2

)
α̂†
2 +

(
2i + 1

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.55

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.92

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.36

√
µ.

• If Bob1 chose phase π
2
(θB1 = π

2
), Bob2 chose phase 3π

2
(θB2 = 3π

2
) and Alice chose

phase 0 (θA = 0):

Λ̂ =

(
i

2
+
i

2
+

1√
2

)
α̂†
1 +

(
i√
2
− 1

2

)
α̂†
2 −

(
i√
2
− 1

2

)
α̂†
3

=

(√
2i + 1√

2

)
α̂†
1 +

(
2i −

√
2

2
√
2

)
α̂†
2 −

(
2i −

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.3

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.1

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.39

√
µ.
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• If Bob1 chose phase 3π
2
(θB1 = 3π

2
), Bob2 chose phase π

2
(θB2 = π

2
) and Alice chose

phase 0 (θA = 0):

Λ̂ =

(
− i
2
− i

2
+

1√
2

)
α̂†
1 −

(
i√
2
+

1

2

)
α̂†
2 +

(
i√
2
+

1

2

)
α̂†
3

=

(
1− i

√
2√

2

)
α̂†
1 −

(
2i −

√
2

2
√
2

)
α̂†
2 +

(
2i −

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.3

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.1

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.39

√
µ.

• If Bob1 and Bob2 chose phase 3π
2
(θB1 = θB2 =

3π
2
) and Alice chose phase 0 (θA = 0):

Λ̂ =

(
− i
2
+
i

2
+

1√
2

)
α̂†
1 −

(
i +

1

2

)
α̂†
2 −

(
i − 1

2

)
α̂†
3

=
1√
2
α̂†
1 −

(
2i + 1

2

)
α̂†
2 −

(
2i − 1

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.55

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.92

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.36

√
µ.

• If Bob1 and Bob2 chose phase π
2
(θB1 = θB2 =

π
2
) and Alice chose phase π (θA = π):

Λ̂ =

(
i

2
− i

2
− 1√

2

)
α̂†
1 +

(
i +

1

2

)
α̂†
2 +

(
i − 1

2

)
α̂†
3

= − 1√
2
α̂†
1 +

(
2i + 1

2

)
α̂†
2 +

(
2i − 1

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.55

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.92

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.36

√
µ.
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• If Bob1 chose phase π
2
(θB1 = π

2
), Bob2 chose phase 3π

2
(θB2 = 3π

2
) and Alice chose

phase π (θA = π):

Λ̂ =

(
i

2
+
i

2
− 1√

2

)
α̂†
1 +

(
i√
2
+

1

2

)
α̂†
2 −

(
i√
2
+

1

2

)
α̂†
3

=

(√
2i − 1√

2

)
α̂†
1 +

(
2i +

√
2

2
√
2

)
α̂†
2 −

(
2i +

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.3

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.1

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.39

√
µ.

• If Bob1 chose phase 3π
2
(θB1 = 3π

2
), Bob2 chose phase π

2
(θB2 = π

2
) and Alice chose

phase π (θA = π):

Λ̂ =

(
− i
2
− i

2
− 1√

2

)
α̂†
1 −

(
i√
2
− 1

2

)
α̂†
2 +

(
i√
2
− 1

2

)
α̂†
3

= −

(√
2i + 1√

2

)
α̂†
1 −

(
2i −

√
2

2
√
2

)
α̂†
2 +

(
2i −

√
2

2
√
2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 1.3

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 1.1

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 0.39

√
µ.

• If Bob1 and Bob2 chose phase 3π
2
(θB1 = θB2 =

3π
2
) and Alice chose phase π (θA = π):

Λ̂ =

(
− i
2
+
i

2
− 1√

2

)
α̂†
1 −

(
i − 1

2

)
α̂†
2 −

(
i +

1

2

)
α̂†
3

= − 1√
2
α̂†
1 −

(
2i − 1

2

)
α̂†
2 +

(
2i + 1

2

)
α̂†
3

If we replace this Λ̂ in equation 7.3 we get:

∗ A signal arriving at Detector 1 (α̂†
1) with intensity 0.55

√
µ.

∗ A signal arriving at Detector 2 (α̂†
2) with intensity 0.92

√
µ.

∗ A signal arriving at Detector 3 (α̂†
3) with intensity 1.36

√
µ.
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APPENDIX B. CALCULATIONS FOR THE DESIGN OF THE
INTERFERENCE UNIT

Using the rotation matrix that was proposed in section 7.2, we will present the necessary
calculation, in order to find the output beam coefficients of the interference unit. First, we’ll
start with equation 7.1:

R = eX · eY · eZ

,where eX , eY , eZ are the exponential matrices and X = π/4Lx, Y = π/4Ly, Z = π/4Lz

If we do the calculations the rotation matrix (R) is:

R =


(
1
2

) (
−1

2

) (
1√
2

)(
1
2
+ 1

2
√
2

) (
1
2
− 1

2
√
2

) (
−1

2

)(
1
2
− 1

2
√
2

) (
1
2
+ 1

2
√
2

) (
1
2

)
 (B.1)

Then, we have to check if this matrix is unitary. Easily we can prove that:

R ·RT =

1 0 0
0 1 0
0 0 1


Using the equations 7.2 and B.1 we get:

