Extreme eigenvalues of Random Matrices

Macroscopic and Microscopic Results

Phd Thesis

Michail Louvaris

Advisor: Professor Dimitris Cheliotis

National and Kapodistrian University of Athens
Department of Mathematics

Athens — 2023



Advisory Committee

¢ Dimitris Cheliotis, Professor, National and Kapodis-
trian University of Athens, Department of Mathemat-

ics. (supervisor)

e Michail Loulakis, Professor, National Technical Uni-

versity of Athens.

e Nikolaos Papadatos, Professor, National and Kapodis-
trian University of Athens, Department of Mathemat-

ics.
Examination Committee

e Aristides Katavolos, Emeritus Professor, National and
Kapodistrian University of Athens, Department of Math-

ematics.

¢ Ioannis Kontoyiannis, Professor, University of Cam-
bridge, Department of Pure Mathematics and Mathe-

matical Statistics.

e Aris Moustakas, Associate Professor, National and

Kapodistrian University of Athens, Department of Physics.

e Konstantinos Tyros, Associate Professor, National
and Kapodistrian University of Athens, Department

of Mathematics.



This thesis was supported by the Hellenic Foundation for Research and Innovation (H. F.
R. I.) under the First Call for H. F. R. I. Research Projects to support Facutly members and
Researchers and the procurement of high-cost research equipment grant, (Project Number:

1034).



Euyapiloticg

Apxka, 9a 110gda va ekppaon tig Babutateg euxapiotieg pou otov K. XeA10tn yla v mo-
AUTpn kabodnynor| tou katd ) Sidpkela g H1daktopikng pou datpBrng. O xpovog mmou
aplEpwoe, KAO®MG KaAl 1] EKIEVI)G TOU YVOON oty meploxr) v [Mibavotev, ftav Katadutt-
KOl TIAPAYOVIEG Y1d TNV £10AY®YI] HOU OTOV EPEUVITIKO Topéa tov Tuxaiov ITivakev kat tmy
ETIITUYXT] OAOKATP®ON NG 61atp1Brg autng.

Embupo, emiong, va eUxaploto® ta Unodoina PEAn g tpieAous oUPBOUAEUTIKEG ETTI-
TPOIAG Yla TNV T ITOU HOU €Kavav va Je emBALMOUV Katd 11 S14pKeEld AUtV TV XPOVaV,
KaOwg Kat ta P€An tng e§ET1a0TIKIG EMITPOIG YA TV Kpion toug otr SiatpiBr) pou.

Euxapiote 9eppd toug k. Aodd, Tupo kat avvomoudo yia Tig Katd KAlpoug oulntr)oelg
Hag, ot oroieg anodeixOnkav e§aipetikd Xpr|oeg.

Ermrnéov, n 6iatpBry auvtr xpnuatodotnbnke kad’ oAn ) didpkela ard to EAIAEK, kat
yU autd Sa 1feda va guxapilotjoe ta peAn g opddag Scaling Stochastic Dynamics: From
Microscopic Interactions to Macroscopic Phenomena, 1mou 110U Iapeixav auty] Vv IOAUTIUD
eukaipia.

TéAog, Sewpw ot 1 mapouoa d1atpiBr) dsv arotedel POVO anotEAeond G IIPOCMITIKLG 1OU
ripoortddeiag, adAd Kat poiodv g cUAAOYIKNAG {01G TG EAANVIKNAG HaBnatiKg KOvotntag, 1)
ortoia pe tov 1poro nou aAAnAermudpd, «yevvar Katl «eVNAIKI®VED VEOUG erTlotr|poveg. ' auto tov
Aoyo, 9a f10gda va suxaplotriom Jepd TV KOwotnTad auty, Imou pe 8eXOnke, pe dapoppwos
Kal pe KaBopioe 1€ T000UG 51aPOPETIKOUG TPOITOUS Ta teAeutaia 8éka xpovia. IGwaitepa, éva
TEXWP10TO PEPOG AUTHG TG KOVOTNTAG KAl TNG EMPPOIG TG MAVE POV ATOTEAECE 0 KaOnyntig
Anprtpng F'at¢oupag, o oroiog SucTUXWS £PUyE TTIOAU vepig arod Kovid pag. APlepave, Aoutdv,
auty) 1) 618aktopiky) diatpiBn otn Pvrpn Tou.

Embupe, eriong, va euxapilotfjom TV O1KOYEVEWD POU, Tou pe ot)pide oe autd 1o tagidt
He tov kaAutepo Suvato tporo. Idaitepeg suxapiotieg opeide otoug yoveig pou, Mavoln kat
Zogia, yla 11§ Suoieg kat v aydri) Toug 0Ad autd ta Xpovid, Kabng Kat otov ®Aavo Kkat my
EAiva yla ) otipién Kat tmyv Katavonor) toug.

®a 1nbeda va suxaplotoe deppd Toug @IAOUG JoU, TTIOU HE CUVIPOPEUCAV OF AUTY| TNV
ropeia. Idiattepeg euyapiotieg aneubuve ot Anpntpa yia 0,1t £Kave yla péva autd ta xpovia:
n Iapoucia Kat n otrpign g HTav AveKTINTEG.

Beppég euxaplotieg oPpeide emiong otov AnGAAeva Kat Tov ZTapdir), IOV OMoiev 1) Imapouoia



oto ypageio 116 kat ta e8dopadiaia pag « meeting» katd 1o tedeutaio £€1og 10U H16AKTOPIKOU
Hou, éKavav Vv €QIElpia autr) rmo eUKOAT KAl dITOAQUOTIKT).

TéAog, ekppalm T1G EINKPIVEIG EUYAP1O0TiEG POV OTOUG PiAoug pou, Xprjoto, Mntoo kat AA€Ko,
yld ) ouprnapdoctaoct), v aAAnAeyyun Kat T oUvipoPiKOTIa Iou avarntuxtnke petadu pag

Kata 1) S1dpKela autov IOV XpOovev.






Abstract

This thesis consists of two parts and examines the asymptotic behavior of the extreme

eigenvalues of some random matrix models. Specifically:

e In the last decades there has been a growing interest on the asymptotic behavior
of the smallest singular value of Random Matrix models, see [1],[2], [3] and [4]. A
common factor in all of these cases is that the entries of the Random Matrix model
under examination have finite variance. So in the first part of this thesis we examine
the asymptotic distribution of the smallest singular value of a Random Matrix model
with heavy tailed entries, the Lévy non-symmetric Random Matrices. In this model
the entries of the matrix are i.i.d. and follow an a—stable distribution. We prove that
for almost all a € (0, 2) universality, i.e., the same asymptotic distribution as in the
Gaussian case, holds for the least singular value. As a byproduct of our proof, we
also prove the complete delocalization of the singular vectors of this model at small
energies. The methods are based on the modern techniques, whose heart lie in the
three step strategy, an important strategy developed in the last decade in the Random
Matrix Theory literature, see [5], [6] and [7]. In order to obtain the universality for
the least singular value, we also prove a version of an isotropic local law for a general

class of matrices.

e After the seminal works of Wigner in [8] and Marchenko-Pastur in [9], where the
limit of the empirical spectral distribution of some class of random matrices has
been established, a natural question that emerged is what happens with the extreme
eigenvalues of that matrices. The convergence of the operator norm of these matrices
to the rightmost element of the limiting spectrum was first proven in [10], under
the necessary and sufficient condition that the entries of the matrix have finite 4-th
moment. In these "classic" results the entries of the matrices are i.i.d. In the last
decade there has been a growing interest on Random Matrix models, whose entries
are independent but not necessarily identically distributed and in particular with
different variances, see for example [11], [11], [12], [13] and [14]. In particular, in [13]
the convergence of the empirical spectral distribution of several classes of matrices

to a limiting probability measure is proved. This convergence is proven to heavily



depend only on the properties of the variance profile of these matrices, i.e. the matrix
with entries the variances of the entries of the initial matrix. For some models, for
which the result of [13] holds, the convergence of the operator norm of the matrix
to the rightmost element of the limiting spectrum is also proven in [14] and [12] but
under the assumption that the entries of the matrix model have all their moments
finite. So in the second part of this thesis we prove that for matrices with a general
variance profile and with finite 4 + ¢ moment the convergence of the operator norm
holds. The methods we use are based on the comparison of large moments of the
matrix model with the rightmost element of the spectrum of the limiting distribution
and are based on methods developed in [13], [15], [16] and [10]. Our approach covers
the cases of random symmetric or non-symmetric matrices whose variance profile is
given by a step or a continuous function, random band matrices whose bandwidth is

proportional to their dimension, random Gram triangular matrices and more.



IlepiAnwr

H mapouvoa diatpiBry armoteAeital and 8Uo pépn Kat eGetdlel v AOUUITIOTIKY CUUTIEPIPOPA

TOV AKPAI®V 1810TIHOV 0PIOPEVOV POVIEA®V TUXAIOV MTIVAK®V. LZUYKERPIIEVA :

o Tig tedeutaieg Sexaetieg UTIAPXEL AUEAVOEVO EVEIAPEPOV V1A TNV ACUNITIOTIKY CUPITEPT-
opa NG HIKPOTEPNS 161adouoag TIPNG HOVIEA®V TuXaiov mvakev, BAsne [1],[2], [3] rat
[4]. 'Evag Ko1vog rmapdayoviag otig rpoavadepBeioeg MepUTIOoelg £ival 0Tt Td OTOoXEld TRV
Uo €§€1A0T POVIEA®V TUXAI®V TIIVAK®V £X0UV MEnepacpévn) diaoropd. 'Etot, oto npwto
Hépog autrg g SiatpiBrg e§etdaloupe )V ACURITIOTIKIY] KATAVOUT TS MIKPOtepnS 161-
adouoag TIPNG €VOG POVIEAOU TUXAi®V IMIVAKGOV Pe ototxeia pe Papiég oupég, toug Lévy
I OUPHETIPIKOUG TUXaioug mivakeg. Xe autd 10 POVIEAO td OTolxela Tou rivaka eivat
avegdptnta kat 1oé6vopa Kat akoAoubouv pia a—euotadr katavopr|. Arodeikvioupe ot
oxedov yia 6Aa ta a € (0, 2) 6u n kaboAkotnta, dndadn n idia acupneTK cupnept-
(POPA OTIMG TNV MEPIMIMOT TV TTIVAKOV 1€ OTO1XElA TTOU AKOAOUBOUV TNV TUTIOTTIOUEVT)
KOAVOVIKI] KATAVoU1), 10XVl yia v eAdxilotn iadovoa Tipn tev Lévy pn cuppetpikov
wxaiov mvakev. Qg unorpoiov g anodeigng pag, arodelkvUoUHE £ITIONG TV ITATPN
petatomorn) tev 181adoviov 81avuopdteVv autou TOU POVIEAOU yla PIKPEG evépyeteg. Ot
1€6odot Baoilovial oe oUYXPOVEG TEXVIKEG, 01 OTtoieg Paci{ovial ot OTPATNYIKI TGV TP1-
WV BNpatev, pia onpavilky oTpdinylki mou avamtuxOnke v tedevtaia dekaetia ot
BBAloypagia tev tuxaiev mvakev, PA. [5], [6] kat [7]. TIpoxrewuévou va amnodeifoupe
Vv KaboAkotnta yia v edayiotn 181adouoa tijar, arnodelkvyoulle emiong pia eK60X1)

€VOG 100TPOITIKOU TOITIKOU VOLOU Y1d Pid YEVIKY KAAOT TUXAi®V MMVAK®V.

e Metd ta Sepedodn anotedéopata tou Wigner oto [8] kat twv Marchenko-Pastur oto
[9], 6rtou kaBopiletatl 10 OPO TG EUTEIPIKIG PACUATIKAG KATAVOIG KATIOlAG KAAONS
TUXAlOV IMIVAK®V, £va QUOIKO £p®INHA ITOU MPOEKUYE eival 11 oupBaivel pe 11§ akpaieg
15101€g AUtV TV mvakev. H ouykAlon g voppag TeAE0T] AUTOV TRV MIIVAK@V OTO
6e€101epo oTO1XElO TOU OTNPIyHATOg TOU 0plaKoU Pétpou arodeixbnke yla mpoin @opa
oto [10], und Vv ikavr Kat avaykaia npounobeon Ot ta oTol¥ela TOU Tmivaka £Xouv
TMEMIEPACHEVT] 41 POTI). L& AUTA Td «KAAOIKA» ATOTEAE0PATA, TA OTOIXEld T®V TIIVAK®V
eivatl aveaptnteg Kat 1oovoueg tuyaieg petaBAntég. Thv tedeutaia dekastia unrpde £va

augavopevo evBladEpov yla 10 POVIEAd TuXaiov mvAakev, TV onoiov ta otoixeia eivat



ave§dptnteg aAdd Ox1 anapaitnta 1o6voueg tuxaieg petaBAntés kat e1dikotepa £xouv
Sragopetikég Glaomopég, PA. yua mapddewypa ta [11], [11], [12], [13] kat [14]. Zu-
YKeKplpéva, oto [13] anodeikvuetal 11 CUYKALON TG EPIEIPIKIG PAOHIATIKIG KATAVOUNS
Hla peydAng rAdong tuxaiov mvakeov os éva PETpo mmbavotntag. Auth 1 oUYKALOT)
arodeikvietal ot egaptdatat oe peyado Padpod povo arod tg 1610t eg 10U nPodid v
6laoTopav auteV TV MvAakev, dndadr) Tov mivaka rmou £Xel yla ototxeia 11g 61a0TI0pEg
TV OTOLXEI®V TOU apX1KoU mivaxka. [a oplopéva poviéda yla ta oroia 1oXUouv ta a-
roteAéopata tou apbpou [13], n ouykAlon tng vopuag teAeotr] Tou mivaka oto §eg10tepo
OTO1XEI0 TOU OTNPIYyHATOg TOU 0plaKoU HPETPOoU arodeikvuetal miong ota [14] kat [12],
aAAd uro v rpoUnobeon OTt 01 Ta OTOLXEld TOU UTIO £€£TA0T POVIEAOU TUXAIOV TIIVAK®OV
£€Xouv OAeg 1§ porEg Toug nenepacpéveg. 'Etotl, oto dsutepo pépog autrg g datpt-
Brig amodeikvuoupe OTL yia Mivakeg Pe YEVIKO MPOodiAd S1a0Topwv Katl Pe MEMEPATHEVT)
Vv 4 + € porr], 10XVeL 1 OUYKAL0N 010 He8101EPO 1EAOG TOU OTNPIYHIATOS TOU OPLAKOU
pétpou. Ot pébodot rou xprnotporiotovpe Pacidovtal ot CUYKPLoN PEYAA®V POTIOV TOU
HOVIEAOU TUXAI®V ITIVAKGV HE TO Se§10TEPO OTOIXEIO TOU OTNEIYHATOS TG OPIAKYG KATA-
vourg Kat o peBodoug mou avartuyOnkav ota [13], [15], [16] kat [10]. H mpoogyyior)
Hag KaAUITIen 11§ TIEPUTIOOELG TUXAI®V CUPHEIPIK®V 1] I TTIVAK®V TV OTI0I®V T0 TIPOPIA
10V Slaomiopwv Toug Sivetal aro Katd tTUnNpata otabepr) 11 OUVEXT OUVAPTN O], TUXAI®V
band mvdkev 1@V onoi®v 10 gUpog eival avadloyo tng Sidotaoct toug, tuxaiov Gram

TPIYDOVIKOV ITIVAK®V KAl dAAa.
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Chapter 1

Introduction

Random matrix theory (RMT) is a branch of mathematics that deals with the study of
matrices whose entries are random variables. It provides powerful tools and techniques
for understanding the statistical properties of complex systems arising in various fields,
including physics, computer science, and statistics. In recent years, there has been a
growing interest in the asymptotic behavior of random matrices as their dimensions tend
to infinity. Such asymptotic results have proven to be invaluable in analyzing large-scale
systems and have found applications in diverse areas such as wireless communications,
finance, and quantum information theory.

The study of asymptotic behavior in random matrix theory is motivated by the need to
understand the limiting behavior of complex systems involving a large number of random
variables. Traditional methods of analysis often fail in such scenarios due to the complexity
and interdependence of the variables. Random matrix theory offers a powerful framework to
tackle these challenges by providing tractable mathematical models and insightful results.
The limiting behavior is often referred to as the "asymptotic regime" and is of great interest.

The asymptotic results in random matrix theory typically involve the analysis of certain
limiting distributions or convergence properties as the matrix size tends to infinity. These
results provide valuable insights into the behavior of random matrices and can be used to
study a wide range of phenomena. For example, in the field of wireless communications,
asymptotic results on the eigenvalue distribution of random matrices can be used to analyze
the performance of multiple-input multiple-output (MIMO) systems, which are widely used
in modern wireless communication systems.

Another important aspect of asymptotic results in random matrix theory is the univer-
sality phenomenon. Universality refers to the remarkable observation that the limiting
behavior of random matrices often exhibits universal properties that are independent of
the specific distribution of the matrix entries. This universality property allows us to make
general statements about the behavior of random matrices without detailed knowledge of

the underlying distribution. It is a powerful concept that simplifies the analysis and makes



random matrix theory applicable in a wide range of contexts.

In this thesis, we aim to explore and contribute to the growing body of literature on
asymptotic results in random matrix theory and hope to enhance our understanding of
complex systems and contribute to the advancement of several disciplines.

Specifically this thesis is based on the following papers

1. M.Louvaris, Universality of the least singular value and singular vector delo-
calisation for Lévy non-symmetric random matrices, Annales de I'Institut Henri

Poincaré, Probabilités et Statistiques (accepted), AIHP1413

2. D.Cheliotis, M.Louvaris, The limit of the operator norm for random matrices with

a variance profile, available in arxiv.

1.1 Universality of the least singular value and singular vector

delocalisation for Lévy non-symmetric random matrices

1.1.1 General description of the problem

Consider the following problem:
Let {Yy}n be a sequence of N X N matrices with i.i.d. entries, Yy := (Yjj)1<ij<n. Then is

there some normalization sequence cy such that
N Amin(Yy YN) SNow Z (1.1.1)

for some non-degenerate random variable Z?
In (1.1.1) =y« denotes the convergence in distribution as N — oo.

For several random matrix models we have:

e (1.1.1) holds, when Yy has entries all following the N(O, 1) distribution. Firstly proven

in [1], by using the properties of the Gaussian random variables.

e (1.1.1) holds, when Yy has i.i.d. entries with finite moments up to some C (~ 100).

Proven in [2], by comparing to Gaussian Matrices and by using a version of the CLT.

e Recently: (1.1.1) holds for sparser random matrices [3] and for the sum of random

matrices in [4].
In each of the cases mentioned, it is true that for some ¢ > 0O
c
P(Y11l =0 < t_2 (1.1.2)

What if P(|Y7 1| > t) ~ t7¢, for some a € (0, 2)? That is, the entries are heavy tailed.
So in the first part of this thesis we prove (1.1.1), when Y; ; follows an a-stable law, for
almost all a € (0,2). In particular Y; ; has heavy tailed entries. This is done in Chapter 2

and specifically in Theorem 2.1.2.


https://arxiv.org/pdf/2404.13795

1.1.2 Background

The asymptotic behavior of the spectrum of random matrices has been a crucial topic of
studies since Wigner’s semicircle law, first proven in [8]. The study of the asymptotic
spectral behavior of Wishart matrices was the next important result, firstly investigated in
[9], although Wishart matrices actually preceded Wigner matrices.

The Wishart matrices, and more generally the covariance matrices, play a significant
role in various scientific fields. See for example [17] and [18] for applications in statistics,
[19] for application in economics and [20] for application in population genetics. Several
spectral properties of these matrices have been investigated. We focus on the case that
the entries of the matrix are identically distributed, independent random variables (i.i.d.).
For those matrices some significant results concern the limit of the largest eigenvalue,
the asymptotic behavior of the correlation functions and the asymptotic bulk and edge
behavior. For example, see [21] or the lecture notes concerning the singular values [22].
These results are proven for matrices whose entries have finite variance.

Besides those results, an important problem in random matrix theory is the asymptotic
behavior of the least eigenvalue of covariance matrices, when the matrices’ dimensions are
equal. Note that the inverse of the least singular value of a matrix is equal to the operator
norm of its inverse, so an estimate of the least singular value gives control to the probability
that the inverse has large norm and also gives control to its condition number. To name an
illustrative application, this estimate of the least singular value for various random matrix
models, plays an important role in the analysis of the performance of algorithms, see [23].
In the case that the entries of the matrices are normally distributed, the limiting distribution
has been described in Theorem 4.2 of [1], by directly computing the density of the smallest
singular value multiplied by N. In the general i.i.d. case, under the assumption of finite
moments of sufficiently large order, the least singular value is proven to tend to the same
law as the least singular value of a Gaussian random matrix, in Theorem 1.3 of [2]. This
phenomenon, the same asymptotic distribution for the least singular value of a matrix as
in the Gaussian case, will be called universality of the least singular value for the matrix.
Lastly, in the most recent papers [3] and [4] the authors proved that universality of the
least singular values holds for more general classes of matrices.

The above results have been focused on the finite variance cases. In the case of infinite
second moment, and more specifically in the case of stable entries, there are not so many
results concerning the behavior of the spectrum of covariance matrices. There are some
results, mostly concerning the limit of the E.S.D. of such matrices ([24],[25]) and the limit
of the largest eigenvalues [26] and [27]. Moreover there are also some generalizations,
which concern the limit of the largest eigenvalue of heavy tailed autocovariance matrices in
[28] and covariance matrices with heavy tailed m-dependent entries in [29]. Despite that,

progress has been made concerning the symmetric matrices with heavy tailed entries. In



[30], the authors found the limit of the empirical spectral distribution of such matrices.
Next, in [31] and [32] the authors proved some version of local law and examined the
localization and delocalization of the eigenvectors in each of these cases. Moreover, in
[25] and [33], the authors gave a better understanding of the limiting distribution of the
empirical spectral distribution by proving the convergence of resolvent of the matrix to the
root of a Poisson weighted infinite tree in some operator space. Recently, in [5] and [34],
the authors showed complete delocalization of the eigenvectors whose eigenvalues belong
in some interval around O, GOE statistics for the correlation function and described the
precise limit of the eigenvectors respectively.’

In this paper we prove universality for the least singular value of random matrices with
i.i.d. a—stable entries. The methods we use also imply the complete singular vector delo-
calization for such matrices at small energies. We prove these results using a version of
the three step strategy, a strategy developed in the last decade, which is suitable in order
to obtain universality results for random matrix models, see [7].

The basic inspiration for this paper is Theorem 2.5 in [5], which proves universality of
the correlation functions for symmetric Lévy random matrices at small energies. Both the
intermediate local law, Theorem 2.3.14, and the theorem concerning the comparison of the
entries of the resolvent, Theorem 2.6.4, are similar to Theorem 3.5 and Theorem 3.15 of [5]
respectively, adjusted to our set of matrices. For the intermediate local law we also use a
lot of results from [31] and [32].

Results and methods from [6] and [3] had significant influence to this paper as well.
In particular the isotropic local law in Sections 2.5 is an analogue of Theorem 2.1 in [6],
proven for a different class of matrices. Moreover universality for the least singular value
of random matrices after perturbing them by a Brownian motion Matrix can be found in
Theorem 3.2 of [3]. So several results from Sections 2.4 and 2.6 are based or influenced by

results of [3].

1.2 The limit of the operator norm for random matrices with a

variance profile

1.2.1 General description of the problem

Given a sequence of N X N random matrices Ay, set

1O A
v=7 ) 0l —N)) (1.2.1)
K NZ ( (m

!GOE denotes the Gaussian Orthogonal Ensemble, i.e., symmetric matrix with independent entries (up to

symmetry) where the non-diagonal entries have law N(0, 1) and the diagonal N(O, 2).



to be the empirical spectral distribution of Ay. In (1.2.1) 6 denotes the Dirac measure and
for any N X N matrix B, {/;(B)}ic(n] denotes the set of the eigenvalues of B.

In the case that Ay is symmetric and its entries are i.i.d. (up to symmetry) with mean
0 and variance 1, the almost sure convergence of p4, to the semicircle law was first es-
tablished in the seminal work [8] by Wigner. The support of the semicircle law is the set

[-2,2]. Next in [10], the authors also proved that

. max[ny [A;(An)|
lim =

N—oo W

under the necessary and sufficient condition that the entries of Ay have finite 4-th moment.

2 a.s. (1.2.2)

Suppose that Ay is symmetric and has independent entries with mean O, but not neces-
sarily identically distributed. Some sufficient conditions for the almost sure convergence
of ua, to a non-trivial probability distribution were given in [13]. The limiting distribution
is proven to be supported on some set [—Lix, U] fOr some poo > O.

So in the second part of this thesis we give some sufficient conditions so that

maxe[n) [Ai(AN)|

lim = U A.S. (1.2.3)
N—ooo W
for a general class of matrices Ay, for which the results of [13] hold and under the extra

assumption that the entries of Ay have finite the 4 + ¢ moment, for any small € > 0. This
is done in Chapter 3. The main results of this Chapter are Theorems 3.1.8, 3.1.14 and
3.1.10.

Our approach covers several well-known Random Matrix Models and is a generalization

of previous results such as Theorem 1.3 of [12] and Corollary 2.3 of [14].

1.2.2 Background

The problem of understanding the operator norm of a large random matrix with indepen-
dent entries is multidisciplinary, occupying mathematicians, statisticians, physicists. On
the mathematical side, tools from classical probability, geometric analysis, combinatorics,
free probability and more have been used. The problem dates back to 1981, where in
[35] the convergence of the largest eigenvalue of renormalized Wigner matrices (symmetric,
i.i.d. entries) to the edge of the limiting distribution was established when the entries of
the matrix are bounded. Next, in [10], the authors gave necessary and sufficient conditions
for the entries of a Wigner matrix to converge. The crucial condition was that the entries
should have finite 4-th moment. Similar bounds have been given to non-symmetric ma-
trices with i.i.d. entries. Then, the difference of the largest eigenvalue and its limit, after
re-normalization, was proven to converge to the Tracy-Widow law in [36]. Later, univer-
sality results were established for sparse random matrix models, for example in [37] for

random graphs and in [38] for random banded matrices. Moreover, sharp non-asymptotic



results for a general class of matrices were established in [39] and in [40].

All the models mentioned above can be considered as random matrices with general vari-
ance profile, i.e., random matrices whose entries’ variances can depend on the dimension
of the matrix and the location of the element in the matrix. These models have also drawn
a lot of attention lately, see for example [11], [41], where non-Hermitian models are con-
sidered. More specifically, assume that Ay = (alg.v)), N € N*, is a sequence of symmetric
random matrices, with agv) real valued having mean zero and variance sg) bounded by
a fixed number, say 1. Classically, the first question is whether the empirical spectral
distribution of an appropriate normalization of Ay (e.g., Ay/ VN) converges to a nontriv-
ial probability measure, as in Wigner’s theorem. Nothing guarantees that, and one can
construct examples where the sequence of the empirical spectral distributions does not
converge. The work [13], using the notion of graphons, gave conditions on the variance
profile sg), i,j € [N], N € N* so that convergence takes place.

The next, natural, question concerns the convergence of the largest eigenvalue to the
largest element of the support of the limiting distribution. Again, this in not automatic but
requires additional assumptions. It was established in the recent works [42], [14], [12],
[43] (whose focus however is not this question) for some class of random matrices with a

general variance profile under the assumption that the entries of the matrices have finite
&)
ij

two assume that for each k € N* there is a constant bounding the 2k moment of each

all moments (the first two works assume that each a;.’ is sharp sub-Gaussian, the last
aS.V)). In this paper, we generalize these results, i.e., we establish the convergence of the
largest eigenvalue of general variance profile random matrices to the largest element of the
support of the limiting empirical spectral distribution under general assumptions for the
variance profile of the matrices. Regarding finiteness of moments, we assume only that

(N)4
SUPNeN+ i je[N] ElaiJ |* < co.



Chapter 2

Universality of the least singular
value and singular vector
delocalisation for Lévy

non-symmetric random matrices

2.1 Main results

Fix a parameter a € (0, 2). A random variable Z is called (0, o) a-stable law if

E(e'?) = exp(—o®|t|*), for all t € R. (2.1.1)
Definition 2.1.1. Set
1/a
o=[—" | so (2.1.2)
"~ \2sin(ZHN (@) ' o

and let J be a symmetric random variable with finite variance and let Z be a (0, o) a-stable
random variable, independent from J. Then, define the matrix Dy(a) = {d;j}1<ij<n to be
random matrix with i.i.d. entries, all having the same law as N -1/ 4(J + Z). In what follows,
we may omit explicitly indicating the dependence of the matrices Dy on the parameters a
and N, and use the notation D.

Lastly, fix parameters C;, Cy such that

G Cy
< P(|diJ‘| > t) < . (2.1.3)
Nta +1 Nt¢ + 1
Such parameters exist due to the tail properties of the stable distribution. See [44], Property

1.2.8.

The parameter o is chosen in (2.1.2) like so, in order to keep our notation consistent with
previous works such as [5],[34],[32] and [31]. This parameter can be altered by a rescaling.

Moreover, denote ps. the probability density function of the semicircle law, i.e.,

10
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pec(x) = 1(Ix] < 2) 2—1n N

Furthermore, set

¢z £al0 2.1.4)

Psc(0)”
where p, is the density of the limiting distribution of the empirical measure of the singular

values of D and their negative ones and is described in Proposition 2.2.15.
In what follows we will use the standard Big O notation. Specifically given two functions
f.g. we will say f = O(g) if and only if there exists a constant C > 0 independent of any

other parameter such that

f(_x; =C< oo, (2.1.5)

g(x

lim sup

X—00

where the constant C > O will be independent of any other parameter. If the constant C
depends on some parameter(s) ¢ defined earlier, we will write f = O.(g). Moreover if the
constant C = O then we will write f = o(g).

Our main result shows that the least singular values of Dy are universal as N tends to
infinity. The analogous result for matrices with finite variance entries was proven in [2].
We also prove that the left and right singular vectors of Dy are completely delocalized for

small energies, in the following sense.

Theorem 2.1.2. There exists a countable set A, subset of (0,2), with no accumulation
points in (0,2) such that the following holds. Let {Dy(a)}yen be sequences of matrices, where
Dy(a) € RNV with i.i.d. entries all_following N~'/%(Z + J), where Z,J as in Definition 2.1.1.
Then for every a € (0,2) \ A:

1. Let s;(Dy(a)) denote the least singular value of Dy(a). Then, there exists ¢ > 0 such
that forallr > 0

2
P(Nfsl(DN(a)) < r) =1-exp (—% - r) + O (N°). (2.1.6)

2. For each 6 > 0 and D > O there exist constants C = C(a, §, D) > 0 and ¢ = c(a) such
that:
P(max{lllullloo Tu€ BN} > Né_%) <CND. 2.1.7)

where By is the set of eigenvectors of DND;, or D}\;DN, normalized with the Euclidean

norm, whose corresponding eigenvalues belong to the set [—c, c].

The proof of Theorem 2.1.2 can be found in Subsection 2.6.3.

