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Abstract

This thesis consists of two parts and examines the asymptotic behavior of the extreme

eigenvalues of some random matrix models. Specifically:

• In the last decades there has been a growing interest on the asymptotic behavior

of the smallest singular value of Random Matrix models, see [1],[2], [3] and [4]. A

common factor in all of these cases is that the entries of the Random Matrix model

under examination have finite variance. So in the first part of this thesis we examine

the asymptotic distribution of the smallest singular value of a Random Matrix model

with heavy tailed entries, the Lévy non-symmetric Random Matrices. In this model

the entries of the matrix are i.i.d. and follow an a−stable distribution. We prove that

for almost all a ∈ (0,2) universality, i.e., the same asymptotic distribution as in the

Gaussian case, holds for the least singular value. As a byproduct of our proof, we

also prove the complete delocalization of the singular vectors of this model at small

energies. The methods are based on the modern techniques, whose heart lie in the

three step strategy, an important strategy developed in the last decade in the Random

Matrix Theory literature, see [5], [6] and [7]. In order to obtain the universality for

the least singular value, we also prove a version of an isotropic local law for a general

class of matrices.

• After the seminal works of Wigner in [8] and Marchenko-Pastur in [9], where the

limit of the empirical spectral distribution of some class of random matrices has

been established, a natural question that emerged is what happens with the extreme

eigenvalues of that matrices. The convergence of the operator norm of these matrices

to the rightmost element of the limiting spectrum was first proven in [10], under

the necessary and sufficient condition that the entries of the matrix have finite 4-th

moment. In these "classic" results the entries of the matrices are i.i.d. In the last

decade there has been a growing interest on Random Matrix models, whose entries

are independent but not necessarily identically distributed and in particular with

different variances, see for example [11], [11], [12], [13] and [14]. In particular, in [13]

the convergence of the empirical spectral distribution of several classes of matrices

to a limiting probability measure is proved. This convergence is proven to heavily
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depend only on the properties of the variance profile of these matrices, i.e. the matrix

with entries the variances of the entries of the initial matrix. For some models, for

which the result of [13] holds, the convergence of the operator norm of the matrix

to the rightmost element of the limiting spectrum is also proven in [14] and [12] but

under the assumption that the entries of the matrix model have all their moments

finite. So in the second part of this thesis we prove that for matrices with a general

variance profile and with finite 4 + ϸ moment the convergence of the operator norm

holds. The methods we use are based on the comparison of large moments of the

matrix model with the rightmost element of the spectrum of the limiting distribution

and are based on methods developed in [13], [15], [16] and [10]. Our approach covers

the cases of random symmetric or non-symmetric matrices whose variance profile is

given by a step or a continuous function, random band matrices whose bandwidth is

proportional to their dimension, random Gram triangular matrices and more.



Περίληψη

Η παρούσα διατριβή αποτελείται από δύο µέρη και εξετάζει την ασυµπτωτική συµπεριφορά

των ακραίων ιδιοτιµών ορισµένων µοντέλων τυχαίων πινάκων. Συγκεκριµένα:

• Τις τελευταίες δεκαετίες υπάρχει αυξανόµενο ενδιαφέρον για την ασυµπτωτική συµπερι-

ϕορά της µικρότερης ιδιάζουσας τιµής µοντέλων τυχαίων πινάκων, ϐλέπε [1],[2], [3] και

[4]. ΄Ενας κοινός παράγοντας στις προαναφερθείσες περιπτώσεις είναι ότι τα στοιχεία των

υπό εξέταση µοντέλων τυχαίων πινάκων έχουν πεπερασµένη διασπορά. ΄Ετσι, στο πρώτο

µέρος αυτής της διατριβής εξετάζουµε την ασυµπτωτική κατανοµή της µικρότερης ιδι-

άζουσας τιµής ενός µοντέλου τυχαίων πινάκων µε στοιχεία µε ϐαριές ουρές, τους Lévy

µη συµµετρικούς τυχαίους πίνακες. Σε αυτό το µοντέλο τα στοιχεία του πίνακα είναι

ανεξάρτητα και ισόνοµα και ακολουθούν µια a−ευσταθή κατανοµή. Αποδεικνύουµε ότι

σχεδόν για όλα τα a ∈ (0,2) ότι η καθολικότητα, δηλαδή η ίδια ασυµπτωτική συµπερι-

ϕορά όπως στην περίπτωση των πινάκων µε στοιχεία που ακολουθούν την τυποποιηµένη

κανονική κατανοµή, ισχύει για την ελάχιστη ιδιάζουσα τιµή των Lévy µη συµµετρικών

τυχαίων πινάκων. Ως υποπροϊόν της απόδειξής µας, αποδεικνύουµε επίσης την πλήρη

µετατόπιση των ιδιαζόντων διανυσµάτων αυτού του µοντέλου για µικρές ενέργειες. Οι

µέθοδοι ϐασίζονται σε σύγχρονες τεχνικές, οι οποίες ϐασίζονται στη στρατηγική των τρι-

ών ϐηµάτων, µια σηµαντική στρατηγική που αναπτύχθηκε την τελευταία δεκαετία στη

ϐιβλιογραφία των τυχαίων πινάκων, ϐλ. [5], [6] και [7]. Προκειµένου να αποδείξουµε

την καθολικότητα για την ελάχιστη ιδιάζουσα τιµή, αποδεικνύουµε επίσης µια εκδοχή

ενός ισοτροπικού τοπικού νόµου για µια γενική κλάση τυχαίων πινάκων.

• Μετά τα ϑεµελιώδη αποτελέσµατα του Wigner στο [8] και των Marchenko-Pastur στο

[9], όπου καθορίζεται το όριο της εµπειρικής ϕασµατικής κατανοµής κάποιας κλάσης

τυχαίων πινάκων, ένα ϕυσικό ερώτηµα που προέκυψε είναι τί συµβαίνει µε τις ακραίες

ιδιοτιµές αυτών των πινάκων. Η σύγκλιση της νόρµας τελεστή αυτών των πινάκων στο

δεξιότερο στοιχείο του στηρίγµατος του οριακού µέτρου αποδείχθηκε για πρώτη ϕορά

στο [10], υπό την ίκανή και αναγκαία προϋπόθεση ότι τα στοιχεία του πίνακα έχουν

πεπερασµένη 4η ϱοπή. Σε αυτά τα «κλασικά» αποτελέσµατα, τα στοιχεία των πινάκων

είναι ανεξάρτητες και ισόνοµες τυχαίες µεταβλητές. Την τελευταία δεκαετία υπήρξε ένα

αυξανόµενο ενδιαφέρον για το µοντέλα τυχαίων πινάκων, των οποίων τα στοιχεία είναι
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ανεξάρτητες αλλά όχι απαραίτητα ισόνοµες τυχαίες µεταβλητές και ειδικότερα έχουν

διαφορετικές διασπορές, ϐλ. για παράδειγµα τα [11], [11], [12], [13] και [14]. Συ-

γκεκριµένα, στο [13] αποδεικνύεται η σύγκλιση της εµπειρικής ϕασµατικής κατανοµής

µια µεγάλης κλάσης τυχαίων πινάκων σε ένα µέτρο πιθανότητας. Αυτή η σύγκλιση

αποδεικνύεται ότι εξαρτάται σε µεγάλο ϐαθµό µόνο από τις ιδιότητες του προφίλ των

διασπορών αυτών των πινάκων, δηλαδή τον πίνακα που έχει για στοιχεία τις διασπορές

των στοιχείων του αρχικού πίνακα. Για ορισµένα µοντέλα για τα οποία ισχύουν τα α-

ποτελέσµατα του άρθρου [13], η σύγκλιση της νόρµας τελεστή του πίνακα στο δεξιότερο

στοιχείο του στηρίγµατος του οριακού µέτρου αποδεικνύεται επίσης στα [14] και [12],

αλλά υπό την προϋπόθεση ότι οι τα στοιχεία του υπό εξέταση µοντέλου τυχαίων πινάκων

έχουν όλες τις ϱοπές τους πεπερασµένες. ΄Ετσι, στο δεύτερο µέρος αυτής της διατρι-

ϐής αποδεικνύουµε ότι για πίνακες µε γενικό προφίλ διασπορών και µε πεπερασµένη

την 4 + ϸ ϱοπή, ισχύει η σύγκλιση στο δεξιότερο µέλος του στηρίγµατος του οριακού

µέτρου. Οι µέθοδοι που χρησιµοποιούµε ϐασίζονται στη σύγκριση µεγάλων ϱοπών του

µοντέλου τυχαίων πινάκων µε το δεξιότερο στοιχείο του στηρίγµατος της οριακής κατα-

νοµής και σε µεθόδους που αναπτύχθηκαν στα [13], [15], [16] και [10]. Η προσέγγισή

µας καλύπτει τις περιπτώσεις τυχαίων συµµετρικών ή µη πινάκων των οποίων το προφίλ

των διασπορών τους δίνεται από κατά τµήµατα σταθερή ή συνεχή συνάρτηση, τυχαίων

band πινάκων των οποίων το εύρος είναι ανάλογο της διάστασή τους, τυχαίων Gram

τριγωνικών πινάκων και άλλα.



Contents

1 Introduction 4

1.1 Universality of the least singular value and singular vector delocalisation for
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Chapter 1

Introduction

Random matrix theory (RMT) is a branch of mathematics that deals with the study of

matrices whose entries are random variables. It provides powerful tools and techniques

for understanding the statistical properties of complex systems arising in various fields,

including physics, computer science, and statistics. In recent years, there has been a

growing interest in the asymptotic behavior of random matrices as their dimensions tend

to infinity. Such asymptotic results have proven to be invaluable in analyzing large-scale

systems and have found applications in diverse areas such as wireless communications,

finance, and quantum information theory.

The study of asymptotic behavior in random matrix theory is motivated by the need to

understand the limiting behavior of complex systems involving a large number of random

variables. Traditional methods of analysis often fail in such scenarios due to the complexity

and interdependence of the variables. Random matrix theory offers a powerful framework to

tackle these challenges by providing tractable mathematical models and insightful results.

The limiting behavior is often referred to as the "asymptotic regime" and is of great interest.

The asymptotic results in random matrix theory typically involve the analysis of certain

limiting distributions or convergence properties as the matrix size tends to infinity. These

results provide valuable insights into the behavior of random matrices and can be used to

study a wide range of phenomena. For example, in the field of wireless communications,

asymptotic results on the eigenvalue distribution of random matrices can be used to analyze

the performance of multiple-input multiple-output (MIMO) systems, which are widely used

in modern wireless communication systems.

Another important aspect of asymptotic results in random matrix theory is the univer-

sality phenomenon. Universality refers to the remarkable observation that the limiting

behavior of random matrices often exhibits universal properties that are independent of

the specific distribution of the matrix entries. This universality property allows us to make

general statements about the behavior of random matrices without detailed knowledge of

the underlying distribution. It is a powerful concept that simplifies the analysis and makes
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random matrix theory applicable in a wide range of contexts.

In this thesis, we aim to explore and contribute to the growing body of literature on

asymptotic results in random matrix theory and hope to enhance our understanding of

complex systems and contribute to the advancement of several disciplines.

Specifically this thesis is based on the following papers

1. M.Louvaris, Universality of the least singular value and singular vector delo-

calisation for Lévy non-symmetric random matrices, Annales de l’Institut Henri

Poincaré, Probabilités et Statistiques (accepted), AIHP1413

2. D.Cheliotis, M.Louvaris, The limit of the operator norm for random matrices with

a variance profile, available in arxiv.

1.1 Universality of the least singular value and singular vector

delocalisation for Lévy non-symmetric random matrices

1.1.1 General description of the problem

Consider the following problem:

Let {YN }N be a sequence of N × N matrices with i.i.d. entries, YN := (Yi,j)1≤i,j≤N . Then is

there some normalization sequence cN such that

cNλmin(Y TN YN )⇒N→∞ Z (1.1.1)

for some non-degenerate random variable Z?

In (1.1.1)⇒N→∞ denotes the convergence in distribution as N → ∞.

For several random matrix models we have:

• (1.1.1) holds, when YN has entries all following the N(0,1) distribution. Firstly proven

in [1], by using the properties of the Gaussian random variables.

• (1.1.1) holds, when YN has i.i.d. entries with finite moments up to some C (∼ 100).

Proven in [2], by comparing to Gaussian Matrices and by using a version of the CLT.

• Recently: (1.1.1) holds for sparser random matrices [3] and for the sum of random

matrices in [4].

In each of the cases mentioned, it is true that for some c > 0

P(|Y1,1| ≥ t) ≤
c

t2
(1.1.2)

What if P(|Y1,1| ≥ t) ∼ t−a , for some a ∈ (0,2)? That is, the entries are heavy tailed.

So in the first part of this thesis we prove (1.1.1), when Y1,1 follows an a-stable law, for

almost all a ∈ (0,2). In particular Y1,1 has heavy tailed entries. This is done in Chapter 2

and specifically in Theorem 2.1.2.

https://arxiv.org/pdf/2404.13795
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1.1.2 Background

The asymptotic behavior of the spectrum of random matrices has been a crucial topic of

studies since Wigner’s semicircle law, first proven in [8]. The study of the asymptotic

spectral behavior of Wishart matrices was the next important result, firstly investigated in

[9], although Wishart matrices actually preceded Wigner matrices.

The Wishart matrices, and more generally the covariance matrices, play a significant

role in various scientific fields. See for example [17] and [18] for applications in statistics,

[19] for application in economics and [20] for application in population genetics. Several

spectral properties of these matrices have been investigated. We focus on the case that

the entries of the matrix are identically distributed, independent random variables (i.i.d.).

For those matrices some significant results concern the limit of the largest eigenvalue,

the asymptotic behavior of the correlation functions and the asymptotic bulk and edge

behavior. For example, see [21] or the lecture notes concerning the singular values [22].

These results are proven for matrices whose entries have finite variance.

Besides those results, an important problem in random matrix theory is the asymptotic

behavior of the least eigenvalue of covariance matrices, when the matrices’ dimensions are

equal. Note that the inverse of the least singular value of a matrix is equal to the operator

norm of its inverse, so an estimate of the least singular value gives control to the probability

that the inverse has large norm and also gives control to its condition number. To name an

illustrative application, this estimate of the least singular value for various random matrix

models, plays an important role in the analysis of the performance of algorithms, see [23].

In the case that the entries of the matrices are normally distributed, the limiting distribution

has been described in Theorem 4.2 of [1], by directly computing the density of the smallest

singular value multiplied by N . In the general i.i.d. case, under the assumption of finite

moments of sufficiently large order, the least singular value is proven to tend to the same

law as the least singular value of a Gaussian random matrix, in Theorem 1.3 of [2]. This

phenomenon, the same asymptotic distribution for the least singular value of a matrix as

in the Gaussian case, will be called universality of the least singular value for the matrix.

Lastly, in the most recent papers [3] and [4] the authors proved that universality of the

least singular values holds for more general classes of matrices.

The above results have been focused on the finite variance cases. In the case of infinite

second moment, and more specifically in the case of stable entries, there are not so many

results concerning the behavior of the spectrum of covariance matrices. There are some

results, mostly concerning the limit of the E.S.D. of such matrices ([24],[25]) and the limit

of the largest eigenvalues [26] and [27]. Moreover there are also some generalizations,

which concern the limit of the largest eigenvalue of heavy tailed autocovariance matrices in

[28] and covariance matrices with heavy tailed m-dependent entries in [29]. Despite that,

progress has been made concerning the symmetric matrices with heavy tailed entries. In
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[30], the authors found the limit of the empirical spectral distribution of such matrices.

Next, in [31] and [32] the authors proved some version of local law and examined the

localization and delocalization of the eigenvectors in each of these cases. Moreover, in

[25] and [33], the authors gave a better understanding of the limiting distribution of the

empirical spectral distribution by proving the convergence of resolvent of the matrix to the

root of a Poisson weighted infinite tree in some operator space. Recently, in [5] and [34],

the authors showed complete delocalization of the eigenvectors whose eigenvalues belong

in some interval around 0, GOE statistics for the correlation function and described the

precise limit of the eigenvectors respectively.1

In this paper we prove universality for the least singular value of random matrices with

i.i.d. a−stable entries. The methods we use also imply the complete singular vector delo-

calization for such matrices at small energies. We prove these results using a version of

the three step strategy, a strategy developed in the last decade, which is suitable in order

to obtain universality results for random matrix models, see [7].

The basic inspiration for this paper is Theorem 2.5 in [5], which proves universality of

the correlation functions for symmetric Lévy random matrices at small energies. Both the

intermediate local law, Theorem 2.3.14, and the theorem concerning the comparison of the

entries of the resolvent, Theorem 2.6.4, are similar to Theorem 3.5 and Theorem 3.15 of [5]

respectively, adjusted to our set of matrices. For the intermediate local law we also use a

lot of results from [31] and [32].

Results and methods from [6] and [3] had significant influence to this paper as well.

In particular the isotropic local law in Sections 2.5 is an analogue of Theorem 2.1 in [6],

proven for a different class of matrices. Moreover universality for the least singular value

of random matrices after perturbing them by a Brownian motion Matrix can be found in

Theorem 3.2 of [3]. So several results from Sections 2.4 and 2.6 are based or influenced by

results of [3].

1.2 The limit of the operator norm for random matrices with a

variance profile

1.2.1 General description of the problem

Given a sequence of N × N random matrices AN , set

µAN =
1
N

N∑
i=1

δ

(
λi

(
AN
√
N

))
(1.2.1)

1GOE denotes the Gaussian Orthogonal Ensemble, i.e., symmetric matrix with independent entries (up to
symmetry) where the non-diagonal entries have law N(0,1) and the diagonal N(0,2).
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to be the empirical spectral distribution of AN . In (1.2.1) δ denotes the Dirac measure and

for any N × N matrix B, {λi(B)}i∈[N] denotes the set of the eigenvalues of B.

In the case that AN is symmetric and its entries are i.i.d. (up to symmetry) with mean

0 and variance 1, the almost sure convergence of µAN to the semicircle law was first es-

tablished in the seminal work [8] by Wigner. The support of the semicircle law is the set

[−2,2]. Next in [10], the authors also proved that

lim
N→∞

maxi∈[N] |λi(AN )|
√
N

= 2 a.s. (1.2.2)

under the necessary and sufficient condition that the entries of AN have finite 4-th moment.

Suppose that AN is symmetric and has independent entries with mean 0, but not neces-

sarily identically distributed. Some sufficient conditions for the almost sure convergence

of µAN to a non-trivial probability distribution were given in [13]. The limiting distribution

is proven to be supported on some set [−µ∞, µ∞] for some µ∞ > 0.

So in the second part of this thesis we give some sufficient conditions so that

lim
N→∞

maxi∈[N] |λi(AN )|
√
N

= µ∞ a.s. (1.2.3)

for a general class of matrices AN , for which the results of [13] hold and under the extra

assumption that the entries of AN have finite the 4 + ϸ moment, for any small ϸ > 0. This

is done in Chapter 3. The main results of this Chapter are Theorems 3.1.8, 3.1.14 and

3.1.10.

Our approach covers several well-known Random Matrix Models and is a generalization

of previous results such as Theorem 1.3 of [12] and Corollary 2.3 of [14].

1.2.2 Background

The problem of understanding the operator norm of a large random matrix with indepen-

dent entries is multidisciplinary, occupying mathematicians, statisticians, physicists. On

the mathematical side, tools from classical probability, geometric analysis, combinatorics,

free probability and more have been used. The problem dates back to 1981, where in

[35] the convergence of the largest eigenvalue of renormalized Wigner matrices (symmetric,

i.i.d. entries) to the edge of the limiting distribution was established when the entries of

the matrix are bounded. Next, in [10], the authors gave necessary and sufficient conditions

for the entries of a Wigner matrix to converge. The crucial condition was that the entries

should have finite 4-th moment. Similar bounds have been given to non-symmetric ma-

trices with i.i.d. entries. Then, the difference of the largest eigenvalue and its limit, after

re-normalization, was proven to converge to the Tracy-Widow law in [36]. Later, univer-

sality results were established for sparse random matrix models, for example in [37] for

random graphs and in [38] for random banded matrices. Moreover, sharp non-asymptotic
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results for a general class of matrices were established in [39] and in [40].

All the models mentioned above can be considered as random matrices with general vari-

ance profile, i.e., random matrices whose entries’ variances can depend on the dimension

of the matrix and the location of the element in the matrix. These models have also drawn

a lot of attention lately, see for example [11], [41], where non-Hermitian models are con-

sidered. More specifically, assume that AN = (a(N)
i,j ), N ∈ N+, is a sequence of symmetric

random matrices, with a(N)
i,j real valued having mean zero and variance s(N)

i,j bounded by

a fixed number, say 1. Classically, the first question is whether the empirical spectral

distribution of an appropriate normalization of AN (e.g., AN/
√
N ) converges to a nontriv-

ial probability measure, as in Wigner’s theorem. Nothing guarantees that, and one can

construct examples where the sequence of the empirical spectral distributions does not

converge. The work [13], using the notion of graphons, gave conditions on the variance

profile s(N)
i,j , i, j ∈ [N], N ∈ N+ so that convergence takes place.

The next, natural, question concerns the convergence of the largest eigenvalue to the

largest element of the support of the limiting distribution. Again, this in not automatic but

requires additional assumptions. It was established in the recent works [42], [14], [12],

[43] (whose focus however is not this question) for some class of random matrices with a

general variance profile under the assumption that the entries of the matrices have finite

all moments (the first two works assume that each a(N)
i,j is sharp sub-Gaussian, the last

two assume that for each k ∈ N+ there is a constant bounding the 2k moment of each

a(N)
i,j ). In this paper, we generalize these results, i.e., we establish the convergence of the

largest eigenvalue of general variance profile random matrices to the largest element of the

support of the limiting empirical spectral distribution under general assumptions for the

variance profile of the matrices. Regarding finiteness of moments, we assume only that

supN∈N+,i,j∈[N] E|a(N)
i,j |

4 < ∞.