α̂†
B1

α̂†
B2

α̂†
A

 =


(
1
2

) (
1
2
+ 1

2
√
2

) (
1
2
− 1

2
√
2

)
(
−1

2

) (
1
2
− 1

2
√
2

) (
1
2
+ 1

2
√
2

)(
1√
2

) (
−1

2

) (
1
2

)
 ·
α̂†

1

α̂†
2

α̂†
3

 (B.2)

And finally we can calculate the output beam equations as:

α̂†
B1

=
α̂†
1

2
+

(
1

2
+

1

2
√
2

)
α̂†
2 +

(
1

2
− 1

2
√
2

)
α̂†
3

α̂†
B2

= − α̂
†
1

2
+

(
1

2
− 1

2
√
2

)
α̂†
2 +

(
1

2
+

1

2
√
2

)
α̂†
3

α̂†
A =

α̂†
1√
2
− α̂†

2

2
+
α̂†
3

2

(B.3)
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APPENDIX C. QUANTIFICATION OF THE BASIS FLAW

In order to find the correlation of the two bases (X and Y), we’ll start from relating the am-
plitude α of a coherent state |α⟩ with the displacement in position q0 and the displacement
in momentum p0 of an electromagnetic oscillator in the phase space [9] as:

α =
1√
2
(q0 + ip0) . (C.1)

If we are in the base X we have one of coherent states |±α⟩ with α > 0 and according to
the equation C.1 we need p0 = 0 and q0 = ±

√
2α. Using the same idea, if we are in the

base Y, we have a coherent state |±iα⟩ and respectively q0 = 0 and p0 = ±
√
2α.

Let us also write the wave function of a coherent state |α⟩ in the position representation
using formula C.1:

Ψα(q) = ⟨q|a⟩ =
1

π− 1
4

exp
{
−(q − q0)2

2
+ ip0q −

ip0q0
2

}
(C.2)

as well as its conjugate:

Ψα(q) = ⟨a|q⟩ =
1

π− 1
4

exp
{
−(q − q0)2

2
− ip0q +

ip0q0
2

}
. (C.3)

The situation when a user sends two states |ψ1⟩ and |ψ2⟩ with the same probability can be
described by the density matrix:

ρ̂ =
1

2
|ψ1⟩ ⟨ψ1|+

1

2
|ψ2⟩ ⟨ψ2| (C.4)

In our case we have two density matrices, one for the base X and one for the base Y. For
the X base we have:

ρ̂X =
1

2
|α⟩ ⟨α|+ 1

2
|−α⟩ ⟨−α| (C.5)

and for the Y base:

ρ̂Y =
1

2
|iα⟩ ⟨iα|+ 1

2
|−iα⟩ ⟨−iα| . (C.6)

To represent the operators ρ̂X and ρ̂Y as a function, we project it in the position basis |q⟩.
Doing that we have:
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ρ̂X → ⟨q′| ρ̂X |q⟩ = ρX(q
′, q) =

1

2
⟨q′|α⟩ ⟨α|q⟩+ 1

2
⟨q′|−α⟩ ⟨−α|q⟩ (C.7)

ρ̂Y → ⟨q′| ρ̂Y |q⟩ = ρY (q
′, q) =

1

2
⟨q′|iα⟩ ⟨iα|q⟩+ 1

2
⟨q′|−iα⟩ ⟨−iα|q⟩ . (C.8)

In an ideal protocol, where there is no basis flaw, these above two operators have max
fidelity and they satisfy the following equation:

ρ̂X ≡ ρ̂Y .

One way to quantify the overlap (fidelity) of the two bases (X and Y), and therefore the
basis flaw between them, is by the equation:

B_F =
Tr{ρ̂X · ρ̂Y }
Tr{ρ̂X · ρ̂X}

(C.9)

,where the Tr{ρ̂X · ρ̂X} is the normalization factor and we know that:

Tr
{
ρ̂2X
}
= Tr

{
ρ̂2Y
}

(C.10)

We proceed with the calculation of equation C.9:

Tr{ρ̂x · ρ̂y} =
∫ ∞

−∞

∫ ∞

−∞
ρx(q

′, q)ρy(q, q
′) dq′ dq (C.11)

Using equations C.7 ,C.8 and C.11 we can calculate the quantity Tr{ρ̂x · ρ̂y}:

Tr{ρ̂x · ρ̂y} = e−2α
2

(C.12)

Also, we can calculate the quantity Tr{ρ̂x · ρ̂x}:

Tr{ρ̂x · ρ̂x} =
1 + e−4α

2

2
(C.13)

Using equations C.12 and C.13, we can calculate the basis correlation from equation C.9
as:

B_F =
Tr{ρ̂x · ρ̂y}
Tr{ρ̂x · ρ̂x}

=
2e−2α

2

1 + e−4α2 (C.14)

We can simplify this equation as follows:
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B_F =
2e−2α

2

1 + e−4α2

=
2e−2α

2

1 + e−4α2 ×
e2

α2

e2α
2

=
2

e2α
2
+ e−2α2

We know though that:

cosh x =
ex + e−x

2
⇒ 2 cosh x = ex + e−x

Using this exponential definition we can write that:

B_F =
1

cosh 2α2

And if we include that α =
√
µ, we get:

B_F =
1

cosh 2µ
(C.15)
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