Remark 2.1.3. The set A for which Theorem 2.1.2 cannot be applied is conjectured to be
empty. Its presence is due to some a—dependent fixed point equations in [32], which we

use and can be inverted only if a ¢ A.
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Moreover, we can generalize the proof of Theorem 2.1.2 to the joint distribution of the

bottom k singular values in the following sense.

Theorem 2.1.4. Fixa positive integer k. Let A C (0, 2) be the countable set of Theorem 2.1.2.
Then define, as in Definition 2.1.1, {Dy}ney withi.i.d. entries all following N~! /a (Z+J), where

Z is (0, 0) a—stable for a € (0,2) \ A. Also let {Ly}y be a sequence of N X N i.i.d. matrices,

1

with entries following the same law as a centered normal random variable with variance .

Also for any matrix A define
Ak(A) := (Ns1(A), - -+, Nsi(A)),

where {si(A)}ic(n) are the singular values of A arranged in increasing order. Also denote
1 =(1,---.1) and for all E € R*

Q(E) := {x eRF : x; < E; for alli € [K]}.
Then there exists c > 0 such that for all E € RF

P(Ak(LN) € QE- N—Clk)) — Op(N™%) < P(AK(fDN) c Q(E)) <
2.1.8)
P(AK(LN) S Q(E + N_Clk)) + OE(N_C).

The proof of Theorem 2.1.4 is similar to that of Theorem 2.1.2 and therefore is omitted.
Note that the universal limiting distribution of A (Ly) is explicitly given in [2].
Moreover, by the way that we will prove Theorem 2.1.2, we can prove a similar result for
the gap probability in the symmetric case. The proof of the following corollary will again be

omitted due to its similarity to the proof of Theorem 2.1.2.

Corollary 2.1.5. Let My be an N X N symmetric matrix with i.i.d. entries (with respect to
symmetry) and let all entries follow the same law as N -1/a(z + J), where Z,J are defined in
Definition 2.1.1 for a € (0,2) \ A . Here A is the set of Theorem 2.1.2. Also let Wy be a GOE
matrix (N X N symmetric, with i.i.d. centered Gaussian entries, with variance N~!). Arrange
the eigenvalues of My and Wy in increasing order. Then there exists 6 > O such that for any

r> 0,

‘P (#{i € [N] : NA(My) € (-% é)} _ o) - P(#{i € [N] : NA(Wy) € (—é g)} - o)‘ < 0.(N9).

(2.1.9)
For the Gaussian case, the limiting distribution of the gap probability is given in Theorem
3.12 of [45].

Remark 2.1.6. Note that by Theorem 2.1.2, the least singular value of a random matrix with
i.i.d. entries, all following an a—stable distribution, are of order O(N i_l) for a € (0,2) \ A.
So for a € (0, 1) N A€ the least singular value, without normalization, tends to co, which is

different from the finite variance case.
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2.2 Preliminaries and sketch of the proof

2.2.1 Preliminaries

In this subsection we present some necessary definitions and lemmas.

Firstly fix parameters a, b, p, v such that

1
<v< o ap < (2 - a)v. 2.2.1)

1
ac(0,2), v=—-b>0, O<p<uv,
a 4—-a 4 —

Note that given a € (0,2), such parameters will exists. Moreover v > O is the level on
which we will truncate the matrix Dy in (2.2.2). This truncation is crucial to our analysis
as is explained later in Subsection 2.2.2. The rest of the restrictions for the parameters in
(2.2.1), will be explained later in the choice of ¢y in (2.6.19), in the proof of Theorem 2.6.4.

Next we give some preliminaries definitions and lemmas.

Definition 2.2.1. For each a € (0, ©) and u € CN we will use the notation

lulla = {ZN:‘ Iuila}

Moreover if N = 1 and a = 2, we will use the notation |u| for the Euclidean norm.

1/a

Definition 2.2.2. Fix an N X N matrix Y. Then the empirical spectral distribution of Y is

the measure
1 &
= — 0a.(v)»
Uy N; A(Y)

where 0y is the Dirac measure for x € R and {A;(Y)}icn] are the eigenvalues of Y. We will

also use the notation Ay (Y) for the largest eigenvalue of Y.

Definition 2.2.3. Let M be an N X N real matrix. Then the 2N X 2N matrix
o MT
M O

Definition 2.2.4. Let Hy be the symmetrization of Dy, i.e.,

is called the symmetrization of M.

0 D
Dy O]

HN:

Then define the matrix Xy = {x;}1<ij<on such that

xij = hyj1 {Nl/alhiJI > Nb}. (2.2.9)
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The elements of Xy (in the non-diagonal blocks) are called the b—removals of a deformed
(0, 0) a-stable law. We also define the matrices Ay := Hy — Xy, the matrix Ey whose

symmetrization is Ay and the matrix Ky whose symmetrization is Xy, i.e.,

0 Kj
Ky O

0 Ej
Ey O

XN: ’ N —

Furthermore, define the matrix Ly to be an N X N matrix with i.i.d. entries all following the
1
N
what follows, we may omit the dependence of the matrices defined here on N, for notational

law of a normal, centered random variable with variance -, and its symmetrization Wy. In

convenience.

Remark 2.2.5. Note that the eigenvalues of H are exactly the singular values of D and their

respective negative ones since
det(A - Ioy — H) = det(* - Iy - D'D).

Moreover, note that if we prove delocalization for the eigenvectors of H in the sense of the
second part of Theorem 2.1.2, then we will have an understanding over the delocalization

of the left and right singular vectors of D, because of the following remark.

Remark 2.2.6. If J;,J> are the matrices with columns the normalized left and right sin-
gular vectors of D, which by the singular value decomposition gives us that J;DJy =

diag(s;, s2 -+ , Sy), then one can compute that the matrix

1

V2

has columns the normalized eigenvectors of H.

J g
g =d|

So in what follows, we will focus on proving delocalization for the eigenvectors and
universality of the least positive eigenvalue for H.
We will use the notation Im(z) for the imaginary part ofany z € Cand C* := {z € C : Im(2) >
0}.

Furthermore we need the following definitions.

Definition 2.2.7. Let M be an N X N matrix. The matrix Y = (M — zI)~! for z € C" is called

the resolvent of M at z.

Definition 2.2.8. (Stieltjes transform) Let M be an N X N matrix and let py; be its empir-
ical spectral distribution. Then for each z € C*, we define its Stieltjes transform as the

normalized trace of its resolvent, i.e.,
N2) f L (0 = ~ tr(M — 21y}
my(2) = _— X) = — -z .
M x—z UM N

In what follows, we might omit the dependence on the dimension of the Stieltjes transform

or on the matrix, when it is clear to which matrix we refer.
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Definition 2.2.9. In what follows we will use the following notation.
t := N Var(E; ;). (2.2.3)
Moreover, in Corollary 2.2.11 we prove that t - 0 as N — oo.
In the next Lemma we give an estimate for the entries of A.

Lemma 2.2.10 ([5], Lemma 4.1). LetR > N-1/a and p > a. Then there exist a small constant

c = c(a, p, C;) and a large constant C = C(a, p, Cz) such that
cN"'RP™* < E|D; ;|P1{|D, 1| < R} < CN"'RP™%,
Here D, ; is the (1,1)-entry of Dy. Here C;, Cy are the parameters from (2.1.3).
A direct application of the previous result for R = N™¥ and p = 2 implies the following.

Corollary 2.2.11. The entries of Ey satisfy the following
cN"%2 < N Var(E; ;) < CNY@2),

Remark 2.2.12. Note that the convergence of the E.S.D. of a sequence of random matrices,
implies that the typical scale of an eigenvalue is % (at least in the bulk of the spectrum) of

the limiting distribution of the E.S.D.

Definition 2.2.13. Let F(u) be a family of events indexed by some parameter(s) u. We will
say that F(u) holds with overwhelming probability, if for any D > O there exists an N(D, u)
such that for all N > N(D, u)

P(F(u)>1-N".

uniformly in u.

Next we present a measure, for which in Theorem 2.3.14 we will prove that it is the
limiting distribution of the E.S.D. of Xy.

Definition 2.2.14. Let My be a sequence of symmetric N X N matrices with i.i.d. entries
(up to symmetry) and for each N € N let all the entries follow the same law N “Va(z + ),
where Z,J are defined in Definition 2.1.1. In what follows for any z € C*, we will use the

notation
(2) ! lim tr(M, I)! (2.2.4)
= — lim tr — . 2.
mgl(Z N N — Z

So mg is the Stieltjes transform of the limiting distribution of the E.S.D. of the sequence of
matrices My, see Theorem 1.4 of [30]. The properties of m, are described next in Proposition
2.2.15.
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Proposition 2.2.15. The Stieltjes transform my(z) of the limiting distribution of the E.S.D. of

the matrices My satisfies the following equation

Ma(2) = Wa(Y(2)),

where
1 00 a : ay,
Paz(x) = — f t2~lelZe T1=2)2x gy (2.2.5)
I'(3) Jo
Wa(x) = f eitze TA=5)"x gy (2.2.6)
[0}
Y(z) = @a-(y(2)), (2.2.7)

where (2.2.7) is proven to have a unique solution on C*. Moreover the limiting probability
density function p, is bounded, absolutely continuous, analytic except at a possible finite set

and with density at O given by

a

1 2 (T -\
pa(0) = T—EF(1 +-) (m) .

These results are proven in Proposition 1.1 of [24] and Theorem 1.6 of [33].

Remark 2.2.16. Later in Theorem 2.3.14, we will prove that the Stieltjes transform of Xy
also converges to m,. So we will refer to the measure whose Stieltjes transform is m,, as

the limiting measure of the E.S.D. of Xy.

2.2.2 Sketch of the proof

Now we are ready to present a sketch of the proof. At this point we will try to avoid as much
technicalities as possible. In order to prove universality, meaning the same asymptotic
distribution for the least singular value of Dy as in the Gaussian case, we are going to
follow the three step strategy, a well known strategy in random matrix theory literature.
Some of the most fundamental results concerning this method can be found in [7] and in
[46], which focus on proving universality of the correlation function for symmetric matrices.
The key idea is that after a slight perturbation of a random matrix by a Brownian Motion
matrix, the resulting matrix should behave as a Gaussian one, given that the initial matrix
satisfies some mild assumption concerning its Stieltjes transform. This idea is exploited in
the study of the evolution of the eigenvalues and the eigenvectors via stochastic differential
equations. This method was crucial to the proof of the Wigner-Dyson-Mehta conjecture,
see for example [7]. The three step strategy has also been used in establishing universality
of the least singular value for random matrices, see for example [3], [4]. Specifically in our

case:
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e First step: We investigate the asymptotic spectral behavior of X at an "intermediate"
scale. At this step we prove that the matrix X satisfies the necessary conditions, which
insure that after a slight perturbation by a Brownian motion matrix universality will
hold. This is done in Section 2.3. Note that by definition, X contains the "big"
elements of H. So the first step involves proving two estimates. One comparison of
the Stieltjes transform of the E.S.D. of X with the Stieltjes transform of its limiting
measure, and one bound for resolvent entries of X. Set mx(z) the Stieltjes transform

of X and R;j(z) the resolvent of X at z. In particular we wish to show that the following

events
Ima(z) — mx(z)| = o(1), (2.2.8)
jrer[lzaﬁ] |RJJ(Z)| = O(IOgC(N)) , for some C > 0, (2.2.9)

hold with overwhelming probability for any z : Im(z) > N -3 for any small enough 6 >
0 and Re(z) in some N—independent interval. These results are called intermediate

because the natural scale would be Im(z) > N™!*%, as is explained Remark 2.2.12.

e Second step: We consider the perturbed matrix X + VtW, where W is the sym-
metrization of a full centered Gaussian matrix with i.i.d. entries with variance ﬁ and
t is chosen so that the variances of the entries of VtW and of A match. It can be

computed that t ~ N"(@2),

The level of the intermediate scale local law in the previous step, is justified in
this part of the proof. In order to apply universality Theorems for the matrices after
slightly perturbing by Brownian motion matrices, see for example Theorem 3.2 of [3],
we wish the variances of the VtW to be above the intermediate scale of the local law.

Since N2 = o(t), for small enough 6 > O, this is implied.

Roughly, what we need to prove at this step is that the desired properties, delocal-
ization of the eigenvectors and universality of the least singular value, hold for the
matrix X + VtW.

So for the first part of the second step, we prove universality of the least positive
eigenvalue for X + V/tW. This is based on the regularity of the Stietljes transform of
X, proven in the previous step, and some results from [3]. More precisely at the first

part of the second step we prove that
lim P(NEAN(X + VW) > 1) = lim P(NAy(W) > 1), for any r € R, (2.2.10)

This result is proven in Section 2.4.

In most of the universality-type theorems the fact that the entries have finite vari-

ances play a significant role, see for example Lemma 15.4 in [7]. In [3] the authors
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showed universality of the least singular value for sparse random matrix models.
Firstly, they prove universality of the least singular value for the sparse models af-
ter slightly perturbing them by a Brownian motion matrix and then they remove the
Brownian motion matrix. This is done by using results which take advantage of the
fact that the entries have finite variance, for example see Lemma 5.14 in [3]. Since
our model does not have entries with finite variance, we will need to compare the
matrices X + VtW and X + A with a different method. Essential to that method is
the fact that the resolvent entries of X + vtW do not grow very fast. Specifically set
T;j(z) to be the resolvent of X + VW at z. In particular in Section 2.5 we prove that
for any small 6 > O the 6—dependent events

sup|T;;(z)| < N° (2.2.11)

LJ

hold with overwhelming probability, and for all z : Im(z) > N ! for any small € > 0,
very close to the natural scale in Remark 2.2.12. It is known that bounds as the one

in (2.2.11) imply the complete eigenvector delocalization for the matrix X + VtW.

In order to establish (2.2.11), we prove something better. A universal result which
compares the entries of the resolvent of any matrix, which satisfies some mild regu-
larity assumption, Assumption 2.5.1, with the additive free convolution of the matrix
with the semicircle law. Thus, the largest part of Section 2.5 is mostly independent

for the rest of the paper.

Third step: We first compare the resolvent of X + A and X + \tW. During the
second step we have proven the desired properties, eigenvector delocalization and
universality of the least eigenvalue for the matrix X + vtW, so we need to find a way
to quantify the transition from the matrix X + VtW to X + A in order to prove the

same properties for H. This is done by introducing the matrices
HY := X + Vi(1 - y*)?>W + yA, for all y € [0, 1].

We manage to prove that the resolvent entries of HY are asymptotically close for all
y € [0, 1], in Theorem 2.6.4. Similarly we study the continuity properties for y € [0, 1]

of the functions

q(g fN Im(m,(E + in)dE], (2.2.12)

where m, is the Stieltjes transform of the matrix H” and 7 is of order N ~6=1 below the
natural scale. Eventually in (2.6.36) we prove that the functions defined in (2.2.12)
are asymptotically close for any y € [0, 1].

Next we introduce the functions

(Y, r) =#{i e [N]: A(Y) € (-r, 1)},
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where Y is a symmetric N X N matrix, {7;}in] are the eigenvalues of Y and r is any
positive number. So, it suffices to prove that there exists ¢ > O such that for any

r>0
‘P [zZN (X + ViG, #) - o] _P [lgN (X +A %) - o” < O.N"°). 2.2.13)

In order to prove the latter, we approximate the quantities P(ion(HY, ;) = 0) by ap-
propriately choosing functions of the form (2.2.12). This is done in Lemma (2.6.13).

After combining the results above, we conclude the proof in Subsection 2.6.3.

2.3 Intermediate local law for X

Consider the matrices Hy and Xy as they are defined in Definition 2.2.4. In this section
we are going to establish the local law (Theorem 2.3.14) for the b-removals of the matrix H,
i.e., the matrix X. What we mean by local law is convergence of the Stieltjes transform of
X to its asymptotic limit, for complex numbers z that depend on the dimension N in some
sense.

We will also use the notation
R(z)= (X - (E+ipD)~", 2.3.1)

for z = E + in. In what follows we might abbreviate the dependence from the parameter z.

A precise formulation of this result is the following. There exists C = C(a, b, §) such that

2
_ Jog(M))” ) , (2.3.2)

1
P[ sup sup |mg(E + in) — mx(E + in)| > W] < exp( c

B2 o
where the properties of m,(z) are described in Proposition 2.2.15.

We also prove that for all z for which the local law holds, the diagonal entries of the
resolvent of X are almost bounded. More specifically for any large enough N € N it is true
that,

2
_M). 2.3.3)

P[ sup  sup _m%] IR ;| > ClogC(N)] < Cexp( c

BE(-£.¢) pon® 37
In order to establish those results we will need to analyze the resolvent of X, in order
for us to compare it with my;. The main influence for this step is Theorem 3.5 of [5],
where an intermediate local law is proven for symmetric heavy tailed random matrices.
The main difference of the proof of the intermediate local law for our set of matrices from
the symmetric case is that, by construction, only half of the minors of the resolvent will
participate in the sum of the reductive formula from Schur complement formula. This
difference is not crucial since we also prove that each of the diagonal entries of the resolvent

of the matrix is identically distributed. Moreover, by Corollary 2.3.22, the sum of half of
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the diagonal entries of the resolvent is concentrated around its mean, like the sum of all its
diagonal entries. The rest of the proof remains almost the same, but we will include most
of the proofs for completeness of the paper.

Firstly we need to give a more detailed description of the limiting distribution.

2.3.1 Preliminaries for the intermediate local law

In [30] the authors proved that the E.S.D. of symmetric matrices with heavy tailed entries,
converge in distribution to a deterministic measure and they described it. Next in [24], the
authors described the limit of the sample covariance matrices. Next the authors in [32] and
[31] proved local laws for symmetric heavy tailed matrices at an intermediate scale larger
than N ‘5—%. Lastly in [5], the authors proved a local law at the intermediate scale N ‘5_%. All
the previously mentioned results, are based on solving a fixed point equation. In the most
recent results, these fixed equations are solved more generally, in a metric space which we
are going to present in this subsection.

Next we present the metric space in which we will work with in order to prove an inter-

mediate local law for X. The results we present here can be also found in [32].
Definition 2.3.1. For any u, v € C define the following "inner product"
(u|v) := uRe(v) + it Im(v) = Re(w)(Re(v) + Im(v)) + i Im(u)(Re(v) — Im(v)).
One may compute the following
W) =u (—iue™*) =Imw) V2, (W)l < 2lullvl. (2.3.4)

Definition 2.3.2. Set K = C* n{z € C: Re(z) > 0} and K* = K. Let H,, be the space of the
C!, g : K* - C such that g(Au) = A%u for each A > 0. Set also S! = S NK* where S! is
the unit sphere on C with respect to the Euclidean norm. Following equation (10) of [32],
define for each r € [0, 1) a norm on H,

|glo = sup |g(w)],

ues!

19l = lgle + sup V(i) 81 g(w)I? + (i) Sag(w)l.

LLES}r
Here, ( )
. dg(x + iy
dig(x +iy) = —a
and likewise ( )
dg(x + i
dog(x + iy) = u.
dy

Next, define the spaces H,, the completion of H,, with respect to the |g|; norm. Further
define H{Z,r C Hy,r to be the set {g € Hy,, : infuesi |Re(g(w))| > 6}. Also define the set

0 _ 6
Hw,r - U5>OI—Iw,r'
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Further, abbreviate H? := HL‘Z o

Remark 2.3.3. For any g € H,, by construction it is true that

19lee < Iglr.

Next, we present some lemmas concerning the metric spaces we presented and the fixed

point equation we wish to solve.

Lemma 2.3.4 ([32],Lemma 5.2). Letr € (0,1) and u € S}r and x1,x, € K* and letn € (0, 1)
such that |x;], |x| < 1. Set Fi.(u) = (xi|u)" for k € {1,2}. Then there exists a constant C(r)

such that for any s € (0, r) we have that
IFicl1-r+s < Cladl”,  |F1 = Fali-ris < Cn (X1 — x|” + 1|1 — x2[%). (2.3.5)

Furthermore, if we further assume that Re(x1), Re(xz) > t and set Gi(w) = (x; Hwr, ke{l,2},

there exists a constant C = C(r) such that,
G1 = Gali—res < CE 22V xy = x0]. (2.3.6)

Definition 2.3.5. Following Section 3.2 of [32], for any numbers h € K, u € S}r and g € Hy /o

define the functions,

/2 00 00
Fpg(u) = f f f [exp(—r*/2g(e”) — (rhle®))
0 0 0

— exp(—-r*%g(e? + uy) — (urhlw) — (rhle®)1r*? 'dr - -y dy(sin(®)“*'dd  (2.3.7)

and
Yr(w) = Yy r(w) = caF-iz (),

where
a

~ 242l (a/2)?

Ca

Lemma 2.3.6 ([32].Lemma 4.1). Ifg € Hg

Re(h) > O then Fyp, € Hg

. then Fy g € Hyyo . Also ifg € H9, and

/2, a/2,r

/2,1
Next for any f € H, /9 and p > O define the functions,

1-p/2 /2 00 _ i . . . B
o ) = 225 [ [ P exp((iyzde?) — y/2f(e®)) sin(20)/> dydd

o 5po(X) = 7 o Y exp(-iyz — xy@/A)dy.

Lemma 2.3.7 ([32],Proposition 3.3). There exists a countable subset A C (0,2) with no
accumulation points such for any r € (0,1] and a € (0,2) \ A, there exists a constant

¢ = c(a, r) with the property that:
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There exists a unique function Qo € Hy /o such that Qg = Yy q,. Additionally for Im(z) > 0 and
|z] < ¢, there exists a unique function f = Q, € Hy /o, that solves f = Y,y with |[f — Q| < c.
Moreover the function satisfies Qz(ein/ ) > ¢ and for any p > O there exists a constant

C = C(a, p) such that |rp ,(€2,)| < C.

Lemma 2.3.8. ([32],Proposition 3.4) Adopt the notation of the previous lemma. After de-
creasing c if necessary, there exists a constant C > O such that the following holds.
IfIm(z) > 0,|z| < cand |f — Q,|; < c, then

Lf - Qzlr < le - Yzj|r-

Lemma 2.3.9. ([32],Lemma 4.1) Let r € (0,1) and p > 0. There exists a constant C =
C(a, p,r) > 0 such that, for any g € FIS Jor and h € K, we have that

IFy(9)l- < C(Re 7)™*2 + Clgl,(Re(n))™/2,

|rp.in(g)| < C(Re Tl)_p! |sp,in(g(1))| < C(Re(n))_p-

Lemma 2.3.10. ([32], Lemma 4.3) For any a, r > O there exists a constant C = C(a,a,r) > 0

such that for any f. g € Hg_/z sandzeC

1Yy = Yglr < CIf = glr + If = gleo(Uf1r + Igl)-

Furthermore, for any p > O there exists a constant C' = C’(a, a,r, p) such that for any

fge Hg/2 . and for any z € C and x, y € K with Re(x), Re(y) > a we have that

|rp,zq) - rp,z(g)| < C,lf = Gloos |sp,z(x) - sp,z(y)l < C,|X -yl (2.3.8)

The reason to present all the tools in this subsection is explained in the following Remark.

Remark 2.3.11. Due to Lemma 4.4. of [32], is; ,(2,(1)), which is defined in Lemma 2.3.7,
is exactly the limiting Stieltjes transform in Proposition 2.2.15.
2.3.2 Statement of the intermediate local law

In this subsection, we state the local law for the matrix X and state a stronger theorem
which will imply the local law.
Before we present the theorem, we give some definitions. Recall the notation from Subsec-

tion 2.3.1.
Definition 2.3.12. Define the following quantities
. a : a/2 .
,(u) = F(l - 5)(—LRJ'J|LL) . vz = E(z(w),
Ip == E(=iR;j)P, Jp = E(|[iR;["),

where we have omitted the dependence from the dimension N in the notation we used.
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In what follows, keep in mind the definition of the functions r,, and s, , in Subsection
2.3.1. Next, we present the theorem which will imply the intermediate local law proved at
Subsection 2.3.7.

Theorem 2.3.13. Let a € (0,2), b € (0, %), s€(0,%),p>0,e€(0,1] and N € N. Set
9= (% —b)(2 —a)/10. Suppose z = E + in € C* with E,n € R. Assume that:

1
z=E+in, |z21<=, n>N“%% E(Im(R)¥?) >e ER,<e!, foralie[2N]. (2.3.9)
€

Then, there exists a constant C = C(a, €, b, s, p) > O such that

1 1 1
c
’YZ - YYz 1-a/2+s < ClOg (N) ((leN_)a/S + F + —Nsna/2) , (2.3.10)
|1, = sp.2 (v (1)| < Clo O [ + 4 (2.3.11)
P p.z Yz - g (HZN)a/S N© Nsna/Z ’ T
1 1 1
J, — <Clog’N)|—— + — + —— . 2.3.12
| p rp,z(Yz)| < Clog™( )((leN)a/s No Nsna/z) ( )
Moreover,
1
inSf1 Re(y,(w)) > C (2.3.13)
ues;
and . )
N
P(/rer[lzal)\;] IR;j| > ClogC(N)) < Cexp (—@). (2.3.14)

The proof of Theorem 2.3.13 can be found in Subsection 2.3.7.

Next we present the local law.

Theorem 2.3.14 (Local law). There exists a countable set A C (0, 2) with no accumulation
points in (0,2) such that for each a € (0,2) \ A the following holds. Fix b € (O, (ll), 8 =
é - b)(2 - a)/10 and 6 € (0, min{8, %}). Then there exists a constant C = C(a, b, §,p) > 0

such that | 2( |
. og“(N
P - Q,(1)| > <C - . 2.3.15
(ZzgngN(Z) is1 2(Q(1))| Naé/s] eXp( c ) ( )
Furthermore,
3;13 Iy=(w) = QW < —27 (2.3.16)
and (log(V))?
og(N
P| sup max |Ri;| > Clog®(N)| < Cexp|——=—"-]. 2.3.17
(zeDgng[zN]| 4l g ( )) p( C ) ( )

Where Dcs ={z=E+in:E¢€ (—é, é), é >n= N‘S_l/z}, my(z) is the Stieltjes transform of X

and Q,(u) is defined in Lemuna 2.3.7.
Proof Of Theorem 2.3.14 given Theorem 2.3.13. The proof is similar to the proof of Theorem
7.6 given Theorem 7.8 and Lemmas 2.3.7, 2.3.8 (there called Lemma 7.2 and Lemma 7.3)

in [5], so it will be omitted. O
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2.3.3 General results concerning the resolvent and the eigenvalues of a ma-
trix
Firstly we present a well-known result that compares the eigenvalues of a matrix with the

eigenvalues of its minors.

Lemma 2.3.15 (Weyl’s inequality). Let R, M, Q € RN some symmetric matrices such that
M=R+ Q.
Let u;, pi, q; be the eigenvalues of M, R, Q respectively arranged in decreasing order. Then

qitPOK=HW=0qgr+tpPs
Jor any indices such thatj+k—-n>i>r+s—-1.

In the rest of this subsections we present some general results concerning the resolvent
of a matrix. Most of them are known results, but we include them because they will be

useful in the proof of Theorem 2.3.14.

Lemma 2.3.16. Let M, M, be two invertible, N X N matrices then the following identity is

true
M7t - Myt = My (My - My)M (2.3.18)
Moreover if Y = (M, — zI)™! such that z € C* = {z € C : Im(z) > O} then
1
Yiil < ——, i,j€[N]. 2.3.19
| lJ| Im(z) i,j € [N] ( )

Proof. The identity (2.3.18) follows trivially by a right multiplication on both sides by the
element M; and a left multiplication on both sides by the element Ms. Moreover (2.3.19)

follows trivially from the spectral theorem. O

Definition 2.3.17. In what follows in this section we will use the following notation. Con-
sider M to be any N X N matrix. Let J C [N]. We will use the notation (M ) — zI)~! for the
resolvent of the matrix M, where M) is the matrix M with the i — th row and column

being replaced by zero vectors, for each i € J.

Lemma 2.3.18. Let M be an N X N matrix and z € C*.
Then we have the following complements formula

1

T Mz DT My -z M. (2.3.20)
i,i

feje[N1\{i}

Next, we present the Ward identity. That is, for eachJ C [N] andj € [N] \ J it is true that
) _ 7l

Im((M z]I)J. J )

MY — )12 =
I( z )Jk Im(z)

ke[N|\J

(2.3.21)
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Proof. The estimates (2.3.20) and (2.3.21) can be found in (8.8) and (8.3) in [7], respectively.
O

Lemma 2.3.19 ([32],Lemma 5.5). Let M be an N X N matrix. Foranyr € (0,1],z€ C*, n =

Im(z) and i € [N] we have the following deterministic bound

4
(N

N
v -zt - - 2| <
i=1

Corollary 2.3.20. ([5],Cor 5.7) Let M be an N XN matrix. Foranyr € [1,2],z € C*, n = Im(z)

and i € [N] we have the deterministic estimate,

4 8
S

(Nm)™ ~ Nn"™

N
% Z (M - 2Dt - @ - 2D} <
i=1

2.3.4 Concentration results for the resolvent of a matrix

In this subsection, we present various identities and inequalities concerning the resolvent
and the eigenvalues of a matrix.

Next we present some concentration inequalities.

Lemma 2.3.21. Let N be an even positive integer and let A = (a;j)1<ij<y such that the rows
A; = (an, ap, -+, ay) are mutually independent for each i € [N]. Let B = (A — zI)™' and
z = E + in where n > 0. Then for any Lipchitz function f with Lipchitz norm Ly and any

x > 0,we have that,

[ N N
2 < 2 < Nn?x?
Bl 2/ (Bu) B > f(Bu)| 2 x| < Zexp(— | (2.3.22)
i = i=1 I
|, 2 3 2 2
2 2 Nn*x
Fllv 2/ Bryy) ~ By Zlf(Bﬁg,Hg) > x s2exp(— 8L2 ) (2.3.23)
1= i=

Proof. The proof is similar to the respective proof for the Stieltjes transform in Lemma C.4
of [31]. We will sketch the proof for the first N271 diagonal entries. The proof for the
remaining N2~! entries is similar. More precisely, for any two deterministic Hermitian
matrices C and B, let R(C) and R(B) be their resolvents at z. Then it is proven in equation
(91) of Lemma C.4 of [31] that :

N/2

L ZRkk(B) Rier(C)| < —Z|Rkk(C) Rici(B)| < rank(C - B2(Im(z)N) . (2.3.24)

So if one considers the function

”ﬁf(Rk K0)

F(x¥ ) = ), i x e CTE xR,
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where X is a Hermitian matrix with the i-th row of X being x;. Note that it suffices to
describe the entries of the i-th row until the i-th column since the remaining elements
will be filled by the properties of the Hermitian matrices. So if we consider two elements

X, X' € UY C"! xR with only the i-th vector of X and X’ different, then one has:
|IF(X) — F(X")| < rank(X — X")2(Im(z)N)"! < 4(Im(z)N)!,

since by construction, one has that rank(X — X’) < 2. Now the desired inequality comes

from Azuma{Hoeffding inequality, see Lemma 1.2 in [47]. O

Corollary 2.3.22. One can apply the previous Lemma to get the following concentration
results. Fix an N X N symmetric random matrix Y with i.i.d. entries (up to symmetry) , where
N is an even integer, with resolvent matrix B = (Y — zI)™! for z = E + in. Then the following

bounds are true:

N/2
2 4 log(N)
P N ;Bk,k —EBy | 2 W} < 2exp (—(log(N))Z),
N/ Slog(V) (2.3.25)
P|=1|) Im(Bix) — EIm(Bix)| > ———=| < 2 exp(—(log(N))?).
S ; m(Biei) ~ EIm(Bei)| 2 o 7 | < 2exp(~(og(N)?)
Moreover for any a € (0, 2) there exists a constant C = C(a) such that,
N/2 /2,,\4/a
N a
P|— Z(_lBk'k)a/2 - E(—in,k)a/2 > x| <2exp (—M) (2.3.26)
N — C

The same results hold for the remaining N/2 diagonal entries of R.