Chapter 2

Universality of the least singular

value and singular vector

delocalisation for Lévy

non-symmetric random matrices

2.1 Main results

Fix a parameter a ∈ (0,2). A random variable Z is called (0, σ) a-stable law if

E(eitZ ) = exp(−σa |t |a), for all t ∈ R. (2.1.1)

Definition 2.1.1. Set

σ :=
(

π

2 sin(πa2 )Γ(a)

)1/a

> 0, (2.1.2)

and let J be a symmetric random variable with finite variance and let Z be a (0, σ) a-stable

random variable, independent from J . Then, define the matrix DN (a) = {di,j}1≤i,j≤N to be

random matrix with i.i.d. entries, all having the same law as N−1/a(J + Z ). In what follows,

we may omit explicitly indicating the dependence of the matrices DN on the parameters a

and N , and use the notation D.

Lastly, fix parameters C1, C2 such that
C1

Nta + 1
≤ P

(
|di,j | ≥ t

)
≤

C2

Nta + 1
. (2.1.3)

Such parameters exist due to the tail properties of the stable distribution. See [44], Property

1.2.8.

The parameter σ is chosen in (2.1.2) like so, in order to keep our notation consistent with

previous works such as [5],[34],[32] and [31]. This parameter can be altered by a rescaling.

Moreover, denote ρsc the probability density function of the semicircle law, i.e.,

10
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ρsc(x) = 1 {|x | ≤ 2}
1

2π

√
4 − x2.

Furthermore, set

ξ :=
ρa(0)
ρsc(0)

, (2.1.4)

where ρa is the density of the limiting distribution of the empirical measure of the singular

values of D and their negative ones and is described in Proposition 2.2.15.

In what follows we will use the standard Big O notation. Specifically given two functions

f, g, we will say f = O(g) if and only if there exists a constant C > 0 independent of any

other parameter such that

lim sup
x→∞

∣∣∣∣∣ f (x)
g(x)

∣∣∣∣∣ = C < ∞, (2.1.5)

where the constant C > 0 will be independent of any other parameter. If the constant C

depends on some parameter(s) c defined earlier, we will write f = Oc(g). Moreover if the

constant C = 0 then we will write f = o(g).

Our main result shows that the least singular values of DN are universal as N tends to

infinity. The analogous result for matrices with finite variance entries was proven in [2].

We also prove that the left and right singular vectors of DN are completely delocalized for

small energies, in the following sense.

Theorem 2.1.2. There exists a countable set A, subset of (0,2), with no accumulation

points in (0,2) such that the following holds. Let {DN (a)}N∈N be sequences of matrices, where

DN (a) ∈ RN×N with i.i.d. entries all following N−1/a(Z + J), where Z, J as in Definition 2.1.1.

Then for every a ∈ (0,2) \ A:

1. Let s1(DN (a)) denote the least singular value of DN (a). Then, there exists c > 0 such

that for all r ≥ 0

P
(
Nξs1(DN (a)) ≤ r

)
= 1 − exp

(
−
r2

2
− r

)
+ Or(N−c). (2.1.6)

2. For each δ > 0 and D > 0 there exist constants C = C(a, δ, D) > 0 and c = c(a) such

that:

P
(

max
{
∥|u∥|∞ : u ∈ BN

}
> Nδ−

1
2

)
≤ CN−D. (2.1.7)

where BN is the set of eigenvectors of DNDTN or DTNDN , normalized with the Euclidean

norm, whose corresponding eigenvalues belong to the set [−c, c].

The proof of Theorem 2.1.2 can be found in Subsection 2.6.3.

Remark 2.1.3. The set A for which Theorem 2.1.2 cannot be applied is conjectured to be

empty. Its presence is due to some a−dependent fixed point equations in [32], which we

use and can be inverted only if a < A.
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Moreover, we can generalize the proof of Theorem 2.1.2 to the joint distribution of the

bottom k singular values in the following sense.

Theorem 2.1.4. Fix a positive integer k. LetA ⊆ (0,2) be the countable set of Theorem 2.1.2.

Then define, as in Definition 2.1.1, {DN }N∈N with i.i.d. entries all following N−1/a(Z+J), where

Z is (0, σ) a−stable for a ∈ (0,2) \ A. Also let {LN }N be a sequence of N × N i.i.d. matrices,

with entries following the same law as a centered normal random variable with variance 1
N .

Also for any matrix A define

Λk(A) := (Ns1(A), · · · , Nsk(A)),

where {si(A)}i∈[N] are the singular values of A arranged in increasing order. Also denote

1k = (1, · · · ,1) and for all E ∈ Rk

Ω(E) := {x ∈ Rk : xi ≤ Ei for all i ∈ [k]}.

Then there exists c > 0 such that for all E ∈ Rk

P
(
Λk(LN ) ∈ Ω(E − N−c1k)

)
− OE(N−c) ≤ P

(
ΛK (ξDN ) ∈ Ω(E)

)
≤

P
(
ΛK (LN ) ∈ Ω(E + N−c1k)

)
+ OE(N−c).

(2.1.8)

The proof of Theorem 2.1.4 is similar to that of Theorem 2.1.2 and therefore is omitted.

Note that the universal limiting distribution of Λk(LN ) is explicitly given in [2].

Moreover, by the way that we will prove Theorem 2.1.2, we can prove a similar result for

the gap probability in the symmetric case. The proof of the following corollary will again be

omitted due to its similarity to the proof of Theorem 2.1.2.

Corollary 2.1.5. Let MN be an N × N symmetric matrix with i.i.d. entries (with respect to

symmetry) and let all entries follow the same law as N−1/a(Z + J), where Z, J are defined in

Definition 2.1.1 for α ∈ (0,2) \ A . HereA is the set of Theorem 2.1.2. Also let WN be a GOE

matrix (N × N symmetric, with i.i.d. centered Gaussian entries, with variance N−1). Arrange

the eigenvalues of MN and WN in increasing order. Then there exists δ > 0 such that for any

r > 0,∣∣∣∣∣P (# {
i ∈ [N] : Nλi(MN ) ∈

(
−
r

2
,
r

2

)}
= 0

)
− P

(
#
{
i ∈ [N] : Nλi(WN ) ∈

(
−
r

2
,
r

2

)}
= 0

)∣∣∣∣∣ ≤ Or(N−δ).

(2.1.9)

For the Gaussian case, the limiting distribution of the gap probability is given in Theorem

3.12 of [45].

Remark 2.1.6. Note that by Theorem 2.1.2, the least singular value of a random matrix with

i.i.d. entries, all following an a−stable distribution, are of order O(N
1
a −1) for a ∈ (0,2) \ A.

So for a ∈ (0,1) ∩Ac the least singular value, without normalization, tends to ∞, which is

different from the finite variance case.
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2.2 Preliminaries and sketch of the proof

2.2.1 Preliminaries

In this subsection we present some necessary definitions and lemmas.

Firstly fix parameters a, b, ρ, ν such that

a ∈ (0,2), ν =
1
a
− b > 0, 0 < ρ < ν,

1
4 − a

< ν <
1

4 − 2a
, aρ < (2 − a)ν. (2.2.1)

Note that given a ∈ (0,2), such parameters will exists. Moreover ν > 0 is the level on

which we will truncate the matrix DN in (2.2.2). This truncation is crucial to our analysis

as is explained later in Subsection 2.2.2. The rest of the restrictions for the parameters in

(2.2.1), will be explained later in the choice of ϸ0 in (2.6.19), in the proof of Theorem 2.6.4.

Next we give some preliminaries definitions and lemmas.

Definition 2.2.1. For each a ∈ (0,∞) and u ∈ CN we will use the notation

∥u∥a =

 N∑
i=1
|ui |

a

1/a

.

Moreover if N = 1 and a = 2, we will use the notation |u| for the Euclidean norm.

Definition 2.2.2. Fix an N × N matrix Y . Then the empirical spectral distribution of Y is

the measure

µY :=
1
N

N∑
i=1

δλi (Y ),

where δx is the Dirac measure for x ∈ R and {λi(Y )}i∈[N] are the eigenvalues of Y. We will

also use the notation λmax(Y ) for the largest eigenvalue of Y.

Definition 2.2.3. Let M be an N × N real matrix. Then the 2N × 2N matrix0 MT

M 0


is called the symmetrization of M.

Definition 2.2.4. Let HN be the symmetrization of DN , i.e.,

HN =

 0 DTN
DN 0

 .
Then define the matrix XN = {xi,j}1≤i,j≤2N such that

xi,j := hi,j1
{
N1/a |hi,j | ≥ N

b
}
. (2.2.2)
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The elements of XN (in the non-diagonal blocks) are called the b−removals of a deformed

(0, σ) a-stable law. We also define the matrices AN := HN − XN , the matrix EN whose

symmetrization is AN and the matrix KN whose symmetrization is XN , i.e.,

XN =

 0 KTN
KN 0

 , AN =

 0 ETN
EN 0


Furthermore, define the matrix LN to be an N ×N matrix with i.i.d. entries all following the

law of a normal, centered random variable with variance 1
N , and its symmetrization WN . In

what follows, we may omit the dependence of the matrices defined here on N , for notational

convenience.

Remark 2.2.5. Note that the eigenvalues of H are exactly the singular values of D and their

respective negative ones since

det(λ · I2N − H) = det(λ2
· IN − D

TD).

Moreover, note that if we prove delocalization for the eigenvectors of H in the sense of the

second part of Theorem 2.1.2, then we will have an understanding over the delocalization

of the left and right singular vectors of D, because of the following remark.

Remark 2.2.6. If J1, J2 are the matrices with columns the normalized left and right sin-

gular vectors of D, which by the singular value decomposition gives us that J1DJ2 =

diag(s1, s2 · · · , sN ), then one can compute that the matrix

1
√

2

J∗2 J1

J∗2 −J1

 ,
has columns the normalized eigenvectors of H.

So in what follows, we will focus on proving delocalization for the eigenvectors and

universality of the least positive eigenvalue for H.

We will use the notation Im(z) for the imaginary part of any z ∈ C and C+ := {z ∈ C : Im(z) >

0}.

Furthermore we need the following definitions.

Definition 2.2.7. Let M be an N ×N matrix. The matrix Y = (M − zI)−1 for z ∈ C+ is called

the resolvent of M at z.

Definition 2.2.8. (Stieltjes transform) Let M be an N × N matrix and let µM be its empir-

ical spectral distribution. Then for each z ∈ C+, we define its Stieltjes transform as the

normalized trace of its resolvent, i.e.,

mN
M (z) :=

∫
1

x − z
dµM (x) =

1
N

tr(M − zI)−1.

In what follows, we might omit the dependence on the dimension of the Stieltjes transform

or on the matrix, when it is clear to which matrix we refer.
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Definition 2.2.9. In what follows we will use the following notation.

t := N Var(E1,1). (2.2.3)

Moreover, in Corollary 2.2.11 we prove that t → 0 as N → ∞.

In the next Lemma we give an estimate for the entries of A.

Lemma 2.2.10 ([5], Lemma 4.1). Let R ≥ N−1/a and p > a. Then there exist a small constant

c = c(a, p, C1) and a large constant C = C(a, p, C2) such that

cN−1Rp−a ≤ E|D1,1|
p
1
{
|D1,1| ≤ R

}
≤ CN−1Rp−a .

Here D1,1 is the (1,1)-entry of DN . Here C1, C2 are the parameters from (2.1.3).

A direct application of the previous result for R = N−ν and p = 2 implies the following.

Corollary 2.2.11. The entries of EN satisfy the following

cNν(a−2) ≤ N Var(E1,1) ≤ CNν(a−2).

Remark 2.2.12. Note that the convergence of the E.S.D. of a sequence of random matrices,

implies that the typical scale of an eigenvalue is 1
N (at least in the bulk of the spectrum) of

the limiting distribution of the E.S.D.

Definition 2.2.13. Let F (u) be a family of events indexed by some parameter(s) u. We will

say that F (u) holds with overwhelming probability, if for any D > 0 there exists an N(D, u)

such that for all N ≥ N(D, u)

P(F (u)) ≥ 1 − N−D.

uniformly in u.

Next we present a measure, for which in Theorem 2.3.14 we will prove that it is the

limiting distribution of the E.S.D. of XN .

Definition 2.2.14. Let MN be a sequence of symmetric N × N matrices with i.i.d. entries

(up to symmetry) and for each N ∈ N let all the entries follow the same law N−1/a(Z + J),

where Z, J are defined in Definition 2.1.1. In what follows for any z ∈ C+, we will use the

notation

ma(z) :=
1
N

lim
N→∞

tr(MN − zI)−1. (2.2.4)

So ma is the Stieltjes transform of the limiting distribution of the E.S.D. of the sequence of

matricesMN , see Theorem 1.4 of [30]. The properties ofma are described next in Proposition

2.2.15.
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Proposition 2.2.15. The Stieltjes transform ma(z) of the limiting distribution of the E.S.D. of

the matrices MN satisfies the following equation

ma(z) = iψa,z(y(z)),

where

φa,z(x) =
1
Γ(a2 )

∫ ∞

0
t
a
2−1eitze−Γ(1−

a
2 )t

a
2 xdt, (2.2.5)

ψa,z(x) =
∫ ∞

0
eitze−Γ(1−

a
2 )ta/2xdt, (2.2.6)

y(z) = φa,z(y(z)), (2.2.7)

where (2.2.7) is proven to have a unique solution on C+. Moreover the limiting probability

density function ρa is bounded, absolutely continuous, analytic except at a possible finite set

and with density at 0 given by

ρa(0) =
1
π
Γ(1 +

2
a

)
(
Γ(1 − a

2 )
Γ(1 + a

2 )

)1/a

.

These results are proven in Proposition 1.1 of [24] and Theorem 1.6 of [33].

Remark 2.2.16. Later in Theorem 2.3.14, we will prove that the Stieltjes transform of XN
also converges to ma . So we will refer to the measure whose Stieltjes transform is ma , as

the limiting measure of the E.S.D. of XN .

2.2.2 Sketch of the proof

Now we are ready to present a sketch of the proof. At this point we will try to avoid as much

technicalities as possible. In order to prove universality, meaning the same asymptotic

distribution for the least singular value of DN as in the Gaussian case, we are going to

follow the three step strategy, a well known strategy in random matrix theory literature.

Some of the most fundamental results concerning this method can be found in [7] and in

[46], which focus on proving universality of the correlation function for symmetric matrices.

The key idea is that after a slight perturbation of a random matrix by a Brownian Motion

matrix, the resulting matrix should behave as a Gaussian one, given that the initial matrix

satisfies some mild assumption concerning its Stieltjes transform. This idea is exploited in

the study of the evolution of the eigenvalues and the eigenvectors via stochastic differential

equations. This method was crucial to the proof of the Wigner-Dyson-Mehta conjecture,

see for example [7]. The three step strategy has also been used in establishing universality

of the least singular value for random matrices, see for example [3], [4]. Specifically in our

case:
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• First step: We investigate the asymptotic spectral behavior of X at an "intermediate"

scale. At this step we prove that the matrix X satisfies the necessary conditions, which

insure that after a slight perturbation by a Brownian motion matrix universality will

hold. This is done in Section 2.3. Note that by definition, X contains the "big"

elements of H. So the first step involves proving two estimates. One comparison of

the Stieltjes transform of the E.S.D. of X with the Stieltjes transform of its limiting

measure, and one bound for resolvent entries of X . Set mX (z) the Stieltjes transform

of X and Ri,j(z) the resolvent of X at z. In particular we wish to show that the following

events

|ma(z) −mX (z)| = o(1), (2.2.8)

max
j∈[2N]

∣∣∣Rj,j(z)
∣∣∣ = O (

logC(N)
)
, for some C > 0, (2.2.9)

hold with overwhelming probability for any z : Im(z) ≥ Nδ−
1
2 for any small enough δ >

0 and Re(z) in some N−independent interval. These results are called intermediate

because the natural scale would be Im(z) ≥ N−1+δ, as is explained Remark 2.2.12.

• Second step: We consider the perturbed matrix X +
√
tW , where W is the sym-

metrization of a full centered Gaussian matrix with i.i.d. entries with variance 1
N , and

t is chosen so that the variances of the entries of
√
tW and of A match. It can be

computed that t ∼ Nν(a−2).

The level of the intermediate scale local law in the previous step, is justified in

this part of the proof. In order to apply universality Theorems for the matrices after

slightly perturbing by Brownian motion matrices, see for example Theorem 3.2 of [3],

we wish the variances of the
√
tW to be above the intermediate scale of the local law.

Since Nδ−
1
2 = o(t), for small enough δ > 0, this is implied.

Roughly, what we need to prove at this step is that the desired properties, delocal-

ization of the eigenvectors and universality of the least singular value, hold for the

matrix X +
√
tW .

So for the first part of the second step, we prove universality of the least positive

eigenvalue for X +
√
tW . This is based on the regularity of the Stietljes transform of

X , proven in the previous step, and some results from [3]. More precisely at the first

part of the second step we prove that

lim
N→∞

P
(
NξλN (X +

√
tW ) ≥ r

)
= lim
N→∞

P (NλN (W ) ≥ r) , for any r ∈ R+. (2.2.10)

This result is proven in Section 2.4.

In most of the universality-type theorems the fact that the entries have finite vari-

ances play a significant role, see for example Lemma 15.4 in [7]. In [3] the authors
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showed universality of the least singular value for sparse random matrix models.

Firstly, they prove universality of the least singular value for the sparse models af-

ter slightly perturbing them by a Brownian motion matrix and then they remove the

Brownian motion matrix. This is done by using results which take advantage of the

fact that the entries have finite variance, for example see Lemma 5.14 in [3]. Since

our model does not have entries with finite variance, we will need to compare the

matrices X +
√
tW and X + A with a different method. Essential to that method is

the fact that the resolvent entries of X +
√
tW do not grow very fast. Specifically set

Ti,j(z) to be the resolvent of X +
√
tW at z. In particular in Section 2.5 we prove that

for any small δ > 0 the δ−dependent events

sup
i,j
|Ti,j(z)| ≤ Nδ (2.2.11)

hold with overwhelming probability, and for all z : Im(z) ≥ Nϸ−1 for any small ϸ > 0,

very close to the natural scale in Remark 2.2.12. It is known that bounds as the one

in (2.2.11) imply the complete eigenvector delocalization for the matrix X +
√
tW .

In order to establish (2.2.11), we prove something better. A universal result which

compares the entries of the resolvent of any matrix, which satisfies some mild regu-

larity assumption, Assumption 2.5.1, with the additive free convolution of the matrix

with the semicircle law. Thus, the largest part of Section 2.5 is mostly independent

for the rest of the paper.

• Third step: We first compare the resolvent of X + A and X +
√
tW . During the

second step we have proven the desired properties, eigenvector delocalization and

universality of the least eigenvalue for the matrix X +
√
tW , so we need to find a way

to quantify the transition from the matrix X +
√
tW to X + A in order to prove the

same properties for H. This is done by introducing the matrices

Hγ := X +
√
t(1 − γ2)1/2W + γA, for all γ ∈ [0,1].

We manage to prove that the resolvent entries of Hγ are asymptotically close for all

γ ∈ [0,1], in Theorem 2.6.4. Similarly we study the continuity properties for γ ∈ [0,1]

of the functions

q

N
π

∫ r
N

−r
N

Im(mγ(E + iη)dE
 , (2.2.12)

where mγ is the Stieltjes transform of the matrix Hγ and η is of order N−δ−1, below the

natural scale. Eventually in (2.6.36) we prove that the functions defined in (2.2.12)

are asymptotically close for any γ ∈ [0,1].

Next we introduce the functions

ιN (Y, r) := # {i ∈ [N] : λi(Y ) ∈ (−r, r)} ,
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where Y is a symmetric N × N matrix, {λi}i∈[N] are the eigenvalues of Y and r is any

positive number. So, it suffices to prove that there exists c > 0 such that for any

r > 0 ∣∣∣∣∣P [ι2N (
X +
√
tG,

r

N

)
= 0

]
− P

[
ι2N

(
X + A,

r

N

)
= 0

]∣∣∣∣∣ ≤ Or(N−c). (2.2.13)

In order to prove the latter, we approximate the quantities P(i2N (Hγ , rN ) = 0) by ap-

propriately choosing functions of the form (2.2.12). This is done in Lemma (2.6.13).

After combining the results above, we conclude the proof in Subsection 2.6.3.

2.3 Intermediate local law for X

Consider the matrices HN and XN as they are defined in Definition 2.2.4. In this section

we are going to establish the local law (Theorem 2.3.14) for the b-removals of the matrix H,

i.e., the matrix X . What we mean by local law is convergence of the Stieltjes transform of

X to its asymptotic limit, for complex numbers z that depend on the dimension N in some

sense.

We will also use the notation

R(z) = (X − (E + iη)I)−1, (2.3.1)

for z = E + iη. In what follows we might abbreviate the dependence from the parameter z.

A precise formulation of this result is the following. There exists C = C(a, b, δ) such that

P

 sup
E∈(− 1

C ,
1
C )

sup
η≥Nδ−

1
2

|ma(E + iη) −mX (E + iη)| ≥
1

Naδ/8

 ≤ exp
(
−

(log(N))2

C

)
, (2.3.2)

where the properties of ma(z) are described in Proposition 2.2.15.

We also prove that for all z for which the local law holds, the diagonal entries of the

resolvent of X are almost bounded. More specifically for any large enough N ∈ N it is true

that,

P

 sup
E∈(− 1

C ,
1
C )

sup
η≥Nδ−

1
2

max
j∈[2N]

|Rj,j | > C logC(N)

 ≤ C exp
(
−

(log(N))2

C

)
. (2.3.3)

In order to establish those results we will need to analyze the resolvent of X , in order

for us to compare it with ma . The main influence for this step is Theorem 3.5 of [5],

where an intermediate local law is proven for symmetric heavy tailed random matrices.