Proof. The first two inequalities are true by direct application of Lemma 2.3.21 for the
functions f(x) = x and f(x) = Im(x) respectively.

For the third inequality let ¢ > 0 and fix ¢. : C —» R*, such that

0 lz| < c,
Pc(2) = {2(lzl — ©) |2l € (c.20), (2.3.27)
1 |z| > 2c.

Note that the function ¢, is Lipschitz with Lipschitz constant bounded by % Then define

the function

Ju2) = (2% pc(2). (2.3.28)

Since [(1 — ¢o(2))(—iz)¥?| < (20)%2 for all z € C*, it is clear that |[(—=iz)%?| < fu(2) + (2¢)V/2.

Moreover note that the function f.(z) is Lipschitz with constant bounded by 2c271,
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So for any x > O fix ¢ such that (20)‘1/2 = x/4. Then

9 N/2
PIS Z(—in,k)a/2 — E(—(~Bi)™?| > x} (2.3.29)
=1
) N/2 x
<Pl5 ;fc(Bk,k)_Efc (Bick)| = 5}. (2.3.30)

Now the proof is completed after a direct application of Lemma 2.3.21, after noticing that

2¢571 = 2a-5x1% o

The following result is an analogue of Lemma 5.3 in [32] for concentration of only half of

the resolvent diagonal entries. The proof is analogous.

Lemma 2.3.23. Let N be an even and positive integer, A = {a;;}1<ij<n a symmetric matrix
with independent entries (up to symmetry). Fixu € S!,a € (0,2) and s € (0, 2). Moreover
define the resolvent matrix B = (A — zol)™! for zy = E + in € C*.

Then if we denote f,, : C — C such that f,(z) = (izlu)a/ 2, there exists constant C = C(a) > 0
such that

N
2

s~/

2
N

N
2 % -
JuBi) ~ B > fu(Bick) 2 x| < C™*0™ P exp [— -
i=1 k=1

1-a/2+s

NG ]

A similar estimate is true for the concentration of the second half of the diagonal entries of

the resolvent.

Proof. By definition of the norms in Definition 2.3.2 we need to bound the following quan-

tities

NI

N

) 2
P | sup JuBie) — EN qu(Bk,k) > x| for any x > 0, (2.3.31)
=1

ues; |V k=1

2|

N

N N
a 2 < 2
P|sup max |({lw)' 29| = » fu(Bix) —E= > fu(Bii)| > x| forany x> 0.  (2.3.32)
ues! 112) J N;Zf “ N; “

Fix u € S! and ¢ > 0. Then, similarly to the proof of (2.3.26) in Corollary 2.3.22, we can
construct a function ¢. : C - R*, which is %— Lipchitz function and for which it is true

that if we decompose f,, in the following sense,

Ju(2) = ¢cfu(z) + (1 — @) fu(2) :fl,u(z) + fo.us (2.3.33)

then f5 ,(z) is bounded by (2c)1’%+S and fi ,(z) is Lipschitz with constant bounded by

¢’c5" %, for some other absolute constant ¢. So for any x > O, if one fixes ¢ such that
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(20)1732+s = 7 it is implied that

Nz
Nz

P 1B~ Zﬁ u(Bii)| 2

hDIk

2 2 2
) JulBod) ~E > fulBrew)| 2 x| < P N2

2
N k=1

(2.3.34)

So by a direct application of Lemma 2.3.21 for the function f; ; one can conclude that

M) (2.3.35)

N N

2 < 2 o

N qu(Bk,k) - EN qu(Bk.k) > x| <exp (— C
=1 =1

for some constant C = C(a). Moreover due to the deterministic bounds in (2.3.4) and
(2.3.19), we can restrict to the case that x < 471_%. Furthermore, by (4.6) in [48] for any
c € (0,1), any c—net of the sphere S! has cardinality at most % Set ¥ one c—net of the
sphere. So for any x € (0,47 2), fix ¢ such that (2%cn_1)1_%+5 = . Thus by (2.3.5), we

conclude that

N N
2 2 ¢ x
Plsup | ) fu(Bi) —EL quaskk) > x| <Plsup|= > fulBiew) — B quaskk) =l
ues! [N N = uer |V = N = 2
(2.3.36)
So we get (2.3.31) after using the union bound and (2.3.35) to bound (2.3.36).
It remains to prove (2.3.32). For this note that
N
2 2
N3 2 JuBr) = Z(l = = + 8)(iBkl) F~ (Brexl). (2.3.37)
N Je=

So we can treat the function g,(z) = (izlu)(iz|j) analogously f,(z) in (2.3.33). In particular

we have the following decomposition

9u(2) = ¢cgu(2) + (1 = @c)gu(2) = g1,u(2) + go.u. (2.3.38)

where g1, is Lipschitz with constant bounded by cyc® % /|ui] and go, is bounded by

l1+s-%

CcoC 2 /|ui|, for some absolute constant ¢y. So for any x > O let ¢ be a number such

that coc'*5"2 = x/4, we get that

N N
a 2 < 2
: 1-5+s = _rZ
P |(ilw)'~2+%9, NkZIfu(Bk,;a ENEfu<Bk,k) > x (2.3.39)
N N
a 2 3
<P I3 || = 9B By Zgluwkk) > x/2|. (2.3.40)
k=

By a direct application of Lemma 2.3.21, we can bound (2.3.40). The last part of the proof
is completed by a c—net argument, completely analogously to (2.3.36). O
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Lemma 2.3.24 ([32],Lemma 5.4). Let (y;,Yys, - ,Yn) be a Gaussian random vector whose
covariance matrix is the Id. Fix a € (0,2), s € (0, a/2). Moreover, let {hy}ie[n] € (CHN such

that |hi| < 07!, for some n > 0. Then for each j € N define the following quantities
a/2 a/2
Siw = (i)™ lyl® giw) = (hiw) " Elyl®.
Then there exists a constant C = C(a) such that

N(Tla/2x)2/s)

N
1 _
P N(;ﬁw—gjm] > x| < C(™?x)™*exp (— s

1-a/2+s
Remark 2.3.25. Due to the deterministic bound (2.3.19), we can apply Lemma 2.3.24 for

any number of the diagonal entries of the resolvent of a matrix.

2.3.5 Gaussian and stable random variables

In this subsection we present several results concerning Gaussian random variables and

their interaction with the quantities we study.

Lemma 2.3.26. ([5],Lemma 6.4) Let N € N and x be a b—removal of a (0, o) a-stable dis-
tribution, as is defined in Definition 2.2.4. Then let X be an N—dimensional vector with

independent entries all with law N ~1/a

x. Then for any u € R and for A a non-negative sym-
metric matrix and Y an N—dimensional centered Gaussian vector with covariance matrix the

Id it is true that,

u? ..
E[exp (—?(AX,X>)} = (2.3.41)
_ ajy,|a A1/2Y a
— Eexp|— lul |1|v Ha)exp (O(uzN@‘“)(b‘l/“)‘llog(N) tr(A))) (2.3.42)
2
+Nexp (— logz(N)) . (2.3.43)

Lemma 2.3.27. ([5],Lemma 6.5) Let N be a positive integer and let r,d be positive real
numbers such that 0 < r < 2 < d < 4. Denote w = (wy,wq -+ ,wWwy) to be a centered
N-dimensional Gaussian random variable with covariance matrix U;; = E(w;wy) fori,j € [N].
Denote V; = E(wsz) for each j € [N] and define

Vd/2 p_d_r d—r
g y = .

c
i
[
o
L‘M
Il
2|~
INgE
=
P
Il
M=

i—1

—
<.
m
—
=
.,
Il
—
-~

Then if V> 100 loglo(N)Ul/2 there exists a constant C = C(a,r):

r 2
P(Iw|r < ve ) < Cexp (_(logﬂ)'
N c((X(log(N))®B)P/a 2
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2.3.6 Bounds for the resolvent of X.

Recall the notation R for the resolvent of X and let X is the matrix X with its i—th row
and column replaced by O vector, as in Definition 2.3.17.

In what follows we will use the following notation RY = (X® — zI)~! and

Sz)= ). XERU(z)and Tuz) = Xy - Ui(z) where U(z2) = > > XgRU(2)Xicr, 1€[2N].

L™ JJ
Je[2N\i JE2N\{i} ke[2N]\{ij}

(2.3.44)

For notational convenience, we will omit the dependence of S;(z), T;(z) and Uj(z) from z and
N, the dimension of the matrix. By the resolvent equality in Lemma 2.3.18 one has that

1

Rjj= ——.
. Ti—Z—Si

(2.3.45)

Moreover for each i € [2N], one has that In(R?) is positive definite, since it is symmetric

and by the spectral theorem its eigenvalues are

n
(ﬂj(X(l')) + E)2 + n?

>0,j€[2N], (2.3.46)

where ;(X?) are the eigenvalues of XV, So it is true that
Im(S) >0 and Im(S;—T)) > 0. 2.3.47)

In addition, the diagonal entries of the resolvent R;; are identically distributed. This is

proven in the following Lemma.
Lemma 2.3.28. The random variables R;;, for each i € [2N], are identically distributed.

Proof. Note that due to Schur’s complement formula it is true that for any N X N matrices

A, B, C,D, if A, D are invertible then

A B
C D

(A-BD'O)7! =«

* *

*k %

* (D-—CA™'B)!

So if one sets A = D = —zl, C = K and B = K7 it is true that R;; = z(K'K — zZI[)Zil for
i € [N] and Ry; = z(KKT —z%I);} for i € [2N]\[N]. Thus we can conclude that for each i € [N]
the diagonal term R;; has the same law as R,y ;+ny. Moreover, for i,j € [N] or i,j € [2N]\ [N]
it is easy to see that the matrix X retains its law after the permutation of i — th column and
row to the j — th. All these imply that the diagonal terms R;; have the same law for each
i€ [2N]. m|

Note that the Lemma above would not be true if the dimensions of the matrix, whose

symmetrization is X, were not equal.
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Moreover since the matrix X has O at its diagonal blocks, one may compute that

1
Sl ZXI N+j ](\QU N+j’ T1 = - Z XlJXk,IIQJSk)' (2348)
Jke[2NI\[N];jk

Keep in mind that we want to prove Theorem 2.3.13, so in what follows in this section
we will operate under the assumption that (2.3.9) holds.

The following is the analogue of Proposition 7.9 in [5], adjusted to our set of matrices.

Proposition 2.3.29. For each i € [2N] there exists a constant C = C(a, €, b) > 1 such that

1 log(N))?
- S Cexp _M N
C(log(N))© C
Proof. We will prove the estimate for S;, since R;; are identically distributed for i € [2N]

due to Lemma 2.3.28.
Set the event:
1 1 8log(N) 16
_ Z (1) 2 g
&= { N - RN+JN+J 2ER2N’2N < (Nn2)1/2 + N”l}'

By Corollary 2.3.22 and Lemma 2.3.20, one has that P(E°) < 2 exp(—(log(N))?).

Observe that Im(S;) = (AX,X), where A is an N—dimensional diagonal matrix with

P (Im(SL) <

N

entries A;; = Im(RI(VliJ N +J) and X is an N—dimensional vector with entries X X1,n+j. So we

can apply Markov inequality for u = (log(N)Z/ a2 log(2))1/ 2 to get that:
2
P(Im(S1) < 1(8) log(N)™*/%) < 2E(1(E) exp (—%(AX, X’)).

Next, we can apply Lemma 2.3.26 and after bounding tr(A) by C = C’(a, b, €), which we
can do since we work on the set & and since it is true that EIm(R; ;) < (E|R1,1|2)% < €2

due to our assumption that E|R1,1|2 < e lin (2.3.9). We conclude that

—log®(\)[|A2 Y2 log(N)?
og” (Ml |||a)+C'exp(— og(IV) )

P (Im(Sl) < < C'Eexp (— oN o

log(N)*/ “)
where Y is a Gaussian vector with covariance matrix the identical, as is mentioned in

Lemma 2.3.26. Thus it remains to prove a lower bound for

|||A”2 Yillg _ 1 |
Z 1 Im(RG), v, )12l (2.3.49)

Note that for s € (0, §) and by Remark 2.3.3

1 1
Z'I Ry )l Iyl = ZII (R i) Elyl® (2.3.50)
1 1
(1) a/2,,ja (1) a/2
< o . — —
‘Sﬁsﬂ N;K Ry i W11yl NZK Ry vyl W Elyl® (2.3.51)
1 N N
1 1
< | DGR gl 2yl - ZI( iR, oI 2Ely (2.3.52)
£ N Z;

1-a/2+s
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So we can apply Lemma 2.3.24 for

B log* N
- Na/4na/2 ’
and s = 7 to get that the inequality
Z [ Im(RG), v, I 2ly — Z [Im(RY), ) ?Elyl®| < x (2.3.53)
2
holds with probability at least 1 — Cexp(— logc N). Thus, it is sufficient to give a lower bound
to
— Z [ Im(RY), v Y Elyl®. (2.3.54)

in order to obtain a lower bound for the quantity in (2.3.49).

Next we apply again Lemma 2.3.20 for r = £, and since for any u;, up € R* and r € (0, 1]

o
it is true that [u] — w)| < [u; — uz|", we obtain that

4E|y, |*
(TlN)a/z'

1 1
Elyi[* 5 D 1ImRy )™ = IR, v, )] <
Jj=1

So we have concluded that the event that

A2 yllg ( 1 ) ( 1 ) 1< )
—2 > 0|——= |+ 0| ——— |+ "= § Im(Ry,)%2.
N (nN)+/2 (nN1/2)a/2 NS !

holds with probability at least 1 — Cexp (—b‘g%

the concentration inequality (2.3.25) and our hypothesis 2.3.9, one can conclude that there
exists C = C(a, €, b) such that

172 y||a —log%(N
P(—HA lla < e) < Cexp (_—og ( )),

). Restricting again on the set & and using

CN C

which finishes the proof. O
The following is the analogue of Proposition 7.10 in [5], adjusted to our set of matrices.

Proposition 2.3.30. For each i € [2N] there exists a constant C = C(a, €, b) > 1 such that

1 (log(N))?
P(Im(sl — Ti) < W) < Cexp (—T) . (2.3.55)
Moreover (l (N))2
4]
]P(jrer[lgﬁ] IR;jl > ClogC(N)) < Cexp (—gT) (2.3.56)
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Proof. By construction, one can prove that for A = {Im(R )} ijefen\[v] and X = {X1 N+j}jern
it is true that,

Im(S; - T)) = (AX, X).
So after applying Lemma 2.3.26, like in Proposition 2.3.29, one has that

Clog?(N)||AY2Y]|@ log?(N
0g”( 1)\|]| Ha)+Cexp(——0gc( )),

P(Im(Sl -T;) < < CEexp (—

log*/ a(N))
where Y is again a centered N—dimensional Gaussian random variable with covariance
matrix equal to the identical.

Next, we want to apply Lemma 2.3.27 in order to establish a lower bound for %HAI/ 2Y||3.
Following the notation of Lemma 2.3.27 set

wi = (A2Y), V;=InR}). U =ImR})(2),

1 1
_ /2 _ _ _
X == V13+j,N+j’ U= — E Uj r=a d=2+e (2.3.57)

i=1 LjE[2N\[N]U;

So one may apply Lemma 2.3.16 and Lemma 2.3.18 to get that

4 4 4
Usne 2 U< 3z 2. ”m(Rfjl)Nz ZIm(R(D)_ 2.3.58)

ije[2N] ije[2N]

Next, we can approximate V = % Zjl\il Vn+j by % Zjl\il Im(Ry+jn+j) due to the deterministic
bound in Lemma 2.3.20 and then approximate %ZJ]\L 1 Im(Ry 4 n4j) by %EIm(RM) due to
Corollary 2.3.16, on an event which holds with probability at least 1 — 2exp (—logz%).
The approximation procedure described above is identical to the similar approximation
described in Proposition 2.3.29. So after taking into account the Hypothesis (2.3.9), we
have that

/
EIm(R; ;) > (E[Im(RLl)]a/2)2 ‘> e,

Thus, it is implied that

\4 log® N
Pl— < 1)< Cexp|- . (2.3.59)
C C
So after combining (2.3.58) and (2.3.59), we get that for sufficient large N it is true that
log®(N)
e .

P(lVl < 100 loglO(N)Ul/z) < C'exp (—

Next we need to bound X’ from (2.3.57). Note that again we can apply Lemma 2.3.20 to get
that

N
1 1
/2 (1) /2
5 ZIm(RJ-Wﬁm -X|< o zlj (R vje) ™ = IR, )% <
J= 7= (2.3.60)
1 Dyarz (1) 124
—_ ) — e <« . a [ —
N ; Im(RJJ) Im(RJJ l - _]:Zl |RJ‘] | (er)a/z
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Moreover, since the function f(y) = 1{|Im(y)| < n} Im(y)®? + 1 {|Im(y)| > n} n%/? is Lipschitz

with Lipschitz-constant L = an!~%2, we can apply Lemma 2.3.21 for x = N~'/2n%2]og(N)
to get that
N 21 a/2 log(N)
P[ N Z I Im(Ry+j )|~ — NE [ IM(Ryj,ne)|™ 7| 2 N1/2 /2
= (2.3.61)
< 2exp (—loia(zN)) .

So after combining (2.3.61) ,(2.3.60) with (2.3.9) and specifically with the fact that

/2 2\a/4
E(IRj|“%) < E(IRy;[)" < g

we get that,

(2.3.62)

2
P(X'|>C)< Cexp(—log (N)),

%IlAl/ZYllg comes from a
direct application of Lemma 2.3.27 with the bounding for V and X’ proven in (2.3.58) and
(2.3.62)

Note that (2.3.56) is a corollary of (2.3.55) and (2.3.45). O

for sufficient large universal constant C. So the bounding for

The following is the analogue of Proposition 5.9 in [5], adjusted to our set of matrices.

Lemma 2.3.31. There exists some constant C = C(a) such that for any x > 1 and for any
i € [2N], it is true that

Cx < C
(an)l/z - xa/2

Proof. 1t is sufficient to prove it only for i = 1. Recall the definition of T} in (2.3.44). So we

P[lTil > (2.3.63)

need to prove that

P||Up| > X < ¢ 2.3.64
Ul = (Np2)1/2) = xa/2® (2.3.64)

Set the event
Q1(s) = Nyt1gj<antlXiyl < sh (2.3.65)

Then

]P(|U1| > W) < P(l (Qi(s)|UL| = ) + P(QS(s)) (2.3.66)

( Nn2)1 /2
For the second summand in the right-hand-side of (2.3.66) by the union bound and (2.1.3)

one has that

2N
C
B < D) BlXilz )< (2.3.67)

Jj=N+1
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For the first term on the right hand-side of (2.3.66) note that by Markov’s inequality, the

independence of {Xj j}jerony\(v] and R and the symmetry of the random variables Xj

2
Nn? 0
P(l(szl(s»wnz(NnZ)l/z)s TE| > XyRV@Xa| 1@i(s)  (2368)
ke je2N\[N]:lc#j
2Nn?
- = EIR ) PE(XZ,1(Q1(5)°. (2.3.69)

kje[2NI\[N]:kj

We will bound each of the terms inside the sum in (2.3.69) individually. Firstly

2 10 I < 2Cs*™¢
EX?,1(Qi(s) < EX} 1 {|X1J| < s} < G—an (2.3.70)
The last inequality in (2.3.70) can be found in the proof of Proposition 5.9 [5].
Moreover, due to (2.3.21) and (2.3.19) one has that
N Im(RY )
ERP < ) — I < ﬂz 2.3.71)
Ieje[2NT\IN k] =1 n 1

Thus combining (2.3.71), (2.3.70) and (2.3.67) we get that for some absolute constant
C = C(a) it is true that

X <Cs4‘2a C 0.3.79
(er2)1/2 < 2 +5. ( 3.7 )

P(|U1| >
Setting s = x'/2, we get (2.3.64). |

2.3.7 Proof of Theorem 2.3.13

In order to prove Theorem 2.3.13, we wish to replace the entries of X by a—stable entries
in several quantities, for example in quantities defined in (2.3.48), in order to use the
properties of the a—stable distribution.

Firstly consider the following

Definition 2.3.32. Define the following quantities:

0w =T(1- 2z - 151", 3,0 = B oy,
Gi= 3. ZuR). P =T(1- 2 Gl pw) = B, w).
Jj—i=N

Here Z;; are i.i.d. random variables from the definition of the matrix Dy, all with law N ~l/ag

where Z is a (0, 0) a-stable random variable as in Definition 2.1.1 .

We start this subsection with a comparison between (-z — S;)~! and R;;.
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Lemma 2.3.33. For any p > 0 there exists a constant C = C(a, €, b, s, p) such that

_ Clog®(N)
|E|Ri,i|p —|(=S;i - 2) 1|p| < (Nflgzw , (2.3.73)
. Ceuep| _ Clog€(v)
Bl ~ Bl(—iz - 18017 < 702 2.3.74)
_ Clog®(N)
Yz = @zl1-a/2+s < (Nfliml (2.3.75)

Proof. Let C;, Cy, C3 the constants from Propositions 2.3.29, 2.3.30 and Lemma 2.3.31
respectively and set C = max{C;, Cy, C3}. Moreover let E;, E; the events whose probability
we bound in Proposition 2.3.29 and 2.3.30 respectively and set E = E; U Es.

Note that due to our assumptions in (2.3.9), (2.3.19) and (2.3.47) it is true that

1
— < N1/2 , ———— < N2, (2.3.76)
Im(S; — T; + 2) Im(S; + z)

Furthermore by (5.5) in [5] one has that for any u > 0

[IRi4P = (=S; — 2)7'7| (2.3.77)
1 p+1 1 p+1
1 p 1 p
+ {3l = u} ’ +‘ ) (2.3.79)
( Im(Sl -T; + Z) Im(Sl + Z)

So one by Propositions 2.3.29 and 2.3.30 one has that

E1(EY)|IRylP - I(-S; — 27| < 2u(p - NCP* ! 1og®P*Y N + 2P(ITy| > u)CP log®(N) (2.3.80)

—logzN)

C (2.3.81)

E1(E)|Ry” - I(-S; — 2P| < 2un®+1/2 exp(

So after setting u = (Nn?)"'/4 and applying Lemma 2.3.31, we get (2.3.73).
The proof of (2.3.74) is analogous and therefore it is omitted.

For the proof of (2.3.75) note that

e By (2.3.5) applied for x; = (iT; — iS; — iz) Y, xy = (-iS; — iz)"! and for r = % and

n = (2Clog%“ N)™!, we get that there exists a constant ¢’ = C’(a) > 0 such that for
any u > O it is true that

1(E) LTyl < u}liz — @zli-asa+s (2.3.82)
< ¢ (2C10g (M) 1(E) LT < w|lz— T, + S — |z + S| (2.3.83)
<uC’ (2C10g2c(N))% 1(E°). (2.3.84)
1(E) H{ITil 2 u}liz — @zl1-a/2+s (2.3.85)
<C (2C10g2C(N))% 1(E9)1{T| > u}|lz— Ty + S — |z + Si| 2| (2.3.86)

3a
2

<2C (2Clog**(N))* 1{ITy| = u}. (2.3.87)
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e Moreover again by (2.3.5) for the same x;, xo and r as before and for 7 = N~1/2 there

exists a constant C’ = C(a) such that

1(E) i, — @zl1-a/a+s < 2C'1(E) NV/4 (2.3.88)

Note that by definition Ew, = &, and Ei, = y,. So after summing (2.3.85), (2.3.82) and
(2.3.88), taking expectation and applying Propositions 2.3.29 and 2.3.30 and Lemma 2.3.31
for x = (Ni?)'/4, we get (2.3.75).

Fixed point equation

In this subsection we establish the asymptotic fixed point equation. Firstly, we show that
the quantities in Definition 2.3.32 are approximately equal to the respective quantities of
the Stieltjes transform, i.e., the quantities defined in Definition 2.3.12. The latter is proven

in the following proposition.

Proposition 2.3.34. It is true that for any p € N,

Clog€(N) Clog®(N)

P — —7 )P
[EIR. 4" — El(~z - Gyl | < s TN (2.3.89)
b o iar| < ClogC@) | Clog® (W) 5.3.90
iRl ~ Bl(—iz ~ Gl ¥| < 0o+ = (2.3.90)
and c c
< Clog=(N) Clog~(N)
vz — Wy |1—a/2+s = (an)a/s N30 . (2.3.91)
Proof. We first present two facts.
e One can show that there exists C = C(a) > 0 such that
P(1S1 - Gil 2 N™%) < C(1 + E(R;, )N,
similarly to the proof of Lemma 6.8 in [5]. As a result, by Assumption (2.3.9) we have
that
P(S; — G1| = N™*?) < CN™%?, (2.3.92)
for some constant C = C(q, €).
e For each i € [2N] there exists a constant C = C(a, €, b) > 1 such that
1 log(N))?
P(Im(G) < ———| < cexp (- 1EMT) 2.3.93)
C(log(N))© C

The proof of (2.3.93) is completely analogous to the proof of Proposition 2.3.29, after

replacing the usage of Lemma 2.3.26 with Lemma B.1 in [31]. Therefore it is omitted.



38

Moreover note that due to Lemma 2.3.33, it is sufficient to prove that for any p € N,

_ _p| _ Clog®(N)
B - 2 - Sul ™ - Bi-2 - Gol ¥ < —o5—, (2.3.94)
- . Clog®(N)
‘EI(—lz ~ iS)F B~z — (G| < —— 5 (2.3.95)
_ ClogC(N)
@z — Yz li—a/2+s < TN (2.3.96)

Given (2.3.92) and (2.3.93), the proof of (2.3.94), is completely analogous to the proof of
Lemma 2.3.33, therefore it is omitted. m|

Moreover, we have the following results which will be used in order to establish the
limiting fixed point equation. The following Lemma will be the basis for the approximation

of the fixed point equation.

Lemma 2.3.35. Recall Definition 2.3.5. It is true that,
Y.(w) = Ep(Yz(w), (2.3.97)

where Y; is as in Definition 2.3.5, D = {y;}in) is an N—dimensional Gaussian random
variable independent from any other quantity with covariance matrix being the identical, Eq

denotes the expectation with respect to the random variable D and

N

_ 1 iR(l) a/2 |yj|a
$(u) = N Z(_ N+j,N+j|u) Elyl*’
J=1 v
Also,
E(-iz — iG1)” = Epsp ,((1)), E|-z— Gi|™? = Eprp,({(1)).
Proof. This Lemma is a corollary of [[32] Corollary 5.8] O

So in Proposition 2.3.34, we manage to approximate the quantities involving G, such as
y(u), by the analogous quantities involving R; 1, such as y,(u). In order to establish the
asymptotic fixed point equation, we will need to approximate the function {(u) mentioned
in Lemma 2.3.35 by y,(u) and then take advantage of (2.3.97). This approximation is done

via the following Lemma.

Lemma 2.3.36. There exists a constant C = C(a, €, s) > 1 such that

ClogC(N)) < Cexp (_1og2(1v))
< —

P(K — Veli—a/2+s > 1\15/2—71“/2 (2.3.98)

Proof. Firstly note that  is close to Ep{ with high probability due to Lemma 2.3.24 for

appropriate x, i.e.,

logS(N log? N
og () )s Cexp(— Ogc ) 2.3.99)

P(K —Eplli-a/2+s = No/2gal2
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for some constant C = C(a). Next, note that by Lemma 2.3.23 applied for the matrix xM

and for appropriate x one has that

logS(N log? N
og ( ))SCexp(— 08 ) (2.3.100)

P(|Ex<1>ED§ —Eplli—a/2+s = 1\15/2—11‘1/2

for some appropriately chosen constant C = C(a). Here Exu) denotes the mean value with

respect to the law of the matrix X!). Next by Lemma 2.3.4 one has that

1 (1)
Z N|RN+LN+L’ — Ry, insil1-a/a+s

N (2.3.101)

—as2 1 1 1
<Cn a/zﬁ Z (|RN+i,N+i - R,(Vli,NJr“la/z + °|R+iN+i — RI(VJ)rLNHF) .
i=1

So after applying Lemma 2.3.20 and since R;; are identical distributed, one has the deter-

ministic bound

1 1
4
[Ex0Epl —y, < C ‘rlaNa/z + Nsrla/z) . (2.3.102)
So after combining (2.3.99) ,(2.3.100) and (2.3.102), we get the desired inequality. O

Next, we give some more approximating results.

Corollary 2.3.37. There exists a constant C = C(a, €, s) > O such that

. 1
[Vzli-a/2+s < C.  inf Re(y,(uw)) > —, (2.3.103)
uesl C
, 1 log?(N)
Pl inf {(u) < =] < Cexp|-— , (2.3.104)
ues?! C C

Proof. By (2.3.98), the estimate in (2.3.104) is a consequence of (2.3.103).
For (2.3.98) note that due to the first estimate in (2.3.5) one has that there exists a
constant C = C(s) such that

|(—iRlw)®?], ., < CIR V2. (2.3.105)
2
By integrating (2.3.105) and by the definition of y, in Definition 2.3.12 one has that,
a a /4 a
Val1-g4s < cr(1 - E)EIRHIQ/Z < cr(1 - 5)(E|Ri,i|2)a < e*a/4cr(1 - 5). (2.3.106)

Where in the first inequality in (2.3.106) we used (2.3.105), in the second we used Holder’s
inequality and in the third we used our Assumption 2.3.9. So the first estimate in (2.3.103)
is proven.

For the second estimate in (2.3.103) one has that for any u € S}r
a a
Re y,(u) = r(1 - 5)ERs—:(u;zi,i|u)“/2 > r(1 - 5)1@:((Re(iRi,du))‘f‘/z) (2.3.107)

> F(l - g)E(ImRi,i)a/z > r(1 - g)e (2.3.108)
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where in the first inequality in (2.3.107) we used the fact that Re ¢” > (Re ¢)" for any ¢ € K*
and r € (0, 1), see the proof of Lemma 7.18 in [5], in the second inequality we used the fact
that Re(clu) > Re(c) for any ¢ € K* and u € S! and in the third we used our Assumption

2.3.9. Thus the second estimate in (2.3.103) is proven.

O
Before presenting the proof of Theorem 2.3.13, we need a last approximation result.
Lemma 2.3.38. There exists a constant C = C(a, €, s) such that
Clog®(N) log?(N)
Pllyz =Yy, l1-as2+s > Ns/z—na/z Cexp|————|- (2.3.109)

Proof. The strategy of the proof is firstly to approximate Y,, by Y7 and then use Lemma
2.3.35.

e For the approximation of Y,, and Y;: Let Cy, C, be the constants mentioned in Lemma
2.3.36 and Corollary 2.3.37. Set C = 2max{C;, Cs}. Moreover define the following

sets
Clog®(N)
Ey =11¢ = vzli-asa+s > Ne/2nals (2.3.110)
. 1
E; =4 inf Re J(u) < — (2.3.111)
ues! C
By Lemma 2.3.36 and Corollary 2.3.37 one has that
log? N
P(E; UEy) < Cexp|-— C (2.3.112)
Set F the complement event of E; U Es.
So
1 (F) |Y§ - sz 1-%4g <1 (F) Cllg - yzll—%+s(1 + |YZ|1—%+S + |§|1—%+s) (2.3.113)
2
Clog®(N) 2
< I(F)]\[S/z—rla/z( E) (23114)

where in the first inequality of (2.3.113) we used Lemma 2.3.10 and Remark 2.3.3 (C,
is the constant mentioned in Lemma 2.3.10) and the fact that y,, {1 (F) € H é/ lc_ ars
2’ 2

by Corollary 2.3.37 and the definition of the set F. For the second inequality we used
again the definition of F, Corollary 2.3.37 and Lemma 2.3.36.

Now working on the event E; U E; we get that by Lemma 2.3.9 and Corollary 2.3.37

we there exists a constant C’ > 0 such that

L(E1 U E)|Yy,li-24s < C' 2(1 + O)1(E; U Ey) (2.3.115)
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e Note that similarly to the proof of (2.3.76) one can prove that

1
< - (2.3.116)

n

‘ 1
Gi+z

Thus, we can apply (2.3.5) to get that there exists a constant C = C(a) such that
¥sl1-g4s < C~ 2 (2.3.117)
So by Lemma 2.3.35, one has that

|Wz - sz|1—%+s <

E1(F)|Y; - Y, li-g +E1(Ey U ) ¥l 1-g1s + EL(Ey U B2) Yy, [1-g.s

(2.3.118)

Now (2.3.109) is proven by combining (2.3.112), (2.3.117), (2.3.115), (2.3.118) and (2.3.113).
O

Next, the proof of the main theorem of this subsection is presented.

Proof of Theorem 2.3.13. Note that, (2.3.10) is a consequence of (2.3.90) and (2.3.109). Ad-
ditionally (2.3.14) is already proven in (2.3.56). Lastly, note that (2.3.13) is a consequence
of (2.3.103). So all that remains is to establish (2.3.11) and (2.3.12) in order to complete
the proof. We will prove only (2.3.12). The proof of (2.3.11) is similar and will be omitted.

To that end, define the sets E; and Es as in (2.3.112) and F the complement event of
E, U E5. So by the first estimate in (2.3.8) and Remark 2.3.3 one has that

1 (F) |rp,z(§) - rp,z(Vz)| <1 (F) C/|Vz - §| (2-3-1 19)

for some constant C’. By the definition of the event F and Lemma 2.3.35, we get the bound
in (2.3.12) on the event F.

On the event E; U E; we can use the deterministic bound in Lemma 2.3.9 to get that
1(Ey U Ey) rp () — 1p2(v2)| < 2C"nP1(E; U Ey) (2.3.120)

for some other constant C”’. Now the bound in (2.3.12) on the event 1(E; UEy) is a
consequence of (2.3.112) and (2.3.120). O

2.4 Universality for the least singular value after short time

At this section, universality of the least eigenvalue for the matrices X + VtW is proven.

More precisely :

Theorem 2.4.1. Let Ly be an N X N matrix with i.i.d. entries all following the Gaussian

distribution with mean O and variance % independent from Hy. Then denote W be the

symmetrization of Ly. Let W be an independent copy of W. Moreover for every matrix Y
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denote An(Y) to be the smallest positive eigenvalue of Y. Then for all a € (0, 2) for which
local law, Theorem 2.3. 14, holds there exists 6541 = 62.4.1(a) > 0 such that for allr > 0

[B(NEAN(X + VsW) > 1) — P(NAN(W)| > r)| < (2.4.1)

Nb62a1’

SJorallse (NZ‘S‘% ,N729). Note that € is the constant defined in (2.1.4).

The proof of Theorem 2.4.1 can be found in paragraph 2.4.

In order to begin the proof we need the following definition.

Definition 2.4.2. For an N X N matrix J with eigenvalues {/;(J)}icqn; We define the free
additive convolution of J, with s times the semicircle law, to be the probability measure

with Stieltjes transform mg g, such that

N 1

mg fc(2) = N Z A -z - Smsjc(z)‘

i=1

It can be proven that the equation above has a unique solution. Moreover we denote by

Ps.ic(E) the density of the free convolution given by ps f.(E) = 7—1[ lime_,0 Im(mg £ (E + i€)).

Remark 2.4.3. For z € D¢, s, the set for which the local law holds in Theorem 2.3.14, and
S € (N‘s_%“’, N~2%), one has that |myg .(z) — my¢(2)| < N—ln with overwhelming probability, as
is proven in Theorem 4.5 of [3]. Here mgg is the Stieltjes transform of the free additive
convolution of X with s times the semicircle law and my s is the Stieltjes transform of the
E.S.D of the matrix X + v/sW, where W is the symmetrization of a matrix with i.i.d. entries
all following the Gaussian distribution with mean O and variance % Moreover the following

stability result is true, due to Lemma 4.1 of [3],
¢ < Im(mg (2)) < C. (2.4.2)

In order to establish Theorem 2.4.1, we wish to apply Theorem 3.2 in [3] but we need to

take into account Remark 7.6 of [4]. So firstly we state the following.

Lemma 2.4.4. Fixs e (NZﬁ_%,N_Z‘S) for appropriate small 6. Then

_as
loa(x) = ps ()| < N~ &,

forx e (—Ci, Ci) and a, 6 are parameters satisfying the assumptions of Theorem 2.3.14 and

Cq the constant mentioned in the statement of Theorem 2.3.14.

Proof. The proof of the lemma is due to the local law Theorem 2.3.14 and similar to the

proof of [49], Lemma 3.4, so it is omitted. O
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Proof of Theorem 2.4.1. Firstly we apply Theorem 3.2 of [3] to the sequence of matrices

Psc(0)Xy. Note that due to Theorem 2.3.14, the matrix X satisfies the assumptions of

Theorem 3.2 forg =N -3 and G = N~® with overwhelming probability, for any small enough
©0

6> 0. So forall sg, s1 € (N%_%,N_zﬁ) such that sg = NT , 81 = NT with @) < 2 < 1 , there

exists 6541 > 0 and a coupling of Ay(X + /s1 + soW) and Ay(W + +/s1 + soW’) such that,

Psc(0) ﬂN(X+ mw) ﬂN(W+ mw) (2.4.3)

Pso fc(0)
where W, W’ are independent copies of W. Moreover, by the properties of the Gaussian
law, one has that W + y/s] + soW’ has the same law as V1 + s + soW”’, where W is again
an independent copy of W. But by Slutsky’s theorem one has that

N5241+1’

lim NAy(VI+ s+ oW’y & Jlim N (W),
So one has that for each r > 0O,

P(N pscf((g)ﬂN(X + Vs1+soW) 2 1) = P(NAN(W) 2 1)| <

where we have violated the notation in (2.4.4) by keeping the same constant 6, 4.;. Next,

, (2.4.4)

NO62.41

since Remark 2.4.3 and Lemma 2.4.4 are true, one has that

|IP’ NEMN(X + V51 + soW) 2 r) = B(NAN(W) > r)| (2.4.5)

Nﬁz 41"
Moreover for si, sy € (N2‘5_%,N_2‘5), such that s; < s, one can apply Weyl’s inequality,
Lemma 2.3.15, to get that

ANX + Vs1W) — An(X + VsaW) = (51 — S2) Amin(W) > 0. (2.4.6)

The first inequality of (2.4.6) comes from the bottom of Weyl’s inequality, for the % + 1-th
eigenvalues of X + /s; W and X + +/s;W when the eigenvalues are arranged in decreasing
order. Note that in the notation we normally use, we have arranged the eigenvalues in
decreasing order with respect to their absolute values. The second inequality comes from
the fact that Ay (W) is the negative of the maximum singular value of L.

So (2.4.6) implies that if s; < s then

AN + VsIW) > An(X + VsaW). (2.4.7)

Finally, fix s € (NZ‘S_%,N_%) and s; = NTQI, So = NTQZ parameters such that

N&)/z 961 NG)Q/Q
>N""2, s1<sS, Sy-—

s — >s and sy < N2,

So by construction, one has that Ay(X + +/s1W) and Ay(X + /sy W) are both universal in
the sense of (2.4.5) and s; < s < s3. So by (2.4.7),

NEN(X + VS W) < NEAW(X + VSW) < NEN(X + Vs W),

which implies Theorem 2.4.1. O
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Corollary 2.4.5. The least singular value of X + VtW is universal in the sense of Theorem
2.4.1 , where t is defined in Definition 2.2.9.

Proof. We just need to show that t belongs to the interval (N29-2, N~2%), for any small
enough 6 > 0, and then apply Theorem 2.4.1. Note that the latter claim is true due to the
way v is chosen in (2.2.1), i.e.,

1
O<vi2—-a)< —,
( ) 5

and since t is of order N~ O

2.5 Isotropic local law for the perturbed matrices at the optimal

scale

At this point we have proven, in Theorem 2.3.14, that some kind of regularity holds for
the matrix X. Specifically we have proven that with high probability, the Stieltjes trans-
form of X converges to its deterministic limit, and its diagonal entries of its resolvent are
logarithmically bounded, for complex numbers with imaginary parts of order just above
N-3. So, at this section we "justify" the reason why we have splitted the matrix H into its
"big" and "small" elements, i.e., the matrices X and A, in Definition 2.2.4. More precisely,
we prove that given the regularity properties of X and after perturbing it by a Gaussian
component, then the matrix becomes even more regular in some sense. Thus, what will
remain to investigate is whether the "small" elements of H preserve this regularity, which
will be proven in the next section.

Specifically, at this section we show that for any small 6 > 0, the event 6—dependent

events

Deq.s W

{sup sup |Tj(2)| < Ng}, (2.5.1)

hold with overwhelming probability. Here

11 |
s —|.ne|N" ", —
2C," 2C, 4Cq

and C, is the constant mentioned in Theorem 2.3.13. This is stated in Corollary 2.5.15.

Dcaﬁ:{E-f-l'Tl:EE(—

In order to prove the latter, we will show a general result which can be used for a general
class of matrices. So except from Corollary 2.5.15, the rest of this section is independent
from the rest of the paper. The general result we prove in Theorem 2.5.6 is an approximation
of the resolvent of the symmetrization of a slightly perturbed by a Gaussian component
matrix, which initially satisfies some regularity assumptions, Assumption 2.5.1. This
resolvent is approximated by a quantity which involves the free additive convolution of
the initial matrix with the semicircle law and the eigenvectors of the initial matrix. This

approximation is achieved at any direction on the sphere, so it is called isotropic local law.
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The isotropic local law is an analogue of Theorem 2.1 in [6] for our set of matrices, i.e.,
matrices perturbed by Gaussian factors with O at the diagonal blocks. In [6] an isotropic
local law is proven for matrices after perturbing them by a symmetric Brownian motion
matrix.

This kind of results demands precise computations for the resolvent entries. In our case
the "target" matrix, with which we compare the resolvent, is a diagonal matrix who lives
in My(M2(C)). This increases the complexity of the calculations from the symmetric case

where the "target matrix" is diagonal, but eventually this increase is not that significant.

2.5.1 Terminology

Firstly we introduce the terminology of [6].

For any N—-dependent random variables Y7, Yo we denote
1. Y; <Y, if there exists a universal constant C > O such that |Y;| < CYs.

2. Y1 =k Y if there exists a constant C; (which depends on some k) such that |Y;]| <
CrYs.

3. Y1 < Y; if there a positive constant ¢ such that Y1 N¢ < Ys.

2.5.2 Statement of the main result of this section

Assumption 2.5.1. Let V be a deterministic N X N matrix. Denote V the symmetrization
of V and my the Stieltjes transform of V. Assume that there exists a large constant a > 1
such that

LIV lop< N®.

2. a! <Im(my(z)) < a, forallze (E+in, E€ (Eg—r1,Ey+r1) ,h, <n < 1} for some

N-dependent constants r, h, such that: % < h.<r<1.

Moreover, fix ¢ > 0 some arbitrary small constant and set

NC

N (2.5.2)

v

Remark 2.5.2. Note that the matrix X satisfies with high probability the Assumptions 2.5.1

due to Theorem 2.3.14, for Ey = 0, h, = N°"z for arbitrary small constant 6 > O, r = %
where C is the constant mentioned in Theorem 2.3.14 and since for fixed large D > O, one
can compute by (2.1.3) that any given entry of X has magnitude greater than N *&" with

probability less than CN~2P~2, which implies that

2(D+3)

IP(H X llopz N5 < CN-2P. (2.5.3)
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Remark 2.5.3. Let V be a deterministic N X N matrix. Due to the singular value decompo-
sition of V, there exist J;,Js two orthogonal N X N matrices, such that £ = J,VJ;, where
¥ is a diagonal matrix with diagonal entries the singular values of V. Then denote V the
symmetrization of V and set

JI o
0 Jo

Then it is true that
)y

T ol

Moreover, note that U is orthogonal.

Definition 2.5.4. Suppose V is a deterministic matrix which satisfies the Assumption

2.5.1 for some N-dependent constants h., r. Then for any k € (O, 1), define the set
1/14
]Dkz{Z:E+in:Ee(Eo—(l—k)r,Eo+(1—k)r),W <n< l—kr}.

The parameter y is defined in (2.5.2).

Definition 2.5.5. Recall the definition of the the Stieltjes transform of the Empirical spec-
tral distribution of V with s—times the semicircle law in Definition 2.4.2. We will use the

following notation

1

i — z— smg 5(2)

1
ms,fc(z) = — Z gi(s, Z), with gi(S, Z) =
{ie[NJ}U{—i€[N]}

and f; are the eigenvalues of V arranged in increasing order so that A; = —A_;.

Theorem 2.5.6. Let V be a deterministic matrix that satisfies the Assumptions 2.5.1. Denote
the matrix
G(z, s) = (V+ VsW —zI) L.

Here W is the symmetrization of a matrix with i.i.d. entries, all following the Gaussian law

with mean O and variance % Moreover fix U to be the orthogonal matrix constructed in

Remark 2.5.3 for V. Moreover fixk € (0,1),s: h, < s<randqcR" :|gllo = 1. Then it is

true that,
N 1 N
(@.G(s. 2 = ) 5 (G0 +g-0(s. 2w 0 = ) (G~ g-0(s. e, Do, @) (2.5.9)
i=—N i=1
=< v Im[ S (ug. @) + (ugen. @*)(gi(s. 2) + g-i(s. 2)) |. (2.5.5)
Vi

with overwhelming probability, uniformly for all z € Dy.. Here u; denote the columns of U.
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Set Cj, for j € {1, 2}, to be the N X N diagonal matrices with their i — th diagonal element
equal to g; + (=1)Y"!g_;. Fix the 2N x 2N matrix,
G G
Cy C

1
2
In general, what Theorem 2.5.6 states is that the matrix G(z, s) can be well approximated

by UCU*, since

N

1 N
(q. UCU"q) = Z E(gi +g-0)(s, 2)(w, ) + Z(Qi — g-)(s, z{u;, @){uisn. Q).
i=—N i=1

Moreover we can reduce the proof of Theorem 2.5.6 to the diagonal case.

Theorem 2.5.7. Fix V = diag(vy,--- ,vy) a diagonal matrix which satisfies Assumption
2.5.1. Moreover set W to be the symmetrization of a matrix L with i.i.d. entries, all following
the Gaussian law with O mean and % variance. Define the resolvent G(z, s) = (V + {sW —
z)7!. Fixk€(0,1), h, <« s<randq:|qlla = 1. Then

N N
1
(q. G(s, 2)q) — Z E(Qi +9-0(s. DGy — Z(Qi — g-i)(S. 2)qiqi+N (2.5.6)
i=—N i=1
yw? Y
< Im| » (@7 + ¢ n)(g-i(s. 2) + gi(s., 2) |, 2.5.7)
Y

holds with overwhelming probability uniformly for all z € Dj..

The proof of Theorem 2.5.7 can be found in paragraph 2.5.3.

Proof of Theorem 2.5.6 assuming Theorem 2.5.7. Let V be a general deterministic matrix
with singular value decomposition ¥ = J,VJ; where J; and Jy are orthogonal matrices.
Define U as in Remark 2.5.3. Then
. 0 T +JT/sLTJT
U + Vsw)uT = 1 VSLid, )
X+ dJdy \/ELJ 1 0

But L is invariant under orthogonal transformation, so J;LJ; has the same law as L. This
implies that U(V + 4/sW)UT has the same law as UVUT + 1/sW. Next, by the properties of

the inner product, one has that
(q. (V+Vsw—-zI)"1q) = (q UUVUT+uUWUT -z) 'UTq) = (UTq, (UVUT+UuWwUT-2z) ' UT ).

By a similar computation for (g, UCU*q), one reduces the problem in bounding

N
(@ UVUT + VsW —2D7'q) — |} qPgu(t. 2) + Gng-i |~ D | aiduen(9i — 9-0(s. 2)].
i=1 i€[N]

which is true by a direct application of Theorem 2.5.7.
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So it suffices to prove Theorem 2.5.7, i.e., to consider V to be diagonal. Moreover we

have the following identities.

Remark 2.5.8. Let V be a deterministic diagonal matrix which satisfies Assumptions 2.5.1.
Adopt the notation of Theorem 2.5.7. Then consider the following matrix F = {F;;};je[ny.
where

0 [V + +/sL];
[V + +/sL];: 0
Note that there exists a unitary matrix S, the product of permutation matrices, such that
if we set F = ST(V + 4/sW)S then G(s, z) = S(F — zI)~!ST and

Fij: , for all i,j € [N].

Gij Gi+ng

’

(F -z} =

iji+N  GirNjrN
where G;; are the entries of G(s, z).

It is more convenient to work with the matrix F and its resolvent as it can be thought as a
full symmetric matrix in My(Mz(C)), instead of a symmetric matrix with O at the diagonal
blocks in Moy (C).

2.5.3 Proof of Theorem 2.5.7

In this subsection we will prove Theorem 2.5.7. First, we present some results from [3],

necessary for the proof.

Proposition 2.5.9 ([3],Theorem 4.5). Fix s as in Theorem 2.5.7, the parameter y defined in
(2.5.2) and Kk € (0, 1). Then it is true that,

(4
Ims(z) — mg (2)| < N_TZ’

holds with overwhelming probability uniformly for all z € D,.. Here mg(z) is the Stieltjes
transform of V + +/sW.

Lemma 2.5.10. Fix s and k as in Theorem 2.5.7. Then uniformly for all z € D,., there exists

a constant C > 1 such that:

C! < Imse(2) < C. (2.5.8)
N
1
Ims e(2)| < N ; lgil + lg—il < Clog(N). (2.5.9)
Proof. These estimates can be found in [3] Lemma 4.1 and Lemma 4.12. O

Moreover the following estimates hold.
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Lemma 2.5.11. Fix T C [2N] such that |T| < log(N), which consists of pairs of indeces

{Ic, k + N} for Ikt € [N]. Moreover set (H + \/sG)* the sub matrix of H + /sG with the i — th
-1

columns and row removed for all i € T and G'(s, z) = ((H + Vso)T - Z]IQN_m) . Then the

JSollowing estimates hold with overwhelming probability.

1 S
Git = 5090+ 9-0| < lail + lg-)® = forall i € [2N]\ T. (2.5.10)
1
Ginei = 501 = 9-0| < (lgil +1g-i)° \/_for allie [2N]\ T, (2.5.11)

1/2
(67 < Minli +lg-dlal +1g-Dy _ (g1 + - + 195D

VN7 = VNn SJorallije [2N]\T.

(2.5.12)

Proof. The first two estimates are proven by the Schur Complement formula and the bounds

(4.69) and (4.89) from [3]. The last bound is given in [3], equation (4.70) and (4.79). O

Next, we present a bound for the diagonal and the anti-diagonal entries of G(s, z).

Lemma 2.5.12. Adopt the notation of Theorem 2.5.7. Then it is true that with overwhelming
probability

(2.5.13)

1 N N
(q.G(s,z)q) — 5( Z q@(gi(s, 2) + g-i(s, 2)) — Z qiqi+N(gi — 9-1)

=< Im @ (9i(s,2) + g-i(s,2)) | + —Tm]| > (g + g-I(GPp + G (2.5.14)
w2 (2 g
Z Gijqiq; (2.5.15)
i#j,i£N+j

Proof. One has that,

<q’ G(S Z)Q) Z q; Gll +2 Z G Ji+N4idi+N + Z C]qu ij- (2-5- 16)
i#j,i#N+j

So for the first part on the right side of the equality in (2.5.16), one can apply (2.5.10)) to
get that,

Z q1+N

i=—N

0= (gl + g_l)‘ < (2.5.17)

N N
2sy 9 9  2sYy 9
Gy (gl +g-i)? < == > @ nylail’ + —== >  qunlg-i*. (2.5.18)
V Z VIR Z‘V ViR Z‘V

Next, we can apply Proposition 2.8 from [6] to get that with overwhelming probability,

Z qH—N

i=—N

i — (gl +9-1)

2y
< N Im(z (g + g_l)qHN]

i=—N
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Similarly, by (2.5.11) one has that with overwhelming probability,

N N
1 2y 9 2
lgiGi+n| |Ginei — (91— g-)| = —— Im( (9i + 9-Dlg,n + G; I), (2.5.19)
2, > |2
> ! 2y,
|qiqi+n] ‘GN+i,i - =(gi - g—i)’ < —= Im( (gi + g—i)|qi2+N + qi2|]- (2.5.20)
=1 2 Nn =1
O

So in order to prove Theorem 2.5.7, it suffices to prove that

EZ? <, Y?* forallkeN, (2.5.21)
where,
log Ny u
Z = Z qiqiGij| and Y = = Im[ (Gi + 90 + qi2+N]. (2.5.22)
i# mod N VAT -1

By (2.5.21), one can obtain Theorem 2.5.7 by Markov’s inequality, which will imply

N
wz
Z 4iqGij| = —==Tm (Z(Qi +g-0(q; + qfi)] (2.5.23)
i# mod N n i=1

with overwhelming probability. More precisely for any D > O if we fix k : ck > D and
sufficient large N such that N°*P > C,. Here c is the constant in the definition of y in
(2.5.2) and Cj is implied in (2.5.21). Thus, one can apply Markov’s inequality in order to
get that:

2k 2k
Y 2k v Cilog”*(N) _ Ck 1
P > =P|Z°" > < < < —.
(Z log(N) Y) ( (log(N) Y) ) Ne2k Nc¢k = ND

Next, we give an analysis for the moments of Z. Firstly, note that

E|Z |2k = Z db,db,dbs * ** qb4kEXb1,b2Xb3.b4 o 'Xb4k—1’b4k’ (2.5.24)
b

where the sum is taken over all b C [2N]** such that by # by; mod N and Xp, b, =
Gh,, 1.y, for i € [k] and Xy, | b, = szl,_l,bm and i € [2k] \ [k]. Furthermore, we can continue

the analysis of the sum such that,

El VA |2k = Z Z Adb, 9, 4b; " " Qb4kEXb1,b2Xb3,b4 T Xb4k—1.b4k' (2.5.25)
B b;={B;.B;+N}

Now the sum is considered, firstly over all B C [{ mod N ]** with the restriction that Bg;_; #

Bs; and then over the possible b; = k such that k € [N] or k € B; or b; = k+ N for k € [N]

and k € B;. Next, for every summand in (2.5.25) set T = Uy,ep p,e[n]{bi, bi + N}. Moreover set
the diagonal block matrices

T m. ’f 0

M Yyer = |5

fs,s
0 Mg fc
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and
. m® 0
M =
ii€[T] 0 m(T) ’

where m®(z) is the trace of the resolvent of (V + /sW)® divided by 2N. Here S is any
subset of [2N] and (V + sW)® is the minor of (V + 4/sW) with rows and columns not

included in S. Moreover set
-z

ﬁi —Z

0 w;
Wy, = l ”} :
wj,i O

Adopting the notation of Proposition 2.5.8 and since G(s,z) = S(F — zI)"'S”, one can

q)i,i =

and

apply Schur complements formula to get that

-1 y) % T T -1
(F = ZDyjer = (Qier + ‘/EWiJeT - S(W,)iJ:ieTJe[ZN]\T(S G(s, 2)S)( )WiIE[ZN]\TJeT) (2.5.26)

=(D-E'-E?>-E%"!, (2.5.27)
where

D=Qur—sMy ). E' = s(M" - M), E* = - VsW’, (2.5.28)

E® = S(W); et jeponn (ST G(s. 2)9) Wicianyyrjer — M"). (2.5.29)

Next, we wish to estimate the operator norm of the matrix ED™!. We will show that,

|ED_1 |op < ck

¥
N (2.5.30)
with overwhelming probability. Here E = 2 | E%.
More precisely, firstly note that D is a 2N X 2N dimensional matrix with O at the all non-
diagonal 2 X 2 blocks and with diagonal blocks equal to

D;; =

-z — mg 1(2) A ]

i —Z — Mg 1c(2)

So the inverse of D will preserve the same structure. Thus, we can compute that:

gi +g-i gi — g-i
9i — 9-i gi +9g-i

1
Dl=2=
bt 2

Moreover since Im(z + smg ¢(2)) > (s + 1), we get that |g;| < ﬁ for all i: |i| € [N]. All these

imply that all the entries of D! are bounded by S%Z up to some universal constant. So it

is implied that
1

s+n

1D op <k (2.5.31)



52

Next, similarly to the proof of (2.16) in [6] one can prove that

|Elop <k (s + n)i. (2.5.32)

VNn
So after combining (2.5.31) and (2.5.32), we get (2.5.30). Set A to be the event where
(2.5.30) holds with overwhelming probability. Then it is true that for appropriately large N

P(AC) < N~#a+6k (2.5.33)

where a is given in the Assumptions 2.5.1. Next by Taylor’s expansion on the event A one

has
f-1

(F - z]I)l._JleT =(D-E)!= Z D YED Y)Y +(D-E)"YED)”, (2.5.34)
=0

8l(a+1 . .
(aT”] where c is mentioned

where f can be chosen to be arbitrary large. We choose f = [
in the definition of y in (2.5.2) and a is mentioned in the Assumption 2.5.1. Moreover since
all the non diagonal 2 X 2 blocks of D! are 0, we can ignore the case of [ = 0 in (2.5.34),
since we are interested in the elements of G;jer, such that b; # b;y;modN. Moreover set
Xy by = (DT ED™) )y, and X2y, = (D = E)" (ED)Y )i .-

So in order to prove (2.5.21), firstly we need to bound Y from below. Note that similarly
to [6] (2.13) one has

N N
(n+ sIm(mg(2)) g2 n
I 2 gil= : L> , 2.5.35
m (;_N ql*”g‘] 24 TA(0) — z-my (2~ N2° (2.5:39)

i+1

due to the fact that z € D). , Assumption 2.5.1 and (2.5.9). So it is easily implied that

log(N
. log(N) (2.5.36)

N2\

Returning to the analysis of equation (2.5.25), one has that
Z Z Ab, by Abs * * * AbyilBX by 1o Xig by * * * Xbageo1,barc (2.5.37)
B b[:{Bi,Bi-FN}
2k

=3 D @G n BB [ [ X b 1 () + Oy 2FR(AC), (2.5.38)

B bi{Bi,Bi‘FN} i=1

where the second part on the right hand side of the equation comes from the fact that

X, b,y are uniformly bounded by n~! and the fact that |q|; < N 172 since lgle = 1. So one
has that
20 oN 2k
2RO | Y g =0 RAC) (Z 1y |qj|]
i#] =1 Jj#

2k
< n_sz(ﬂc)( 2 N 2Iqi|] = N #P(AC). (2.5.39)
i€[2N]
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Next by (2.5.33),(2.5.36) and the fact that z € Dy one has that

2k
2k =2k c —2k-2 -2k _ 2k
N PA) <N n <N2k§Y .
So, we have proven that we can restrain to the event that A holds. Returning again to the

analysis of the sum in the form (2.5.24) one has that

Z b, 4p,Gbs * - qb4kEXb1»b2Xb3,b4 Kby 1.ba 1 (A) = (2.5.40)
b

N

Ik f-1

L
= b A, Do EL(A) X)) (2.5.41)
b i=1 =1

(c0) (c0)
+ Z ab,9b,Abs * * * by Z El (ﬂ)‘le 1.2i l_[ Xb2J 1,bj l_[ (sz_] 1.byy — szj—l-sz) . (2.5.42)
b

J<i-1 J2i+l

We will show that the second part of the right hand side of the equation is negligible on the
event A. Note that since |(D — E)_llop <k % and since (2.5.30) holds in A we get that

f
X<, 1 (L) )
bl bH—l n \/]W,Z

All these, imply that

x ()
Z Qb, 9, Gbs " * * Qb Z El (ﬂ)XZL 1.2i 1_[ Xb21 1.by 1_[ (Xb21 1.by bz, 1, bZJ)
b

Jsi=1 Jzirl (2.5.43)
21k Sf
5kN—( id ) .
n

T

The N2* factor in (2.5.43), comes from bounding the quantity | Xizj qiqjl- By the way f is

T ) ) () =
n \yNp) ~\n2e) \ywq) =0

So, the remaining quantity in the sum we need to bound is

chosen, we get that

2k
| | l;
Z qbl qb2 qb3 e CIb4kE1 (*ﬂ) Xl()ZI.) 1, b21
lﬁll,lg,"',lzkﬁf—l b i=1

Moreover due to Cauchy-Schwarz inequality one can show that

2k
(L) 1)
Enxbmf .boy EﬂX —1,bg;
i=1

i=1
So, we will work with the right hand side of the last inequality, meaning we won’t focus

2

E1(A) 1_[ X0 + P(AY)

anymore on the event A. Moreover we will focus on the first summand of the right hand

side of the inequality, since the second one can be treated analogously.



54

Next, we can transform the previously mentioned quantity in a more appropriate form.

Firstly, note for each i € [k]:
X(li) Z(D =UDED™ ) (1) (1)

bai-1,bai
a®

and similarly for i € [2k] \ [k]

50 = DO
a®
where the sum is taken over all a® ¢ Ti*!, i.e., all the |-tuples with the restriction that

(0 So, since this is true for all i € [2k] one can show:
2k

ai’ = by and a;), = by
(L) 1 1
XbZL 1,bai Z H(D U=VED™ ) (l) (l) ’

i=1
where the sum is taken over all a = (al,a2---a%¥) and for i € [2k] \ [k], the ’ denotes the

conjugate.
Next set
E 1] [af}) ] E[aFi>]+N.[af?1]
E[ (1)][ (1)1] ’
E[a“’] [a? 1+N E[a“’]w [a?, 1+N

where [aj(i)] is the least positive integer which is equal to a}l) mod (N). Moreover set

x(a”) = 1{a” = [a"]+ N} + 1.