The main difference of the proof of the intermediate local law for our set of matrices from

the symmetric case is that, by construction, only half of the minors of the resolvent will

participate in the sum of the reductive formula from Schur complement formula. This

difference is not crucial since we also prove that each of the diagonal entries of the resolvent

of the matrix is identically distributed. Moreover, by Corollary 2.3.22, the sum of half of



20

the diagonal entries of the resolvent is concentrated around its mean, like the sum of all its

diagonal entries. The rest of the proof remains almost the same, but we will include most

of the proofs for completeness of the paper.

Firstly we need to give a more detailed description of the limiting distribution.

2.3.1 Preliminaries for the intermediate local law

In [30] the authors proved that the E.S.D. of symmetric matrices with heavy tailed entries,

converge in distribution to a deterministic measure and they described it. Next in [24], the

authors described the limit of the sample covariance matrices. Next the authors in [32] and

[31] proved local laws for symmetric heavy tailed matrices at an intermediate scale larger

than Nδ−
1
2 . Lastly in [5], the authors proved a local law at the intermediate scale Nδ−

1
2 . All

the previously mentioned results, are based on solving a fixed point equation. In the most

recent results, these fixed equations are solved more generally, in a metric space which we

are going to present in this subsection.

Next we present the metric space in which we will work with in order to prove an inter-

mediate local law for X . The results we present here can be also found in [32].

Definition 2.3.1. For any u, v ∈ C define the following "inner product"

(u|v) := u Re(v) + ū Im(v) = Re(u)(Re(v) + Im(v)) + i Im(u)(Re(v) − Im(v)).

One may compute the following

(u|1) = u, (−iu|eπi/4) = Im(u)
√

2, |(u|v)| ≤ 2|u||v|. (2.3.4)

Definition 2.3.2. Set K = C+ ∩ {z ∈ C : Re(z) > 0} and K+ = K̄. Let Hw be the space of the

C1, g : K+ → C such that g(λu) = λwu for each λ > 0. Set also S1
+ = S

1 ∩ K+ where S1 is

the unit sphere on C with respect to the Euclidean norm. Following equation (10) of [32],

define for each r ∈ [0,1) a norm on Hr

|g|∞ = sup
u∈S1

+

|g(u)|,

|g|r = |g|∞ + sup
u∈S1

+

√
|(i |u)r∂1g(u)|2 + |(i |u)r∂2g(u)|2.

Here,

∂1g(x + iy) =
dg(x + iy)

dx
and likewise

∂2g(x + iy) =
dg(x + iy)

dy
.

Next, define the spaces Hw,r the completion of Hw with respect to the |g|r norm. Further

define Hδ
w,r ⊆ Hw,r to be the set {g ∈ Hw,r : infu∈S1

+
|Re(g(u))| > δ}. Also define the set

H0
w,r = ∪δ>0H

δ
w,r .
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Further, abbreviate Hδ
w := Hδ

w,0

Remark 2.3.3. For any g ∈ Hr , by construction it is true that

|g|∞ ≤ |g|r .

Next, we present some lemmas concerning the metric spaces we presented and the fixed

point equation we wish to solve.

Lemma 2.3.4 ([32],Lemma 5.2). Let r ∈ (0,1) and u ∈ S1
+ and x1, x2 ∈ K

+ and let η ∈ (0,1)

such that |x1|, |x2| ≤ η−1. Set Fk(u) = (xk |u)r for k ∈ {1,2}. Then there exists a constant C(r)

such that for any s ∈ (0, r) we have that

|Fk |1−r+s ≤ C|xk |
r , |F1 − F2|1−r+s ≤ Cη

−r(|x1 − x2|
r + ηs|x1 − x2|

s). (2.3.5)

Furthermore, if we further assume that Re(x1),Re(x2) ≥ t and set Gk(u) = (x−1
k |u)r , k ∈ {1,2},

there exists a constant C = C(r) such that,

|G1 − G2|1−r+s ≤ Ct
r−2η2r−1|x1 − x2|. (2.3.6)

Definition 2.3.5. Following Section 3.2 of [32], for any numbers h ∈ K̄, u ∈ S1
+ and g ∈ Ha/2

define the functions,

Fh,g(u) =
∫ π/2

0

∫ ∞

0

∫ ∞

0
[exp(−ra/2g(eiθ) − (rh |eiθ))

− exp(−ra/2g(eiθ + uy) − (urh |u) − (rh |eiθ))]ra/2−1dr · ·y−a/2−1dy(sin(θ))a/2−1dθ (2.3.7)

and

Yf (u) = Yz,f (u) = caF−iz,f (ũ),

where

ca =
a

2a/2Γ(a/2)2
.

Lemma 2.3.6 ([32],Lemma 4.1). If g ∈ H0
a/2,r then Fη,g ∈ Ha/2,r . Also if g ∈ ¯H0

a/2,r and

Re(h) > 0 then Fg,h ∈ ¯H0
a/2,r .

Next for any f ∈ Ha/2 and p > 0 define the functions,

• rp,z(f ) = 21−p/2

Γ(p/2)

∫ π/2
0

∫ ∞
0 yp−1 exp((iyz|eiθ) − ya/2f (eiθ)) sin(2θ)p/2−1dydθ

• sp,z(x) = 1
Γ(p)

∫ ∞
0 yp−1 exp(−iyz − xya/2)dy.

Lemma 2.3.7 ([32],Proposition 3.3). There exists a countable subset A ⊆ (0,2) with no

accumulation points such for any r ∈ (0,1] and a ∈ (0,2) \ A, there exists a constant

c = c(a, r) with the property that:
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There exists a unique functionΩ0 ∈ Ha/2 such thatΩ0 = Y0,Ω0 . Additionally for Im(z) > 0 and

|z| ≤ c, there exists a unique function f = Ωz ∈ Ha/2,r that solves f = Yz,f with |f − Ω0|r ≤ c.

Moreover the function satisfies Ωz(eiπ/4) ≥ c and for any p > 0 there exists a constant

C = C(a, p) such that |rp,z(Ωz)| ≤ C.

Lemma 2.3.8. ([32],Proposition 3.4) Adopt the notation of the previous lemma. After de-

creasing c if necessary, there exists a constant C > 0 such that the following holds.

If Im(z) > 0, |z| ≤ c and |f −Ωz |r ≤ c, then

|f −Ωz |r ≤ C|f − Yz,f |r .

Lemma 2.3.9. ([32],Lemma 4.1) Let r ∈ (0,1) and p > 0. There exists a constant C =

C(a, p, r) > 0 such that, for any g ∈ H̄0
a/2,r and h ∈ K, we have that

|Fη(g)|r ≤ C(Re η)−a/2 + C|g|r(Re(η))−a/2,

|rp.iη(g)| ≤ C(Re η)−p, |sp,iη(g(1))| ≤ C(Re(η))−p.

Lemma 2.3.10. ([32], Lemma 4.3) For any α, r > 0 there exists a constant C = C(α, a, r) > 0

such that for any f, g ∈ ¯H0
a/2,r , and z ∈ C

|Yf − Yg|r ≤ C|f − g|r + |f − g|∞(|f |r + |g|r).

Furthermore, for any p > 0 there exists a constant C′ = C′(a, α, r, p) such that for any

f, g ∈ Hα
a/2,r and for any z ∈ C and x, y ∈ K with Re(x),Re(y) ≥ α we have that

|rp,z(f ) − rp,z(g)| ≤ C′|f − g|∞, |sp,z(x) − sp,z(y)| ≤ C′|x − y|. (2.3.8)

The reason to present all the tools in this subsection is explained in the following Remark.

Remark 2.3.11. Due to Lemma 4.4. of [32], is1,z(Ωz(1)), which is defined in Lemma 2.3.7,

is exactly the limiting Stieltjes transform in Proposition 2.2.15.

2.3.2 Statement of the intermediate local law

In this subsection, we state the local law for the matrix X and state a stronger theorem

which will imply the local law.

Before we present the theorem, we give some definitions. Recall the notation from Subsec-

tion 2.3.1.

Definition 2.3.12. Define the following quantities

ιz(u) := Γ
(
1 −

a

2

)
(−iRj,j |u)a/2, γz := E(ιz(u)),

Ip := E(−iRj,j)p, Jp := E(|iRj,j |p),

where we have omitted the dependence from the dimension N in the notation we used.
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In what follows, keep in mind the definition of the functions rp,z and sp,z in Subsection

2.3.1. Next, we present the theorem which will imply the intermediate local law proved at

Subsection 2.3.7.

Theorem 2.3.13. Let a ∈ (0,2), b ∈ (0, 1
a ), s ∈ (0, a2 ), p > 0, ϸ ∈ (0,1] and N ∈ N. Set

θ = ( 1
a − b)(2 − a)/10. Suppose z = E + iη ∈ C+ with E, η ∈ R. Assume that:

z = E + iη, |z| ≤
1
ϸ
, η ≥ Nϸ−s/a , E(Im(Ri,i)a/2) ≥ ϸ, E|Ri,i |

2 ≤ ϸ−1, for all i ∈ [2N]. (2.3.9)

Then, there exists a constant C = C(a, ϸ, b, s, p) > 0 such that∣∣∣γz − Yγz ∣∣∣1−a/2+s ≤ C logC(N)
(

1
(η2N)a/8

+
1
Nθ
+

1
Nsηa/2

)
, (2.3.10)

∣∣∣Ip − sp,z (γz (1))
∣∣∣ ≤ C logC(N)

(
1

(η2N)a/8
+

1
Nθ
+

1
Nsηa/2

)
, (2.3.11)

|Jp − rp,z(γz)| ≤ C logC(N)
(

1
(η2N)a/8

+
1
Nθ
+

1
Nsηa/2

)
. (2.3.12)

Moreover,

inf
u∈S1

+

Re(γz(u)) >
1
C

(2.3.13)

and

P

(
max
j∈[2N]

|Rj,j | > C logC(N)
)
≤ C exp

(
−

(log(N))2

C

)
. (2.3.14)

The proof of Theorem 2.3.13 can be found in Subsection 2.3.7.

Next we present the local law.

Theorem 2.3.14 (Local law). There exists a countable set A ⊆ (0,2) with no accumulation

points in (0,2) such that for each a ∈ (0,2) \ A the following holds. Fix b ∈ (0, 1
a ), θ =

( 1
a − b)(2 − a)/10 and δ ∈ (0,min{θ, 1

2 }). Then there exists a constant C = C(a, b, δ, p) > 0

such that

P

 sup
z∈DC,δ

∣∣∣mN (z) − is1,z(Ωz(1))
∣∣∣ > 1

Naδ/8

 ≤ C exp
(
−

log2(N)
C

)
. (2.3.15)

Furthermore,

sup
u∈S1

+

|γz(u) −Ωz(u)| ≤
C

Naδ/8
(2.3.16)

and

P

 sup
z∈DC,δ

max
j∈[2N]

|Rj,j | > C logC(N)
 ≤ C exp

(
−

(log(N))2

C

)
. (2.3.17)

Where DC,δ = {z = E + iη : E ∈ (− 1
C ,

1
C ), 1

C ≥ η ≥ N
δ−1/2}, mN (z) is the Stieltjes transform of X

and Ωz(u) is defined in Lemma 2.3.7.

Proof Of Theorem 2.3.14 given Theorem 2.3.13. The proof is similar to the proof of Theorem

7.6 given Theorem 7.8 and Lemmas 2.3.7, 2.3.8 (there called Lemma 7.2 and Lemma 7.3)

in [5], so it will be omitted. □
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2.3.3 General results concerning the resolvent and the eigenvalues of a ma-

trix

Firstly we present a well-known result that compares the eigenvalues of a matrix with the

eigenvalues of its minors.

Lemma 2.3.15 (Weyl’s inequality). Let R,M,Q ∈ RN
2

some symmetric matrices such that

M = R + Q.

Let µi , ρi , qi be the eigenvalues of M, R, Q respectively arranged in decreasing order. Then

qj + ρk ≤ µi ≤ qr + ρs

for any indices such that j + k − n ≥ i ≥ r + s − 1.

In the rest of this subsections we present some general results concerning the resolvent

of a matrix. Most of them are known results, but we include them because they will be

useful in the proof of Theorem 2.3.14.

Lemma 2.3.16. Let M1, M2 be two invertible, N × N matrices then the following identity is

true

M−1
1 −M

−1
2 = M

−1
1 (M2 −M1)M−1

2 . (2.3.18)

Moreover if Y = (M1 − zI)−1 such that z ∈ C+ = {z ∈ C : Im(z) > 0} then

|Yi,j | ≤
1

Im(z)
, i, j ∈ [N]. (2.3.19)

Proof. The identity (2.3.18) follows trivially by a right multiplication on both sides by the

element M1 and a left multiplication on both sides by the element M2. Moreover (2.3.19)

follows trivially from the spectral theorem. □

Definition 2.3.17. In what follows in this section we will use the following notation. Con-

sider M to be any N × N matrix. Let J ⊆ [N]. We will use the notation (M (J) − zI)−1 for the

resolvent of the matrix M (J), where M (J) is the matrix M with the i − th row and column

being replaced by zero vectors, for each i ∈ J .

Lemma 2.3.18. Let M be an N × N matrix and z ∈ C+.

Then we have the following complements formula

1
(M − zI)−1

i,i
= Mi,i − z −

∑
k,j∈[N]\{i}

Mi,j(M (i) − zI)−1
jk Mk,i . (2.3.20)

Next, we present the Ward identity. That is, for each J ⊆ [N] and j ∈ [N] \ J it is true that∑
k∈[N]\J

|(M (J) − zI)−1
jk |

2 =
Im((M (J) − zI)−1

j,j )

Im(z)
. (2.3.21)
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Proof. The estimates (2.3.20) and (2.3.21) can be found in (8.8) and (8.3) in [7], respectively.

□

Lemma 2.3.19 ([32],Lemma 5.5). Let M be an N × N matrix. For any r ∈ (0,1], z ∈ C+, η =

Im(z) and i ∈ [N] we have the following deterministic bound

1
N

N∑
i=1

∣∣∣(M − zI)−1
i,i − (M (i) − zI)−1

i,i

∣∣∣r ≤ 4
(Nη)r

.

Corollary 2.3.20. ([5],Cor 5.7) Let M be an N×N matrix. For any r ∈ [1,2], z ∈ C+, η = Im(z)

and i ∈ [N] we have the deterministic estimate,

1
N

N∑
i=1

∣∣∣(M − zI)−1
i,i − (M (i) − zI)−1

i,i

∣∣∣r ≤ 4
(Nη)r

≤
8
Nηr

.

2.3.4 Concentration results for the resolvent of a matrix

In this subsection, we present various identities and inequalities concerning the resolvent

and the eigenvalues of a matrix.

Next we present some concentration inequalities.

Lemma 2.3.21. Let N be an even positive integer and let A = (ai,j)1≤i,j≤N such that the rows

Ai = (ai1, ai2, · · · , aii) are mutually independent for each i ∈ [N]. Let B = (A − zI)−1 and

z = E + iη where η > 0. Then for any Lipchitz function f with Lipchitz norm Lf and any

x > 0,we have that,

P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑
i=1

f (Bi,i) − E
2
N

N
2∑
i=1

f (Bi,i)

∣∣∣∣∣∣∣∣∣ ≥ x
 ≤ 2 exp

−Nη2x2

8L2
f

 , (2.3.22)

P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑
i=1

f (Bi+ N2 ,i+ N2 ) − E
2
N

N
2∑
i=1

f (Bi+ N2 ,i+ N2 )

∣∣∣∣∣∣∣∣∣ ≥ x
 ≤ 2 exp

−Nη2x2

8L2
f

 . (2.3.23)

Proof. The proof is similar to the respective proof for the Stieltjes transform in Lemma C.4

of [31]. We will sketch the proof for the first N2−1 diagonal entries. The proof for the

remaining N2−1 entries is similar. More precisely, for any two deterministic Hermitian

matrices C and B, let R(C) and R(B) be their resolvents at z. Then it is proven in equation

(91) of Lemma C.4 of [31] that :

1
N

∣∣∣∣∣∣∣
N/2∑
k=1

Rk,k(B) − Rk,k(C)

∣∣∣∣∣∣∣ ≤ 1
N

N∑
k=1

∣∣∣Rk,k(C) − Rk,k(B)
∣∣∣ ≤ rank(C − B)2(Im(z)N)−1. (2.3.24)

So if one considers the function

F ({xi}Ni=1) =
N/2∑
k=1

f (Rk,k(X ))
N

, {xi}
N
i=1 : xi ∈ Ci−1 × R,
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where X is a Hermitian matrix with the i-th row of X being xi . Note that it suffices to

describe the entries of the i-th row until the i-th column since the remaining elements

will be filled by the properties of the Hermitian matrices. So if we consider two elements

X, X ′ ∈ ∪Ni=1C
i−1 × R with only the i-th vector of X and X ′ different, then one has:

|F (X ) − F (X ′)| ≤ rank(X − X ′)2(Im(z)N)−1 ≤ 4(Im(z)N)−1,

since by construction, one has that rank(X − X ′) ≤ 2. Now the desired inequality comes

from Azuma{Hoeffding inequality, see Lemma 1.2 in [47]. □

Corollary 2.3.22. One can apply the previous Lemma to get the following concentration

results. Fix an N ×N symmetric random matrix Y with i.i.d. entries (up to symmetry) , where

N is an even integer, with resolvent matrix B = (Y − zI)−1 for z = E + iη. Then the following

bounds are true:

P

 2
N

∣∣∣∣∣∣∣
N/2∑
k=1

Bk,k − EBk,k

∣∣∣∣∣∣∣ ≥ 4 log(N)
(Nη2)1/2

 ≤ 2 exp
(
−(log(N))2

)
,

P

 2
N

∣∣∣∣∣∣∣
N/2∑
k=1

Im(Bk,k) − E Im(Bk,k)

∣∣∣∣∣∣∣ ≥ 4 log(N)
(Nη2)1/2

 ≤ 2 exp(−(log(N))2).

(2.3.25)

Moreover for any a ∈ (0,2) there exists a constant C = C(a) such that,

P

 2
N

∣∣∣∣∣∣∣
N/2∑
k=1

(−iBk,k)a/2 − E(−iBk,k)a/2

∣∣∣∣∣∣∣ ≥ x
 ≤ 2 exp

(
−
N(ηa/2x)4/a

C

)
. (2.3.26)

The same results hold for the remaining N/2 diagonal entries of R.

Proof. The first two inequalities are true by direct application of Lemma 2.3.21 for the

functions f (x) = x and f (x) = Im(x) respectively.

For the third inequality let c > 0 and fix φc : C→ R+, such that

φc(z) =


0 |z| ≤ c,

1
c (|z| − c) |z| ∈ (c,2c),

1 |z| ≥ 2c.

(2.3.27)

Note that the function φc is Lipschitz with Lipschitz constant bounded by 1
c . Then define

the function

fc(z) = (−iz)a/2φc(z). (2.3.28)

Since |(1 − φc(z))(−iz)a/2| ≤ (2c)a/2 for all z ∈ C+, it is clear that |(−iz)a/2| ≤ fc(z) + (2c)a/2.

Moreover note that the function fc(z) is Lipschitz with constant bounded by 2c
a
2−1.
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So for any x ≥ 0 fix c such that (2c)a/2 = x/4. Then

P

 2
N

∣∣∣∣∣∣∣
N/2∑
k=1

(−iBk,k)a/2 − E(−(−iBk,k)a/2

∣∣∣∣∣∣∣ ≥ x
 (2.3.29)

≤ P

 2
N

∣∣∣∣∣∣∣
N/2∑
k=1

fc
(
Bk,k

)
− Efc

(
Bk,k

)∣∣∣∣∣∣∣ ≥ x2
 . (2.3.30)

Now the proof is completed after a direct application of Lemma 2.3.21, after noticing that

2c
a
2−1 = 2

4
a −

a
2 x1− 2

a . □

The following result is an analogue of Lemma 5.3 in [32] for concentration of only half of

the resolvent diagonal entries. The proof is analogous.

Lemma 2.3.23. Let N be an even and positive integer, A = {ai,j}1≤i,j≤N a symmetric matrix

with independent entries (up to symmetry). Fix u ∈ S1
+, a ∈ (0,2) and s ∈ (0, a2 ). Moreover

define the resolvent matrix B = (A − z0I)−1 for z0 = E + iη ∈ C+.

Then if we denote fu : C → C such that fu(z) = (iz|u)a/2, there exists constant C = C(a) > 0

such that

P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑
i=1

fu(Bi,i) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣
1−a/2+s

≥ x

 ≤ C(ηa/2x)−1/s exp

−N(xη
a
2 )

2
s

C

 .
A similar estimate is true for the concentration of the second half of the diagonal entries of

the resolvent.

Proof. By definition of the norms in Definition 2.3.2 we need to bound the following quan-

tities

P

 sup
u∈S1

+

∣∣∣∣∣∣∣∣∣
2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥ x
 for any x > 0, (2.3.31)

P

 sup
u∈S1

+

max
j∈{1,2}

∣∣∣∣∣∣∣∣∣(i |u)1− a2+s∂j

 2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)


∣∣∣∣∣∣∣∣∣ ≥ x

 for any x > 0. (2.3.32)

Fix u ∈ S1
+ and c > 0. Then, similarly to the proof of (2.3.26) in Corollary 2.3.22, we can

construct a function φc : C → R+, which is 1
c− Lipchitz function and for which it is true

that if we decompose fu in the following sense,

fu(z) = φcfu(z) + (1 − φc)fu(z) = f1,u(z) + f2,u , (2.3.33)

then f2,u(z) is bounded by (2c)1− a2+s and f1,u(z) is Lipschitz with constant bounded by

c′cs−
a
2 , for some other absolute constant c′. So for any x > 0, if one fixes c such that
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(2c)1− a2+s = x
4 it is implied that

P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥ x
 ≤ P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑

k=1

f1,u(Bk,k) − E
2
N

N
2∑

k=1

f1,u(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥
x

2

 .
(2.3.34)

So by a direct application of Lemma 2.3.21 for the function f1,u one can conclude that

P


∣∣∣∣∣∣∣∣∣
2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥ x
 ≤ exp

−N(xη
a
2 )

2
s

C

 , (2.3.35)

for some constant C = C(a). Moreover due to the deterministic bounds in (2.3.4) and

(2.3.19), we can restrict to the case that x ≤ 4η−
a
2 . Furthermore, by (4.6) in [48] for any

c ∈ (0,1), any c−net of the sphere S1
+ has cardinality at most 3

c . Set F one c−net of the

sphere. So for any x ∈ (0,4η−
a
2 ), fix c such that (2

1
2 cη−1)1− a2+s = x

4 . Thus by (2.3.5), we

conclude that

P

 sup
u∈S1

+

∣∣∣∣∣∣∣∣∣
2
N

N
2∑
i=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥ x
 ≤ P

sup
u∈F

∣∣∣∣∣∣∣∣∣
2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)

∣∣∣∣∣∣∣∣∣ ≥
x

2

 .
(2.3.36)

So we get (2.3.31) after using the union bound and (2.3.35) to bound (2.3.36).