Furthermore, since D! consists of zero at the non diagonal 2 X 2 blocks, one has that
forj#1
(2.5.44)

Jj+1 J+1 )x(a(')) x(aJ(Jlr)l

—1 —
(ED )aj(i)"f;(i)l = (E[ a®], [a<1) ]]D[a(l) 11a® ]

E o .0 ) ~|D7L (E [CRG ) D} (2.5.45)
( (e ]x(a}‘)),l( la)y 11! ] 1x(a?)) 7 .01 o0 2 ) .ap), 2.x(al))

Jt+1

and similarly for j =1
2 2
(D ED ) (L) (l ( (L) L) ) ; E (i), 2 (D_l(i) i) :
;n; La®] [a(ll)],l( [a1]1?,[az] )l.m [a"],[ag]® m,[aél)]
So it is implied that
’
! ) . (2.5.46)
O (@)

4
(l) | |
EI I bai-1.Dba Z Z E ( [a{"1.[a” ) a®).cl (E[ Olay ]) &0 0 (D[ 11l
<l .

( 1 ) (2.5.47)
(i) (l)
x(d 1>

* E i i
Jl;[( la").[[a?, ])x(a(L)) 0 [a?11a?,]
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Here c is any subset of {1, 2}(21‘2:kl W+l S since the entries of D! are deterministic and for

® 1 o
all @ the entries of D~ (1)] (el are bounded by Ig[ a}”]l + Ig_[ aJF‘)]|’ it is true that

2k ’ ’
Er| I B N [ ERTE DLY B [ R [
bai-1,bai =L [a;"] la;”] — 1 la;"].[ay’] R Gt [a; Ll ] x(a;l)),cﬁ)l

Next we will show an important inequality, necessary to estimate the expectation of the

products in the previous equations.

Lemma 2.5.13. It is true that for each array (aji) with entries in T,

‘ (wlog(N)*" (s + p)*"
Z l_l( [a"1.[a” ) 0 O l_l (E[au)] [[0;31 ) o, c(l) <k (Nn)ZH 2 (2.5.48)

j#l xa

X(1a"11a") (a3 [ad] -+ e} 1. 1@ T L) 1 [a2?]), (2.5.49)

lzk

where X(+) is the indicator function that indicates if every element in the array appears an

even number of times.

Proof. Note that by the definition of the matrices, one has that

E =E', o +E*, . +E°

i i +
el = el T a0 T a0

Moreover, after conditioning on the matrix W, the matrices E!, E2, E® are independent

T.T’

since E! is dependent only on (F — zI)® and is diagonal and deterministic, E> depends
only on W%’T and E® depends on G' and W[le\T,]F We will use the notation Et for the

conditional expected value. So in order to prove Lemma 2.5.13 it suffices to show that

’ Z li
ys i
<k |— . <
Z Er 1—[( [a}"].[a)” ) 0 {0 l_[ (E[a“>] [[aﬂ]) (a0 =k (Nﬂ) X(([afl])ie[zk]Je[Zli]) =
J# G

< X(([ ) )(wlog(N))Z b(s+ ik

- % i€[2k] je[ L] (N’,’Z)Zizl L/2 ’
(2.5.50)
/ 2 L/2
2 S i
Z Er l_l ( [a”],[a ) 0 0 l_l (E[a“)] [la; )x(a(i)) O Sk (N) X(([af])ie[zklde[ld) <
5 G

; (plog(N))Zli(s + m)Zil

< X(([aj])ie[Zk]Je[li]) (Nr[)Zi:l /2 ’

(2.5.51)
’ /2
sylog(N) ;
E® <k|—/—— X [a; <
Z Er 1_[( [a"1.1a” ) ® L0 l—ll( [a(‘)] [[aj(i)l])x(%@)'?;?l k ( \/Nn (([ J])i5[2k]JE[li])

i (wlog(N))Z (s + m)i*
X(([a.])le[zk]de[l]) (N’rl)Zi:l /2
(2.5.52)
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This is true, since if we assume (2.5.50),(2.5.51),(2.5.52) hold for any array then

’
Z Er 1_[( la"].lay ) 0 L 1_[ (E[a(‘)] [la?, ) ()., (2.5.53)

x(a

’
Z Z l_l l_l 1 (l) 1) € Py} (E[a(z)][ (x>]) © o (2.5.54)
)

PL,p2p3| ¢ yeg[3] i=1

. Yy

Jl-:1[ { aj <P } ( [a(l) [[Cl(L) ])x(a(l)) C(l) (2555)
wlog(N) - log(N)\2*

<k X |([a; e Py ( ) < X( ay]) (( + ) — )

Pl;lﬁ yle_[:!] ( Pl p2 p3 \/_Tl
(2.5.56)
< x([d])(( + )wmg(N))Z” N
T Wi | 5.

where the sum is taken over all 3-partitions P!, P2, P® of the set {i,j : i € [2k].j € [l; + 1]}
such that if aji € PY then afH € PY for each j € [[]N (2N + 1), i € [2k] and y € [3]. So the
number of these partitions depends only on k which implies the last inequality.

For the first inequality (2.5.50) note that the matrix E! is diagonal and its diagonal
entries are bounded by slTli due to Theorem 4.5 of [3] and the interlacing properties of

< l{a’—ai }SNln So

the minors of the eigenvalues. So it is implied that |E} i1

la]l.al, ]|°p

2k ,
ETl_I(E i l), H(E i i ) <ZETH i i nEli i
Z LI\ 1a 118’1 o o 3 (g 11121 .0 SARCRICY T lq"].[laf})]

c = _]+1 op
(2.5.58)

= Zc: 1:[ 1 {ajl = a;+1} s% = Zc: l:[ 1 {[aji] = [aji+1]} leﬂ =k (KJIZ) X(([%?])ie[zk]Je[zi+1])'
(2.5.59)

For the second inequality (2.5.51) by the way E? was defined, one can compute that

’
2
ZETH( la{"].[ay’ ) ® <1)H(E[a<l>] [[aﬂ]) o o (2.5.60)
#1 (7060
E E’ : 2.5.61
Z T l_l( a"1.[a t>]) 1011}, Jl;[( @111 J+1]) ‘ , ( )

cefle) =l x(a")[x(a")+1]

where [a]s the least positive integer such that it is equal to a mod 2. Note that

2
(E[a‘] [aH]) ~ Vswaq

J+1
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and (E2 i [al ]) - \/Ewaﬁ+1,a§. Moreover, since the non zero entries of W’ are indepen-
J+1 2 1 J J

dent, symmetric, normal random variables with variance +, the product is non-zero only

if every pair ([a 1.0 ]) in the product appears an even number of times. All these imply

J+1
that
2k .
Z Er l_l (E[a(”] [0 ) © n (E[Za(l)] a0 ]) . . <i Z (N)Z li/2X([ajl])’
celr2)] =1 crler il jug 1 a®) xa 1| o E)

which implies (2.5.51). The constant which is implied in the last inequality can be chosen
to be 2k [] J.Z: i‘ E(VNw; 1)¥, which is a large constant depending only on k since VNwy ; ~
N(0,1).

For the third inequality, (2.5.52), one can show that

’ ’
3
Z Er 1_1I ( [a(l)] [ ])C(li)’cg) Jl:l[ (E[a(z)] [[a? ]) (1) (2.5.62)

g1 x(a(l)) Gy

2k , . ,
= E3 ) +1{a'? = i(ES, ) .
Z }ET {!:1[ ( la’].[ay] e { ! a2} [a}’1.[a;] Ot 100,05 +112

{(Céj—l’céj)e‘::aéj—l¢a£j le
(2.5.63)
: E’ @1 11q® ) +1(a = aj, (E3 O 1 ) (2.5.64)
(Jl;[( (a7 110 (0.t (4= ) 9 MG @)y el + 11
’
= E° : 2.5.65
ZET l_[( [a{"1.1a” ) 0 L l_l( [a (LF)] [[aj(fl])x(aa)) 0 ( )
g7+

where

(E?i].[i])l,m -

(E[Sl] m) 1{[i] # [jl or 1 # m}

3 _ T _ N T
(Em UJ)lm F U= 1} Yieniniennt Ga + 1= 2} Ziginjnennr Gienisne  €lse

So by construction one can compute that

()0 =
[{1.0]
T
o | Zreerozmmi (Wi Wit = L= Ly=k WG fin 2fkgTU2\[N] W Wi Gie
1 T
3 fkgTUan\IN] Wi WikGiey y s 2 fieguem\[N) (WriWike = La=(1 L=k ) Gy
(2.5.66)
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As a result

~ 3 B
ET Z l_l( [a(L)J [ (1) ) (z) (1) 1—1[ (E[a(t)J [[a(l) J) (L) - (2,5_67)

x(a(l)) <y

1,51

2k , }
oL / ’ a;=8 ~a =5
S ET (W i i ) (W i i ) - |°* (2.5.68)
X e | W)y (W) -

© By BT =)

T ORI A
LA VY @tz xap (e B et el 11, N -
2k
GL ) (GT ; ) (2.5.70)
!:ll ( L811.L85] [ci+1]2.[ci+1]2 D LBj). [B“] [x(af H+1]a, [c +1]2
Next set G to be the graph with vertices {[,B}], [_Bé], ------ [_B%{;k]} and with edges the succe-
sive terms ([ng_l], [Béj]). Set p(G) the indicator function that every vertex of G is adjacent
to at least two edges, v = {[,8}], [,85], e %{;k]}, Yre[v] the non-repeating vertices of G, d, the

multiplicity of y, and o the number of self loops in G. So, by (2.5.11), (2.5.10) and (2.5.12)

one has that with overwhelming probability

2k
p(G) (GTi ; ) 4 4 (GTl L ) , , (2.5.71)
L_l[ RSN l—[ BB xaty+ 11 Lt +112
Zl d.-/2 d.-/2
<k PO) = \/—21 — 1 (190,12 + 1g-,1%7). (2.5.72)

refv]

Thus one can show similarly to the proof of (2.40) in [6] that the following holds with

overwhelming probability

2k L2 bi/2
[ N (ylog(N))= N2t
GTi i ) (GTi i ) = :
PO ) ( R V/ERNEREIN AN L D s E st nE /2

ﬁ;eﬂ‘ i=1

(2.5.73)
Next we need to bound the quantity
lai:ﬁi lazi:ﬁi
ET ( ; ) (W’i ; ) - 1L 22, (2.5.74)
l—l[ [a 11511 (el +1lp.ct \ [RIB i et i, N
lhi-gilg =g
. W i g ) (W ) -2 (2.5.75)
l_l l:( [a_,]r[ﬁ_,] [X(q]'i)_"l]%x(qii) [a+1] [-B_)+l] [ ?+1+1]2 N

J#1

Note, that in order for the product to be different than O, every pair ([a{], [b{:]) must appear
an even number of times. Moreover in order for the product to be different than O, for each
M 1) for m € [2k] and r € [1,,,],

i,j the number of consecutive pairs ([a;"], [3']) and ([a},]. [8},

such that exactly one of them is equal to [aj , ﬂj], must be also even. Furthermore, for each
i,j, if such pairs do not exist, then the number of consecutive pairs which are both equal to

[a{ , ,B{] must be at least 2, or else the product would be 0. The latter is true since either the
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square of a centered Gaussian random variable minus its variance would appear, either
the product of two independent centered Gaussian random variables would appear.

So it is implied that in order for the product above to not be zero, it is demanded that
(@) =1 and X([a{]) = 1. Here G is the graph which is associated with ﬁi So by a trivial

bounding in the moments of Gaussian random variables one can show that

lal:ﬁl laézﬁ‘
Er (W’i i ) (WQ . ) _ATA TR (2.5.76)
‘ 1:1[ [al],[Bl] [C§+1]2sci [0—2][52] C;:[C;‘*'l]z N
lai-pilal =g .
. W,i i) (W/ . ) _ 7] J+1T 41 ﬁ N_Zli X a,l ‘
Jl-:l[ {( A oty G Bl gt o, N || p(@X(a])
(2.5.77)
Thus, the proof of the lemma is complete after combining (2.5.76) and (2.5.73). O

We are now ready to present the proof of Theorem 2.5.7.

Proof of Theorem 2.5.7. Note that Lemma 2.5.13 holds for every sequence of indexes. In our
case though, by construction, every term in [aji] appears a non-zero even number of times
since they appear consecutive times for j # 1,; + 1. So one has that X([a{]ie[gk] Jell+1]) =
X([a]]le[zk]de Li+1}) = X([B)]. So by a direct application of Lemma 2.5.13

’ ’ ’
1
| | ( (], [a(l)]) 0) (E[a< h <l>]) 0 (D[ 01 [ ]) O o) (2.5.78)

x(a
’ ’
A HE 0 ) D!, ‘ (2.5.79)
Jl;[( [a<>] [[¢1J<+)1 x(am))cm( [a()][a+1]) x(a“)
(l//log(N))Z (s + mZik
< )| | (Ig[a;nll " Ig_[aj(o]l) i X®) (2.5.80)
a ij
As a result
DU DT D lanlialan) - lan, ]_[X;lem (2.5.81)
1<, bi<f-1 B b;={B;,B;+N}
log(N))2 (s + )&tk
< Z Z(w g(N))="(s +n) X(B): 2.5.82)

=1 /2
1<l.lp, ,brsf-1 B (NTI)Z 1/

S lanllas, s, - |qb4k|2ﬂ(|g[am]|+|g o) 2.5.83)
a

b;={B;,B;+N}

(wlog(N)Z k(s + m)Zik
= o Z; _ Z (NS 172 X(B) U (lgs,| + lgs,+nl) Z 1_[ (Ig[ajm]l + |g_[ajgi>]|),
<h.l,.brsf-1 B i=1 A ij

(2.5.84)

where the sum now is considered over all A C BZ4*2K with the restriction that [ai] = By;_1

and [aliiﬂ] = Bo;.
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Moreover note that the array [aji] defines a partition on the set {(i.j) : i € [2k].j € [I; + 1]}

such that (i, j) belongs to the same block of the partition with (i’,j’) if and only if aji = a{
Furthermore, denote n = |B|, d; the number of times the i — th element of B, which we
denote with y;, appears without repetition and r; such that r; + d; is the number of times
the i — th element of B appears in A. Note that since we are interested in the sequences

that X(B) = 1, it is implied that d; are all even. So it is true that

Zdi:Zk, 2k+Zri:Zli.

Moreover, notice that each induced partition mentioned before, uniquely determines the
quantities d;, l; and each block of the partition has at least two elements, since X(B) = 1. So
we can modify the sum, into first summing over all partitions P and then over all A-possible

choices in the partition. Note that B is completely described by the set A. So one has that

_ (wlog(N))Z k(s + it i
(2.5.84) = T 17 >0 x (g leprgeni):  (2.5.85)
1<l b < f-1 P AP
2k
. l—[ (|Q[a§]| + |Q[a§]+N|) (|Q[a{i+1]| + |Q[a{i+1]+N) l_l (lg[ajgi)ﬂ + |g_[ajgi>]|) <k (2.5.86)
i=1 u
log(N))Z (s + m)Zit
< (i log( ))zv (14/2 =t 2.5.87)
1<l o bk <f-1 (N2
n
DT T T0awl® + layent® gyl + gy 1% (2.5.88)
P 1<yj,y9- ., yn<N i=1

5 (wlog(N)Zl(s + 2k Im (3(q? + g% y)(gi + 9-1)%F)

<k
(Nn)Zi=1 /2 (s+mnZl

< Y2k (2.5.89)
1<l,lp- ,b<f-1 P

where in the last inequality we used the fact that wlog(N)(4/Nn)~! < 1, the fact that
>, i > 2I, and the fact that both the number of partitions and the number of possible
are bounded by constants depending only on k. For the second to last inequality, we used
Proposition 2.18-inequality (2.38) in [6], the facts that d; > 2 and that , d; = 2k.

This finishes the proof of Theorem 2.5.7 O

2.5.4 Bounding the pertubed matrices at the optimal scale

At this subsection we are going to essentially bound the entries of the resolvent G(s, z)
at the optimal scale Im(z) = N€!, for all matrices V that are initially bounded by an
N—-dependent parameter. Next, we will apply this result to the matrix X, which is initially
bounded due to (2.3.17) with high probability. Thus we will prove that the matrix X, after
slightly perturbing it, has essentially bounded resolvent entries at the optimal scale N°~!,

for any small enough, positive 6.



61

Proposition 2.5.14. Let V be an N X N matrix and consider V the symmetrization of D.
Suppose that V satisfies Assumption 2.5.1 for some parameters h,,r at energy level Eg = 0
and that there exists an N—dependent parameter B € (0, i) such that max; |[(V — zI )J._Jll <B.
Then for any § > 0 and s : N°h, < s < rN7°, it is true that for any D > 1 there exists
C = C(6, D) such that

P(sup sup |G(s, z)| = BN5) <CN7P,
D i

where G(s, z) = (V + \/sW —zI)™!, W is the symmetrization of an i.i.d. Gaussian matrix with

centered entries and variance % andD={E+in:E€(-5,5).n€ [No-1 1 - 31}

Proof. By a direct application of Theorem 2.5.6 for g; = 1{i = k} for any k € [2N] (without
loss of generality suppose k € [N]), one has that with overwhelming probability uniformly

on D it is true that,

N 2N
Gik(s. 2 = " (gl +lg-i) (en(0), @i)* + D (il +1g-i) K1(0). i Kutgsn(0), i)

i=—N i=1
(2.5.90)
6/2 N
* Im(é(gi + 90U qie) + (Ui Qi) (2.5.91)

Note that by definition the k — th element of each of the columns/rows of U is O for all the
columns/rows with index larger that N. Moreover by definition N° < Nn. So it is implied

that the above bound becomes

N
|Gick(s. 2] < ) (19 + gDl
i=1

Furthermore, due to Schur’s complement formula, one can prove, as in Lemma 2.3.28,
that

Giere = 2Gie1(Z),

where G is the resolvent of the matrix D”D. Moreover, one may compute that

T
DTD — ((U)le[N]JG[N]) Zz(U)iG[N]JG[N]y

where X is the diagonal matrix with the singular values of D. So it is true that
N

1
2
Z uk,iﬁz — 72

i=1 i

B
< —

z|’

= |Grex(2?)| = ‘le,k(Z)
z

1

with overwhelming probability uniformly on z€ {z=E+in: E € (-r,r),h. < n < 1}. Thus
if we consider the sets A,,(0) = (2™ 'h,,2™h,) U (-2™h,, —2™ 1 h,) and set z = in, it is true
that

max Z ui'i < min{Bn?2*™, 1}, (2.5.92)

je[N
JEIN] A,
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where the bounding by 1 is true due to the fact that the eigenvectors are considered
normalized. After this observation the proof continues in a completely analogous way to
the Proof of Proposition 3.9 in [5] and so it is omitted.

O

Corollary 2.5.15. Adopt the notation of Section 2.3. Let A be the set mentioned in Theorem
2.3.13. For all a € (0,2) \ A consider the matrix X + \tW, where t = t(N) is defined in
Definition 2.2.9. Set {T};jej2n)(2) the resolvent of X + VtW at z. Then it is true that for any
D > 0 and 6 > 0, there exists a constant C' = C'(a, v, p, 6, D) such that

P(sup sup |Tyj(z)| > N6) <CN7P, (2.5.93)
Ds ij

whereD¢, s ={E+in: E€ (—%, %), n € [N°71, —_1} where C, is the constant mentioned

1C,
in Theorem 2.3.13.

Proof. Due to (2.3.17), (2.3.15) and since t belongs to the desired interval (N25‘%,N‘25),
as is mentioned in the proof of Corollary 2.4.5, the proof of Corollary 2.5.15 is just an

application of Proposition 2.5.14 to our set of matrices. O

Remark 2.5.16. Note that bounding the entries of the resolvent of X + VtW as we did in
Corollary 2.5.15 at scale N°7!, implies the complete eigenvector delocalization in the sense

of Theorem 2.1.2. The proof of the latter claim is well-known and can be found in the proof
of Theorem 6.3 in [49].

2.6 Establishing universality of the least singular value and

eigenvector delocalization

Thus far, we have proven both universality of the least singular value, Corollary 2.4.5, and
complete eigenvector de-localization, Remark 2.5.16, for the matrix X + VtW in the sense
of Theorem 2.1.2. What we need to prove next, is that the transition from X + VtW to X + A
is smooth enough to preserve both the eigenvector delocalization and universality of the
least singular value. A first step to that direction is Theorem 2.6.4, whose proof is more
or less the same as its symmetric counterpart in [5]. Furthermore what we manage, is to
extend Theorem 3.15 of [5] to its "integrating analogue" in Proposition 2.6.7, which is not
very difficult given Theorem 2.6.4. Proposition 2.6.7 is the milestone for the comparison of
the least positive eigenvalues of X + A and X + VtW.

Firstly, we will use a convenient decomposition of the elements of H in order to express

the dependence of the "small" and the "large" entries of H with Bernoulli random variables.
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Definition 2.6.1. Define the following random variables for i,j € [2N] : |i —j| > N

P(|hi;| € (NY,N7P)
llfiJ:P(|hiJ|2N_p), Xij = ( wl € )

P(IhlJI < N—P)
and
P(hjjeIN(-N"V,NV P(h;; € (—o0, N"°) U (NP, NI
P[au el = ( i,j ( )]’ P(CU el = ( i,j (=00 ) U ( 00) )’
P(Hyl < N7v)) P(lhy| > N=°)

P(byel) = P(lhyl € (N™Y, N"?) N hy; € I)
? B P(lhyl € [N~v, N=P])

’

for any interval I, subset of R.

Moreover we define each bunch of
{xijtijeeniiizjizN, {Wijtijerentij=n . {Qijlijean:i-ji=n, (2.6.1)
{bijlijeanizji=n. {Cijlijeani)i-ji=n (2.6.2)
to be independent up to symmetry and independent amongst them for different indexes i, j.

Definition 2.6.2. Define the following matrices

Q1 =-yi)1 =—x)ai;, Lj:li—jl=N
Ay = Y VY 2.6.3)
0, otherwise

(1 = wi)xibii, Lj:li—jl=N
By = W 2.6.4)
0, otherwise

Yiicij, Lj:li—jl=N
cy=4 """ (2.6.5)
0, otherwise

Wi, Ljili—jl=N
gy=4 " (2.6.6)
0, otherwise

Note that by definition H =A+ B+ Cand X = B+ C.
Next we define the way to quantify the transition from X + VtW to X + A.
Definition 2.6.3. Define the matrices
HY =yA+ Vi(1 - y»)?W + X, y€[0,1]

and GY(z) = (HY — zI)™!.
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2.6.1 Green function Comparison

Next we present a comparison theorem for the resolvent entries of HY.

Theorem 2.6.4. Let a, b, p, v be constants that satisfy (2.2.1). Additionally suppose that
a € (0,2)\ A as in Theorem 2.3.14. Moreover let F : R — R such that

sup |F(“)(x)' < N©¢, sup |F(")(x)| < N%, (2.6.7)
Ix|<2Ne Ix|<2N2
Jfor some absolute constant Cy > 0, for some integer n = n(a, b, p, v, Cyp) sufficiently large and
any € > 0 and u € [n]. Furthermore fix z = E + in _for E € R and n > N~2. Moreover for any
matrix ¥ denote Ey the conditional expectation with respect to¥. Set

E(z) = sup max max Ey |F(") Im(G!(2))|, 2.6.8)
yelo,1] #Eln] ije[2N] J

Qo(z,€) = {sup Isz(z)l < Ne} , Qo(z,€) =1 -Py (Qo(z €)). (2.6.9)
ij

Then there exist € = e(a, b, p, v) and ® = &(a, b, p, v) such that for any matrix ¥ with at most

N*%*€ non-zero entries, there exists a constant C = C(a, v, p) so that

sup |Epr (Im(G,(2))) ~ E¢F (Im(G?J(z)))| < CN"®(2(2) + 1) + CQo(2, €)NC*C Vi j € [2N].
ye[0,1]
(2.6.10)

A similar bound to (2.6.10) can be proven, if one replaces Im(GlYJ(z)) and Im(G?J(z)) with
Re(GZj(z))) and Re(G?J.(z))) respectively.

Proof. The proof is similar to the proof of Theorem 3.15 in [5]. Next we give a short de-
scription of the main ideas behind the proof. We will do so only for the imaginary parts
Im(GZj(z)). The proof for the real parts Re(GZj(z)) is completely analogous.

Fix z € C and F : R — R satisfying the hypothesis of Theorem 2.6.4.

Firstly note that since GY = GY(H" — zI)G", it is true that

d d d d
—GY = —GY(H" - zI)G" + GY(HY - zI)—G" + GY—(H" - zI)GY
dy dy dy dy
So it is implied that
d d
-—GY = G"—(H"GY, (2.6.11)
dy dy
where the derivative d% is considered in every entry. So by (2.6.11) and Leibniz integral
rule, it is true that
d yt' 2w
— V= Y S A <1 B Mo
dYE\YGlJ - Z EvGip (Ap’q (1 —y2)1/2 GQJ )

p.gE€[2N]:|p—q|=N
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Thus, in order to prove (2.6.10) it is sufficient to show that there exists a constant C =
C(a, v,p) > 0 such that forall y € (0,1)

v oy yt Pwpq %
’ /
Ey Im(GlquJ)( p.g — —(1 - y2)1/2)F (Im(Gl.J.)
P.G€[2N]:|p—q|=N (2.6.12)

< W(N_Q(E + 1) + QoNC+CO)

and then integrate over any interval of the form (0, y’) with y’ € (0O, 1]. The proof of (2.6.12)
is completely analogous to the proof of Proposition 4.4 in [5]. So we will give a sketch of

the proof. Firstly fix p, g € [2N] : |p — gq| > N and set the matrices

H,. (i))¢{(p.q).(q p)

Dgp = (2.6.13)

Xpq, €lse

H',. (ab)¢{(p.q).(q.p)}

Eqp=1{ P . (2.6.14)

Cpq. e€lse

Moreover set

I'=HY-D, A=D-E (2.6.15)
=D-z)"', U=E-z)L (2.6.16)

So by Lemma 2.3.16, and as we have mentioned in the proof of Theorem 2.5.7, one can

apply Taylor’s Theorem for matrices to get that
GY - R =-RI'R+ (RD)?R - (RI)3G". (2.6.17)
Moreover, by a Taylor expansion for the function F’, it is true that for some
o€ [Im(G”) Im(R;)]
and ¢ = Im(Ry;) - Im(GZj),

ZS

ZZ
EF<4>(§0), (2.6.18)

F'(Im(G))) = F'(Im Ryy) + FP(Im Ry) + 5F<3>(Im Rij) +

where we have denoted FV(x) = %F(x) forall 1l € N.

So by combining (2.6.17) and (2.6.18), one can notice that each of the (p,q)-summand
in (2.6.12) can be viewed as a sum of finite number of monomials of A, ; and t1/2 wp q With
coefficients depending on the matrices R and GY. These monomials can be categorized into

the following cases:

1. The product of even degree of terms, i.e., []7_; §l J such that ) k; is even and §
equal either to ((RF)krR) , either equal to Im(((RF )krR) ), either to Re(((RF)krR)i i )

rdr

for some s € N and Ik, € {O 1,2}. Then for any m € {1,2,3} it is true that

yt' 2w
ElIlF(m) (Im(RlJ)) (Ap,q 2)11;12] r[ §lrJr =
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which is a consequence to the independence of the matrix R from A, g4, wpy 4 after
further conditioning on the matrix X, and the symmetry of the random variables

Ap.q. Wp 4. which has a consequence that every odd moment of them is O.

2. The terms that contain F*(g) can be bounded by a Taylor expansion similarly to

Lemma 4.7 in [5]. More precisely one can show that

EyIm(G!,G’ )| Apq — & F N‘2L(N_“(:+ 1)+ QoN!10)

¥ P\ TPa T (2172 (1—y2)1/2 = 0 ’
for parameters @ > ¢ > O, such that

2 min{d-av-1,2-a) P (2.6.19)

€y ;= —— min ayw-1,2-a)v—ap,v—p, =, 1}, .6.

°*= T00 aw-vmpy
® := min{(a — 2¢ey)p — 15¢g, (2 — a)v— ap — 15¢y,(4 — a)v — 1 — 10¢g, (4 — 2a)v — 15¢p}

(2.6.20)

These parameters also appear in (4.25) of [5].

3. Analogously to the previous bound, one can prove that for the s— products of §£.’,
when s € {1,2, 3,4}, k- € {1,2,3} and }, k, > 3, it holds that for any m € {1, 2, 3},

1/2
E\pF(m)(Im(RiJ)) (Ap,q 2)1/2) l_[ Sigr| < (N"°E+1D+ Q0N11+Co)‘

Y2)1/2

(2.6.21)

4. The remaining terms are the monomials of 2— degree. So it can be proven that,
ytl/ 2w
Ta- v2>1/2]

N9(Z+ 1) + QoN' ") + N¥*30 1= (y, 0 + 1{p = q})]. (2.6.23)

Ey(Im(RTR), ,R,))F (Im(R; ) (Ap (2.6.22)

N—2

(1 _ Y2)1/2 [(

2) yt' Pwpg
Ey Im(RiprqJ) Im(RFR)lJF (Im RLJ) Ap,q — m (2624)
L, C o e
= 2(1 —y2)1/2 [(N “E+ 1) + QoN'1TP) + NWI 1t:(ll’p,q +1{p= q})] . (2.6.25)

The proof of these inequalities is a consequence of further comparison between the
entries of the matrices R and U, similar to the one which was done for the matrices
GY and R before.

So after summing over all possible (p,q) and taking into account that t ~ N@2V and
that there are at most N*%*¢ non-zero entries of ¥ with overwhelming probability, see the

proof of Corollary 2.6.6, one has that (2.6.12) holds, which finishes the proof. O

In what follows, set C, the constant mentioned in Theorem 2.3.14. So due to Theorem

2.6.4 one can prove the following.
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Proposition 2.6.5. Let a, b, v,p as in (2.2.1). Moreover fix ¢ > O arbitrary small. Then for
each 6 > 0 and D > O there exists a constant C = C(a, p, v, b) such that

P| sup sup sup malelYJ(E +in)| > N°|< NP, (2.6.26)
velo.1] pe[- 5L ;L1 n2Ne-1

The constant C, in (2.6.26) is the constant mentioned in Theorem 2.3.14.

Proof. The proof is based on Theorem 2.6.4 and is similar to the proof of Proposition 3.17 in
[5], so we will just describe the key ideas behind the proof. The proof is done in steps. Set
p= [%] and consider the function Fyp(x) = |x|*P+1. Note that F,), satisfies the hypothesis
of Theorem 2.6.4. Moreover by Corollary 2.5.15 there exists a constant C’ = C'(a, b, v, p)

such that

J
__1 1 >NS—-1 W
E€l-5c5 2041 =

P[ sup sup max |G2(E + in)l] <CNP,
Fix e and @, the constants from the application of Theorem 2.6.4 for the function F,.

Moreover define the quantities

B(6,n) = ]P( sup max |GY(E + in)| > N‘S),
ve[o,1] W
forE € [—% %] and > NS"!. Set s = 7. Then one can show that there exists a constant
A = A(6, D) such that,
B(6.1) < AN"B(Z.Nn) + AN, (2.6.27)

which can be proven by (i) integrating over ¥ in the conclusion of Theorem 2.6.4 for F, after
using (2.6.28), (ii) Corollary 2.5.15, (iii) Markov’s Inequality applied for y € N20Zn(0,1)
and (iv) the deterministic estimates in the end of the proof of Lemma 4.3 in [5].