It remains to prove (2.3.32). For this note that

2
N
∂j

N
2∑

k=1

fu(Bk,k) =
2
N

N
2∑

k=1

(1 −
a

2
+ s)(iBk,k |u)

a
2−1(iBk,k |j). (2.3.37)

So we can treat the function gu(z) = (iz|u)(iz|j) analogously fu(z) in (2.3.33). In particular

we have the following decomposition

gu(z) = φcgu(z) + (1 − φc)gu(z) = g1,u(z) + g2,u , (2.3.38)

where g1,u is Lipschitz with constant bounded by c0cs−
a
2 /|ui | and g2,u is bounded by

c0c1+s− a2 /|ui |, for some absolute constant c0. So for any x > 0 let c be a number such

that c0c1+s− a2 = x/4, we get that

P


∣∣∣∣∣∣∣∣∣(i |u)1− a2+s∂j

 2
N

N
2∑

k=1

fu(Bk,k) − E
2
N

N
2∑

k=1

fu(Bk,k)


∣∣∣∣∣∣∣∣∣ ≥ x

 (2.3.39)

≤ P

|(i |u)|1−
a
2+s

∣∣∣∣∣∣∣∣∣
 2
N

N
2∑

k=1

g1,u(Bk,k) − E
2
N

N
2∑

k=1

g1,u(Bk,k)


∣∣∣∣∣∣∣∣∣ ≥ x/2

 . (2.3.40)

By a direct application of Lemma 2.3.21, we can bound (2.3.40). The last part of the proof

is completed by a c−net argument, completely analogously to (2.3.36). □
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Lemma 2.3.24 ([32],Lemma 5.4). Let (y1, y2, · · · , yN ) be a Gaussian random vector whose

covariance matrix is the Id. Fix a ∈ (0,2), s ∈ (0, a/2). Moreover, let {hk}k∈[N] ∈ (C+)N such

that |hk | ≤ η−1, for some η > 0. Then for each j ∈ N define the following quantities

fj(u) =
(
hj |u

)a/2
|yj |

a , gj(u) =
(
hj |u

)a/2
E|yj |

a .

Then there exists a constant C = C(a) such that

P


∣∣∣∣∣∣∣∣ 1N

 N∑
j=1

fj+N − gj+N


∣∣∣∣∣∣∣∣
1−a/2+s

≥ x

 ≤ C(ηa/2x)−1/s exp
(
−
N(ηa/2x)2/s

C

)
.

Remark 2.3.25. Due to the deterministic bound (2.3.19), we can apply Lemma 2.3.24 for

any number of the diagonal entries of the resolvent of a matrix.

2.3.5 Gaussian and stable random variables

In this subsection we present several results concerning Gaussian random variables and

their interaction with the quantities we study.

Lemma 2.3.26. ([5],Lemma 6.4) Let N ∈ N and x be a b−removal of a (0, σ) a-stable dis-

tribution, as is defined in Definition 2.2.4. Then let X̂ be an N−dimensional vector with

independent entries all with law N−1/ax. Then for any u ∈ R and for A a non-negative sym-

metric matrix and Y an N−dimensional centered Gaussian vector with covariance matrix the

Id it is true that,

E

[
exp

(
−
u2

2
⟨AX̂, X̂⟩

)]
= (2.3.41)

= E exp
(
−σa |u|a∥A1/2Y ∥aa

N

)
exp

(
O(u2N (2−a)(b−1/a)−1 log(N) tr(A))

)
(2.3.42)

+N exp
(
−

log2(N)
2

)
. (2.3.43)

Lemma 2.3.27. ([5],Lemma 6.5) Let N be a positive integer and let r, d be positive real

numbers such that 0 < r < 2 < d ≤ 4. Denote w = (w1, w2 · · · , wN ) to be a centered

N−dimensional Gaussian random variable with covariance matrix Ui,j = E(wiwj) for i, j ∈ [N].

Denote Vj = E(w2
j,j) for each j ∈ [N] and define

U =
1
N2

∑
i,j∈[N]

U2
i,j, V =

1
N

N∑
j=1

Vj, X =
N∑
i=1

Vd/2
j , p =

d − r

d − 2
, q =

d − r

2 − r
.

Then if V > 100 log10(N)U1/2 there exists a constant C = C(α, r):

P

(
|w|rr
N

<
V p

C((X (log(N))8)p/q

)
≤ C exp

(
−

(log(N))2

2

)
.
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2.3.6 Bounds for the resolvent of X.

Recall the notation R for the resolvent of X and let X (i) is the matrix X with its i−th row

and column replaced by 0 vector, as in Definition 2.3.17.

In what follows we will use the following notation R(i) = (X (i) − zI)−1 and

Si(z) =
∑

j∈[2N]\i

X2
i,jR

(i)
j,j (z) and Ti(z) = Xi,i − Ui(z) where Ui(z) =

∑
j∈2N]\{i}

∑
k∈[2N]\{i,j}

XijR
(i)
jk (z)Xk,i , i ∈ [2N].

(2.3.44)

For notational convenience, we will omit the dependence of Si(z), Ti(z) and Ui(z) from z and

N , the dimension of the matrix. By the resolvent equality in Lemma 2.3.18 one has that

Ri,i =
1

Ti − z − Si
. (2.3.45)

Moreover for each i ∈ [2N], one has that Im(R(i)) is positive definite, since it is symmetric

and by the spectral theorem its eigenvalues are

η(
λj(X (i)) + E

)2
+ η2

> 0 , j ∈ [2N], (2.3.46)

where λj(X (i)) are the eigenvalues of X (i). So it is true that

Im(Si) ≥ 0 and Im(Si − Ti) ≥ 0. (2.3.47)

In addition, the diagonal entries of the resolvent Ri,i are identically distributed. This is

proven in the following Lemma.

Lemma 2.3.28. The random variables Ri,i , for each i ∈ [2N], are identically distributed.

Proof. Note that due to Schur’s complement formula it is true that for any N × N matrices

A, B, C, D , if A,D are invertible thenA B

C D


−1

=

(A − BD−1C)−1 ∗

∗ ∗

 =
∗ ∗

∗ (D − CA−1B)−1

 .
So if one sets A = D = −zI, C = K and B = KT it is true that Ri,i = z(KTK − z2I)−1

i,i for

i ∈ [N] and Ri,i = z(KKT −z2I)−1
i,i for i ∈ [2N]\[N]. Thus we can conclude that for each i ∈ [N]

the diagonal term Ri,i has the same law as Ri+N,i+N . Moreover, for i, j ∈ [N] or i, j ∈ [2N] \ [N]

it is easy to see that the matrix X retains its law after the permutation of i − th column and

row to the j − th. All these imply that the diagonal terms Ri,i have the same law for each

i ∈ [2N]. □

Note that the Lemma above would not be true if the dimensions of the matrix, whose

symmetrization is X , were not equal.
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Moreover since the matrix X has 0 at its diagonal blocks, one may compute that

S1 =

N∑
j=1

X2
1,N+jR

(i)
N+j,N+j, T1 = −

∑
j,k∈[2N]\[N]:j,k

X1,jXk,1R
(1)
j,k . (2.3.48)

Keep in mind that we want to prove Theorem 2.3.13, so in what follows in this section

we will operate under the assumption that (2.3.9) holds.

The following is the analogue of Proposition 7.9 in [5], adjusted to our set of matrices.

Proposition 2.3.29. For each i ∈ [2N] there exists a constant C = C(a, ϸ, b) > 1 such that

P

(
Im(Si) <

1
C(log(N))C

)
≤ C exp

(
−

(log(N))2

C

)
.

Proof. We will prove the estimate for S1, since Ri,i are identically distributed for i ∈ [2N]

due to Lemma 2.3.28.

Set the event:

E =


∣∣∣∣∣∣∣ 1N

N∑
i=1

R(1)
N+j,N+j −

1
2

ER2N,2N

∣∣∣∣∣∣∣ ≤ 8 log(N)
(Nη2)1/2

+
16
Nη

 .
By Corollary 2.3.22 and Lemma 2.3.20, one has that P(Ec) ≤ 2 exp(−(log(N))2).

Observe that Im(S1) = ⟨A X̃, X̃⟩, where A is an N−dimensional diagonal matrix with

entries Aj,j = Im(R(1)
N+j,N+j) and X̃ is an N−dimensional vector with entries X̃j = X1,N+j. So we

can apply Markov inequality for u = (log(N)2/a(2 log(2))1/2 to get that:

P(Im(S1) < 1(E) log(N)−4/a) ≤ 2E(1(E) exp
(
−
u2

2
⟨A X̃, X̃⟩

)
.

Next, we can apply Lemma 2.3.26 and after bounding tr(A) by C = C′(a, b, ϸ), which we

can do since we work on the set E and since it is true that E Im(R1,1) ≤ (E|R1,1|
2)

1
2 ≤ ϸ−

1
2

due to our assumption that E|R1,1|
2 ≤ ϸ−1 in (2.3.9). We conclude that

P

(
Im(S1) ≤

1
log(N)4/a

)
≤ C′E exp

(
−
− log2(N)∥|A1/2Y ∥|aa

C′N

)
+ C′ exp

(
−

log(N)2

C′

)
,

where Y is a Gaussian vector with covariance matrix the identical, as is mentioned in

Lemma 2.3.26. Thus it remains to prove a lower bound for

∥|A1/2 Y ∥|aa
N

=
1
N

N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2|yj |

a . (2.3.49)

Note that for s ∈ (0, a2 ) and by Remark 2.3.3∣∣∣∣∣∣∣∣ 1N
N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2|yj |

a −
1
N

N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2

E|yj |
a

∣∣∣∣∣∣∣∣ (2.3.50)

≤ sup
u∈S1

+

∣∣∣∣∣∣∣∣ 1N
N∑
j=1
|(−iR(1)

N+j,N+j |u)|a/2|yj |
a −

1
N

N∑
j=1
|(−iR(1)

N+j,N+j |u)|a/2
E|yj |

a

∣∣∣∣∣∣∣∣ (2.3.51)

≤

∣∣∣∣∣∣∣∣ 1N
N∑
j=1
|(−iR(1)

N+j,N+j |u)|a/2|yj |
a −

1
N

N∑
j=1
|(−iR(1)

N+j,N+j |u)|a/2
E|yj |

a

∣∣∣∣∣∣∣∣
1−a/2+s

(2.3.52)
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So we can apply Lemma 2.3.24 for

x = C
log4 N

Na/4ηa/2
,

and s = a
4 to get that the inequality∣∣∣∣∣∣∣∣ 1N

N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2|yj |

a −
1
N

N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2

E|yj |
a

∣∣∣∣∣∣∣∣ ≤ x (2.3.53)

holds with probability at least 1−C exp(− log2 N
C ). Thus, it is sufficient to give a lower bound

to

1
N

N∑
j=1
| Im(R(1)

N+j,N+j)|
a/2

E|yj |
a . (2.3.54)

in order to obtain a lower bound for the quantity in (2.3.49).

Next we apply again Lemma 2.3.20 for r = a
2 , and since for any u1, u2 ∈ R

+ and r ∈ (0,1]

it is true that |ur1 − u
r
2| ≤ |u1 − u2|

r , we obtain that

E|y1|
a 1
N

N∑
j=1
| Im(RN+J,N+J )a/2 − Im(R(1)

N+j,N+j)
a/2| ≤

4E|y1|
a

(ηN)a/2
.

So we have concluded that the event that

∥|A1/2 Y ∥|aa
N

≥ O

(
1

(ηN)a/2

)
+ O

(
1

(ηN1/2)a/2

)
+ C′′

1
N

N∑
j=1

Im(RN+j)a/2,

holds with probability at least 1 − C exp
(
−

log2(N)
N

)
. Restricting again on the set E and using

the concentration inequality (2.3.25) and our hypothesis 2.3.9, one can conclude that there

exists C = C(a, ϸ, b) such that

P

(
∥A1/2 Y ∥|aa

CN
≤ ϸ

)
≤ C exp

(
−
− log2(N)

C

)
,

which finishes the proof. □

The following is the analogue of Proposition 7.10 in [5], adjusted to our set of matrices.

Proposition 2.3.30. For each i ∈ [2N] there exists a constant C = C(a, ϸ, b) > 1 such that

P

(
Im(Si − Ti) <

1
C(log(N))C

)
≤ C exp

(
−

(log(N))2

C

)
. (2.3.55)

Moreover

P

(
max
j∈[2N]

|Rj,j | > C logC(N)
)
≤ C exp

(
−

(log(N))2

C

)
. (2.3.56)
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Proof. By construction, one can prove that for A = {Im(R(1)
i,j )}i,j∈[2N]\[N] and X̃ = {X1,N+j}j∈[N]

it is true that,

Im(S1 − T1) = ⟨AX̃, X̃⟩.

So after applying Lemma 2.3.26, like in Proposition 2.3.29, one has that

P

Im(S1 − Ti) <
1

log4/a(N)

 ≤ CE exp
(
−
C log2(N)∥A1/2Y ∥aa

N

)
+ C exp

(
−

log2(N)
C

)
,

where Y is again a centered N−dimensional Gaussian random variable with covariance

matrix equal to the identical.

Next, we want to apply Lemma 2.3.27 in order to establish a lower bound for 1
N ∥A

1/2Y ∥aa .

Following the notation of Lemma 2.3.27 set

wi = (A1/2Y )i , Vj = Im(R(1)
j,j ), Uj,k = ImR(1)

j,k (z),

X ′ =
1
N

N∑
i=1

Va/2
N+j,N+j, U =

1
N2

∑
i,j∈[2N]\[N]Ui,j

Ui,j, r = a, d = 2 + ϸ. (2.3.57)

So one may apply Lemma 2.3.16 and Lemma 2.3.18 to get that

U ≤
4
N2

∑
i,j∈[2N]

U2
i,j ≤

4
N2

∑
i,j∈[2N]

| Im(R(1)
ij )|2 ≤

4
N2η

2N∑
j=1

Im(R(1)
j,j ) ≤

4
Nη2 . (2.3.58)

Next, we can approximate V = 1
N

∑N
j=1 VN+j by 1

N

∑N
j=1 Im(RN+j,N+j) due to the deterministic

bound in Lemma 2.3.20 and then approximate 1
N

∑N
j=1 Im(RN+j,N+j) by 1

2E Im(R1,1) due to

Corollary 2.3.16, on an event which holds with probability at least 1 − 2 exp
(
−

log2(N)
8

)
.

The approximation procedure described above is identical to the similar approximation

described in Proposition 2.3.29. So after taking into account the Hypothesis (2.3.9), we

have that

E Im(R1,1) ≥
(
E[Im(R1,1)]a/2

)2/a
≥ ϸ2/a .

Thus, it is implied that

P

(
|V |

C
< 1

)
< C exp

(
−

log2 N

C

)
. (2.3.59)

So after combining (2.3.58) and (2.3.59), we get that for sufficient large N it is true that

P
(
|V | ≤ 100 log10(N)U1/2

)
≤ C′ exp

(
−

log2(N)
C

)
.

Next we need to bound X ′ from (2.3.57). Note that again we can apply Lemma 2.3.20 to get

that ∣∣∣∣∣∣∣∣ 1N
N∑
j=1

Im(Rj+N,j+N ) − X ′

∣∣∣∣∣∣∣∣ ≤ 1
N

N∑
j=1
| Im(Rj+N,j+N )a/2 − Im(R(1)

N+j,N+j)
a/2| ≤

≤
1
N

2N∑
j=1
| Im(Rj,j) − Im(R(1)

j,j )|a/2 ≤

2N∑
j=1
|Rj,j − R

(1)
j,j |

a/2 ≤
4

(Nη)a/2
.

(2.3.60)
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Moreover, since the function f (y) = 1
{
| Im(y)| ≤ η

}
Im(y)a/2 +1

{
| Im(y)| ≥ η

}
ηa/2 is Lipschitz

with Lipschitz-constant L = aη1−a/2, we can apply Lemma 2.3.21 for x = N−1/2ηa/2 log(N)

to get that

P


∣∣∣∣∣∣∣∣ 1N

N∑
j=1
| Im(RN+j,N+j)|a/2 −

1
N

E | Im(RN+j,N+j)|a/2

∣∣∣∣∣∣∣∣ ≥ log(N)
N1/2ηa/2


≤ 2 exp

(
−

log2(N)
8a2

)
.

(2.3.61)

So after combining (2.3.61) ,(2.3.60) with (2.3.9) and specifically with the fact that

E(|Rj,j |a/2) ≤ E(|Rj,j |2)a/4 ≤
1
ϸa/4

we get that,

P
(
|X ′ | > C

)
≤ C exp

(
−

log2(N)
C

)
, (2.3.62)

for sufficient large universal constant C. So the bounding for 1
N ∥A

1/2Y ∥aa comes from a

direct application of Lemma 2.3.27 with the bounding for V and X ′ proven in (2.3.58) and

(2.3.62)

Note that (2.3.56) is a corollary of (2.3.55) and (2.3.45). □

The following is the analogue of Proposition 5.9 in [5], adjusted to our set of matrices.

Lemma 2.3.31. There exists some constant C = C(a) such that for any x ≥ 1 and for any

i ∈ [2N], it is true that

P

[
|Ti | ≥

Cx

(Nη2)1/2

]
≤

C

xa/2
(2.3.63)

Proof. It is sufficient to prove it only for i = 1. Recall the definition of T1 in (2.3.44). So we

need to prove that

P

(
|U1| ≥

x

(Nη2)1/2

)
≤

C

xa/2
. (2.3.64)

Set the event

Ω1(s) = ∩N+1≤j≤2N {|X1,j | ≤ s}. (2.3.65)

Then

P

(
|U1| ≥

x

(Nη2)1/2

)
≤ P

(
1 (Ω1(s)) |U1| ≥

x

(Nη2)1/2

)
+ P(Ωc1(s)) (2.3.66)

For the second summand in the right-hand-side of (2.3.66) by the union bound and (2.1.3)

one has that

P(Ωc1(s)) ≤
2N∑

j=N+1

P(|X1,j | ≥ s) ≤
C

sa
(2.3.67)
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For the first term on the right hand-side of (2.3.66) note that by Markov’s inequality, the

independence of {X1,j}j∈[2N]\[N] and R(1) and the symmetry of the random variables Xj,1

P

(
1 (Ω1(s)) |U1| ≥

x

(Nη2)1/2

)
≤
Nη2

x2 E

∣∣∣∣∣∣∣∣
∑

k,j∈2N]\[N]:k,j

X1jR
(1)
jk (z)Xk,1

∣∣∣∣∣∣∣∣
2

1 (Ω1(s)) (2.3.68)

=
2Nη2

x2

∑
k,j∈[2N]\[N]:k,j

E|R(1)
j,k |

2
E(X2

1,j1 (Ω1(s)))2. (2.3.69)

We will bound each of the terms inside the sum in (2.3.69) individually. Firstly

EX2
1,j1 (Ω1(s)) ≤ EX2

1,j1
{
|X1,j | ≤ s

}
≤

2Cs2−a

(2 − a)N
. (2.3.70)

The last inequality in (2.3.70) can be found in the proof of Proposition 5.9 [5].

Moreover, due to (2.3.21) and (2.3.19) one has that

∑
k,j∈[2N]\[N]:k,j

E|R(1)
j,k |

2 <
N∑
j=1

Im(R(1)
j+N,j+N )

η
≤
N

η2 . (2.3.71)

Thus combining (2.3.71), (2.3.70) and (2.3.67) we get that for some absolute constant

C = C(a) it is true that

P

(
|U1| ≥

x

(Nη2)1/2

)
≤
Cs4−2a

x2 +
C

sa
. (2.3.72)

Setting s = x1/2, we get (2.3.64). □

2.3.7 Proof of Theorem 2.3.13

In order to prove Theorem 2.3.13, we wish to replace the entries of X by a−stable entries

in several quantities, for example in quantities defined in (2.3.48), in order to use the

properties of the a−stable distribution.

Firstly consider the following

Definition 2.3.32. Define the following quantities:

ωz(u)(i) = Γ

(
1 −

a

2

)
(iz − i Si |u)a/2, ω̄z(u) = Eωz(u)(i),

Gi =
∑

j:|j−i |≥N

Zj,jR
(i)
j,j , Ψ

(i)
z (u) = Γ

(
1 −

a

2

)
(iz − i Gi |u)a/2, ψz(u) = E(Ψz(u)).

Here Zj,j are i.i.d. random variables from the definition of the matrix DN , all with law N−1/aZ

where Z is a (0, σ) a-stable random variable as in Definition 2.1.1 .

We start this subsection with a comparison between (−z − Si)−1 and Ri,i .
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Lemma 2.3.33. For any p > 0 there exists a constant C = C(a, ϸ, b, s, p) such that∣∣∣E|Ri,i |p − |(−Si − z)−1|p
∣∣∣ ≤ C logC(N)

(Nη2)a/8
, (2.3.73)

∣∣∣E|(−iRi,i)|p − E|(−iz − iSi)|−p
∣∣∣ ≤ C logC(N)

(Nη2)a/8
, (2.3.74)

|γz − ω̄z |1−a/2+s ≤
C logC(N)
(Nη2)a/8

. (2.3.75)

Proof. Let C1, C2, C3 the constants from Propositions 2.3.29, 2.3.30 and Lemma 2.3.31

respectively and set C = max{C1, C2, C3}. Moreover let E1, E2 the events whose probability

we bound in Proposition 2.3.29 and 2.3.30 respectively and set E = E1 ∪ E2.

Note that due to our assumptions in (2.3.9), (2.3.19) and (2.3.47) it is true that

1
Im(Si − Ti + z)

≤ N1/2 ,
1

Im(Si + z)
≤ N1/2. (2.3.76)

Furthermore by (5.5) in [5] one has that for any u > 0∣∣∣|Ri,i |p − |(−Si − z)−1|p
∣∣∣ (2.3.77)

≤ 1 {|Ti | < u} (p − 1)u
(∣∣∣∣∣ 1

Im(Si − Ti + z)

∣∣∣∣∣p+1
+

∣∣∣∣∣ 1
Im(Si + z)

∣∣∣∣∣p+1)
(2.3.78)

+ 1 {|Ti | ≥ u}

(∣∣∣∣∣ 1
Im(Si − Ti + z)

∣∣∣∣∣p + ∣∣∣∣∣ 1
Im(Si + z)

∣∣∣∣∣p) (2.3.79)

So one by Propositions 2.3.29 and 2.3.30 one has that

E1
(
Ec

) ∣∣∣|Ri,i |p − |(−Si − z)−1|p
∣∣∣ ≤ 2u(p − 1)Cp+1 logC(p+1) N + 2P(|Ti | ≥ u)Cp logCp(N) (2.3.80)

E1 (E)
∣∣∣|Ri,i |p − |(−Si − z)−1|p

∣∣∣ ≤ 2uN (p+1)/2 exp
(
− log2 N

C

)
(2.3.81)

So after setting u = (Nη2)−1/4 and applying Lemma 2.3.31, we get (2.3.73).

The proof of (2.3.74) is analogous and therefore it is omitted.

For the proof of (2.3.75) note that

• By (2.3.5) applied for x1 = (iTi − iSi − iz)−1, x2 = (−iSi − iz)−1 and for r = a
2 and

η = (2C log2C N)−1, we get that there exists a constant C′ = C′(a) > 0 such that for

any u > 0 it is true that

1
(
Ec

)
1 {|Ti | < u} |iz − ωz |1−a/2+s (2.3.82)

≤ C′
(
2C log2C(N)

) a
2

1
(
Ec

)
1 {|Ti | < u}

∣∣∣|z − Ti + Si |−1 − |z + Si |
−1

∣∣∣ a2 (2.3.83)

≤ uC′
(
2C log2C(N)

) 3a
2

1
(
Ec

)
, (2.3.84)

1
(
Ec

)
1 {|Ti | ≥ u} |iz − ωz |1−a/2+s (2.3.85)

≤ C′
(
2C log2C(N)

) a
2

1
(
Ec

)
1 {|Ti | ≥ u}

∣∣∣|z − Ti + Si |−1 − |z + Si |
− a2

∣∣∣ (2.3.86)

≤ 2C′
(
2C log2C(N)

) 3a
2

1 {|Ti | ≥ u} . (2.3.87)
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• Moreover again by (2.3.5) for the same x1, x2 and r as before and for η = N−1/2 there

exists a constant C′ = C(a) such that

1 (E) |iz − ωz |1−a/2+s ≤ 2C′1 (E)Na/4 (2.3.88)

Note that by definition Eωz = ω̄z and Eiz = γz. So after summing (2.3.85), (2.3.82) and

(2.3.88), taking expectation and applying Propositions 2.3.29 and 2.3.30 and Lemma 2.3.31

for x = (Nη2)1/4, we get (2.3.75).

□

Fixed point equation

In this subsection we establish the asymptotic fixed point equation. Firstly, we show that

the quantities in Definition 2.3.32 are approximately equal to the respective quantities of

the Stieltjes transform, i.e., the quantities defined in Definition 2.3.12. The latter is proven

in the following proposition.

Proposition 2.3.34. It is true that for any p ∈ N,

∣∣∣E|Ri,i |p − E|(−z − Gi)|−p
∣∣∣ ≤ C logC(N)

(Nη2)a/8
+
C logC(N)
N4θ , (2.3.89)

∣∣∣∣∣E|(−iRi,i)|p − E|(−iz − iGi)|−p
∣∣∣∣∣ ≤ C logC(N)

(Nη2)a/8
+
C logC(N)
N4θ (2.3.90)

and

|γz − ψz |1−a/2+s ≤
C logC(N)
(Nη2)a/8

+
C logC(N)
N4θ . (2.3.91)

Proof. We first present two facts.

• One can show that there exists C = C(a) > 0 such that

P
(
|S1 − G1| ≥ N

−4θ
)
≤ C(1 + E(R1,1))N−4θ,

similarly to the proof of Lemma 6.8 in [5]. As a result, by Assumption (2.3.9) we have

that

P(|S1 − G1| ≥ N
−4θ) ≤ CN−4θ, (2.3.92)

for some constant C = C(a, ϸ).

• For each i ∈ [2N] there exists a constant C = C(a, ϸ, b) > 1 such that

P

(
Im(Gi) <

1
C(log(N))C

)
≤ C exp

(
−

(log(N))2

C

)
. (2.3.93)

The proof of (2.3.93) is completely analogous to the proof of Proposition 2.3.29, after

replacing the usage of Lemma 2.3.26 with Lemma B.1 in [31]. Therefore it is omitted.
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Moreover note that due to Lemma 2.3.33, it is sufficient to prove that for any p ∈ N,∣∣∣E| − z − Si,i |−p − E|(−z − Gi)|−p
∣∣∣ ≤ C logC(N)

N4θ , (2.3.94)∣∣∣∣∣E|(−iz − iS)|−p − E|(−iz − iGi)|−p
∣∣∣∣∣ ≤ C logC(N)

N4θ (2.3.95)

|ω̄z − ψz |1−a/2+s ≤
C logC(N)
N4θ . (2.3.96)

Given (2.3.92) and (2.3.93), the proof of (2.3.94), is completely analogous to the proof of

Lemma 2.3.33, therefore it is omitted. □

Moreover, we have the following results which will be used in order to establish the

limiting fixed point equation. The following Lemma will be the basis for the approximation

of the fixed point equation.

Lemma 2.3.35. Recall Definition 2.3.5. It is true that,

Ψz(u) = ED(Yζ (u)), (2.3.97)

where Yζ is as in Definition 2.3.5, D = {yi}i∈[N] is an N−dimensional Gaussian random

variable independent from any other quantity with covariance matrix being the identical, ED

denotes the expectation with respect to the random variable D and

ζ (u) =
1
N

N∑
j=1

(
−iR(1)

N+j,N+j |u
)a/2 |yj |a

E|yj |a
.

Also,

E(−iz − iG1)−p = EDsp,z(ζ (1)), E| − z − G1|
−p = EDrp,z(ζ (1)).

Proof. This Lemma is a corollary of [[32] Corollary 5.8] □

So in Proposition 2.3.34, we manage to approximate the quantities involving G1, such as

yz(u), by the analogous quantities involving R1,1, such as γz(u). In order to establish the

asymptotic fixed point equation, we will need to approximate the function ζ (u) mentioned

in Lemma 2.3.35 by γz(u) and then take advantage of (2.3.97). This approximation is done

via the following Lemma.

Lemma 2.3.36. There exists a constant C = C(a, ϸ, s) > 1 such that

P

(
|ζ − γz |1−a/2+s >

C logC(N)
Ns/2ηa/2

)
≤ C exp

(
−

log2(N)
C

)
. (2.3.98)

Proof. Firstly note that ζ is close to EDζ with high probability due to Lemma 2.3.24 for

appropriate x, i.e.,

P

(
|ζ − EDζ |1−a/2+s ≥

logs(N)
Ns/2ηa/2

)
≤ C exp

(
−

log2 N

C

)
, (2.3.99)
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for some constant C = C(a). Next, note that by Lemma 2.3.23 applied for the matrix X (1)

and for appropriate x one has that

P

(
|EX (1)EDζ − EDζ |1−a/2+s ≥

logs(N)
Ns/2ηa/2

)
≤ C exp

(
−

log2 N

C

)
, (2.3.100)

for some appropriately chosen constant C = C(a). Here EX (1) denotes the mean value with

respect to the law of the matrix X (1). Next by Lemma 2.3.4 one has that

N∑
i=1

1
N
|RN+i,N+i − R

(1)
N+i,N+i |1−a/2+s

≤ Cη−a/2 1
N

N∑
i=1

(
|RN+i,N+i − R

(1)
N+i,N+i ||

a/2 + ηs|RN+i,N+i − R
(1)
N+i,N+i |

s
)
.

(2.3.101)

So after applying Lemma 2.3.20 and since Rj,j are identical distributed, one has the deter-

ministic bound

|EX (1)EDζ − γz | ≤ C
′

(
1

ηaNa/2
+

1
Nsηa/2

)
. (2.3.102)

So after combining (2.3.99) ,(2.3.100) and (2.3.102), we get the desired inequality. □

Next, we give some more approximating results.

Corollary 2.3.37. There exists a constant C = C(a, ϸ, s) > 0 such that

|γz |1−a/2+s < C, inf
u∈S1

+

Re(γz(u)) >
1
C
, (2.3.103)

P

(
inf
u∈S1

+

ζ (u) <
1
C

)
< C exp

(
−

log2(N)
C

)
, (2.3.104)

Proof. By (2.3.98), the estimate in (2.3.104) is a consequence of (2.3.103).

For (2.3.98) note that due to the first estimate in (2.3.5) one has that there exists a

constant C = C(s) such that ∣∣∣(−iRi,i |u)a/2
∣∣∣
1− a2+s

≤ C|Ri,i |
a/2. (2.3.105)

By integrating (2.3.105) and by the definition of γz in Definition 2.3.12 one has that,

|γz |1− a2+s ≤ CΓ
(
1 −

a

2

)
E|Ri,i |

a/2 ≤ CΓ
(
1 −

a

2

) (
E|Ri,i |

2
)a/4
≤ ϸ−a/4CΓ

(
1 −

a

2

)
. (2.3.106)

Where in the first inequality in (2.3.106) we used (2.3.105), in the second we used Holder’s

inequality and in the third we used our Assumption 2.3.9. So the first estimate in (2.3.103)

is proven.

For the second estimate in (2.3.103) one has that for any u ∈ S1
+

Re γz(u) = Γ
(
1 −

a

2

)
E Re(iRi,i |u)a/2 ≥ Γ

(
1 −

a

2

)
E

((
Re(iRi,i |u)

)a/2
)

(2.3.107)

≥ Γ

(
1 −

a

2

)
E(ImRi,i)a/2 ≥ Γ

(
1 −

a

2

)
ϸ (2.3.108)
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where in the first inequality in (2.3.107) we used the fact that Re cr ≥ (Re c)r for any c ∈ K+

and r ∈ (0,1), see the proof of Lemma 7.18 in [5], in the second inequality we used the fact

that Re(c|u) ≥ Re(c) for any c ∈ K+ and u ∈ S1
+ and in the third we used our Assumption

2.3.9. Thus the second estimate in (2.3.103) is proven.

□

Before presenting the proof of Theorem 2.3.13, we need a last approximation result.

Lemma 2.3.38. There exists a constant C = C(a, ϸ, s) such that

P

(
|ψz − Yγz |1−a/2+s >

C logC(N)
Ns/2ηa/2

)
< C exp

(
−

log2(N)
C

)
. (2.3.109)

Proof. The strategy of the proof is firstly to approximate Yγz by Yζ and then use Lemma

2.3.35.

• For the approximation of Yγz and Yζ : Let C1, C2 be the constants mentioned in Lemma

2.3.36 and Corollary 2.3.37. Set C = 2 max{C1, C2}. Moreover define the following

sets

E1 =

{
|ζ − γz |1−a/2+s >

C logC(N)
Ns/2ηa/2

}
(2.3.110)

E2 =

{
inf
u∈S1

+

Re ζ (u) <
1
C

}
(2.3.111)

By Lemma 2.3.36 and Corollary 2.3.37 one has that

P(E1 ∪ E2) ≤ C exp
(
−

log2 N

C

)
(2.3.112)

Set F the complement event of E1 ∪ E2.

So

1 (F )
∣∣∣Yζ − Yγz ∣∣∣1− a2+s ≤ 1 (F )C1|ζ − γz |1− a2+s

(
1 + |γz |1− a2+s + |ζ |1− a2+s

)
(2.3.113)

≤ 1 (F )
C logC(N)
Ns/2ηa/2

(
1 +

2
C

)
(2.3.114)

where in the first inequality of (2.3.113) we used Lemma 2.3.10 and Remark 2.3.3 (C1

is the constant mentioned in Lemma 2.3.10) and the fact that γz, ζ1 (F ) ∈ H1/C
a
2 ,1−

a
2+s

by Corollary 2.3.37 and the definition of the set F . For the second inequality we used

again the definition of F , Corollary 2.3.37 and Lemma 2.3.36.

Now working on the event E1 ∪ E2 we get that by Lemma 2.3.9 and Corollary 2.3.37

we there exists a constant C′ > 0 such that

1(E1 ∪ E2)|Yγz |1− a2+s ≤ C
′η−

a
2 (1 + C)1(E1 ∪ E2) (2.3.115)
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• Note that similarly to the proof of (2.3.76) one can prove that∣∣∣∣∣ 1
Gi + z

∣∣∣∣∣ ≤ 1
η

(2.3.116)

Thus, we can apply (2.3.5) to get that there exists a constant C = C(a) such that

|Ψz |1− a2+s ≤ Cη
−a/2 (2.3.117)

So by Lemma 2.3.35, one has that

|ψz − Yγz |1− a2+s ≤

E1 (F ) |Yζ − Yγz |1− a2 + E1 (E1 ∪ E2) |Ψz |1− a2+s + E1 (E1 ∪ E2) |Yγz |1− a2+s
(2.3.118)

Now (2.3.109) is proven by combining (2.3.112), (2.3.117), (2.3.115), (2.3.118) and (2.3.113).

□

Next, the proof of the main theorem of this subsection is presented.

Proof of Theorem 2.3.13. Note that, (2.3.10) is a consequence of (2.3.90) and (2.3.109). Ad-

ditionally (2.3.14) is already proven in (2.3.56). Lastly, note that (2.3.13) is a consequence

of (2.3.103). So all that remains is to establish (2.3.11) and (2.3.12) in order to complete

the proof. We will prove only (2.3.12). The proof of (2.3.11) is similar and will be omitted.

To that end, define the sets E1 and E2 as in (2.3.112) and F the complement event of

E1 ∪ E2. So by the first estimate in (2.3.8) and Remark 2.3.3 one has that

1 (F ) |rp,z(ζ ) − rp,z(γz)| ≤ 1 (F )C′|γz − ζ | (2.3.119)

for some constant C′. By the definition of the event F and Lemma 2.3.35, we get the bound

in (2.3.12) on the event F .

On the event E1 ∪ E2 we can use the deterministic bound in Lemma 2.3.9 to get that

1 (E1 ∪ E2) |rp,z(ζ ) − rp,z(γz)| ≤ 2C′′η−p1 (E1 ∪ E2) (2.3.120)

for some other constant C′′. Now the bound in (2.3.12) on the event 1 (E1 ∪ E2) is a

consequence of (2.3.112) and (2.3.120). □

2.4 Universality for the least singular value after short time

At this section, universality of the least eigenvalue for the matrices X +
√
tW is proven.

More precisely :

Theorem 2.4.1. Let LN be an N × N matrix with i.i.d. entries all following the Gaussian

distribution with mean 0 and variance 1
N , independent from HN . Then denote W be the

symmetrization of LN . Let W̃ be an independent copy of W. Moreover for every matrix Y
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denote λN (Y ) to be the smallest positive eigenvalue of Y . Then for all a ∈ (0,2) for which

local law, Theorem 2.3.14, holds there exists δ2.4.1 = δ2.4.1(a) > 0 such that for all r > 0∣∣∣P(NξλN (X +
√
sW ) ≥ r) − P(NλN (W̃ )| ≥ r)

∣∣∣ ≤ 1
Nδ2.4.1

, (2.4.1)

for all s ∈ (N2δ− 1
2 , N−2δ). Note that ξ is the constant defined in (2.1.4).

The proof of Theorem 2.4.1 can be found in paragraph 2.4.

In order to begin the proof we need the following definition.

Definition 2.4.2. For an N × N matrix J with eigenvalues {λi(J)}i∈[N] we define the free

additive convolution of J , with s times the semicircle law, to be the probability measure

with Stieltjes transform ms,fc, such that

ms,fc(z) =
1
N

N∑
i=1

1
λi(J) − z − sms,fc(z)

.

It can be proven that the equation above has a unique solution. Moreover we denote by

ρs,fc(E) the density of the free convolution given by ρs,fc(E) = 1
π limϸ→0 Im(ms,fc(E + iϸ)).

Remark 2.4.3. For z ∈ DCa ,δ, the set for which the local law holds in Theorem 2.3.14, and

s ∈ (Nδ−
1
2+σ , N−2δ), one has that |ms,fc(z) −mN,s(z)| ≤ 1

Nη with overwhelming probability, as

is proven in Theorem 4.5 of [3]. Here ms,fc is the Stieltjes transform of the free additive

convolution of X with s times the semicircle law and mN,s is the Stieltjes transform of the

E.S.D of the matrix X +
√
sW , where W is the symmetrization of a matrix with i.i.d. entries

all following the Gaussian distribution with mean 0 and variance 1
N . Moreover the following

stability result is true, due to Lemma 4.1 of [3],

c ≤ Im(ms,fc(z)) ≤ C. (2.4.2)

In order to establish Theorem 2.4.1, we wish to apply Theorem 3.2 in [3] but we need to

take into account Remark 7.6 of [4]. So firstly we state the following.

Lemma 2.4.4. Fix s ∈ (N2δ− 1
2 , N−2δ) for appropriate small δ. Then

|ρa(x) − ρs,fc(x)| ≤ N−
aδ
8 ,

for x ∈ (− 1
Ca
, 1
Ca

) and a, δ are parameters satisfying the assumptions of Theorem 2.3.14 and

Ca the constant mentioned in the statement of Theorem 2.3.14.

Proof. The proof of the lemma is due to the local law Theorem 2.3.14 and similar to the

proof of [49], Lemma 3.4, so it is omitted. □
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Proof of Theorem 2.4.1. Firstly we apply Theorem 3.2 of [3] to the sequence of matrices

ρsc(0)XN . Note that due to Theorem 2.3.14, the matrix X satisfies the assumptions of

Theorem 3.2 for g = Nδ−
1
2 and G = N−δ with overwhelming probability, for any small enough

δ > 0. So for all s0, s1 ∈ (N2δ− 1
2 , N−2δ) such that s0 =

Nω0

N , s1 =
Nω1

N with ω1 <
ω0
2 < 1

2 , there

exists δ2.4.1 > 0 and a coupling of λN (X +
√
s1 + s0W ) and λN (W̃ +

√
s1 + s0W̃ ′) such that,∣∣∣∣∣∣ ρsc(0)

ρs0,fc(0)
λoN (X +

√
s1 + s0W ) − λoN (W̃ +

√
s1 + s0W̃

′)

∣∣∣∣∣∣ ≤ 1
Nδ2.4.1+1 , (2.4.3)

where W̃ , W̃ ′ are independent copies of W . Moreover, by the properties of the Gaussian

law, one has that W̃ +
√
s1 + s0W̃ ′ has the same law as

√
1 + s1 + s0W̃ ′′, where W̃ ′′ is again

an independent copy of W . But by Slutsky’s theorem one has that

lim
N→∞

NλN (
√

1 + s1 + s0W̃
′′) d= lim

N→∞
NλN (W̃ ′′).

So one has that for each r > 0,∣∣∣∣∣∣P(N ρsc(0)
ρs0,fc(0)

λN (X +
√
s1 + s0W ) ≥ r) − P(NλN (W̃ ) ≥ r)

∣∣∣∣∣∣ ≤ 1
Nδ2.4.1

, (2.4.4)

where we have violated the notation in (2.4.4) by keeping the same constant δ2.4.1. Next,

since Remark 2.4.3 and Lemma 2.4.4 are true, one has that∣∣∣∣P (NξλN (X +
√
s1 + s0W ) ≥ r

)
− P(NλN (W̃ ) ≥ r)

∣∣∣∣ ≤ 1
Nδ2.4.1

. (2.4.5)

Moreover for s1, s2 ∈ (N2δ− 1
2 , N−2δ), such that s1 < s2, one can apply Weyl’s inequality,

Lemma 2.3.15, to get that

λN (X +
√
s1W ) − λN (X +

√
s2W ) ≥ (s1 − s2)λmin(W ) ≥ 0. (2.4.6)

The first inequality of (2.4.6) comes from the bottom of Weyl’s inequality, for the N
2 + 1−th

eigenvalues of X +
√
s1W and X +

√
s2W when the eigenvalues are arranged in decreasing

order. Note that in the notation we normally use, we have arranged the eigenvalues in

decreasing order with respect to their absolute values. The second inequality comes from

the fact that λmin(W ) is the negative of the maximum singular value of L.

So (2.4.6) implies that if s1 ≤ s2 then

λN (X +
√
s1W ) ≥ λN (X +

√
s2W ). (2.4.7)

Finally, fix s ∈ (N2δ− 1
2 , N−2δ) and s1 =

Nω1

N , s2 =
Nω2

N parameters such that

s1 −
Nω/2

N
> N2δ− 1

2 , s1 < s, s2 −
Nω2/2

N
≥ s and s2 < N

−2δ.