Thus in order to conclude, one can use induction over all k € [—1, [%” to show that
B(@, N"“’) < AN°D
2
and then extend to all E € [ L ] and n > N! by deterministic estimates of the form

~3C’3C
|GY(z) — G¥(Z')| < N®|z — Z/| for an appropriately chosen grid. O

Corollary 2.6.6. Fix F : R — R such that it satisfies the assumption of Theorem 2.6.4

and E € [g—é %] and n > N$™!, for an arbitrary small ¢ > 0. Then there exists a constant

c = c(a, b, v, p, Cy) and a large constant C = C(a, b, v, p) such that

sup ’EF(Im(GlYJ(z))) - EF(Im(G?J(z)))‘ < CN"°, foralli,j € [2N].
v€[0,1]
Proof. Firstly note that due to Chernoff bound there exists a constant C’ such that

1+ap

c

P(I(i,j) tH;j €[NP, 00)| ¢ ( C’N“ap)) <c exp(_CIY). (2.6.28)



68

Set Q = {(i,j) :|Hijl € [NP, 00)| € (Ng@’ C’N“ap)}. Moreover by the deterministic estimate

IGZI.I < n~! < N and the hypothesis for F one has that |F(Im(sz)| < N% and hence,
[ER(m(GY () - FIM(GY(2)| < [E1(Q) FAm(GY(2)) - FAm(GY(2))| + N C exp (—g)
Note that on the set Q we can apply Theorem 2.6.4. Moreover by Proposition 2.6.5, one
has that Qy(z, €) < CN~P for any D > 0 and similarly show that

2 < N®Qy(z) + CN-.

So the proof is complete after choosing an appropriately large D > O. O

Next, we extend the comparison result in such way that we can use in order to approxi-

mate the gap probability.

Proposition 2.6.7. Fix parameters a,b,p,v as in (2.2.1). Let q : R - R a C% function
with all its derivatives bounded by an absolute constant M greater than 1. Then for any
n > N2 and any positive sequence r(N) such that limr(N) = r > O there exist constants
®=ow(a,p,v,b,r),e=c¢elap,vb,r)and C= C(a,p, v, b,r) such that

% 2N % 2N
Y ; _ 0 .
Eq[ I " Z;Im Gii(y + ln)dyJ Eq[ I w Z;Im Gi;(y+ ln)dy]
N 1= N i=

C(MN™® + MN°Q(e. m)).

sup <

yel0.1] (2.6.29)

where

Qe =P| sup max|Gl(E+ il = N°|.
Ee[-3.2] Y
Moreover if we suppose that n > N1, for arbitrary small ¢ > 0, then there exists a constant

c = c(a, p, v, b) such that,

% 2N % 2N
y ; _ 0 .
Eq{ w Z; Im Giy(y + m)dy) Eq [ I w Z Im Gyy(y + lrz)dy)
i=

N N i=1

sup < CN° (2.6.30)

y€[0.1]

Proof. For simplicity we will assume r is a constant. The proof of (2.6.29) is similar to the
proof of Theorem 2.6.4. Next we highlight the differences.
Note that similarly to the proof of Corollary 2.6.6, it is sufficient to prove that for any

matrix ¥ with at most N'*% non-zero entries it is true that,

r 2N

N ¥ 2N
Eyq { f Im G y(y + irz)dy] - qu[ f Im G (y + in)dy}
- 1 - 1

L
N 1=

sup
y€[0,1]

(2.6.31)

N i=
< C(MN™° + MN°Q(e)).
Furthermore one can compute the derivative of the previous quantity with respect to vy,
as in Theorem 2.6.4. Thus by Leibniz integral rule, Fubini Theorem and (2.6.11) it is true
that

r

d 5 2N
—qu[ f Im G(y + in)dy]

<
dy ¥ =1
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L 2N L 2N 1/2w
N =1 p.ge[2N]:|p—ql>N -% =1 (I-y?)

As a result it is sufficient to prove that for any y € (—ﬁ ﬁ)

r 2N
N
Evd [ f Im Gl (y + in)dy] Im(GY,GY,1) (Ap,q -
- 1

L <
N =

(2.6.32)

2
ytt/ Wp.q
(1- V2)1/2

Dp.q€[2N]:|p—q|=N

= WM(N_“’ +Q(e.N).  (2.6.33)

But the proof of (2.6.32) is similar to the proof of (2.6.12), with the main difference
located in the Taylor expansion which now instead of being applied as in (2.6.18), it will
be applied for the quantities f_ % 212:1\11 Im G}(y + in)dy and f_ % lele Im R; ;(y + in)dy for fixed
p, q. But eventually, this does not affect the proof since each (p,q)-summand can again be
expressed into monomials of A, 4, wp 4, which do not depend on the parameters 7 and y,
and since the quantity Qo(e, 1) is replaced by Q(e, 1) in the bound.

Moreover, if we assume 1 > NS~!, then Q(e, n) is smaller than NP for any D and for
sufficient large N. Thus similarly to the proof of (2.6.6), one can prove (2.6.30) by (2.6.29).

O

Moreover, we wish to prove that the righthand side of (2.6.29) tends to O as N tends to

1
Nl+¢

infinity for n = O( ), below the natural scale. This is achieved via the following lemma.

Lemma 2.6.8 ([50],Lemma 2.1). Let Y be an N X N matrix. Set the following quantity
[(Y,E + in) = max{1, max [(Y — (E + ipD);;' D}
i

Then for any M > 1 and n > O the following deterministic inequality holds

r(Y,E+ l%) < MI(Y,E + in). 2.6.34)

Corollary 2.6.9. Fix ¢ and 6 arbitrary small positive numbers. Set 1, = N~¢/271_ Then by
(2.6.34) and (2.6.26) one has that for any D > 0 and for sufficient large N, it is true that

P[ sup  sup max|G/(E + in)| > N5+§} <CNP. (2.6.35)
ij

J
yel0.1] pe[- L L

So in the setting of Proposition 2.6.7, it is implied that there exist two positive constants

C=C(a,b,v,p,1), c =c(a, b, p, v) such that

N) 2N ) 2N
N N
sup |Eq {f Z Im GY,(y + inl)dy] - Eq [fr(N) Z Im G?i(y + im)dyJ < CN ‘. (2.6.36)
i=1 N

)
vel0.1] TN N =1

N
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2.6.2 Approximation of the gap probability

The goal of this subsection is to approximate the gap probability, i.e., the probability that
there are no eigenvalues in an interval, by C™ functions of the Stieltjes transform as in
Proposition 2.6.7. In order to prove the latter, we use similar tools as in Section 5 of [5].

First, define the following quantities for any r > 0,y > 0 and n > O.

X () =1{te (—x,x)}, forall x e R

1 1 1 7
A(x) = p Im = forall x e R

x—in) wn2+x% (2.6.37)
Tr X, * 9,(H") 1f2r”§v11 Gli(x + i 1f§ . dx
r X.*8 (HY) = — m G;(x + in = -
C L = N T Jo g S (HY) = x)* + P

Moreover for any N X N matrix Y with eigenvalues denoted by A;(Y) and for any E;,E;, E € R
such that E; < E; and E > 0, we denote

in(Y,E1, Eg) = #{i € [N] : Ai(Y) € (E1, En)},
(2.6.38)
in(Y,E) = #{i € [N] : A4(Y) € (-E, E)}.

Moreover set {ﬁ’i’}ie[gm the eigenvalues of HY arranged in increasing order.
Lemma 2.6.10. Foranyy € [0,1] and I C (—% %) such that |I| = N$/271 it is true that
(i € [2N] : A) € I}| < 2|1N**s/

with overwhelming probability.

Proof. For the convenience of notation, suppose that

I=(E-nE+n)

Moreover set the event

Qp =4 sup  sup malelYJ(E +in)| > NS/2Y. (2.6.39)
vel0.1l pe[- L. L) Y

By (2.6.5), QZ holds with overwhelming probability. Then

c) 2N ¢
1(Q) N2 2 % > IM(GH(E + i) > % > Im(G(E + i) (2.6.40)
=1 el
1(Qc 1(0c
- gN") s _;)2 2 2 2§V|;Z|)I{i € [2N]: A € I} (2.6.41)

el



71

Next fix € > O arbitrary small and r € R. Set
7’11 — N—1—99€’ l: N—1—3€’ ll — lNZe.

Lemma 2.6.11. For any y € [0, 1], it is true that there exists an absolute constant C such

that with overwhelming probability

r
ioN (HV, N) - Tr X * 8711 (Hy)

< C(N_Ze + gy (HV, LA L 1) + gy (HV, I 1y 1))
N N N N

Proof. Firstly note that by elementary computation as in (6.10) of [51] one has that,

(2.6.42)

X5 () = X * 8, (0] < Cmy ( 2r XN (X) ) ,

Nd; (x)da(x)  di(x) + da(x)
|ﬁ - x| + 1m1. Moreover
note that the right hand side of (2.6.42) is always bounded by an absolute constant and is

where C is some absolute constant, dj(x) = |§ + x’ + 1 and dg =

O(n1 /1) if mind; > I. Thus by Lemma 2.6.10 one has that with overwhelming probability

r
ion (Hy, N) —Tr X * 8721 (Hy)

< C(Tr (R (HY) + Te(f(H)) + %ZiZN (HV, _Wr ‘1 % - z))

(2.6.43)

+ C(izN (HV, —% —1 —% + 1) + iy (HV, % -1 % + 1)) (2.6.44)

where
2rm 2rn;
———, () =1{x>2E+l} ——mF——.
Nd, (x)da(x) Nd, (x)da(x)
So in order to complete the proof we need to show that the first term on the right

side of the inequality is of order N~2¢. Note that due to Lemma 2.6.10 and the fact that

) =1{x<-E-1}

the length of the interval (—ﬁ -Ly+ l) is smaller than NS~! for any ¢ > O one has that
Tigy (HV, v Lyt l) < N™2¢ with overwhelming probability.
r

Moreover after splitting the interval (—% -5 - l) into intervals with length O(N1), like

in [3] (5.61) and since

Ao < gt e (G5 - O+ gt b (- 50

one can show that Tr f;(HY) < N~2¢. Similar bound can be proven for Tr fo(H"). O

Lemma 2.6.12. For any y € [0, 1] there exists an absolute constant C such that
r
Tr X, *8y,,-,(H") = CN™° < ipy (HV, N) <Tr X * 84, (H') + CN™F. (2.6.45)

Proof. We will prove the second inequality of (2.6.45). The proof of the first inequality is

similar.
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First note that by definition, one has that for any y; > ys > 0,

ion(H”, y2) < ion(HY, y1) (2.6.46)
Tr Xy, * on, (H) < Tr Xy * anl(HV)) (2.6.47)

So we get that with overwhelming probability

[P DL A L 2.6.48
i ,— < = i , — + .6.
zN( N) l1f1; 2N( N y) Y ( )

1 ﬁ-{-ll
<T (f Tr Xy * 8y, (HY) + C(N 2 + pn(H', y = L—y + ) + iay(HY, —y - L—y + D)) dy)
1 Uz
(2.6.49)

< Tr X, * 841, (H') + CN (2.6.50)

In the first inequality of (2.6.48) we used (2.6.46), in the second we used Lemma 2.6.11
and in the third we used (2.6.47) for the first term in the sum and Lemma 2.6.10 for the

second. O

Next we proceed as in Lemma 5.13 of [3]. Set g(x) : R — R, be a C*, even function, with

all its derivatives bounded by a constant M, such that
e ((x)=0forxe (—oo, _32) U (% 00)
e g(x)=1for xe (%1 é)
e ((x) is decreasing on (é %)

In the following Lemma we prove the approximation of the gap probability of HY by function
of the form appearing in (2.6.36).

Lemma 2.6.13. Forany y € [0, 1] and D > O it is true that
~ D , r ~ -D
Eq(Tr X, * 8,4, (H")) - NP < P(lgN (HV, N) = o) <Eq(Tr X, * 8y, ,(H")) + N"". (2.6.51)

Proof. By Lemma 2.6.12 and for large enough N, it is true that if iy (HV, ﬁ) = O then
Tr X; * 8y, (HY) < é with overwhelming probability. This implies that for any large D > O

and for N sufficiently large one has that,
P(iZN (HV, %) = 0) < P(Tr X, * 8y -, (HY) < é) +NDP< P(Tr X, * 81, (HY) < g) +ND
(2.6.52)
= P[q(Tr X, * 94, (H") 2 1]+ N2 < Eq(Tr X, * 8, (H")) + N°° (2.6.53)

In (2.6.53), we used the Markov inequality for the random variable g (Tr X * -1y (HV)). So

we have proven the second inequality of (2.6.51).
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For the first, note that again by Lemma 2.6.12, with overwhelming probability it is true
that if E](Tr X, * 3n1+11(HY)) < 2 then ipn(HY, §) SCN™°+ %. Thus,

3 5 2

EG(Tr X, * 8y, (HY)) < ]P[q(Tr X, * 8,1, (HY)) < 5] (2.6.54)
r 2 r

<Plion (H, —) <CN €+ —] +NP= P[' (HV, —) = o] +N7D. 2.6.55

[121\1( N ) o N ( )

|

2.6.3 Proof of Theorem 2.1.2

At this subsection we prove Theorem 2.1.2. Fix r € (0, ) and ¢ > O small enough. Set
n1 = N™'7¢ and [ = N~!179%¢ Furthermore r € (0, o). Let §(x) denote the function defined
before Lemma 2.6.13.

e For the first part of Theorem 2.1.2 note that due to (2.6.36) and Lemma 2.6.13 one
has that there exist constants C = C(r) > 0 and ¢ > 0O, such that for large enough
D > 0 it is true that

Eg (Tr X, * 8n1+l(HO)) -NP_cN*<Eg (Tr X, * 8m+l(H1)) - NP (2.6.56)
< P(i2N (Hl, %) = o) <Eq(Tr X, * 8y 1(H")) + NP (2.6.57)
<Eq(Tr X, * 8y, 1(H®)) + CN"° + NP, (2.6.58)

Next note that by the definition of the symmetrization of a matrix, the gap proba-

bility is actually the tail distribution of the smallest singular value, i.e.,
P(igN (Hl, L) = o) = P(sl(DN) > 1).
N N
Moreover note that the limiting distribution of the least singular value of a Gaussian
matrix is 1 — exp(—r2 /2 — r) as mentioned in Theorem 1.3. of [2]. Let Ly be a matrix
with i.i.d. entries all following the Gaussian law with mean 0 and variance N~!. Set
s1(Ly) the least singular value of Ly. Let Wy be the symmetrization of Ly. As before
one can notice that
]P(igN (EN, %) - o) - P(sl(LN) > %)
So after another application of Lemma 2.6.13 for the matrix H® and Corollary 2.4.5

for r’ = r&!, where ¢ is defined in (2.1.4), one has that there exists a small constant

¢ > 0 and a large constant such that
P(Nsi(Ly) > 1 =N €)= CN ¢ <P(&Ns;(Dy) > 1) < P(Ns;(Ly) > r+ N €) + CN¢,
which implies universality of the least singular value for Dy multiplied by N¢.

e For the proof of the second part, it is well-known that bounding the entries of the
resolvent implies the complete eigenvector delocalization. So by (2.6.26), one can

prove the complete eigenvector delocalization as in Theorem 6.3 in [49].



Chapter 3

The limit of the operator norm for
random matrices with general

variance profile

3.1 Statement of the results

Notation. For any N X N matrix A = (a;j)ije[n] € RN*N with eigenvalues {A;(A)}i[n], the

measure

1
Ma = Z Oai(a)
i€[N]

will be called the Empirical Spectral Distribution (E.S.D.) of A. When the eigenvalues are
real, write Apn.x(A) for the maximum among them. We will use the following two norms on

square matrices. For A € RV*V,

IAlOp = max  [|Ax|ls = Vﬂmax(AAT) (8.1.1)
x€RVN:||x|la=1
lAllmax := max |al. (3.1.2)
ije[N]

It is easy to see that |Alop < NJ|Allmax and if the matrix A is symmetric, then
|Alop := max [A;(A)]. (3.1.3)
i€[N]

Throughout this section, (Ay)nen+ is a sequence of symmetric random matrices with

independent entries (up to symmetry), Ay = (agv))i Jje[n] is an N X N matrix, and all {agiv) :

N € N*,i,j € [N]} are defined on the same probability space and take real values.
A standard assumption for the sequence is the following (see relation (2.2.1) in [52]).

Assumption 3.1.1.

. Ea;’;’ =0 for € Ji,j € , and su Sy a.’.’|? < oo.
1. Ea;” =0 forall N € N*,ij € [N], and supyey- eqn Elaf)

74
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2. For any € > O,

1

; )2 —

Jim 2 > Bl P m, ) = 0. (3.1.4)
tje[N]
() .

This is satisfied in the case that {a.;’ : N € N*,i,j € [N],i < j} are i.i.d. with mean O

i
and finite variance. But it is not enough to guarantee that the ESD of the appropriately
normalized Ay converges to a nontrivial limit. To state a sufficient condition for this, we

introduce some notation that will be used throughout the work. We let
si = Efla) ) (3.1.5)

- - (V)
forall N € N*,ij € [N] and Vo := supyey+ gjern) Sy € [0, ).
Also, let Cj be the set of ordered rooted trees with k edges (where k € N) of all non-
isomorphic plane rooted trees with k + 1 vertices, i.e. all trees with k + 1 vertices, a vertex
distinguished as a root and an ordering amongst the children of any vertex. The number

of such trees is the k—th Catalan number, i.e.,

e = ——(2" 3.1.6

T\ k) o
and a trivial bound that we will use is |Ci| < 22F. For each such tree, we consider its
vertices ordered vy < v; < --- < Uk so that vy is the root, each parent is smaller than

its children, and the children keep the order they have as vertices of an ordered tree. A
labeling of such a tree is an ordered k+ 1-tuple (o, ?1, - - - , £)) of different objects, the object
?; is the label of vertex v;.

A quantity of fundamental importance for the sequel is the following sum

My = > > ] s (3.1.7)

TeCi  je[N]*+! {ijl€E(T)
labeling of T

E(T) denotes the set of edges of the tree T. Note that My(0) = N since by convention the

product over an empty index set equals 1.

Assumption 3.1.2. There is a probability measure p on R such that for each k € N it holds

. My(k)
]\171_1}30% = fx2k du(x). (3.1.8)

A tool for checking this assumption is explained in Remark 3.1.13 below.

If the sequence (Ay)yen+ satisfies both Assumptions 3.1.1 and 3.1.2, then u v/ VN = M
with probability one (see the proof of Theorem 3.2 of [13]). The measure u is symmetric with
compact support contained in [-2+/Vy,2VV,]. The compactness of the support follows
from (3.1.8), My(k) < |C,IN**' V), and |Ci| < 22*. Let

Uco = Sup suppt p. (3.1.9)
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We seek conditions under which the maximum eigenvalue of Ay/ \/N converges to L
in probability. An easy argument will give us the lower bound, and since Anax(A) < |Algp
for any symmetric matrix A € RV it will be enough to prove the upper bound for the
operator norm of Ay / VN.

For this purpose, we need stronger assumptions. The following is stronger than As-

sumption 3.1.1.

Assumption 3.1.3.

(@) Ea\"” = Oforall N € N*, ij € [N]. supyey+ v Bl 2

(N) |4
ij J gl <

< 1, and supyey+ ey Elay;

00,
(b) For any € > O it is true that

: (N) _
]%glgoZP(laiJ |>eVN) = 0. (3.1.10)
9]

Note that condition (3.1.10) is satisfied if we assume that all {ag.v) : N € N*,i,j € [N]} have
the same distribution with finite 4-th moment.

We gain control over |Aylop, through the traces of high moments of Ay, and the main diffi-
culty, which the next conditions (Assumption 3.1.4 and Assumption 3.1.6) try to address,
is how to connect these traces with p, which emerges out of {A;(Ay) : i € [N]} only after

we take N — oo.

Assumption 3.1.4. For every N € N* and i,j € [N] it is true that

(2N) (2N) (2N) )

(N) :
Sy SMIN{S; o0 So ) o0 Soi 1 951 (3.1.11)

For example, this assumption is satisfied if sg]y) = h(i/N,j/N) for all N € N*,i,j € [N],
where h : [0, 1]2 — [0, o) is a function decreasing separately in each variable.

In order to give the next sufficient condition, we first give some definitions.

Definition 3.1.5. (i) We call graphon any Borel measurable function W : [0, 1] X[0,1] = R
which is symmetric and integrable.

(ii) For any bounded graphon W and any multigraph G = (V,E), we call isomorphism
density from G to W the quantity

tG, W) := f [] weax) [ | ax. (3.1.12)
[0,1]V1 (ij}€E A%
Now, let (Axy)nen+ be a sequence of random matrices with elements having finite second
moment. Each Ay defines a graphon, Wy, through the relation

(N)

WN(6Y) = Spy vy

(3.1.13)

for each (x, y) € [0, 1] X [0, 1]. For this relation, [0] denotes 1.
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Assumption 3.1.6. There exists a graphon W such that the Wy of (3.1.13) satisfies
A}im t(T, Wy) = t(T, W) (3.1.14)

for any finite tree T. Moreover, for any D > O there exists some C = C(D) € (0, o) and
No = No(D) € N* such that for any N > Ny it holds

f IWin(x ) = Wix, y)l dxdy < CNP. (3.1.15)
[0.1]

This assumption together with Assumption 3.1.3 implies Assumption 3.1.2 (This will be
explained in Lemma 3.3.2). Again, we denote by 1, the maximum of the support of p.

The assumptions we made so far will lead to convergence in probability of the largest
eigenvalue. Next we give some extra condition, which will lead to the almost sure conver-

gence of the largest eigenvalue.

Assumption 3.1.7. (Ay)nen+ is a sequence of symmetric random matrices, the entries of
each Ay are independent (up to symmetry), and there exists a random variable X with mean
0, variance 1, and finite 4 + 6 moment for some 6 > 0, which stochastically dominates the

entries of Ay in the following sense
P({An}ijl = t) <P(IX| > t), forall t € [0,00), N € N*,i,j € [N]. (3.1.16)
We are now ready to present our first main result.

Theorem 3.1.8. Let (Ay)nen+ be a sequence of matrices satisfying Assumption 3.1.3. Then
if either Assumptions 3.1.2 and 3. 1.4 hold or Assumption 3. 1.6 holds, it is true that

lim ——= = Ueo in probability (3.1.17)

where U is defined in (3.1.9). Moreover, if the sequence (Ay)nen+ satisfies Assumption

3.1.7, the convergence in (3.1.17) holds in the almost sure sense.

Note that Assumption 3.1.4 is restrictive and does not cover several of the well-known
and studied models. Thus, in what follows, we try to extend the domain of validity of
Theorem 3.1.8. We first give two definitions.

For N € N* and U c [N]?:

e We call a (x,y) € U internal point of U if {(x + d;,y+ dy) : d;,dy € {—1,0,1}} C U. We
denote by U° the set of internal points of U.

e We say that U is axially convex if (i,j) € U,(i,j/) € U,r € [N].(r —j)(r —j) < O imply
(iryeUand (i,j) € U, (i’,j) € U,r € [N],(r—i)(r—i’) < 0 imply (r,j) € U.

Definition 3.1.9 (Generalized step function variance profile). Let (Ay)nyen+ be a sequence

of symmetric random matrices, Ay of dimension N XN, with each element having zero mean
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and finite second moment. Moreover, suppose that there exists an N*—valued sequence
(dy)nen+ With limy_,. dy /N = 0 and such that for each N there is a partition Py := {BEN) :
i=1,2,...,dy} of the grid [N]? consisting of dy axially convex sets with the following

properties.
(@) If A € Py then R(A) :={(ij) : (j, 1) € A} € Pn.
(b) For any m € [dy] there exists f € [day] such that

28 c 8. (3.1.18)

(c) For any N € N, m € [dy] and i € [N] the line segment x = i intersects Bﬁf;” \ (2‘355))O at

most 2 times.

Then if for all (i,j) € [N]? the variance of the (i, j)-entry of Ay is given by

sV = D0 Sl (3.1.19)
mE[dN]
for some set of numbers {s;}ic[q,] so that sg) = sﬁcN) if R(Bg,ﬂv)) = BE{N) , we will call the

sequence of matrices (Ay)y>1 random matrix model whose variance profile is given by a

generalized step function.

The following Theorem is a corollary of Theorem 3.1.8 and gives results of the type
(3.1.17) for the operator norm of the matrix

e Ay when Ay is a non-periodic band matrix with band size proportional to N or has a
step or continuous profile.

° ANAIE (i.e., Gram matrix) when Ay is a rectangular matrix with step or continuous
variance profile.

Details are given after the next theorem and in subsection 3.7.2.

Theorem 3.1.10. Let (Ay)nen+ be a random matrix model whose variance profile is given by
a generalized step function. If it also satisfies Assumptions 3.1.2, 3.1.3, and for every N € N
and (i, j) € [N]? it is true that

st < o), (3.1.20)
then
lim Anlop = lUw In probability (3.1.21)
N—co \/ﬁ ’ o

where U, is defined in (3.1.9). Moreover, if the sequence (Ay)nen+ Satisfies Assumption 3.1.7

the convergence in (3.1.21) holds in the almost sure sense.
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For any N € N* and any two N X N matrices A, B we will denote by A© B their Hadamard

product, which is the entry-wise product of A, B.i.e., the N X N matrix with entries
{AO B}y = {A}ij{B}; for all i,j € [N]. (3.1.22)
Note that Assumption 3.1.7 is satisfied if Ay can be written as
Ay =Xy O Ay, (3.1.23)

where A}, is a sequence of symmetric random matrices with i.i.d. entries all following the
same law, with O mean, unit variance and finite 4 + 6 moment for some 6 > 0 and for each
N the entries of £y are elements of [0, 1].

Next, we study the operator norm of two widespread random matrix models.

Definition 3.1.11 (Step function variance profile). Consider

a) m € N* and numbers {0, q}p.qe(m] € [0, 11" with op, 4 = 04, for all p, q € [m].

b) For each N € N*, a partition of [N] into m intervals {II(,N) }peim]- The numbering of the
intervals is such that x < y whenever x € I;)N) LY € IC(IN) and p < q. Let L;)N) and RI(,N) be

the left and right endpoint respectively of IIE,N).

c¢) Numbers O = agp < a; < --- < Am-1 < Gy := 1. We assume that limy_, R;,N)/N =ap

for each p € [m].

d) A random variable X, with E(Xy) = O, E(Xg) =1.

For each N € N*, define the matrix Xy € RV¥ by (En)ij = opgifi € II(,N),j € I((]N), and let

{An}nen+ be the sequence of symmetric random matrices defined by
Ay =Xy O Ay (3.1.24)

where A}, is symmetric and its entries are independent (up to symmetry) random variables
all with distribution the same as Xp. Then (Ay)yen+ Will be called symmetric random matrix

model whose variance profile is given by a step _function.

Let I, := [ap-1, @ ) for p € [m — 1], and 1., := [@m-1, 1]. These intervals together with the
p p p g

numbers from a) determine a function o : [0, 1]> — [0, 1] as follows
o(x,y) = opqif x el yel, (3.1.25)
We call the function o2 the variance profile of the model.

Definition 3.1.12 (Continuous function variance profile). For
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a) a continuous and symmetric function o : [0, 1] — [0, 1] (i.e, o(x,y) = o(y, x) for all

x,y € [0,1]),

b) a sequence (Xy)yen+ of symmetric matrices, Xy € [0, 11VV | with the property

lim sup |(Zn)y — o(i/N.j/N)| =0, (3.1.26)

2 <ij<N

c) a random variable X, with E(X,) = 0, E(X?) = 1,

consider the sequence {Ay}yen+ of symmetric random matrices, Ay of dimension N X N,
defined by
AN = ZNQA;V (3127)

where the entries of A}, are independent (up to symmetry) random variables all with distri-
bution the same as Xy. Then we say that (Ay)nen+ is a random matrix model whose variance

profile is given by a continuous function. Again, we call the function o2 the variance profile.

Remark 3.1.13 (Checking Assumption 3.1.2). A sufficient condition for the validity of As-
sumption 3.1.2 is that (Ay)nen+ satisfies Assumption 3.1.1 and there is a graphon W such
that Wy — W almost everywhere in [0, 1] X [0, 1].

Indeed, the bounded convergence theorem gives that t(T, Wy) — t(T, W) for all trees.
Then Theorem 3.2 (a) of [13] shows that the ESD of Ay / \/ﬁ converges almost surely weakly
VW

to a probability measure ¢ V" whose 2k moment equals

lim Z t(T, Wy) (3.1.28)
TeCy

while the moments of odd order are 0. Then, for each T € Cy,

o<trwy- > NP ] s =oa/m), (3.1.29)

ie[N]K+1 {ij}eE(T)
labeling of T

because t(T, Wy) is simply the same as the sum in the previous relation with the only
difference that i is not required to be a labeling, i.e., it can have repetitions. It follows that
Assumption 3.1.2 holds. As we remarked after (3.1.8), u‘/W is symmetric and has bounded

support. Denote by yo},/w the largest element of the support.

If, in the two models above, Xy has finite 4 + 6 moment for some small 6§ > O, then
it is easy to see that the sequence (Ay)yen+ satisfies Assumptions 3.1.3. It also satis-
fies Assumption 3.1.2 because it satisfies Assumption 3.1.1 and, in both cases, Wy(x, y)
converges to 02(x, y) for almost all (x, y) € [0, 1] X [0, 1], thus the preceding remark applies.

Our result for the model (3.1.24) is the following.
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Theorem 3.1.14. Let (Ay)nen+ be a random matrix model whose variance profile is given
by a step function as above. Assume that Xy has mean value 0O, variance 1, and finite 4 + 6

moment, for some small 6 > 0. Then it is true that

|AN|0p
lim =ul as. (8.1.30)
N—>oo ‘/N

The previous theorem together with an approximation result that we prove in Section 3.6

(Proposition 3.6.1) has the following consequence for the model (3.1.27).

Corollary 3.1.15. Let (Ay)nen+ be a sequence of matrices whose variance profile is given by

a continuous function. If Xo has mean zero, variance one, and finite 4 + 6 moment, then
lim —— =u2 as. (3.1.31)

Remark 3.1.16. 1) Theorem 3.1.14 covers the cases in the Wigner matrix model [i. e.,
Ay = (ay)ijerny With {a;; 1 1 < i <j < NN € N*}iid. with E(ai,1) = 0,E(a},) = 1] where
E(la; 1/*"®) < oo for some § > 0. Recall that the necessary and sufficient condition for the
validity of (3.1.30) in that model is E(|a; 1|*) < oo.

2) Corrolary 3.1.15 holds also in the case that the function o of Definition 3.1.12 is

piecewise continuous in a sense explained in the end of Section 3.6.