So by construction, one has that λN (X +
√
s1W ) and λN (X +

√
s2W ) are both universal in

the sense of (2.4.5) and s1 < s < s2. So by (2.4.7),

NξλN (X +
√
s2W ) ≤ NξλN (X +

√
sW ) ≤ NξλN (X +

√
s1W ),

which implies Theorem 2.4.1. □
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Corollary 2.4.5. The least singular value of X +
√
tW is universal in the sense of Theorem

2.4.1 , where t is defined in Definition 2.2.9.

Proof. We just need to show that t belongs to the interval (N2δ− 1
2 , N−2δ), for any small

enough δ > 0, and then apply Theorem 2.4.1. Note that the latter claim is true due to the

way ν is chosen in (2.2.1), i.e.,

0 < ν(2 − a) <
1
2
,

and since t is of order N−ν(2−a). □

2.5 Isotropic local law for the perturbed matrices at the optimal

scale

At this point we have proven, in Theorem 2.3.14, that some kind of regularity holds for

the matrix X . Specifically we have proven that with high probability, the Stieltjes trans-

form of X converges to its deterministic limit, and its diagonal entries of its resolvent are

logarithmically bounded, for complex numbers with imaginary parts of order just above

N−
1
2 . So, at this section we "justify" the reason why we have splitted the matrix H into its

"big" and "small" elements, i.e., the matrices X and A, in Definition 2.2.4. More precisely,

we prove that given the regularity properties of X and after perturbing it by a Gaussian

component, then the matrix becomes even more regular in some sense. Thus, what will

remain to investigate is whether the "small" elements of H preserve this regularity, which

will be proven in the next section.

Specifically, at this section we show that for any small δ > 0, the event δ−dependent

events  sup
DCa ,δ

sup
i,j
|Ti,j(z)| ≤ Nδ

 , (2.5.1)

hold with overwhelming probability. Here

DCa ,δ =

{
E + iη : E ∈

(
−

1
2Ca

,
1

2Ca

)
, η ∈

[
Nδ−1,

1
4Ca

]}
and Ca is the constant mentioned in Theorem 2.3.13. This is stated in Corollary 2.5.15.

In order to prove the latter, we will show a general result which can be used for a general

class of matrices. So except from Corollary 2.5.15, the rest of this section is independent

from the rest of the paper. The general result we prove in Theorem 2.5.6 is an approximation

of the resolvent of the symmetrization of a slightly perturbed by a Gaussian component

matrix, which initially satisfies some regularity assumptions, Assumption 2.5.1. This

resolvent is approximated by a quantity which involves the free additive convolution of

the initial matrix with the semicircle law and the eigenvectors of the initial matrix. This

approximation is achieved at any direction on the sphere, so it is called isotropic local law.
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The isotropic local law is an analogue of Theorem 2.1 in [6] for our set of matrices, i.e.,

matrices perturbed by Gaussian factors with 0 at the diagonal blocks. In [6] an isotropic

local law is proven for matrices after perturbing them by a symmetric Brownian motion

matrix.

This kind of results demands precise computations for the resolvent entries. In our case

the "target" matrix, with which we compare the resolvent, is a diagonal matrix who lives

in MN (M2(C)). This increases the complexity of the calculations from the symmetric case

where the "target matrix" is diagonal, but eventually this increase is not that significant.

2.5.1 Terminology

Firstly we introduce the terminology of [6].

For any N−dependent random variables Y1, Y2 we denote

1. Y1 ⪯ Y2 if there exists a universal constant C > 0 such that |Y1| ≤ CY2.

2. Y1 ⪯k Y2 if there exists a constant Ck (which depends on some k) such that |Y1| ≤

CkY2.

3. Y1 ≪ Y2 if there a positive constant c such that Y1Nc ≤ Y2.

2.5.2 Statement of the main result of this section

Assumption 2.5.1. Let V be a deterministic N × N matrix. Denote Ṽ the symmetrization

of V and mṼ the Stieltjes transform of Ṽ . Assume that there exists a large constant a > 1

such that

1. ∥ Ṽ ∥op≤ Na .

2. a−1 ≤ Im(mṼ (z)) ≤ a, for all z ∈ {E + iη, E ∈ (E0 − r, E0 + r) , h∗ ≤ η ≤ 1} for some

N−dependent constants r, h∗ such that: 1
N ≪ h∗ ≪ r ≤ 1.

Moreover, fix c > 0 some arbitrary small constant and set

ψ =
Nc

N
. (2.5.2)

Remark 2.5.2. Note that the matrix X satisfies with high probability the Assumptions 2.5.1

due to Theorem 2.3.14, for E0 = 0, h∗ = Nδ−
1
2 for arbitrary small constant δ > 0, r = 1

C

where C is the constant mentioned in Theorem 2.3.14 and since for fixed large D > 0, one

can compute by (2.1.3) that any given entry of X has magnitude greater than N
2D+1
a with

probability less than CN−2D−2, which implies that

P
(
∥ X ∥op≥ N

2(D+3)
a

)
≤ CN−2D. (2.5.3)
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Remark 2.5.3. Let V be a deterministic N × N matrix. Due to the singular value decompo-

sition of V , there exist J1, J2 two orthogonal N × N matrices, such that Σ = J2VJ1, where

Σ is a diagonal matrix with diagonal entries the singular values of V . Then denote Ṽ the

symmetrization of V and set

U =

JT1 0

0 J2

 .
Then it is true that

UṼUT =

0 Σ

Σ 0

 .
Moreover, note that U is orthogonal.

Definition 2.5.4. Suppose V is a deterministic matrix which satisfies the Assumption

2.5.1 for some N-dependent constants h∗, r. Then for any k ∈ (0,1), define the set

Dk =

{
z = E + iη : E ∈ (E0 − (1 − k)r, E0 + (1 − k)r),

ψ4

N
≤ η ≤ 1 − k r

}
.

The parameter ψ is defined in (2.5.2).

Definition 2.5.5. Recall the definition of the the Stieltjes transform of the Empirical spec-

tral distribution of Ṽ with s−times the semicircle law in Definition 2.4.2. We will use the

following notation

ms,fc(z) =
1
N

∑
{i∈[N]}∪{−i∈[N]}

gi(s, z), with gi(s, z) =
1

λi − z − sms,fc(z)

and λi are the eigenvalues of Ṽ arranged in increasing order so that λi = −λ−i .

Theorem 2.5.6. Let V be a deterministic matrix that satisfies the Assumptions 2.5.1. Denote

the matrix

G(z, s) = (Ṽ +
√
sW − zI)−1.

Here W is the symmetrization of a matrix with i.i.d. entries, all following the Gaussian law

with mean 0 and variance 1
N . Moreover fix U to be the orthogonal matrix constructed in

Remark 2.5.3 for V . Moreover fix k ∈ (0,1), s : h∗ ≪ s ≪ r and q ∈ RN : ∥q∥2 = 1. Then it is

true that,∣∣∣∣∣∣∣⟨q, G(s, z)q⟩ −
N∑

i=−N

1
2

(gi + g−i)(s, z)⟨ui , q⟩2 −
N∑
i=1

(gi − g−i)(s, z)⟨ui , q⟩⟨ui+N , q⟩

∣∣∣∣∣∣∣ (2.5.4)

⪯
ψ2
√
Nη

Im

 N∑
i=1

(⟨ui , q⟩2 + ⟨ui+N , q⟩2)(gi(s, z) + g−i(s, z))

 , (2.5.5)

with overwhelming probability, uniformly for all z ∈ Dk. Here ui denote the columns of U.
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Set Cj, for j ∈ {1,2}, to be the N × N diagonal matrices with their i − th diagonal element

equal to gi + (−1)j+1g−i . Fix the 2N × 2N matrix,

C =
1
2

C1 C2

C2 C1

 .
In general, what Theorem 2.5.6 states is that the matrix G(z, s) can be well approximated

by UCU ∗, since

⟨q, UCU ∗q⟩ =
N∑

i=−N

1
2

(gi + g−i)(s, z)⟨ui , q⟩2 +
N∑
i=1

(gi − g−i)(s, z⟨ui , q⟩⟨ui+N , q⟩.

Moreover we can reduce the proof of Theorem 2.5.6 to the diagonal case.

Theorem 2.5.7. Fix V = diag(v1, · · · , vN ) a diagonal matrix which satisfies Assumption

2.5.1. Moreover set W to be the symmetrization of a matrix L with i.i.d. entries, all following

the Gaussian law with 0 mean and 1
N variance. Define the resolvent G(z, s) = (Ṽ +

√
sW −

zI)−1. Fix k ∈ (0,1), h∗ ≪ s ≪ r and q : ∥q∥2 = 1. Then∣∣∣∣∣∣∣⟨q, G(s, z)q⟩ −
N∑

i=−N

1
2

(gi + g−i)(s, z)q2
i+N −

N∑
i=1

(gi − g−i)(s, z)qiqi+N

∣∣∣∣∣∣∣ (2.5.6)

⪯
ψ2
√
Nη

Im

 N∑
i=1

(q2
i + q

2
i+N )(g−i(s, z) + gi(s, z)

 , (2.5.7)

holds with overwhelming probability uniformly for all z ∈ Dk.

The proof of Theorem 2.5.7 can be found in paragraph 2.5.3.

Proof of Theorem 2.5.6 assuming Theorem 2.5.7. Let V be a general deterministic matrix

with singular value decomposition Σ = J2VJ1 where J1 and J2 are orthogonal matrices.

Define U as in Remark 2.5.3. Then

U (Ṽ +
√
sW )UT =

 0 Σ + JT1
√
sLTJT2

Σ + J2
√
sLJ1 0

 .
But L is invariant under orthogonal transformation, so J2LJ1 has the same law as L. This

implies that U (Ṽ +
√
sW )UT has the same law as UṼUT +

√
sW . Next, by the properties of

the inner product, one has that

⟨q, (Ṽ+
√
sW−zI)−1q⟩ = ⟨q, U (UṼUT+UWUT−zI)−1UTq⟩ = ⟨UTq, (UṼUT+UWUT−zI)−1UTq⟩.

By a similar computation for ⟨q, UCU ∗q⟩, one reduces the problem in bounding∣∣∣∣∣∣∣∣⟨q, (UṼUT + √sW − zI)−1q⟩ −

 N∑
i=1

q2
i gi(t, z) + q2

i+Ng−i

 − ∑
i∈[N]

qiqi+N (gi − g−i)(s, z)

∣∣∣∣∣∣∣∣ ,
which is true by a direct application of Theorem 2.5.7.

□
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So it suffices to prove Theorem 2.5.7, i.e., to consider V to be diagonal. Moreover we

have the following identities.

Remark 2.5.8. Let V be a deterministic diagonal matrix which satisfies Assumptions 2.5.1.

Adopt the notation of Theorem 2.5.7. Then consider the following matrix F = {Fi,j}i,j∈[N],

where

Fi,j :=

 0 [V +
√
sL]i,j

[V +
√
sL]j,i 0

 , for all i, j ∈ [N].

Note that there exists a unitary matrix S, the product of permutation matrices, such that

if we set F = ST (V +
√
sW )S then G(s, z) = S(F − zI)−1ST and

(F − zI)−1
i,j =

 Gi,j Gi+N,j

Gi,j+N Gi+N,j+N

 ,
where Gi,j are the entries of G(s, z).

It is more convenient to work with the matrix F and its resolvent as it can be thought as a

full symmetric matrix inMN (M2(C)), instead of a symmetric matrix with 0 at the diagonal

blocks inM2N (C).

2.5.3 Proof of Theorem 2.5.7

In this subsection we will prove Theorem 2.5.7. First, we present some results from [3],

necessary for the proof.

Proposition 2.5.9 ([3],Theorem 4.5). Fix s as in Theorem 2.5.7, the parameter ψ defined in

(2.5.2) and k ∈ (0,1). Then it is true that,

|ms(z) −ms,fc(z)| ≤
ψ

Nη
,

holds with overwhelming probability uniformly for all z ∈ Dk. Here ms(z) is the Stieltjes

transform of Ṽ +
√
sW.

Lemma 2.5.10. Fix s and k as in Theorem 2.5.7. Then uniformly for all z ∈ Dk , there exists

a constant C > 1 such that:

C−1 ≤ |ms,fc(z)| ≤ C, (2.5.8)

|ms,fc(z)| ≤
1
N

N∑
i=1
|gi | + |g−i | ≤ C log(N). (2.5.9)

Proof. These estimates can be found in [3] Lemma 4.1 and Lemma 4.12. □

Moreover the following estimates hold.
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Lemma 2.5.11. Fix T ⊆ [2N] such that |T| ≤ log(N), which consists of pairs of indeces

{k, k + N} for k ∈ [N]. Moreover set (H +
√
sG)T the sub matrix of H +

√
sG with the i − th

columns and row removed for all i ∈ T and GT(s, z) =
(
(H +

√
sG)T − zI2N−|T|

)−1
. Then the

following estimates hold with overwhelming probability.∣∣∣∣∣GTi,i − 1
2

(gi + g−i)
∣∣∣∣∣ ≤ (|gi | + |g−i |)2 ψs

√
Nη

for all i ∈ [2N] \ T, (2.5.10)∣∣∣∣∣GTi,N+i − 1
2

(gi − g−i)
∣∣∣∣∣ ≤ (|gi | + |g−i |)2 ψs

√
Nη

for all i ∈ [2N] \ T, (2.5.11)

∣∣∣GTi,j∣∣∣ ≤ min(|gi | + |g−i |, |gj | + |g−j |)ψ
√
Nη

≤

(
(|gi | + |g−i |)(|gj | + |g−j |)

)1/2
ψ

√
Nη

for all i, j ∈ [2N] \ T.

(2.5.12)

Proof. The first two estimates are proven by the Schur Complement formula and the bounds

(4.69) and (4.89) from [3]. The last bound is given in [3], equation (4.70) and (4.79). □

Next, we present a bound for the diagonal and the anti-diagonal entries of G(s, z).

Lemma 2.5.12. Adopt the notation of Theorem 2.5.7. Then it is true that with overwhelming

probability∣∣∣∣∣∣∣⟨q, G(s, z)q⟩ −
1
2

(
N∑

i=−N

q2
i (gi(s, z) + g−i(s, z)) −

N∑
i=1

qiqi+N (gi − g−i)

∣∣∣∣∣∣∣ (2.5.13)

⪯
ψ2
√
Nη

Im

 N∑
i=−N

q2
i (gi(s, z) + g−i(s, z))

 + ψ2
√
Nη

Im

 N∑
i=1

(gi + g−i)|(q2
i+N + q

2
i )

 (2.5.14)

+

∣∣∣∣∣∣∣∣
∑

i,j,i,N+j

Gi,jqiqj

∣∣∣∣∣∣∣∣ (2.5.15)

Proof. One has that,

⟨q, G(s, z)q⟩ =
2N∑
i=1

q2
i Gi,i + 2

N∑
i=1

Gi,i+Nqiqi+N +
∑

i,j,i,N+j

qiqjGi,j. (2.5.16)

So for the first part on the right side of the equality in (2.5.16), one can apply (2.5.10)) to

get that,

N∑
i=−N

q2
i+N

∣∣∣∣∣Gi,i − 1
2

(gi + g−i)
∣∣∣∣∣ ≤ (2.5.17)

sψ
√
Nη

N∑
i=−N

q2
i+N (|gi | + |g−i |)2 ≤

2sψ
√
Nη

N∑
i=−N

q2
i+N |gi |

2 +
2sψ
√
Nη

N∑
i=−N

qi+N |g−i |
2. (2.5.18)

Next, we can apply Proposition 2.8 from [6] to get that with overwhelming probability,

N∑
i=−N

q2
i+N

∣∣∣∣∣Gi,i − 1
2

(gi + g−i)
∣∣∣∣∣ ⪯ 2ψ
√
Nη

Im

 N∑
i=−N

(gi + g−i)q2
i+N

 .
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Similarly, by (2.5.11) one has that with overwhelming probability,

N∑
i=1
|qiqi+N |

∣∣∣∣∣Gi,N+i − 1
2

(gi − g−i)
∣∣∣∣∣ ⪯ 2ψ
√
Nη

Im

 N∑
i=1

(gi + g−i)|q2
i+N + q

2
i |

 , (2.5.19)

N∑
i=1
|qiqi+N |

∣∣∣∣∣GN+i,i − 1
2

(gi − g−i)
∣∣∣∣∣ ⪯ 2ψ
√
Nη

Im

 N∑
i=1

(gi + g−i)|q2
i+N + q

2
i |

 . (2.5.20)

□

So in order to prove Theorem 2.5.7, it suffices to prove that

E Z2k ⪯k Y
2k for all k ∈ N, (2.5.21)

where,

Z :=

∣∣∣∣∣∣∣∣
∑

i,j mod N

qiqjGi,j

∣∣∣∣∣∣∣∣ and Y =
logNy
√
Nη

Im

 N∑
i=1

(gi + g−i)q2
i + q

2
i+N

 . (2.5.22)

By (2.5.21), one can obtain Theorem 2.5.7 by Markov’s inequality, which will imply∣∣∣∣∣∣∣∣
∑

i,j mod N

qiqjGi,j

∣∣∣∣∣∣∣∣ ⪯ ψ2
√
Nη

Im

 N∑
i=1

(gi + g−i)(q2
i + q

2
−i)

 (2.5.23)

with overwhelming probability. More precisely for any D > 0 if we fix k : c k ≥ D and

sufficient large N such that Nc k−D ≥ Ck. Here c is the constant in the definition of ψ in

(2.5.2) and Ck is implied in (2.5.21). Thus, one can apply Markov’s inequality in order to

get that:

P

(
Z ≥

ψ

log(N)
Y

)
= P

Z2k ≥

(
ψ

log(N)
Y

)2k ≤ Ck log2k(N)
Nc 2k ≤

Ck
Nc k

≤
1
ND

.

Next, we give an analysis for the moments of Z . Firstly, note that

E| Z |2k =
∑

b

qb1qb2qb3 · · · qb4kEXb1,b2Xb3,b4 · · ·Xb4k−1,b4k , (2.5.24)

where the sum is taken over all b ⊆ [2N]4k such that b2i−1 , b2i mod N and Xb2i−1,b2i =

Gb2i−1,b2i for i ∈ [k] and Xb2i−1,b2i = Ḡb2i−1,b2i and i ∈ [2k] \ [k]. Furthermore, we can continue

the analysis of the sum such that,

E| Z |2k =
∑
B

∑
bi={Bi ,Bi+N}

qb1qb2qb3 · · · qb4kEXb1,b2Xb3,b4 · · ·Xb4k−1,b4k . (2.5.25)

Now the sum is considered, firstly over all B ⊆ [i mod N]4k with the restriction that B2i−1 ,

B2i and then over the possible bi = k such that k ∈ [N] or k ∈ Bi or bi = k + N for k ∈ [N]

and k ∈ Bi . Next, for every summand in (2.5.25) set T = ∪bi∈B,bi∈[N]{bi , bi +N}. Moreover set

the diagonal block matrices

{M(T)
fs,s}ii∈T =

ms,fc 0

0 ms,fc


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and

MTii∈[T ] =

m(T) 0

0 m(T)

 ,
where m(S)(z) is the trace of the resolvent of (V +

√
sW )(S) divided by 2N . Here S is any

subset of [2N] and (V +
√
sW )(S) is the minor of (V +

√
sW ) with rows and columns not

included in S. Moreover set

Φi,i =

−z λi

λi −z


and

W ′i,j =

 0 wi,j

wj,i 0

 .
Adopting the notation of Proposition 2.5.8 and since G(s, z) = S(F − zI)−1ST , one can

apply Schur complements formula to get that

(F − zI)−1
i,j∈T = (Φi∈T +

√
sW ′i,j∈T − s(W ′)∗i,j:i∈T,j∈[2N]\T(S

TG(s, z)S)(T)W ′i∈[2N]\T,j∈T)
−1 (2.5.26)

= (D − E1 − E2 − E3)−1, (2.5.27)

where

D = Φi∈T − sM
(T)
fc,s, E

1 = s(MT −MTfs,s), E2 = −
√
sW ′, (2.5.28)

E3 = s(W ′)∗i,j:i∈T,j∈[2N]\T(S
TG(s, z)S)(T)Wi∈[2N]\T,j∈T −M

T). (2.5.29)

Next, we wish to estimate the operator norm of the matrix ED−1. We will show that,

|ED−1|op ≤ Ck
ψ
√
Nη
, (2.5.30)

with overwhelming probability. Here E =
∑3
i=1 E

i .

More precisely, firstly note that D is a 2N × 2N dimensional matrix with 0 at the all non-

diagonal 2 × 2 blocks and with diagonal blocks equal to

Di,i =

−z −ms,fc(z) λi

λi −z −ms,fc(z)

 .
So the inverse of D will preserve the same structure. Thus, we can compute that:

D−1
i,i =

1
2

gi + g−i gi − g−i

gi − g−i gi + g−i

 .
Moreover since Im(z + sms,fc(z)) ⪰ (s+ η), we get that |gi | ⪯ 1

s+η , for all i : |i | ∈ [N]. All these

imply that all the entries of D−1 are bounded by 1
s+η up to some universal constant. So it

is implied that

|D−1|op ⪯k
1

s + η
. (2.5.31)
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Next, similarly to the proof of (2.16) in [6] one can prove that

|E|op ⪯k (s + η)
ψ
√
Nη
. (2.5.32)

So after combining (2.5.31) and (2.5.32), we get (2.5.30). Set A to be the event where

(2.5.30) holds with overwhelming probability. Then it is true that for appropriately large N

P(Ac) ≤ N−(4a +6)k , (2.5.33)

where a is given in the Assumptions 2.5.1. Next by Taylor’s expansion on the event A one

has

(F − zI)−1
i,j∈T = (D − E)−1 =

f −1∑
l=0

D−1(ED−1)l + (D − E)−1(ED)−f , (2.5.34)

where f can be chosen to be arbitrary large. We choose f =
⌈

8k(a +1)
c

⌉
, where c is mentioned

in the definition of ψ in (2.5.2) and a is mentioned in the Assumption 2.5.1. Moreover since

all the non diagonal 2 × 2 blocks of D−1 are 0, we can ignore the case of l = 0 in (2.5.34),

since we are interested in the elements of Gi,j∈T, such that bi , bi+1modN . Moreover set

X lbi ,bi+1
= (D−1(ED−1)l)bi ,bi+1 and X∞bi ,bi+1

= ((D − E)−1(ED)f )bi ,bi+1 .

So in order to prove (2.5.21), firstly we need to bound Y from below. Note that similarly

to [6] (2.13) one has

Im

 N∑
i=−N

q2
i+Ngi

 = N∑
i=−N

(η + s Im
(
ms,fc(z)

)
q2
i

|λi(0) − z −ms,fc(z)|2
⪰

η

N2a , (2.5.35)

due to the fact that z ∈ Dk , Assumption 2.5.1 and (2.5.9). So it is easily implied that

Y ⪰
ηψ log(N)
N2a √Nη

. (2.5.36)

Returning to the analysis of equation (2.5.25), one has that∑
B

∑
bi={Bi ,Bi+N}

qb1qb2qb3 · · · qb4kEXb1,b2Xb3,b4 · · ·Xb4k−1,b4k (2.5.37)

=
∑
B

∑
bi {Bi ,Bi+N}

qb1qb2qb3 · · · qb4kE
2k∏
i=1

Xb2i−1,b2i1 (A) + O(N2kη−2k)P(Ac), (2.5.38)

where the second part on the right hand side of the equation comes from the fact that

Xbi ,bi+N are uniformly bounded by η−1 and the fact that |q|1 ≤ N1/2 since |q|2 = 1. So one

has that

η−2kP(Ac)

∣∣∣∣∣∣∣∑i,j qiqj
∣∣∣∣∣∣∣
2k

= η−2kP(Ac)

 2N∑
i=1
|qi |

∑
j,i

|qj |


2k

⪯ η−2kP(Ac)

 ∑
i∈[2N]

N1/2|qi |

2k

⪯ N2kη−2kP(Ac). (2.5.39)
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Next by (2.5.33),(2.5.36) and the fact that z ∈ Dk one has that

N2kη−2kP(Ac) ≤ N−2k−2η−2k ≤
η2k

N2k ≤ Y
2k .

So, we have proven that we can restrain to the event that A holds. Returning again to the

analysis of the sum in the form (2.5.24) one has that∑
b

qb1qb2qb3 · · · qb4kEXb1,b2Xb3,b4 · · ·Xb4k−1,b4k1 (A) = (2.5.40)

=
∑

b

qb1qb2qb3 · · · qb4kE1 (A)
2k∏
i=1

f −1∑
l=1

X (l)
b2i−1,b2i

(2.5.41)

+
∑

b

qb1qb2qb3 · · · qb4k

2k∑
i=1

E1 (A)X (∞)
2i−1,2i

∏
j≤i−1

Xb2j−1,b2j

∏
j≥i+1

(
Xb2j−1,b2j − X

(∞)
b2j−1,b2j

)
. (2.5.42)

We will show that the second part of the right hand side of the equation is negligible on the

event A. Note that since |(D − E)−1|op ⪯k
1
η and since (2.5.30) holds in A we get that

|X (∞)
bi ,bi+1

| ⪯k
1
η

(
ψ
√
Nη

)f
.

All these, imply that∣∣∣∣∣∣∣∣
∑

b

qb1qb2qb3 · · · qb4k

2k∑
i=1

E1 (A)X (∞)
2i−1,2i

∏
j≤i−1

Xb2j−1,b2j

∏
j≥i+1

(Xb2j−1,b2j − X
(∞)
b2j−1,b2j

)

∣∣∣∣∣∣∣∣
⪯k

N2k

η

(
ψ
√
Nη

)f
.

(2.5.43)

The N2k factor in (2.5.43), comes from bounding the quantity |
∑
i,j qiqj |. By the way f is

chosen, we get that
N2k

η

(
ψ
√
Nη

)f
⪯k

( η

N2a

)2k
(
ψ
√
Nη

)2k

⪯k Y
2k .

So, the remaining quantity in the sum we need to bound is

∑
1≤l1,l2,··· ,l2k≤f −1

∑
b

qb1qb2qb3 · · · qb4kE1 (A)
2k∏
i=1

X (li )
b2i−1,b2i

.

Moreover due to Cauchy–Schwarz inequality one can show that∣∣∣∣∣∣∣E1 (A)
2k∏
i=1

X (li )
b2i−1,b2i

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣E

2k∏
i=1

X (li )
b2i−1,b2i

∣∣∣∣∣∣∣ + P(Ac)

∣∣∣∣∣∣∣E
2k∏
i=1

X (li )
b2i−1,b2i

∣∣∣∣∣∣∣
2

.

So, we will work with the right hand side of the last inequality, meaning we won’t focus

anymore on the event A. Moreover we will focus on the first summand of the right hand

side of the inequality, since the second one can be treated analogously.
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Next, we can transform the previously mentioned quantity in a more appropriate form.

Firstly, note for each i ∈ [k]:

X (li )
b2i−1,b2i

=
∑
a(i)

(D−1j=1)ED−1)a(i)
j ,a

(i)
j+1

and similarly for i ∈ [2k] \ [k]

X̄ (li )
b2i−1,b2i

=
∑
a(i)

(D−1j=1)ED−1)a(i)
j ,a

(i)
j+1
,

where the sum is taken over all a
(i) ⊆ Tli+1, i.e., all the li-tuples with the restriction that

a(i)
1 = b2i and a(i)

li+1 = b2i+1. So, since this is true for all i ∈ [2k] one can show:

2k∏
i=1

X (li )
b2i−1,b2i

=
∑

a

∏
(D−1(j=1)ED−1)′

a(i)
j ,a

(i)
j+1
,

where the sum is taken over all a = (a1, a2 · · · a2k) and for i ∈ [2k] \ [k], the ′ denotes the

conjugate.

Next set

E[a(i)
j ],[a(i)

j+1] =

 E[a(i)
j ],[a(i)

j+1] E[a(i)
j ]+N,[a(i)

j+1]

E[a(i)
j ],[a(i)

j+1]+N E[a(i)
j ]+N,[a(i)

j+1]+N

 ,
where [a(i)

j ] is the least positive integer which is equal to a(i)
j mod (N). Moreover set

x(a(i)
j ) = 1

{
a(i)
j = [a(i)

j ] + N
}
+ 1.

Furthermore, since D−1 consists of zero at the non diagonal 2 × 2 blocks, one has that

for j , 1

(ED−1)a(i)
j ,a

(i)
j+1
=

(
E[a(i)

j ],[a(i)
j+1]]D

−1
[a(i)
j+1],[a(i)

j+1]

)
x(a(i)

j ),x(a(i)
j+1)

(2.5.44)

=

(
E[a(i)

j ],[[a(i)
j+1]

)
x(a(i)

j ),1

(
D−1

[a(i)
j+1],[a(i)

j+1]

)
1,x(a(i)

j+1)
+

(
E[a(i)

j ],[[a(i)
j+1]

)
x(a(i)

j ),2

(
D−1
a(i)
j+1,a

(i)
j+1

)
2,x(a(i)

j+1)
(2.5.45)

and similarly for j = 1

(D−1ED−1)a(i)
1 ,a

(i)
2
=

2∑
l=1

2∑
m=1

(
D−1

[a(i)
1 ],[a(i)

1 ]

)
[a(i)

1 ],l

(
E[a1](i),[a2]2

)
l,m

(
D−1

[a(i)
2 ],[a2](i)

)
m,[a(1)

2 ]
.

So it is implied that

E

2k∏
i=1

X (li )
b2i−1,b2i

=
∑

a

∑
c

E

2k∏
i=1

(
D−1

[a(i)
1 ],[a(i)

1 ]

)′
x(a(i)

1 ),ci1

(
E[a(i)

1 ],[a(i)
2 ]

)′
c(i)
1 ,c

(i)
2

(
D−1

[a(i)
2 ],[a(i)

2 ]

)′
c(i)
2 ,x(a(i)

2 )
· (2.5.46)

·
∏
j,1

(
E[a(i)

j ],[[a(i)
j+1]

)′
x(a(i)

j ),c(i)
j+1

(
D−1

[a(i)
j+1],[a(i)

j+1]

)′
c(i)
j+1,x(a(i)

j+1)
. (2.5.47)



55

Here c is any subset of {1,2}(
∑2k
i=1 li )+1. So since the entries of D−1 are deterministic and for

all a(i)
j the entries of D−1

[a(i)
j ],[a[i]

j ]
are bounded by |g[a(i)

j ]| + |g−[a(i)
j ]|, it is true that

∣∣∣∣∣∣∣E
2k∏
i=1

X (li )
b2i−1,b2i

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑

a

∏
i,j

(
|g[a(i)

j ]| + |g−[a(i)
j ]|

)∑
c

E

2k∏
i=1

(
E[a(i)

1 ],[a(i)
2 ]

)′
c(i)
1 ,c

(i)
2

∏
j,1

(
E[a(i)

j ],[[a(i)
j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ .
Next we will show an important inequality, necessary to estimate the expectation of the

products in the previous equations.

Lemma 2.5.13. It is true that for each array (a ij ) with entries in T,∣∣∣∣∣∣∣∣
∑

c

E

2k∏
i=1

(
E[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E[a(i)

j ],[[a(i)
j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ ⪯k
(
ψ log(N)

)∑ li (s + η)∑i li(
Nη

)∑
i=1 li/2

(2.5.48)

· X
(
[a(1)

1 ], [a(1)
2 ], [a1

2 ], [a1
3 ] · · · , [a(1)

l1+1], [a(2)
1 ] · · · , [a(2)

l2+1] · · · , [a(2k)
l2k

]
)
, (2.5.49)

where X (·) is the indicator function that indicates if every element in the array appears an

even number of times.

Proof. Note that by the definition of the matrices, one has that

E[a(i)
j ],[a(i)

j+1] = E
1
[a(i)
j ],[a(i)

j+1]
+ E

2
[a(i)
j ],[a(i)

j+1]
+ E

3
[a(i)
j ],[a(i)

j+1]
.

Moreover, after conditioning on the matrix W ′T,T, the matrices E
1,E2,E3 are independent

since E
1 is dependent only on (F − zI)(T) and is diagonal and deterministic, E

2 depends

only on W ′T,T and E
3 depends on GT and W ′[2N]\T,T. We will use the notation ET for the

conditional expected value. So in order to prove Lemma 2.5.13 it suffices to show that∣∣∣∣∣∣∣∣
∑

c

ET

2k∏
i=1

(
E

1
[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E

1
[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ ⪯k
(
ψs

Nη

)∑ li

X
((

[a ij ]
)
i∈[2k],j∈[2li ]

)
≤

≤ X
((

[a ij ]
)
i∈[2k],j∈[li ]

) (ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

,

(2.5.50)∣∣∣∣∣∣∣∣
∑

c

ET

2k∏
i=1

(
E

2
[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E

2
[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ ⪯k
( s
N

)∑ li/2
X

((
[a ij ]

)
i∈[2k],j∈[li ]

)
≤

≤ X (
(
[a ij ]

)
i∈[2k],j∈[li ]

)
(ψ log(N))

∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

,

(2.5.51)∣∣∣∣∣∣∣∣
∑

c

ET

2k∏
i=1

(
E

3
[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E

3
[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ ⪯k
(
sψ log(N)
√
Nη

)∑ li/2

X (
(
[a ij ]

)
i∈[2k],j∈[li ]

) ≤

X
((

[a ij ]
)
i∈[2k],j∈[li ]

) (ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

.

(2.5.52)
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This is true, since if we assume (2.5.50),(2.5.51),(2.5.52) hold for any array then∣∣∣∣∣∣∣∣
∑

c

ET

2k∏
i=1

(
E[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E[a(i)

j ],[[a(i)
j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ (2.5.53)

≤
∑

P1,P2,P3

∣∣∣∣∣∣∣∣
∑

c

∏
y∈[3]

ET

2k∏
i=1

1

{
a(i)

1 , a
(i)
2 ∈ P

y
} (

E
y

[a(i)
1 ],[a(i)

2 ]

)′
c(i)
1 ,c

(i)
2

∣∣∣∣∣∣∣∣ · (2.5.54)

·

∣∣∣∣∣∣∣∣
∏
j,1

1

{
a ij , a

i
j ∈ P

y
}
·

(
E
y

[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ (2.5.55)

⪯k

∑
P1,P2,P3

∏
y∈[3]

X
(
[a ij ] : a ij ∈ P

y
) (

(s + η)
ψ log(N)
√
Nη

)|Py |
≤

∑
P1,P2,P3

X ([a ij ])
(
(s + η)

ψ log(N)
√
Nη

)∑ li

(2.5.56)

⪯k X ([a ij ])
(
(s + η)

ψ log(N)
√
Nη

)∑ li |

, (2.5.57)

where the sum is taken over all 3-partitions P1, P2, P3 of the set {i, j : i ∈ [2k], j ∈ [li + 1]}

such that if a ij ∈ P
y then a ij+1 ∈ P

y for each j ∈ [li] ∩ (2N + 1), i ∈ [2k] and y ∈ [3]. So the

number of these partitions depends only on k which implies the last inequality.

For the first inequality (2.5.50) note that the matrix E
1 is diagonal and its diagonal

entries are bounded by s|T| ψNη due to Theorem 4.5 of [3] and the interlacing properties of

the minors of the eigenvalues. So it is implied that |E1
[a ij ],a

i
j+1]|op ⪯ 1

{
a ji = a

i
j+1

}
s ψ
Nη . So

∑
c

∣∣∣∣∣∣∣∣ET
2k∏
i=1

(
E

1
[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E

1
[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ ≤
∑

c

ET

2k∏
i=1

∣∣∣∣∣∣∣∣E1
[a(i)

1 ],[a(i)
2 ]

∏
j,1

E
1
[a(i)
j ],[[a(i)

j+1]

∣∣∣∣∣∣∣∣
op

(2.5.58)

⪯
∑

c

∏
i,j

1

{
a ij = a

i
j+1

}
s
ψ

Nη
≤

∑
c

∏
i,j

1

{
[a ij ] = [a ij+1]

}
s
ψ

Nη
⪯k

(
ψs

Nη

)∑ li

X
((

[a ij ]
)
i∈[2k],j∈[li+1]

)
.

(2.5.59)

For the second inequality (2.5.51) by the way E
2 was defined, one can compute that∣∣∣∣∣∣∣∣

∑
c

ET

2k∏
i=1

(
E

2
[a(i)

1 ],[a(i)
2 ]

)′
c(i)

1 ,c
(i)
2

∏
j,1

(
E

2
[a(i)
j ],[[a(i)

j+1]

)′
x(a(i)

j ),c(i)
j+1

∣∣∣∣∣∣∣∣ (2.5.60)

=

∣∣∣∣∣∣∣∣
∑

ci1∈{1,2}

ET

2k∏
i=1

(
E

2
[a(i)

1 ],[a(i)
2 ]

)
c(i)

1 ,[c
(i)
1 +1]2

∏
j,1

(
E

2
[a(i)
j ],[[a(i)

j+1]

)
x(a(i)

j ),[x(a(i)
j )+1]2

∣∣∣∣∣∣∣∣ , (2.5.61)

where [a]2 the least positive integer such that it is equal to a mod 2. Note that(
E

2
[a ij ],[a

i
j+1]

)
1,2
= −
√
swa ij ,a

i
j+1
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and
(
E

2
[a ij ],[a

i
j+1]

)
2,1
= −
√
swa ij+1,a

i
j
. Moreover, since the non zero entries of W ′ are indepen-

dent, symmetric, normal random variables with variance 1
N , the product is non-zero only

if every pair ([a ij ], [a
i
j+1]) in the product appears an even number of times. All these imply

that

∑
ci1∈{1,2}

∣∣∣∣∣∣∣∣ET
2k∏
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(
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∏
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[a(i)
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∣∣∣∣∣∣∣∣ ⪯k
∑

ci1∈{1,2}

(
s

N
)
∑
li/2X ([a ij ]),

which implies (2.5.51). The constant which is implied in the last inequality can be chosen

to be 2k
∏∑

li
j=1 E(

√
Nw1,1)2j, which is a large constant depending only on k since

√
Nw1,1 ∼

N(0,1).

For the third inequality, (2.5.52), one can show that

∑
c

ET

2k∏
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(
E
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(2.5.62)

=
∑

{(ci2j−1,c
i
2j)∈c:a i2j−1,a

i
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ET

 2k∏
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E
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(2.5.63)

·

∏
j,1

(
E

3
[a(i)
j ],[[a(i)
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)
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=
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, (2.5.65)

where

(
Ẽ

3
[i],[j]

)
l,m
=


(
E

3
[i],[j]

)
l,m

1 {[i] , [j] or l , m}(
E
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)
l,m
+ s
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i∈[N]∩[2N]\T G

T
ii +

s
N1 {l = 2}

∑N
i∈[N]∩[2N]\T G

T
i+N,i+N , else

So by construction one can compute that(
Ẽ

3
)
[i],[j]
=

s

∑f,k<T∪2N\[N](wj,fwk,i − 1{[i]=[j]}1{f =k}
1
N )GTk+N,f +N

∑
f,k<T∪2N\[N]wf,jwk,iGTk,f +N∑

f,k<T∪2N\[N]wj,fwi,kGTk+N,f
∑
f,k<T∪2N\[N](wf,jwi,k − 1{[i]=[j]1{f =k}

1
N )GTk,f


(2.5.66)
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As a result
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3
[a(i)
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)′
x(a(i)
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= (2.5.67)

s
∑
li
∑

c

∑
�1

1,�
1
2··· ..�

2k
2l2k
<T

ET

2k∏
i=1

[(
W ′[a i1],[�i1]

)
[ci1+1]2,ci1

(
W ′[a i2],[�i2]

)
ci2,[c

i
2+1]2

−
1a i1=�

i
1
1a i2=�

i
2

N

]
· (2.5.68)

·
∏
j,1

(W ′[a ij ],[�ij ])[x(a ij )+1]2,x(a ij )

(
W ′[a ij+1],[�ij+1]

)
cij ,[c

i
j+1+1]2

−
1a ij=�

i
j
1a ij+1=�

i
j+1

N

 · (2.5.69)

·

2k∏
i=1

(
GT[�i1],[�i2]

)
[ci1+1]2,[ci2+1]2

∏
j,1

(
GT[�ij ],[�ij+1]

)
[x(a ij )+1]2,[cij+1]2

. (2.5.70)

Next set G to be the graph with vertices {[�1
1], [�1

2], · · · · · · [�2k
2l2k ]} and with edges the succe-

sive terms ([�i2j−1], [�i2j]). Set ρ(G) the indicator function that every vertex of G is adjacent

to at least two edges, v = {[�1
1], [�1

2], · · · [�2k
2l2k ]}, γr∈[v] the non-repeating vertices of G, dr the

multiplicity of γr and o the number of self loops in G. So, by (2.5.11), (2.5.10) and (2.5.12)

one has that with overwhelming probability

ρ(G)

∣∣∣∣∣∣∣∣
2k∏
i=1

(
GT[�i1],[�i2]

)
[ci1+1]2,[ci2+1]2

∏
j,1

(
GT[�ij ],[�ij+1]
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[x(a ij )+1]2,[cij+1]2

∣∣∣∣∣∣∣∣ (2.5.71)

⪯k ρ(G)
ψ

∑
li

√
Nη

∑
li−o

∏
r∈[v]

(
|gγr |

dr/2 + |g−γr |
dr/2

)
. (2.5.72)

Thus one can show similarly to the proof of (2.40) in [6] that the following holds with

overwhelming probability

ρ(G)
∑
�ij<T

∣∣∣∣∣∣∣∣
2k∏
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∏
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∑
liN

∑
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η
∑
li/2

.

(2.5.73)

Next we need to bound the quantity

ET
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−
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]
· (2.5.74)

·
∏
j,1

(W ′[a ij ],[�ij ])[x(a ij )+1]2,x(a ij )

(
W ′[a ij+1],[�ij+1]
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cij ,[c
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1a ij=�
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1a ij+1=�

i
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N

 . (2.5.75)

Note, that in order for the product to be different than 0, every pair ([a ji ], [b
j
i]) must appear

an even number of times. Moreover in order for the product to be different than 0, for each

i, j the number of consecutive pairs ([amr ], [�mr ]) and ([amr+1], [�mr+1]) for m ∈ [2k] and r ∈ [lm],

such that exactly one of them is equal to [a ij , �
i
j ], must be also even. Furthermore, for each

i, j, if such pairs do not exist, then the number of consecutive pairs which are both equal to

[a ji , �
j
i] must be at least 2, or else the product would be 0. The latter is true since either the
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square of a centered Gaussian random variable minus its variance would appear, either

the product of two independent centered Gaussian random variables would appear.

So it is implied that in order for the product above to not be zero, it is demanded that

ρ(G) = 1 and X ([a ji ]) = 1. Here G is the graph which is associated with �ji . So by a trivial

bounding in the moments of Gaussian random variables one can show that∣∣∣∣∣ET 2k∏
i=1

[(
W ′[a i1],[�i1]

)
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(
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)
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i
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]
· (2.5.76)

·
∏
j,1
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 ∣∣∣∣∣ ⪯k N−∑
liρ(G)X ([a ij ]).

(2.5.77)

Thus, the proof of the lemma is complete after combining (2.5.76) and (2.5.73). □

We are now ready to present the proof of Theorem 2.5.7.