3.2 Analysis of high order moments

Assume at the moment that the entries of Ay have finite moments of all orders.
We will relate the largest eigenvalue with a high moment of the measure py and at the

same time this moment will be controlled by p. In general, for k € N, it is true that

2k
Ewad)= > E{l_l agxgﬂ} (3.2.1)

11,00, eeeenn, io)€[N] =1

with the conventions that iy = {j, when k = O the sum is only over i; € [N], and the
product over an empty set equals 1.
Now, for a term with indices iy, ia, . . ., io), We leti := (i1, ip, . . ., ini) and X({) := lzzkl aﬂl)ﬂ.

For such an i we also use the term cycle. Then consider the graph G(i) with vertex set

V@) = {i, b, .. ., lox}

and set of edges

Wi s} i =1,2,...,2k}. (3.2.2)

As explained in [52] (in the proof of relation (3.1.6) there, pages 49, 50 or in Theorem 3.2
of [13]), the limit

. 2k
I\l]l_r)lgo N E tr(A™")
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remains the same if in the sum of (3.2.1) we keep only the summands such that
the graph G(i) is a tree with k + 1 vertices (3.2.3)

Then, necessarily, the path iy — iy — -+ — iy, — i) traverses each edge of the tree exactly
twice, in opposite directions of course. Such a G(i) becomes an ordered rooted tree if we
mark i, as the root and order children of the same vertex according to the order they appear
in the cycle.

Cycles i that don’t satisfy (3.2.3) we call bad cycles. So, for k € N, the sum in (3.2.1) can

be written as
E tr(A%*) = My (k) + By(k), (3.2.4)
where

MN(k) .

> > [] s (3.2.5)

TeCr ie[N]20WV1:GH)~T {ijl€E(G®))

EX(). (8.2.6)
i€[N]2k:bad cycle

BN(k) .

Recall that Cj are the ordered rooted trees with k edges and G(i) ~ T means that the graphs
are isomorphic as ordered rooted trees. Note also that My(k) has already been defined in
(3.1.7) but the two definitions for it agree. Also, My(0) = N, By(0) = 0.

The plan is to control the expectation of the trace in (3.2.4) through an appropriate bound
involving various My(j)’'s. To control the term By(k), we adopt the analysis of Section 2.3
of [16].

Proposition 3.2.1. Let Ay be an N X N symmetric random matrix with independent entries
(up to symmetry) and with E(ag].v)) =0, sg’y) <1 forall N € N,ij € [N]. Assume additionally
that the absolute value of the entries of the matrix are all supported in [0, CN %_e] for some

€ > 0. Then for all N large enough and all integers 1 < k < N it is true that

k (s+1)Ak
2k—2
By(l)| < " (4k%)?k25 (CN2~e) ° > (@K My (- 1), (3.2.7)
s=1 t=1

Proof. We bound each term of the sum defining By(k). Take a bad cycle i and let
e t: the number of vertices of G(i),
e s: the number of the edges of G(i),
® e1,e,...,es the edges of G(i) in order of appearance in the cycle,

e aj,ay,...,as: the multiplicities of e, e, . . ., es in the cycle.
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That is, a, is the number of times the (undirected) edge e, appears in the cycle. Note that
t < s+ 1 (true for all graphs) and t < k because the cycle is bad.

Additionally, in case t > 2, we let T(i) be the rooted ordered tree obtained from G(i) by
keeping only edges that lead to a new vertex at the time of their appearance in the cycle.
The root is i and we declare a child of a vertex smaller than another if it appears earlier in
the cycle. In case t = 1, T(i) is the graph with one vertex, i;, and one edge (loop) with end
vertices i, {;. Thus, T(i) has t vertices and 1 V (t — 1) edges.

To bound |[EX(i)|, notice that if any of a;,ads,...,as is 1, we have EX(i) = O by the
independence of the elements of Ay and the zero mean assumption. We assume therefore
that all multiplicities are at least 2. Using the information about the mean, variance, and
support of Ia( )I we get that for any integer a > 2 it holds E(Ia(N)Ia) < (C;NYV 2_e)‘j‘_zsg}m.
Thus

S
. - Qe N _ _ N
ElX(l)| — HE|Xeq|aq < (CN1/2 8)a1+ +as—2s 1_I si]) < (CN1/2 £)2k 2s r[ EJ)

q=1 {ij}eE(G()) {ij}eE(T (1)
(3.2.8)

) e [0,1] for all i,j, N. For integers

In the second inequality, we used the fact that Sy

s,tz1l,a;,...,a3=>2and T € C;_; let

the number of bad cycles with T(i) ~ T, indices 1,2, ..., t, appearing in this order,

and edge multiplicities a;, ag, . . ., as.
(3.2.9)
Using the bound on Nrq, a,.....a. Provided by Lemma 3.8.1, we obtain
Ik kA(s+1)
Byl < ) Z Z <CN”2 P Y s e ) Nraaa, ) [T s
s=1 t=1 a,a,..., i€[N] TeCy— ic[N)2k:T({)~T {ij}€E(T(1))
(3.2.10)
Ik kA(s+1)
< Z Z Z (CNV/2ey2k=2s 1y Z Sgl) + 10 Z Nra, q.....a Z l_[ Sg)
s=1 t=1 a.,as,...,qas ic[N] TeCi—y ie[N]12t-D:7({)~T {ij}€E(T())
(3.2.11)
Ik kA(s+1)
< Z Z Z (CNI/2—5)2k—25(4k4)4(s+1—t)+2(k—s)MN(t ~1). (3.2.12)

We used here the fact that s(N) < 1, so that Yy sﬁf}’) < N = Mp(0). The inside sum in
(3.2.12) is over all s-tuples of integers a;, as, ..., as greater than or equal to 2 with sum
2k. By subtracting 2 from each a;, we get an s-tuple of non-negative integers with sum
2k — 2s. The number of such s-tuples is (( ok-2s ))(comblnatlons with repetition), which is at

most s2<=9) < k2(k=9) Thus the above sum is bounded by

kA(s+1)
Z(4k5)2(k 5)(CN1/2 5)2k 2s Z (4k4 As+1-0pp V(t = 1). (3.2.13)
s=1 t=1
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O

Proposition 3.2.2. Let (Ay)nen+ be a sequence of symmetric matrices and R > 0O so that the
sequence satisfies Assumption 3.1.3 and the following condition £(R):
For each Cy > 0 there are Cy > 0 and Ny € N* such that

Mpy(k) < CoN*H1R2k (3.2.14)

forallN,k e N" withN > Ng and 1 < k < C; logN.
Then for each € > 0, it holds

A
fim B (A

N—oo

>R(1+e)|=0. (3.2.15)

Proof. Fix n € (0,1/8) and define the N x N matrices Ay, Ay by

APy =a)’l (3.2.16)

\aiJlst_” ’

(A7) = a1 | (3.2.17)

% lag|>N2™"

for all i, j € [N]. For a random matrix H := (h;;), EH denotes the matrix whose (i, j) element

is Eh;; provided that the mean value of h;; can be defined. Note that

(|A— EARlop + [EAFlop + [A5op) (3.2.18)

\/—| Nlop— \/—

We will bound the three terms in the right hand side of the last inequality. For the first

two, we use only Assumption 3.1.3 and the arguments in the proof of Theorem 2.3.23 in

[16].

1) The term N -3 IE(AS)lop is a deterministic sequence that converges to O because, since

(N) is centered, we have

(EAD)y| = [(BAY)yl < N3G sup max Ela)|". (3.2.19)
And using the inequality |Clop < N||C||lmax, we get that

N—ooo
[E(AS)lop < N33 sup max ElaV[* "5 0.

2) The term N~ > |A

~lop converges to O in probability. Indeed, for any &, > O,

P(IA5lop > 61 VN) <P(a’| > &, VN for some i,j € [N]) (3.2.20)
+P(|Alop > 61 VN and |a}| < 6, VN for all i.j € [N]). (3.2.21)

The first quantity goes to zero as N — oo because of (3.1.10). For the second, it is an easy

exercise to show that if each entry of a matrix M has absolute value at most a and each
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row and column of M has at most one non-zero element then |[M|o, < a (use the expression

[Mlop = SUP,xj,=1 [[Mx]l2). Consequently, the probability in (3.2.21) is at most

N N
1 1 1 1
Z Z P(lay| > N27", |ag;,| > N277) + Z Z P(la; j| > N27" Jay, j| > N27")

i=1 1<j1<j2 <N J=1 1<i1<ip<N
(3.2.22)
(N)|4yy2
N\ SuPyen-+ i jerny (Ella; 1* ) 1 N—oo
<aN T W < sup  (B(la™ A2 "= o, (3.2.23)
2 N*-8n N8 yene gjern] J

We used the independence of the entries in each row or column and Markov’s inequality.
3) To deal with |A§, - EAf,lop, we will use Proposition 3.2.1. Let

Ay := Ay —EAY, (3.2.24)
s == E(Ap)3})). (3.2.25)

Proposition 3.2.1 applies to Ay because any element of the matrix, say (Ay); j» has zero
mean and variance s(if]y)‘g < E{(Af,)z} < E(A]2V) = sg}y) < 1. Thus, if we denote by My(m) the
terms (3.1.7) for m € [N] and for the matrix Ay, we will have My(m) < My(m) for all m € N,
and Proposition 3.2.1, gives that for any 1 < k < N,

I (s+1)Ak
E tr(A2F) < My(k) + Z(4k5)2k‘25 (2n5277) Z AKHMSHIOMe(E - 1) (3.2.26)
s=1 t=1

2k-2s

Now fix C; > 0, its value will be determined in (3.2.32) below. For 1 < k < C; logN,

I (s+1)Ak
~ 2k-2s
Etr(A2F) < CoN*™'R** + ¢, E (41c5)2k=2s (2N%"7) E (4)cHyHsT1I=0 N R2(-1)
s=1 t=1

(3.2.27)

Next, we focus on the second summand in the right hand side of the previous inequality for
N large enough. In the sum in t we factor out (4k*)*$*YR~2, and in the resulting sum of
geometric progression with ratio a larger than 1 we use the bound a + a? + - -- + as*V"\k <
kas*D Ak Thus the sum in (3.2.27) is bounded by

k 2 \(s+1)Ak
k 1 2k-2s NR
Co— Y (4Kk5)?F2s(aN2" ) —— 3.2.28
2 ;:1( )22 ( )" (@Kt T ( )
k-1 512 k-s
_ k 4(41°)
_ 08 17 nrk 2\k—1 2\ k+1
= 28C, k"N (R®)! + cz—RZ(NR ) El (—N2nR2 ) (3.2.29)
po
< 28C2k17Nk(R2)k—1 " 27C2k11(R2)(k—1)Nk+1—271 < 29C2k17Nk+1—2nR2k—2 (3.2.30)

[in summing the geometric series in (3.2.29), we used the bound c + A+ +c <2cif
0 < ¢ < 1/2]. Thus, returning to (3.2.27),

Etr(A2f) < N*"'R?*{1 + o(1)}%*. (3.2.31)
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with o(1) depending on R, Cs, 7.

Fix e > O, pick
2+e€

Ci> ——., 3.2.32
! log(1 + ¢) ( )
and apply the above for k := [C; log N]. Relation (3.2.31) implies
Anlop A2y 1 1.

P[—= 2R(1+e)|<P|—= 2 R*(1 + &*| < ——————— —E[Ay2¥

( 5 ZR1+9 o U+ | < rar o Bl
ok (3.2.33)

1+o0(1) 1
an Lo o 1)
l+e Nlte

for any N large enough. The last equality is true because of the choice of k and C;. O

A tool for proving almost sure convergence of the sequence |Aylop/ VN is the following

lemma.

Lemma 3.2.3. Let (Ay)nen+ be a sequence of matrices, Ay is N X N, and R > O so that the

sequence satisfies Assumption 3. 1.3(a), condition ¥(R), and Assumption 3.1.7. Then

|AN Iop

lim sup <R a.s. (3.2.34)

N—oo N

Proof. Pick n € (0,1/8), its exact value will be determined below, and define the matrices
Af,, EAf, as in the proof of Proposition 3.2.2. The proof will be accomplished once we show

that

. A
lim sup NP <R, a.s., and (3.2.35)
N VN
P (AN * Af, for infinitely many N) =0. (3.2.36)

Proor oF (3.2.35). Since Z(R) holds for the sequence (Ay)y>1, the proof of Proposition
3.2.2 (the part with heading 3) shows that

< <
|AS - EA

: I
lim sup NP < U A.S. (3.2.37)

N VN

because the upper bound in (3.2.33) is summable with respect to N. In the same proof it

is shown that B
. [EAY]
lim sup NP
N VN
Using these two facts and the triangle inequality we get (3.2.35).

a.s.

PrROOF OF (3.2.36). Let X be the random variable that stochastically dominates the entries
of Ay in the sense of (3.1.16). Let Xy be a sequence of symmetric random matrices after

an appropriate coupling such that for all N € N and i,j € [V] it is true that

|a$’)| < (XNl (3.2.38)
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and the entries of Xy are independent up to symmetry and all following the same law as X.
It is an easy exercise to show that for any a,c > 1 and Y real valued random variable we

have
1 loga

lE{IYIZOTC}. (3.2.39)

> d Pyl > M) <
k=1 a-
Using this inequality and the fact that the random variable X has finite 4 + § moment, we
get thatall n < #‘4 satisfy

(o8]

Z 22mp(|X| > 22177) < oo, (3.2.40)

m=1
Thus, picking in the beginning of the proof an arbitrary n with 0 < n < (1/8) A (6/(4 + 6)),

we have

P (AN * Alf, for infinitely many N ) = P( for infinitely many N there are i,j € [N] : Iag.v) | > CN %_")
(3.2.41)

< P( for infinitely many N there are i,j € [N] : |Xl.(j.v) | > CN %"7) =P (XN F* Xﬁ for infinitely many N ) .
(3.2.42)

In the second line, the inequality is a consequence of (3.2.38), and the matrix Xﬁ is the

matrix whose (i,j) element is (Xy); Jll(X JLI<CN The convergence of the series in (3.2.40).
N)ijl<

implies that the probability in the right hand side of (3.2.42) is O (see [52], pages 94 and
95) and finishes the proof of (3.2.36). O

3.3 Proof of Theorem 3.1.8

The convergence 1 Ay/ YN = Hin probability implies that

A
lim inf e
N \/N

> U in probability, (3.3.1)

that is, for all € > 0, limy_,co P(|Anlop/ VN < Ueo —€) = 0. So in order to prove Theorem 3.1.8

one needs to prove that

|AN|op
lim su < Uso (3.3.2)
N YN

in probability. By Proposition 3.2.2, it is enough to prove that condition X(p) is satisfied.

We will prove condition (i) separately for each of the Assumptions 3.1.4 and 3.1.6 in

the next two lemmas.

Lemma 3.3.1. Let (Ay)nen+ be a sequence of matrices that satisfies Assumptions 3.1.2,
3.1.3, and 3.1.4. Then for every k, N € N* such that k < N it is true that

Mp(k) < N*" 12k,

In case u., > 0, the inequality is true (as equality) for k = 0 also.
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Proof. Fix N, k € N* with k < N and a tree T € C. Then, for each d := (d;.ds,...,d)s1) €

{—1, 0}**! consider the function
(Pd . [N]k+1 — [2N]k+l

with
@a iy, ig, - lkes1) =2(, 82,0 o lke1) +(dy, da, oo, dier1)

for all iy, iy, ..., ix+1 € [N]. Each @q is one to one and, for different vectors d,d’ € {—1, o}k+1,
the image of ¢4 is disjoint from that of ¢¢:. If G is a plane rooted tree whose vertices in order
of appearance in a depth first search are (iy, ig. . . .. iks1) € [N]*, and @q(ir, ia, . . . . ier1) =
(1.2 - - - .Ji+1), we denote by ¢4(G) the plane rooted tree with vertex set {ji.jo,....ji+1}
root j;, and edges {{ja.j»} : {a. b} is an edge of G}. Note that if all coordinates of i € [N]**!
are different, the same is true for the coordinates of @q4(i).

Lastly, by assumption 3.1.4, for any T € Ci,i € [N]?* such that Gd) ~ T and d €
{—1,0}*1 it is true that

V<[] sEv (3.3.3)

{ij}eE(G()) {ij}eE(pa(G({)))

So if one sums over all possible trees in C and d € {-1, 1}+1, (3.3.3) implies that

LTRSS YD YN | FE D YD D I § I aE

—1,0)k+1 TECy ie[N]2k:G(i)~T {ij}€E(G({)) —1,0)k+1 TEC) ie[N]2k:G(i)~T {ij}€E(pa(G(i)))
(8.3.4)

By applying (3.3.4) inductively, one can prove that for fixed N, k € N the sequence
dm = MzrnN(k)/(sz)k+l, meN

is increasing in the variable m. So by (3.1.8) it is true that

Sup gm = ggo dm = f X du(x) < 2k

m

In particular, qo < u2*, completing the proof. O

Lemma 3.3.2. Suppose (Ay)nen+ IS a sequence of matrices such that Assumptions 3.1.3,3.1.6
hold. Then for each C; > O there is C, > O such that

My (k) < CoN**+1p2k (3.3.5)
forall N e Nt and 1 < k < CylogN.
Proof. Note that for 1 < k< N,
S LCEDY f . [T watew)dude - daei = 2vt0.  8.36)

TeCy {lJ}eE(T)
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The inequality holds because the left hand side results if on the right hand side we re-
strict the domain of integration to the union of the sets H’r‘;rll ((i- = 1)/N, i, /N] where all
i1,@,..., 041 € [N] are different. Thus, it is enough to show (3.3.5) with the left hand side
replaced by N " 1Zy (k).

Fix T € Ci and enumerate the edges of T in the order of first appearance during a depth
first search algorithm. For {i,j} € E(T), let {i,j}orq be its enumeration. Then for any integer

L € [0, k] define the following quantities.

:u](\?(k’ T) = f 1_[ Wi (x;, xj) l—[ W(x;, Xj)dxldXQ <o dxgerr. (8.3.7)
(0.1 (i A e B(T): iora <l {if)€E(T) {ij}ora>1+1
Note that
D e = o ) (0 T) = En(l0) (8.3.8)
TeCy TeCy

Fix D > 0. Since all the variances are uniformly bounded by 1, Assumption (3.1.15) implies
that there exists some Ny(D) and C > 0 such that for N > Np(D) and any 1 <1< k< N itis
true that

_ 1
(e, T) = 1y Ve, T)| < f | Wn(xy) = Wix y)ldx dy < Cp. (3.3.9)
[0.1]

Consequently, since |Cj| < 22¥, for k < N we have

k

k 2k
- - - Ck2
En0 = parl < ) | D 00 1) = i Ve D < 3 D e T - w0 T < 5
TeC =1 TeCy I=1
(3.3.10)

Pick any D > —2C; log( /2). Then there is N} € N*, N} > No(D) such that Ck22* /NP < p2F
for all N> N/ and 1 < k < Cy log N. And since pgj < u2k, we will have ZEy(k) < 2u2F for the
same N and k. If we choose a constant Cy > 2 so that (3.3.5) is satisfied for N € [N(’)] and
1 < k < C;logN, then we will have (3.3.5) for all N, k claimed. O

3.3.1 Proof of almost sure convergence under the additional Assumption
3.1.7

The convergence in probability that we have proven so far gives

|AN |op

lim inf

N—oo

> Uoo A.S. (3.3.11)

The opposite inequality follows from Lemma 3.2.3 whose assumptions are satisfied, with

R = uw, because, under both scenarios of the Theorem, assumption X(u) holds.

3.4 Proof of Theorem 3.1.10

The plan is to write the matrix Ay as AW 4 Aﬁ) so that for the sequence {A};)}Nzl we can

N
apply Theorem 3.1.8 while for {AI(\?) /VN}ns1 the operator norm will tend to zero.
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Let
Dy :=1{(i.j) € [N]*> : there exists m € [dy] : (i.j) € (BN}, (3.4.1)

Then define the matrices

AV} = Lgeny (Anli: (3.4.2)
(A )y = Lpeny Anly- (3.4.3)

The proof follows from the triangle inequality for the operator norm and the following two

statements, which we are going to prove next.

(2)
lim M = 0 in probability (3.4.4)
N TN . 4.
(1)
A
fim Al _ (3.4.5)

N—ooo m

PROOF OF (3.4.4). For any k € N denote by MI(V2 )(k) the quantity (3.1.7) but with the role of
(N)
ij

prove that for any constant C; > O it is true that for any k < C; log N,

Ay played by A(Z), i.e., s;.’ is replaced by sg)l(i j¢ny By Proposition 3.2.2 it is sufficient to

MY (k) < N(8dw)*. (3.4.6)

This is true because each product in (3.1.7) is at most 1, then the inner sum has at most
N(2dy)* non zero terms [there are N choices for i;, and then, for each choice of i; there are
Ef\?z # 0 due to condition (c) of Definition 3.1.9, and

the same restriction holds for is, ..., ixy1] and the outer sum has |Cy| < 4* terms.

at most 2dy choices for iy that have s
PRrROOF OF (3.4.5). We will show that Theorem 3.1.8 can be applied to the sequence {AI(\})} N>1-
First we prove that

Ha /N = u in probability as N — oo. (3.4.7)

As remarked after relation (3.1.8), u Ay /YN = Hin probability as N — oo. Then, from a well
known inequality (Corollary A.41 in [52]), the Levy distance between u Ay / VN and pu AV /N is

bounded as follows.

L2y Pa /i) %tr{(%AN - %Agyf} = % i%]{(Aﬁ))i 02 (3.4.8)
The expectation of the rightmost quantity is at most N"2N2dy (since each row of AI(?) has
at most 2dy elements that are not identically zero random variables and these random
variables have second moment at most 1), which tends to O as N — O because of the
assumption on dy.
Then the sequence {Agvl)} N>1 satisfies:

e Assumption 3.1.2 with the same measure as {Ay}y>1. This follows from Lemma 3.8.2.
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Assumption (c) of that lemma is satisfied because of (3.4.7).
e Assumption 3.1.3, this is clear,
e Assumption 3.1.4. Indeed, fix (i,j) € [N]2. If (i,j) € Dy. there exists some m € [dy] such
that
{(i+dy,j+do):dydye{-1,0 1} c BN,

Then Assumption (3.1.18) implies that there exists some f € [day] such that
, , . (2N)
{(21+d1,2_]+d2) :dp,dy E{—Z,O,Z}}ng .
But since BJ(,zN) is axially convex (see before Definition 3.1.9), one can conclude that

{(2i+d.2j+dp):dy,dy €{-2,-1,0,1,2}} C B}ZNX

(2N)

Now since (k, {) = s,

is constant in B}QN) [see (3.1.19)] and we assumed (3.1.20), our
claim follows.

Thus, all the Assumptions of Theorem 3.1.8 hold for Aj\}), and hence (3.4.5) holds.
Almost sure convergence under the additional Assumption 3.1.7. Using Lemma 3.2.3, we

will prove that

I 549
1m sup < Uo a.s. 4.
N—oo VN
(2)
: |AN lop
lim sup < e a.s. for any € > O. (3.4.10)
N—>oo N

And these are enough to prove our claim.

Notice that the validity of Assumptions 3.1.3(a) and 3.1.7 for the sequence (Ay)yen+ im-
plies the validity of the same assumptions for the sequences (AS))Ner and (A%))N€N+. As
was mentioned above, the sequence {AS)}NZI satisfies Assumption 3.1.2 with the same
measure as {Ay}y>1. And then Lemma 3.3.1 implies that the sequence (AI(\}))NENJr satisfies
condition X(u), while (3.4.6) and limy_, dy/n = O imply that, for any € > 0, the se-
quence (Aﬁ) )nen+ satisfies condition Z(e). Thus, Lemma 3.2.3 applies and gives the desired

inequalities.

3.5 Step function profile. Proof of Theorem 3.1.14

Proof of Theorem 3.1.14. The inequality liminfy_,« [Anlop/ VN > ug almost surely is justi-
fied with the same argument as (3.3.1) with the only difference that here we have 1, , n =
u? a.s., and so the inequality will be true in the a.s. sense.

For the reverse inequality, we will apply Lemma 3.2.3. To check Assumptions 3.1.3(a)
and 3.1.7, required by that lemma, note that the (i,j) element of Ay is of the form o, (X
for a constant o, 4 € [0, 1] and X(’) 4 Xo, and clearly X; can play the role of X in relation
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(3.1.16). We will prove that (Ay)nen+ satisfies condition Z(c) for all ¢ > uw, and this will
finish the proof.
Define the matrix 3y € RNV by

ap-1 +(1/N) < i/N < a, and

Enij = Opg (3.5.1)
aq-1 +(1/N) <j/N < aq,
and Ay := 3y O Aj.
Also, let
RM
P
ey = max{’T — ap’ ipe[m- 1]}. (3.5.2)
By Definition 3.1.11, it holds limy_.« &y = O.
Claim 1: a) With probability one, Ay/ VN has the same limiting ESD as Ay/ VN.
b) For Ay, Lemma 3.3.1 applies.
Consequently,
My (k) < N1(2)2k (3.5.3)
forall 1 < k< N.
Proof of Claim 1:
a) This is true because by Theorem A.43 in the Appendix A of [52], the Kolmogorov
distance between Hay /N and Ma, /N is at most
1 N m . N—oo
—rank(Ay — Ay) £ — max(max{R,, Na,} — min{R,, Na,}) = mey — O. (3.5.4)
N N pe[m]

b) Assumption 3.1.3 is satisfied because E(|Xy|*"®) and Opq < 1forall p, q € [m]. To show
that Assumption 3.1.2 is satisfied, we repeat the argument just before the statement of the
Theorem. For the sequence (AN)nen+, the corresponding Wy(x, y), as N — oo, converges to
0%(x, y) for almost all (x, y) € [0, 1]>. Assumption 3.1.4 is satisfied because if for some i, j

we have Var[(Ay); ;1 > 0, then this equals of,yq for the unique p, q as in (3.5.1). Then

21—16[ 1 1) 2i€[ L] ) 5.5.5)
—_— a,— —,ay — —), — a,— —,dy), .O.
2N PrLT NPT gNToN VPP T NP

2i— 1 [ 1 1) 2j€[ L1 : 5.5.6
9N Q1T oy YT o) oy Sl Ty G e

Thus, (3.1.11) holds as equality.
Claim 2: There is 8 € (0, o) so that My(k) < e®**Dev i (k) for all k < N.

Proof of Claim 2: Define the following sets of indices.

AY =1V N [ap-1N + 1, apN), (3.5.7)
AN = o A, (3.5.8)
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When p = m, the interval in the intersection becomes closed on the right also. Then

My() < By + > >0 > 1(a¢AMifteandgeAMiftgd) [] s

Q#JC[k+1] TEC i1-*ljcr1 {ij}€E(T)
(3.5.9)
= My (k) + Z Z Z a(T,J, my, my, ..., My (3.5.10)
@#JC[k-l— 1] TeCy my,..., mk+1€[m]k+1
where
(T, J, my -+ Myes1) 3= Z 16, ¢ AV if e d iy € AN if 1 ¢ J, (ip)sepjes 1 distinet) ]_[ s
beln e €l {ij}eE(T)
(3.5.11)
Note that
> D a(T. 0, my -+ Mye1) < My(k). (3.5.12)
TeCr my,my-+Myep €[m]k+!
We will show that for some constant 8 = (I, I, . . ., I;) € (0, ) we have
a(T,d, my - M) < (@en)a(T,0, my, - - myery). (3.5.13)
In the definition of a(T,J, m;, mg, ..., My+1), the product is common to all summands

[recall the rectangles of constancy of the map (i,j) — sg]y)]. We write a(T,J, my - - - my;1) and

a(T,0, my,...My,1) as

(N)
ij

Z 1(i; € A for 1 ¢ J, (ip)pegjes 1\ distinet) Z 1(i; ¢ AN for all 1 € J, (ip)peies 1 distinet) l_[

el for b¢J i€l for all leJ

(3.5.14)

{ij}eE(T)

D M e A for 1€ J, ()yepeeny distinet) > 1 € AN for all Le J, (i)serrndistinet) | |

igel,(,ﬁ‘? for 0¢J igezﬁﬁf for all feJ

(3.5.15)

We will compare the inner sums in the two expressions. Notice that there are C;,Cy > O

that depend on a;, as, . . ., an only so that
AN > C)N, (3.5.16)
IEM\AN)| < CrenN (3.5.17)

for all p € [m]. For each fixed collection (i;)e , the inner sum in (3.5.14) is at most (Co ey N N
while the inner sum in (3.5.15) is at least (C1N/ 2)|J |. The ratio of the first over the second
bound is (2Cy ey /C1)V!. Thus, we get (3.5.13) with 8 := 2C, /C;.

{ijleE(T
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Taking into account (3.5.13) and (3.5.12), we get that the second summand in (3.5.10)

is bounded above by
Ie+1 Ie+1 k+1
My (l)(den)t = MY (k) Z( ) )(aeN)f = My(k){(1 + 8ey)**' - 1} (3.5.18)
t=1 Jc[lc+1]:|J|=t t=1
Consequently, My (k) < (1 + 8ex) ! My(k) < e2*+Den ity (k), and this proves Claim 2.
Now, combining this with (3.5.3), we get that condition X((1 + €)p) is satisfied for each

e> 0. O

3.6 An approximation result and proof of Corollary 3.1.15

Proposition 3.6.1. Let (Ay)nen+ be a sequence of symmetric random matrices, Ay of dimen-
sion N X N, of the form
Ay =Xy O Ay, (3.6.1)

where Xy € [0, 00)™N and Ay is arandom N X N symmetric matrix with independent entries
(up to symmetry) all with zero mean and unit variance.
For every n € N* consider a sequence (Zﬁ\?) )nen+ of matrices, with 25\7) € [0, )N and
define
AE\?) = Zg\?) ®Ay foreachN e N', (3.6.2)

(a) Assume that

(i) the sequence (Ay)nen+ satisfies Assumption 3.1.3,

(i) for each n € N* it holds

AP
lim —Y 2P _ gl) in probability, (3.6.3)

N—oo W

where 1V is a_finite constant,

(i)
(n)

lim pe’ =: poo €R, (3.6.4)
n—oo
(iv)
lim lim sup [Zy — £\ max = O. (3.6.5)
=0 Nosco
Then
lim Anlop = Uoo in probability (3.6.6)
N . .6.

(b) Assume that, in addition to the assumptions of (a), the convergence in (3.6.3) holds in the
a.s. sense and Assumption 3.1.7 holds for the sequence (A;V) neN+. Then the limit in (3.6.6)

holds in the a.s. sense.
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Proof. (a) Fix € € (0, 1/2) and ng large enough such that for every n > ng it is true that

oo = 1] < e and limsup [Zy — =4 |max < €.

N—oo

Fix an n > ng. There is an Ny = No(n) € N* so that [Xy — Z;{,l)lmax < €2 for all N > Ny. Then

for N > Ny we have
> e].

IANlop ) (‘ IANlop (n)
P(‘ — loo| = Be| < P||—= — 1o
(8.6.7)

(n)
|AN |op ()
— = T Hw

(n)

|An — Ay
246)§P(M236 +P
N

VN

N VN

The last term in (3.6.7) converges to zero as N — oo due to (3.6.3). For the previous term

we will apply Proposition 3.2.2. Notice that the sequence (Ay — AI(\;I))NeN+ satisfies

e Assumption 3.1.3 because (Ay — AI(\?))U = (En)ij — (Zgl))iJ)(Al’V)iJ and |(Ay — Axl))iJl <
I(A})ijl (for all N € N*, i, j € [N]) and we assumed that (A} )yen+ satisfies Assumption
3.1.3

e condition X(2¢) because if, for t € N* with t < N, we call My(t) the quantity defined in
(3.1.7) for the matrix Ay — Axl), and note that the (i,j) element of Ay — Af\?) has mean

zero and variance {(Zy);j — (Zg\?))i J}z, we obtain that

My (t) < N¥122(1Zy — 2P lnax)®* < N 1(26)20 (3.6.8)

Since 3e > 2¢(1 + €), Proposition 3.2.2 implies that the penultimate term in (3.6.7) goes
to zero as N — oo.

|AN |op

VN
(3.6.3) (holding a.s.) and (3.6.4), it is enough to prove that for all ¢ > O and all n large

enough, with probability 1, it holds

(b) It is enough to prove that with probability 1 it holds limpy e < U Because of

)
- |A _A(nl
im —~ NP o (3.6.9)

N—o0 W -

To prove this, we will apply Lemma 3.2.3. Take np so that for all n > ng it holds
limsupy_, [Zn — Zg\r,l)lmaX < €2. Now fix n > ng. There is Ny = No(n) € N* so that
[y — Zg\',l)lmax < €2 for all N > Ny. Then the sequence (Ay — Agl))NZNO satisfies Assump-
tion 3.1.3(a) as we saw in part a) of the proposition, Assumption 3.1.7 (because A;, does so
and |Zy — E%l)lmax < 1), and assumption X(2¢) because of (3.6.8). Then Lemma 3.2.3 gives

the desired inequality. O

Proof of Corollary 3.1.15. We will apply Proposition 3.6.1(b) for the sequence (Ay)nen+. The
sequence (AJ,V)NEN+ mentioned in that Proposition is exactly the sequence (A]’V)NeN+ of re-
lation (3.1.27) and it satisfies Assumption 3.1.3 because for it the discussion following

Assumption 3.1.3 applies (Xp has finite fourth moment).
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For each n € N*, we define the following obvious approximation to o.

oW(x,y) = nzf fo(a, b)dadb if (x,y) € I X I, for k, £ € [n], (3.6.10)
I I

where I := [k;nl, %) forke[n—1]and I, := [(n—1)/n, 1]. Then, we define the matrices 25\7)
through the relation (ZE\?))I- j= o™(i/N,j/N).

For each n € N*, the sequence of matrices (Zg\?) O Ay)n>1 satisfies the assumptions of
Theorem 3.1.14. Consequently, as N — oo, the sequence (u A/ W)N€N+ converges almost

surely weakly to a symmetric measure, say u™, with support contained in [— ufx'} ), ug,l )] and
(3.6.3) holds in the a.s. sense. In a claim below we prove that condition (3.6.4) is satisfied.

Finally, to check (3.6.5), note that

Eny — EWMy| < [En)y — o(i/Nj/N)| + |o(i/N. j/N) - o™ (i/N,j/N)|. (3.6.11)

In the right hand side of the last inequality, the first term converges to zero as N — oo due
to (3.1.26), and the second term is at most the supremum norm of o — o™, which goes to
zero as n — oo because o is uniformly continuous in [0, 1]2. Thus, Proposition 3.6.1(b)
applies and completes the proof.

CLamM: Condition (3.6.4) is satisfied.

We modify the proof of Lemma 6.4 of [12]. Call u the weak limit as N — oo of Hay /N
then Fy, F}i]”) the distribution function of Pay ) VN and u A" /N respectively, and F, F™ the

distribution function of u, u™ respectively. Let

Ani £ Ang < -+ < AN,

AY < A << AW

the eigenvalues of Ay/ VN, Ag\?) / VN respectively.

Let € € (0, 1/2). There is ng = nop(e) so that for all n > ny it holds lim supy_,, |ZN—2§\7)|max <
€2. Take now n > ng fixed. There is Ny = No(n) € N* so that [Zy — Egl)lmax < €2 for all
N > Nj. As explained in the proof of Proposition 3.6.1, limy_, P(IAN - AE\?)IOP > 3¢ \/N) =0.
There is sequence (Ni)k>1 so that in a set Q. of probability 1, eventually for all k we have
|Ap, —Agglop < 3e¢+/Ni. Since

(n) W74
1;2[3‘1\[)% |ﬁNk.i - ﬂNk,il < |ANk - ANk |0p/ N ’

in Q. (the inequality is true by Theorem A46 in [52]), we will have eventually for all k € N*
that
F"(a - 3¢) < Fy, () < F™(a + 3¢) (3.6.12)
Nic = L'Nje i\ o

for all a € R. From here, using the convergence as N — oo of Fy to F and of FI(Vn) to F™, we
have that for all a € R it holds

F™(a - 3¢) < F(a) < F™(a + 3e). (3.6.13)
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[First we get this for all a outside a countable subset of R and then using the right continuity
of F, F'V we get it for all a € R.] This implies that | ugl ) _ Us| < 3¢ and finishes the proof of

the claim. O

Remark 3.6.2. The above proof easily generalizes to the case that the function o is piecewise
continuous in the following sense. Thereare mne N*, 0 =ap < a; < -+ < @p-1 < @ = 1 so
that letting I, := [ap-1.ap) for p=1,2,...,m -1, and I, = [ay,—1. 1] the function olI, X I; is
uniformly continuous for all p, g € [m] (i.e., when o extends continuously in the closure of
each rectangle I, X I;. Recall that to handle the last term in (3.6.11) all we needed was the

uniform continuity of o.

3.7 Examples

3.7.1 Random Gram matrices

Let (Xy)nen+ be a sequence of matrices so that Xy is an M(NN) X N matrix with independent,
centered entries with unit variance, and M : Nt — NT a function with limy_,e w =
c € (0,0). It is known that the empirical spectral distribution of XXT, after rescaling,
converges to the Marchenko-Pastur law pyp [9]. Moreover, the convergence of the rescaled
largest eigenvalue to the largest element of the support of yp has been established in [53]
under the assumption of finite fourth moment for the entries. However, some applications
in wireless communication require understanding the spectrum of XX’, where X has a
variance profile, see for example [54] or [55]. Such matrices are called random Gram
matrices. In this subsection, we establish the convergence of the largest eigenvalue of
random Gram matrices to the largest element of the support of its limiting empirical spectral

distribution for specific variance profiles. Firstly we give some definitions.

Definition 3.7.1 (Step function variance profile). Consider

a) m,n € N* and numbers {0, ¢}pe[m],qe[n] € [0, 00)™".

b )}pe[m], {JI(,K)}pe[n] of [K] in m and n intervals
respectively. The numbering of the intervals is such that x < y whenever x € IF(,K), ye
IéK) or x € J}(,K), Yy € J((ZK) with p < q. Let LII(,K) and RII(,K) be the left and right endpoint

b) For each K € N7, two partitions {I(K

respectively of II(,K) and similarly LJ[(,K) and RJI(,K) for J;,K).

c¢) Numbers 0 =agp < a; < -+ < am-1 < am .= 1. We assume that limp;_,« RII(QM)/M = ap

for each p € [m].

d) Numbers 0 = By < B1 < -+ < Bn-1 < Bn := 1. We assume that limy_, RJ((ZN)/N = Bq
for each q € [n].

e) M :N'" — N' a function,
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f) A random variable X, with E(Xp) = 0, E(Xg) =1.

For each M, N € N*, define the matrix Ty € RN by (Zyn)ij = 0pq if i € IISM),j € IéN), and

let {Ay}nen+ be the sequence of random matrices defined by
AN = EM(N),N QA;\/I(N),N (371)

where AI/\/I(N), N

all with distribution the same as Xy. We say that Ay in (3.7.1) is a random matrix model

is an M(N) X N matrix whose elements are independent random variables

whose variance profile is given by a step function.
Definition 3.7.2 (Continuous function variance profile). For
a) a continuous function o : [0, 1]2 — [0, 1],
b) M : Nt — N* a function
) a sequence (Zyn).n)nven+ of matrices, vy € [0, 1ITMMXN  with the property

lim  sup  [(Ep.n)iy — o/ M(N).j/N)| = 0, (3.7.2)
N= ie[M(N)) jelN]

d) a random variable X, with E(Xp) = 0,E(X?) = 1,
consider the sequence {Ay}yen+ of random matrices, Ay € RMNXN " defined by

where the entries of A}, are independent random variables all with distribution the same
as Xp. Then we say that (Ay)nen+ is a random matrix model whose variance profile is given

by a continuous function. Again, we call o the variance profile.

SyMMETRIZATION To study the eigenvalues of AyAL, where Ay falls in one of the cases of
the two last definitions, we use the trick of symmetrization. If A is an M X N matrix, where
M, N € N*, we call symmetrization of A the (M + N) x (M + N) symmetric matrix A defined
by

OM’M A
AT Opnn

(3.7.4)

where, for any k, 1 € N, Oy ; denotes the k X | matrix with all of its entries equal to 0. The

characteristic polynomials of AAT, A are connected through the relation
AM det(Alyy — A) = AN det(A%Ty — AAT) (3.7.5)

for all A € C. Thus, in the case M < N, if we call (t1, tp, ..., ty+n) the eigenvalues of the

symmetric matrix A, then the vector (tf, t22 e tf/[ +y) contains twice each eigenvalue of
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AAT and N — M times the eigenvalue O (multiple eigenvalues appear in the previous vectors
according to their multiplicities). Thus, the empirical spectral distributions of AAT, A are

with T : R — [0, ) being the map x > x?2.

STEP FUNCTION PROFILE: If (Ay)nen+ is as in Definition 3.7.1 with M(N) := [cN]| for some
c € (0,1], then the sequence (Ay)yen+ is of the form given in Definition 3.1.11 with the
following modification. We require that there is some y : N* — N* with limy_,c y(N) = o0
so that the N-th matrix is of dimension y(N) X y(N) and, for each N € N*, the family
(IP(,N))pE[m] is a partition of [y(N)]. The numbers a,, satisfy limy_,c R;N) /y(N) = a,. With this
modification, Theorem 3.1.14 holds if the denominator in (3.1.30) is replaced by \/W

The sequence (Ay)yen+ fits into this framework. We have y(N) = [cN] + N, the role of m
(of Definition 3.1.11) is played by m + n (m, n from Definition 3.7.1), the (m + n)? constants
are

0 if pe[m],qe[m],

Op,g—m if p€ [m],q € [m+ n]\[m], (3.7.7)
Opq = 7.
Ogp-m if p€[m+n]\[m],qe[m],

0 if pe [m+ n]\[m], q € [m + n]\[m]

for each N, and the partition of [y(IN)] into m+ n intervals consists of the intervals (we write
M instead of [cN)

{[Map_l,Map) NN :pe [m]}, (8.7.8)

{[M + NBg-1. M + NBg) N\N* : g € [n]}. (3.7.9)

Dividing the right endpoints of the intervals by y(N) and taking N — oo, we get the m + n

numbers
c c c c 1 c
a; < ap < -+ < am < + B << + Bn. (3.7.10)
l1+c l1+c l1+c l1+c 1+c l1+c 1+cC

If we feed these data to the recipe of Definition 3.1.11, relation (3.1.24) will give as Ay
the matrix Ay where Ay is given by (3.7.1). The discussion preceding Theorem 3.1.14
applied to the sequence (Ay)y>; gives that the ESD of Ay/ \/W converges almost surely
weakly to a symmetric probability measure #i° with compact support. Call #iZ the largest
element of the support. Relation (3.7.6) implies that the ESD of ANA]E /N converges to a
measure with compact support contained in [0, o) and the largest element of this support

is too = (1 + ¢)(712)2. Then Theorem 3.1.14 has the following corollary.
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Corollary 3.7.3. Assume that (Ay)n>1 iS as in Definition 3.7.1 with M := [cN] for some
c € (0, 1] and E(|Xo|**%) < oo for some 6§ > 0. Then it is true that

T

lim |ANAN|op _

N—oo

a.s. (3.7.11)

CONTINUOUS FUNCTION PROFILE: If (Ax)nyen+ is as in Definition 3.7.2 with M(N) := [cN] for
some c € (0, 1], then we apply the discussion preceding Theorem 3.1.14 to the sequence
(Ay)yen+. The graphon, Wy, corresponding to Ay converges pointwise in [O, 1]? to the

graphon ¢ with

0 if (x,y) € [0,c/(1 +c)]? U (c/(1+c). 112,
o(x,y) :=q0(x(1+c)/c,(1+c)y—c) if(xy) €[0,c/(1+c)]x(c/(1+c) 1], (8.7.12)
oyl +c)/e,(1+co)x—c) if(xy) e (c/(1+c),1]x[0,x/(1+0)].

We used (3.7.2) and the continuity of 0. Since (An)nen+ also satisfies Assumption 3.1.1, we
get that the ESD of Ay/ \/W converges almost surely weakly to a symmetric probability
measure ji° with compact support. Call fiZ the largest element of the support. As above,
the ESD of ANAIE /N converges to a measure with compact support contained in [0, ), and

the largest element of this support is pe. = (1 + ¢)(#2)2.

Corollary 3.7.4. Assume that (Ay)n>1 iS as in Definition 3.7.2 with M := [cN] for some
c € (0, 1] and E(|Xo|**%) < o for some 6 > 0. Then it is true that

T

lim |ANAN|op _

N—ooo

a.s. (3.7.13)

Proof. The proof does not follow directly from Corollary 3.1.15 because the sequence
(An)nen+ does not necessarily have a continuous variance profile in the sense of Defini-
tion 3.1.12. Instead, we mimic the proof of that corollary. We define o™ as in (3.6.10),
and the M X N matrix Zg\'f) as (25\?))U := 0'™W(i/M,j/N) for all i € [M],j € [N]. Then we apply
an obvious modification of Proposition 3.6.1 (the N-th matrix is of dimension y(N) X y(N),

with y(N) = [cN] + N) with the role of Xy and Zg\?) played by iM,N, ig\?) (the symmetriza-

(n)
N

Corollary 3.1.15 to this setting. Note that |iM,N - igl)lmax = Zun — Zgl)lmax, which has

tions of Xy y and X, defined in (3.7.4). The proof continues by adopting the proof of

lim s o0 1M SUPy_y oo [Ean — (g lmax = O. O
Remark 3.7.5. In [54] the authors showed that if the variances of the entries of Ay are

given by the values of a continuous function (and some extra assumptions such as bounded
4 + ¢ moments of the entries) the limiting distribution of the E.S.D. of ANAK, does exist. So
in Theorem 3.7.3 we prove the convergence of the largest eigenvalue of these models as
well. The authors in [54] also studied the non-centered version of these models, i.e. when

the entries of the matrix do not have O mean, but we do not cover this case with our result.



101

3.7.2 Further applications of Theorem 3.1.10

In the Random Matrix Theory literature what are commonly described as Random matrices
with variance-profile given by a step function are more or less what we describe in Theorem
3.1.14. In this subsection we give some examples which are covered by the generalized
version of this variance-profile matrices (Definition 3.1.9) but not from the "standard" step
functions.
Let {q, (N)
N e N* i ,JE [N]. {a

variance 1. Fix p € (0, 1] and let Ay be the matrix with entries

: N € N*,i,j € [N]} identically distributed random variables, a®y = J(ILV) for all

ij
(N) ( 1)

: 1 £j < i< N} independent for each N, and a, ; has mean 0 and

{An}ij = a§§)1|i_j,sp,\,, ije[N], (3.7.14)

The sequence (Ay)nen+ satisfies Assumption 3.1.1 (easy to check) and also Assumption
3.1.2. To see the last point, we follow Remark 3.1.13. The graphon corresponding to Ay is
Wh(x. y) = 1nx-[ayl<py Which converges to the graphon W(x, y) = 1x_y<p at least on the
set {(x,y) € [0,1]? : |x — y| # pn}, which has measure 1. Thus, with probability one, the
ESD of Ay/ VN converges weakly to a symmetric measure pu with compact support. Call
U the supremum of the support of u.

Corollary 3.7.6 (Non-Periodic Band Matrices with Bandwidth proportional to the dimen-
sion). Assume that for the matrix defined in (3.7.14) we have that a(N) has 0 mean, unit

variance and finite 4 + 6 moment for some 6 > 0. Then

Proof. The sequence (Ay)nen+ satisfies Assumption 3.1.2, as we saw above, and also As-
sumption 3.1.3 because {q, (N) : N € N*,ij € [N]} are identically distributed and a; ; has
mean zero, variance one, and finite fourth moment. The corollary then is a straightforward
application of Theorem 3.1.10, where dy = 3, the partition of [N]? required by Definition

3.1.9 consists of the sets

B = ((i.j) € IN]> : [(i/N) - (i/N)| < p}, (3.7.15)
BN = ((i.j) € [N]? : (i/N) > (j/N) + p}, (3.7.16)
B8N = {(i.j) € [N? : (j//N) > (i/N) + p}, (3.7.17)

and s(N) =1, s(N) = S(SN) 0. Condition (b) of that definition is satisfied by f := m for each

m € [3]. m|

Remark 3.7.7. The random band matrix models have been extensively studied after the
novel work in [56] and have tremendous application in various research areas. When the

bandwidth of the matrices is periodic, i.e., the distance from the diagonal outside which the
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entries are O is periodic, the operator norm has been extensively studied, see for example
[38] or the survey [57]. Moreover when the bandwidth of such matrices is non-periodic
but the bandwidth (the maximum number of non identically zero entries per row) is o(lV)
but also tends to infinity has also been examined in [58]. To the best of our knowledge,
the convergence of the largest eigenvalue of non-periodic Band Matrices with bandwidth

proportional to the dimension has not been established.

Our next result concerns the singular values of triangular random matrices. It is well
known under various assumptions for the entries, but we record it here as another appli-
cation of our main theorem.

Let {a “")

i < N} 1ndependent for each N, and a;

: N e N*,1 < i <j e [N]} identically distributed random variables, eh ( )i1< Jj<
(1) has mean O and variance 1. Let Ay be the matrix
with entries

(Anly = ' Lig. 1j€ NI, (3.7.18)

Corollary 3 7 8 (Triangular matrices). Assume that for the matrix defined in (3.7.18) we
have that a has 0 mean, unit variance and finite 4 + 6 moment for some 6 > 0. Then
|ANA]’I\}|op

lim ———— =¢e a.s.
N—oo

Proof. As in the case of Gram matrices, we denote by Ay the symmetrization of Ay, defined
in (3.7.4). We have |ANA£|op = |AN|(2)p. We will apply Theorem 3.1.10 to the sequence
(Ay)nen+. The partition of [2N]? required by Definition 3.1.9 consists of the following three
sets (i.e., dy = 3)

BN = ((ij) € 2N : li—jl < N - 1), (3.7.19)
BN = {(ij) € [2N]? : i = N +j}, (3.7.20)
BN = {(ij) € [2N]? :j > N + i}, (3.7.21)
and the corresponding values of the variance are s =0, s(N) = sgv) = 1. Assumption 3.1.2

follows as an application of Remark 3.1.13, in the same way as in the previous corollary.
The measure u of that assumption satisfies yo T™! = v, where v is the limit of the E.S.D
of N"'ANAT [recall (3.7.6)]. It was shown in [15] that v has support [0, e]. It follows that
u has support [—+/e, Ve] [See Remark 2.2 of [59] for a more detailed discussion of this
phenomenon].

Assumption 3.1.3 is satisfied because the elements of Ay with indices in B(ZN) U BgN)
are identically distributed with zero mean, unit variance and finite fourth moment (the
remaining elements of the matrix are identically zero random variables). Finally, condition
(3.1.20) is satisfied as equality.

Thus, the corollary follows from Theorem 3.1.10. O
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3.8 Two technical lemmas

In the next lemma, we prove the crucial estimate we invoked in the proof of Proposition

3.2.1. We adopt and present the terminology of Section 5.1.1 of [52].

Proof. When t = 1, since the cycle is bad, we have s = 1 and a; = 2k, and there is only one
cycle with these s, t and vertex set {1}.

For the case t > 2, take a cycle i := (i}, iz, ..., i) as in (3.2.9) and assume that it has
edge multiplicities a;, ag, ..., as > 2. Each step in the cycle we call a leg. More formally,
legs are the elements of the set {(r, (ir, i-+1)) : ¥ = 1,2,...,2k}. Edges of the cycle we call
the edges of G(i), and the multiplicity of each edge is computed from i. The graph G(i) does
not have multiple edges.

For 1 < a < b, we say that the leg (a, (ig, iz+1)) is single up to b if {ig, ig+1} # {ic, ic+1} for
every c € {1,2,...,b— 1}, c # a. We classify the 2k legs of the cycle into 4 sets Ty, Ty, T3, Ty.
The leg (a, (ig, iz+1)) belongs to

Ty: ifige) € {i1,...,14}. L. e., the leg leads to a new vertex.

Ts: if there is a T leg (b, (ip, ip+1)) With b < a so that a = min{c > b : {i¢, ic+1} = {ip, ip+1}}-
I. e., at the time of its appearance, it increases the multiplicity of a T; edge of G(i) from 1
to 2.

Ty: if it is not Ty or Ts.

T,: if it is T, and there is no b < a with {ig, iz+1} = {ip, ip+1}-
L.e., at the time of its appearance, it creates a new edge but leads to a vertex that
has

appeared already.

Moreover, a T3 leg (a, (ig, ig+1)) is called irregular if there is exactly one Ty leg (b, (ip, ip+1))
which has b < a, vq € {ip, ip+1}, and is single up to a. Otherwise the leg is called regular.

It is immediate that a T4 leg is one of the following three kinds.
a) Itis a Ty leg.
b) Its appearance increases the multiplicity of a Ty edge from 1 to 2.
c) Its edge marks the third or higher order appearance of an edge.

The number of edges of G(i) is s and the number of its vertices is t (since T(i) ~ T € C¢_).
Call

?: the number of edges of G(i) that have multiplicity at least 3.
m: the number of T legs.

r: the number of regular T; legs.
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We have for r, t, and |Ty4| the following bounds

r<2m, (3.8.1)

t=s+1-m<k, (3.8.2)

[Tyl = 2m + 2(k — s). (3.8.3)

The first relation is Lemma 5.6 in [52]. The second is true because if we remove the m

edges traveled by T, legs, we get a tree with s — m edges and ¢ vertices, and in any tree
the number or vertices equals the number of edges plus one. Then the inequality is true
because s < k (all edges of G(i) have multiplicity at least 2) and if s = k, then m > 1 since
the cycle is bad. For the last relation, note that |T3| = |Ty| = t — 1 and thus, using (3.8.2)
too, we have |Ty| = 2k - 2(t — 1) = 2k — 2(s — m).

Now back to the task of bounding Nrq, ... .. We fix a cycle as in the beginning of the proof

.....

and we record

e for each Ty leg, a) its order in the cycle, b) the index of its initial vertex, c) the index
of its final vertex, and d) the index of the final vertex of the next leg in case that leg is
T,. This gives a @, € {1,2,...,2k} x ({1,2,...t}2U{1,2,...t}3) with |T4| elements.

e for each regular Tj leg, a) its order in the cycle, b) the index of its initial vertex, and
c) the index of its final vertex. This gives a Qo C {1,2,...,2k} x {1,2,...,t}?> with r

elements.

We call U the set of all indices that appear as fourth coordinate in elements of Q,. These
are indices of final vertices of T; legs.
We claim that, having Q;, Q2 and knowing that T(i) = T, we can reconstruct the cycle i.
We determine what kind each leg of the cycle is and what the index of its initial and its
final vertex is. These data are known for the T; and T3 regular legs. The remaining legs are
T, or T3 irregular. We discover the nature of each of them by traversing the cycle from the
beginning as follows. The first leg is Ty (if iy = i;) or T;. The set Q; will tell us if we are in
the first case and will give us all we want. If we are in the second case, the initial vertex is
1 and the final 2. Assume that we have arrived at a vertex v; in the cycle with the smallest
i for which the nature of the leg ?; := (i, (v;, vi41)) is not known yet. If the vertex v; has no
neighbors in G(i) that we haven’t encountered up to the leg £;_;, then /; is T; irregular, and
by the defining property of T3 irregular legs, we can determine the index of its final vertex.
If the vertex v; does have such neighbors, call z the one that appears earlier in the cycle.

e If z € U, then in case it was included in U because of ?;_; (this can be read off from
©;. Note that z could not have been included because of an earlier leg because z has not
appeared earlier than v;), we have that #; is T; with v;;; = z, while in case it was included
with a leg ¢y with index i’ > i, we have that #; can’t be T} (because then v;;; would be a

neighbor of v; appearing earlier than z, contradicting the choice of z), thus ?¢; is Ts irregular.
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Figure 3.1: The case z ¢ U.The legs {;, {;(i < j) are T3, while £, ¢, are T;.

o If z ¢ U, we will show that ¢; = (i, (v;, w)) is Ty. Assume on the contrary that it is
T3 irregular. Clearly z # w, and call {, (p < i) the Ty leg that has vertices v;, w and is
single up to i — 1. The cycle will visit the vertex v; at a later point, with a leg ¢ = (j, (v}, v;))
with j > i and v; # z,v; # v; , in order to create the edge that connects v; with z (that is,
b1 = (j+ 1, (v, 2)) will be Th), see Figure 3.1. The leg ¢; is not T} because v; has been visited
by an earlier leg, and it is not Ty because we assumed that z ¢ U. It has then to be Ts.
Thus, there is a leg {; connecting vertices v;, v; that is Tj.

If g < i, then we consider two cases. If v; = w, then {; is Ty, because the edge v;, w
has been traveled already by £, ¢; (recall that p < i < j), and this would force z € U, a
contradiction. If v; # w, then ¢; would have been Ts regular as there are at least two T; legs
(i.e., £y, £;) with order less than i with one vertex v;, traveling different edges, and single up
to i — 1, again a contradiction because ?; is T or Ty irregular.

If g > i, then vj(# 2z) is a neighbor of v; (that is, the Ty leg ¢, goes from v; to v;) that
appears after leg £; but earlier than z, which contradicts the definition of z. We conclude
that ¢; is T;.

Thus, having T, Q;, @2 allows to determine i.

The above imply that the number of bad cycles with given T, ¢, r is at most
2Kt?(t + 1)) (2Kkt?)" < (4Kt (3.8.4)

Then (3.8.1) and (3.8.3) give r + |Ty| < 4m + 2(k — s), and finally using (3.8.2), we get the

desired bound. m|

The next lemma is used in the proof of Theorem 3.1.10.

Lemma 3.8.2. Let (Ay)nen+ be a sequence of matrices, Ay of dimension N X N, that satis-
fies Assumption 3.1.1 and Assumption 3.1.2 with measure u. Suppose that there are two

sequences of matrices (Af\})) Nen+ and (A;?)) Nen+ such that

A 4 2@
(@ Ay = Ay +AY,
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(b) For all N € N* and i,j € [N], at least one of (AI(\}))i s (A](\?))i j is identically zero random

variable.
=S ui ili N .
(¢ Hpv gy = H N probability as N — oo
Then (AE\P) Nen+ also satisfies Assumptions 3.1.1, 3.1.2 with the measure L.

Proof. We only need to check the validity of Assumption 3.1.2 as the validity of Assumption
3.1.1 is immediate.
Because AI(\}) satisfies Assumption 3.1.1, there is a decreasing sequence (7y)nen+ of positive

reals converging to O so that

Lo (1) 2 (1) 3
Jim — .Z[;V]E[({AN 1”1 (AR )yl > neN?)| = 0. (3.8.5)
ij

Set AS)’S to be the matrix whose (i,j) entry is
1 1
(A1 (AT Yyl < nuN?) = E[1ag )1 (AR )yl < nuN? )] (3.8.6)

1
and uy,;j = E [{Ag\})}ul (HA](Vl)}iJl < HNNQ)]-
CLAIM:

Hy-1/2 A= = u in probability as N — oo (3.8.7)

The Levy distance between p,m) /N and p,a.< /N is bounded as follows.
N N

L2 (gt i a0 i) < N {(—A(“ A(1)<) } (3.8.8)
1 1
— (1) (D 2 (D 3
= Z[ (131 (A 1yl < wl2) + (AP Yy + i )® 1 (A Jigl > w2 )}
(3.8.9)
3 2 2 1) |2 o !
< Z Wiyt Z AP )*1 (AP )yl > eN2). (3.8.10)
ije[N] ije[N]

Since the entries of A§V1) have mean 0, we have
1\T\2 1
Ky = (B[ (AR )yl > meN?)])” < B{day 1)1 (AR )yl > nwNz)|.

Thus, the expectation of the expression in (3.8.10) is at most
= > Bl (A )yl > ) |
Ue[N]
which tends to zero as N — oo due to (3.8.5). This, combined with assumption (c), proves
the claim.
Fix Ik € N* and set My(k), Mz(vl )’S(k) the asymptotic contributing terms (see (3.1.7)) of Ay
and Agvl)’g respectively. Notice that

M= (k) < M () < My (o). (3.8.11)
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The rightmost inequality is true because the variance of {A( )} ij is either zero or s( ) due to
assumption (b) of the lemma. The leftmost inequality is true because if W is a real valued
random variable with mean O and finite variance and W is a variable with |W| < |W|, then
Var(W) < Var(W).

Lemma 3.6 of [13] implies that

(1).<
My~ (k)

— (1),2\2k
Nkl T Nk+1Etr{(AN )7} + o(1) (3.8.12)

as N — oo. We will prove that the right hand side converges to f x*kdu as N — oco. It will
be convenient to let By := AS)‘S/ VN and {A:(By) : i € [N]} its eigenvalues.
Pick some C > u. and consider the function gc(x) = (|x| A C)?%, which is bounded and

continuous. Then,

Nk+1Etr{(A(l)< )2k) ZE{(ﬂ By )<} (3.8.13)

and the right hand side can be estimated as follows.

1 < 20 1
5 D BB - Z Egc(Ai{By))| <

1:1

N
Z E{A7*(By)LjpBy)c)
i=1

N N Alc N
%Z [Eﬂ4k(BN) P(4(By)| = C) < JZ Ej;"(Bn) \/ EZi:l 1i7,By)=C N:)OO 0

; N N
i=1 i=1

(3.8.14)
To justify the convergence to zero, note that the quantity in the second square root con-
verges to zero by our choice of C > L and the in probability weak convergence of the E.S.D.
of By to u. The quantity in the first square root is bounded in N because, due to (3.8.12),
its difference from M](Vl)’s(2k) /N?!*1 is bounded and the latter is less than My(2k)/N2<+1
which is bounded in N since it converges to f X dy.

The in probability weak convergence (3.8.7) implies that

N
1
- Z gc(A{By)) — f x?®dy in probability, (3.8.15)
N =
and the boundedness of g¢ allows to conclude that
1 &
im — ) _ 2k
I%l_rgo N Zl Egc(A:{Bn}) = fx du. (3.8.16)
i=

Thus, relations (3.8.12), (3.8.13), (3.8.14),(3.8.16) show that

(1),<
M=(k
fim U9 _ f X< dy. (3.8.17)

N—oo Nk+ 1

And this combined with (3.8.11) concludes the proof. O
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