Proof of Theorem 2.5.7. Note that Lemma 2.5.13 holds for every sequence of indexes. In our

case though, by construction, every term in [a ij ] appears a non-zero even number of times

since they appear consecutive times for j , 1, li + 1. So one has that X ([a ji ]i∈[2k],j∈[li+1]) =

X ([a ji ]i∈[2k],j∈{1,li+1}) = X ([B)]. So by a direct application of Lemma 2.5.13
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· (2.5.78)
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∏
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j ],[[a(i)
j+1]

)′
x(a(i)

j ),c(i)
j+1

(
D−1

[a(i)
j+1],[a(i)

j+1]

)′
c(i)
j+1,x(a(i)

j+1)

∣∣∣∣∣ (2.5.79)

⪯k

∑
a

∏
i,j

(
|g[a(i)

j ]| + |g−[a(i)
j ]|

) (ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

X (B). (2.5.80)

As a result∑
1≤l1,l2,··· ,l2k≤f −1

∑
B

∑
bi={Bi ,Bi+N}

|qb1 ||qb2 ||qb3 | · · · |qb4k |

∣∣∣∣∣∣∣E
2k∏
i=1

X (li )
b2i−1,b2i

∣∣∣∣∣∣∣ (2.5.81)

⪯k

∑
1≤l1,l2,··· ,l2k≤f −1

∑
B

(ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

X (B)· (2.5.82)

·
∑

bi={Bi ,Bi+N}

|qb1 ||qb2 ||qb3 | · · · |qb4k |
∑

a

∏
i,j

(
|g[a(i)

j ]| + |g−[a(i)
j ]|

)
(2.5.83)

⪯
∑

1≤l1,l2,··· ,l2k≤f −1

∑
B

(ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

X (B)
4k∏
i=1

(
|qBi | + |qBi+N |

)∑
A

∏
i,j

(
|g[a(i)

j ]| + |g−[a(i)
j ]|

)
,

(2.5.84)

where the sum now is considered over all A ⊆ B

∑
li+2k with the restriction that [a i1] = B2i−1

and [a ili+1] = B2i .
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Moreover note that the array [a ij ] defines a partition on the set {(i, j) : i ∈ [2k], j ∈ [li + 1]}

such that (i, j) belongs to the same block of the partition with (i′, j′) if and only if a ij = a
j′

i′ .

Furthermore, denote n = |B|, di the number of times the i − th element of B, which we

denote with γi , appears without repetition and ri such that ri + di is the number of times

the i − th element of B appears in A. Note that since we are interested in the sequences

that X (B) = 1, it is implied that di are all even. So it is true that∑
di = 2k, 2k +

∑
ri =

∑
li .

Moreover, notice that each induced partition mentioned before, uniquely determines the

quantities di , li and each block of the partition has at least two elements, since X (B) = 1. So

we can modify the sum, into first summing over all partitions P and then over all A-possible

choices in the partition. Note that B is completely described by the set A. So one has that

(2.5.84) =
∑

1≤l1,l2··· ,l2k≤f −1

(ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

∑
P

∑
A∼P

X
(
{[a ij ]}i∈[2k],j∈{1,li+1}

)
· (2.5.85)

·

2k∏
i=1

(
|q[a i1]| + |q[a i1]+N |

) (
|q[a ili+1]| + |q[a ili+1]+N

)∏
i,j

(
|g[a(i)

j ]| + |g−[a(i)
j ]|

)
⪯k (2.5.86)

⪯k

∑
1≤l1,l2··· ,l2k≤f −1

(ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

· (2.5.87)

∑
P

∑
1≤γ1,γ2··· ,γn≤N

n∏
i=1

(|qγi |
di + |qγi+N |

di )(|g−γi |
di+ri + |gγi |

di+ri ) (2.5.88)

⪯k

∑
1≤l1,l2··· ,l2k≤f −1

∑
P

(ψ log(N))
∑
li (s + η)

∑
i li

(Nη)
∑
i=1 li/2

Im
(∑

(q2
i + q

2
i+N )(gi + g−i)2k

)
(s + η)

∑
li

⪯k Y
2k , (2.5.89)

where in the last inequality we used the fact that ψ log(N)(
√
Nη)−1 ≤ 1, the fact that∑

li ≥ 2k, and the fact that both the number of partitions and the number of possible li
are bounded by constants depending only on k. For the second to last inequality, we used

Proposition 2.18-inequality (2.38) in [6], the facts that di ≥ 2 and that
∑
di = 2k.

This finishes the proof of Theorem 2.5.7 □

2.5.4 Bounding the pertubed matrices at the optimal scale

At this subsection we are going to essentially bound the entries of the resolvent G(s, z)

at the optimal scale Im(z) = Nϸ−1, for all matrices Ṽ that are initially bounded by an

N−dependent parameter. Next, we will apply this result to the matrix X , which is initially

bounded due to (2.3.17) with high probability. Thus we will prove that the matrix X , after

slightly perturbing it, has essentially bounded resolvent entries at the optimal scale Nδ−1,

for any small enough, positive δ.
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Proposition 2.5.14. Let V be an N × N matrix and consider Ṽ the symmetrization of D.

Suppose that Ṽ satisfies Assumption 2.5.1 for some parameters h∗, r at energy level E0 = 0

and that there exists an N−dependent parameter B ∈ (0, 1
h∗

) such that maxj |(Ṽ − zI)−1
j,j | ≤ B.

Then for any δ > 0 and s : Nδh∗ ≤ s ≤ rN−δ , it is true that for any D > 1 there exists

C = C(δ, D) such that

P

(
sup
D

sup
i,j
|G(s, z)| ≥ BNδ

)
≤ CN−D,

where G(s, z) = (Ṽ +
√
sW − zI)−1, W is the symmetrization of an i.i.d. Gaussian matrix with

centered entries and variance 1
N and D = {E + iη : E ∈ (− r2 ,

r
2 ), η ∈ [Nδ−1,1 − r

2 ]}.

Proof. By a direct application of Theorem 2.5.6 for qk = 1 {i = k} for any k ∈ [2N] (without

loss of generality suppose k ∈ [N]), one has that with overwhelming probability uniformly

on D it is true that,

|Gk,k(s, z)| ⪯
N∑

i=−N

(|gi | + |g−i |) ⟨ui+N (0), qk⟩2 +
2N∑
i=1

(|gi | + |g−i |) |⟨ui(0), qk⟩| |⟨ui+N (0), qk⟩|

(2.5.90)

+
Nδ/2
√
Nη

Im(
N∑
i=1

(gi + g−i)(⟨ui , qk⟩ + ⟨ui+N , qk⟩). (2.5.91)

Note that by definition the k − th element of each of the columns/rows of U is 0 for all the

columns/rows with index larger that N . Moreover by definition Nδ ≤ Nη. So it is implied

that the above bound becomes

|Gk,k(s, z)| ⪯
N∑
i=1

(|gi + |g−i |)|uk,i |.

Furthermore, due to Schur’s complement formula, one can prove, as in Lemma 2.3.28,

that

Gk,k = zG̃k,k(z2),

where G̃ is the resolvent of the matrix DTD. Moreover, one may compute that

DTD =
(
(U )i∈[N],j∈[N]

)T
Σ2(U )i∈[N],j∈[N],

where Σ is the diagonal matrix with the singular values of D. So it is true that∣∣∣∣∣∣∣
N∑
i=1

u2
k,i

1
λ2
i − z2

∣∣∣∣∣∣∣ = ∣∣∣G̃k,k(z2)
∣∣∣ = ∣∣∣∣∣1z Gk,k(z)

∣∣∣∣∣ ⪯ B

|z|
,

with overwhelming probability uniformly on z ∈ {z = E + iη : E ∈ (−r, r), h∗ ≤ η ≤ 1}. Thus

if we consider the sets Am(0) = (2m−1h∗,2mh∗) ∪ (−2mh∗,−2m−1h∗) and set z = iη∗ it is true

that

max
j∈[N]

∣∣∣∣∣∣∣∣
∑
λi∈Am

u2
k,i

∣∣∣∣∣∣∣∣ ⪯ min{Bη2
∗2

4m ,1}, (2.5.92)
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where the bounding by 1 is true due to the fact that the eigenvectors are considered

normalized. After this observation the proof continues in a completely analogous way to

the Proof of Proposition 3.9 in [5] and so it is omitted.

□

Corollary 2.5.15. Adopt the notation of Section 2.3. LetA be the set mentioned in Theorem

2.3.13. For all a ∈ (0,2) \ A consider the matrix X +
√
tW, where t = t(N) is defined in

Definition 2.2.9. Set {T }i,j∈[2N](z) the resolvent of X +
√
tW at z. Then it is true that for any

D > 0 and δ > 0, there exists a constant C′ = C′(a, ν, ρ, δ, D) such that

P

(
sup
Dδ

sup
i,j
|Ti,j(z)| ≥ Nδ

)
≤ C′N−D, (2.5.93)

where DCa ,δ = {E + iη : E ∈ (− 1
2Ca

, 1
2Ca

), η ∈ [Nδ−1, 1
4Ca

]} where Ca is the constant mentioned

in Theorem 2.3.13.

Proof. Due to (2.3.17), (2.3.15) and since t belongs to the desired interval (N2δ− 1
2 , N−2δ),

as is mentioned in the proof of Corollary 2.4.5, the proof of Corollary 2.5.15 is just an

application of Proposition 2.5.14 to our set of matrices. □

Remark 2.5.16. Note that bounding the entries of the resolvent of X +
√
tW as we did in

Corollary 2.5.15 at scale Nδ−1, implies the complete eigenvector delocalization in the sense

of Theorem 2.1.2. The proof of the latter claim is well-known and can be found in the proof

of Theorem 6.3 in [49].

2.6 Establishing universality of the least singular value and

eigenvector delocalization

Thus far, we have proven both universality of the least singular value, Corollary 2.4.5, and

complete eigenvector de-localization, Remark 2.5.16, for the matrix X +
√
tW in the sense

of Theorem 2.1.2. What we need to prove next, is that the transition from X +
√
tW to X +A

is smooth enough to preserve both the eigenvector delocalization and universality of the

least singular value. A first step to that direction is Theorem 2.6.4, whose proof is more

or less the same as its symmetric counterpart in [5]. Furthermore what we manage, is to

extend Theorem 3.15 of [5] to its "integrating analogue" in Proposition 2.6.7, which is not

very difficult given Theorem 2.6.4. Proposition 2.6.7 is the milestone for the comparison of

the least positive eigenvalues of X + A and X +
√
tW .

Firstly, we will use a convenient decomposition of the elements of H in order to express

the dependence of the "small" and the "large" entries of H with Bernoulli random variables.
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Definition 2.6.1. Define the following random variables for i, j ∈ [2N] : |i − j| ≥ N

ψi,j = P
(
|hi,j | ≥ N

−ρ
)
, xi,j =

P
(
|hi,j | ∈ (N−ν, N−ρ)

)
P
(
|hi,j | ≤ N−ρ

)
and

P[ai,j ∈ I) =
P(hi,j ∈ I ∩ (−N−ν, N−ν)]
P(|Hi,j | < N−ν))

, P(ci,j ∈ I) =
P(hi,j ∈ (−∞, N−ρ) ∪ (Nρ,∞) ∩ I)

P(|hi,j | ≥ N−ρ)
,

P(bi,j ∈ I) =
P(|hi,j | ∈ (N−ν, N−ρ) ∩ hi,j ∈ I)
P(|hi,j | ∈ [N−ν, N−ρ])

,

for any interval I, subset of R.

Moreover we define each bunch of

{xi,j}i,j∈2N :|i−j|≥N , {ψi,j}i,j∈[2N]:|i−j|≥N , {ai,j}i,j∈2N :|i−j|≥N , (2.6.1)

{bi,j}i,j∈2N :|i−j|≥N , {ci,j}i,j∈2N :|i−j|≥N (2.6.2)

to be independent up to symmetry and independent amongst them for different indexes i, j.

Definition 2.6.2. Define the following matrices

Ai,j =

(1 − ψi,j)(1 − xi,j)ai,j, i, j : |i − j| ≥ N

0, otherwise
(2.6.3)

Bi,j =

(1 − ψi,j)xi,jbi,j, i, j : |i − j| ≥ N

0, otherwise
(2.6.4)

Ci,j =

ψi,jci,j, i, j : |i − j| ≥ N

0, otherwise
(2.6.5)

Ψi,j =

ψi,j, i, j : |i − j| ≥ N

0, otherwise
(2.6.6)

Note that by definition H = A + B + C and X = B + C.

Next we define the way to quantify the transition from X +
√
tW to X + A.

Definition 2.6.3. Define the matrices

Hγ = γA +
√
t(1 − γ2)1/2W + X, γ ∈ [0,1]

and Gγ(z) = (Hγ − zI)−1.
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2.6.1 Green function Comparison

Next we present a comparison theorem for the resolvent entries of Hγ .

Theorem 2.6.4. Let a, b, ρ, ν be constants that satisfy (2.2.1). Additionally suppose that

a ∈ (0,2) \ A as in Theorem 2.3.14. Moreover let F : R→ R such that

sup
|x |≤2Nϸ

∣∣∣F (µ)(x)
∣∣∣ ≤ NC0ϸ , sup

|x |≤2N2

∣∣∣F (µ)(x)
∣∣∣ ≤ NC0 , (2.6.7)

for some absolute constant C0 > 0, for some integer n = n(a, b, ρ, ν, C0) sufficiently large and

any ϸ > 0 and µ ∈ [n]. Furthermore fix z = E + iη for E ∈ R and η ≥ N−2. Moreover for any

matrix Ψ denote EΨ the conditional expectation with respect to Ψ. Set

Ξ(z) = sup
γ∈[0,1]

max
µ∈[n]

max
i,j∈[2N]

EΨ

∣∣∣∣F (µ) Im(Gγi,j(z))
∣∣∣∣ , (2.6.8)

Ω0(z, ϸ) =
{

sup
i,j
|Gγi,j(z)| ≤ Nϸ

}
, Q0(z, ϸ) = 1 − PΨ (Ω0(z, ϸ)) . (2.6.9)

Then there exist ϸ = ϸ(a, b, ρ, ν) and ω = ω(a, b, ρ, ν) such that for any matrix Ψ with at most

N1+aρ+ϸ non-zero entries, there exists a constant C = C(a, ν, ρ) so that

sup
γ∈[0,1]

∣∣∣∣EΨF (
Im(Gγi,j(z))

)
− EΨF

(
Im(G0

i,j(z))
)∣∣∣∣ ≤ CN−ω (Ξ(z) + 1) + CQ0(z, ϸ)NC+C0 ,∀i, j ∈ [2N].

(2.6.10)

A similar bound to (2.6.10) can be proven, if one replaces Im(Gγi,j(z)) and Im(G0
i,j(z)) with

Re(Gγi,j(z))) and Re(G0
i,j(z))) respectively.

Proof. The proof is similar to the proof of Theorem 3.15 in [5]. Next we give a short de-

scription of the main ideas behind the proof. We will do so only for the imaginary parts

Im(Gγi,j(z)). The proof for the real parts Re(Gγi,j(z)) is completely analogous.

Fix z ∈ C and F : R→ R satisfying the hypothesis of Theorem 2.6.4.

Firstly note that since Gγ = Gγ(Hγ − zI)Gγ , it is true that

d

dγ
Gγ =

d

dγ
Gγ(Hγ − zI)Gγ + Gγ(Hγ − zI)

d

dγ
Gγ + Gγ

d

dγ
(Hγ − zI)Gγ

So it is implied that

−
d

dγ
Gγ = Gγ

d

dγ
(Hγ)Gγ , (2.6.11)

where the derivative d
dγ is considered in every entry. So by (2.6.11) and Leibniz integral

rule, it is true that∣∣∣∣∣ ddγEΨG
γ
i,j

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

∑
p,q∈[2N]:|p−q|≥N

EΨG
γ
i,p

Ap,q − γt1/2wp,q

(1 − γ2)1/2

Gγq,j
∣∣∣∣∣∣∣∣ .
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Thus, in order to prove (2.6.10) it is sufficient to show that there exists a constant C =

C(a, ν, ρ) > 0 such that for all γ ∈ (0,1)∑
p,q∈[2N]:|p−q|≥N

∣∣∣∣∣∣EΨ Im(Gγi,pG
γ
q,j)

Ap,q − γt1/2wp,q

(1 − γ2)1/2

F ′(Im(Gγi,j)

∣∣∣∣∣∣
≤

C

(1 − γ2)1/2
(N−ω(Ξ + 1) + Q0N

C+C0)

(2.6.12)

and then integrate over any interval of the form (0, γ′) with γ′ ∈ (0,1]. The proof of (2.6.12)

is completely analogous to the proof of Proposition 4.4 in [5]. So we will give a sketch of

the proof. Firstly fix p, q ∈ [2N] : |p − q| ≥ N and set the matrices

Da,b =

H
γ
a,b, (i, j) < {(p, q), (q, p)}

Xp,q, else
(2.6.13)

Ea,b =

H
γ
a,b, (a, b) < {(p, q), (q, p)}

Cp,q, else
. (2.6.14)

Moreover set

Γ = Hγ − D, Λ = D − E (2.6.15)

R = (D − zI)−1, U = (E − zI)−1. (2.6.16)

So by Lemma 2.3.16, and as we have mentioned in the proof of Theorem 2.5.7, one can

apply Taylor’s Theorem for matrices to get that

Gγ − R = −RΓR + (RΓ)2R − (RΓ)3Gγ . (2.6.17)

Moreover, by a Taylor expansion for the function F ′, it is true that for some

ζ0 ∈ [Im(Gγi,j), Im(Ri,j)]

and ζ = Im(Ri,j) − Im(Gγi,j),

F ′(Im(Gγi,j) = F
′(ImRi,j) + ζF (2)(ImRi,j) +

ζ 2

2
F (3)(ImRi,j) +

ζ 3

6
F (4)(ζ0), (2.6.18)

where we have denoted F (l)(x) = dl

dx l F (x) for all l ∈ N.

So by combining (2.6.17) and (2.6.18), one can notice that each of the (p,q)-summand

in (2.6.12) can be viewed as a sum of finite number of monomials of Ap,q and t1/2wp,q with

coefficients depending on the matrices R and Gγ . These monomials can be categorized into

the following cases:

1. The product of even degree of terms, i.e.,
∏s
r=1 ξ

kr
i,j such that

∑
kr is even and ξ krir ,jr is

equal either to
(
(RΓ)krR

)
ir ,jr

, either equal to Im(
(
(RΓ)krR

)
ir ,jr

), either to Re(
(
(RΓ)krR

)
ir ,jr

)

for some s ∈ N and kr ∈ {0,1,2}. Then for any m ∈ {1,2,3} it is true that

EΨF
(m)

(
Im(Ri,j)

) Ap,q − γt1/2wp,q

(1 − γ2)1/2

 s∏
r=1

ξir ,jr = 0,
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which is a consequence to the independence of the matrix R from Ap,q, wp,q after

further conditioning on the matrix X , and the symmetry of the random variables

Ap,q, wp,q, which has a consequence that every odd moment of them is 0.

2. The terms that contain F (4)(ζ0) can be bounded by a Taylor expansion similarly to

Lemma 4.7 in [5]. More precisely one can show that∣∣∣∣∣∣EΨ Im(Gγi,pG
γ
q,j)

Ap,q − γt1/2wp,q

(1 − γ2)1/2

 ζ 3F (4)(ζ0)

∣∣∣∣∣∣ ≤ N−2 C

(1 − γ2)1/2
(N−ω(Ξ+1)+Q0N

11+C0),

for parameters ω > ϸ0 > 0, such that

ϸ0 :=
a

100
min{(4 − a)ν − 1, (2 − a)ν − aρ, ν − ρ,

ρ

2
,1}, (2.6.19)

ω := min{(a − 2ϸ0)ρ − 15ϸ0, (2 − a)ν − aρ − 15ϸ0, (4 − α)ν − 1 − 10ϸ0, (4 − 2a)ν − 15ϸ0}

(2.6.20)

These parameters also appear in (4.25) of [5].

3. Analogously to the previous bound, one can prove that for the s− products of ξ kri,j ,

when s ∈ {1,2,3,4}, kr ∈ {1,2,3} and
∑
kr ≥ 3, it holds that for any m ∈ {1,2,3},∣∣∣∣∣∣∣EΨF (m)(Im(Ri,j))

Ap,q − γt1/2wp,q

(1 − γ2)1/2

 s∏
r=1

ξir ,jr

∣∣∣∣∣∣∣ ≤ N−2 C

(1 − γ2)1/2
(N−ω(Ξ+1)+Q0N

11+C0).

(2.6.21)

4. The remaining terms are the monomials of 2− degree. So it can be proven that,∣∣∣∣∣∣EΨ(Im(RΓR)i,pRq,j)F
′

(Im(Ri,j)
Ap,q − γt1/2wp,q

(1 − γ2)1/2

∣∣∣∣∣∣ (2.6.22)

≤ N−2 C

(1 − γ2)1/2

[
(N−ω(Ξ + 1) + Q0N

11+C0) + Naρ+3ϸ0−1tΞ(ψp,q + 1 {p = q})
]
, (2.6.23)∣∣∣∣∣∣EΨ Im(Ri,pRq,j) Im(RΓR)i,jF (2)(ImRi,j)

Ap,q − γt1/2wp,q

(1 − γ2)1/2

∣∣∣∣∣∣ (2.6.24)

≤ N−2 C

(1 − γ2)1/2

[
(N−ω(Ξ + 1) + Q0N

11+C0) + Naρ+3ϸ0−1tΞ(ψp,q + 1 {p = q})
]
. (2.6.25)

The proof of these inequalities is a consequence of further comparison between the

entries of the matrices R and U , similar to the one which was done for the matrices

Gγ and R before.

So after summing over all possible (p,q) and taking into account that t ∼ N (a−2)ν and

that there are at most N1+aρ+ϸ non-zero entries of Ψ with overwhelming probability, see the

proof of Corollary 2.6.6, one has that (2.6.12) holds, which finishes the proof. □

In what follows, set Ca the constant mentioned in Theorem 2.3.14. So due to Theorem

2.6.4 one can prove the following.
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Proposition 2.6.5. Let a, b, ν, ρ as in (2.2.1). Moreover fix ς > 0 arbitrary small. Then for

each δ > 0 and D > 0 there exists a constant C = C(a, ρ, ν, b) such that

P

 sup
γ∈[0,1]

sup
E∈[− 1

2Ca ,
1

2Ca ]
sup

η≥Nς−1
max
i,j
|Gγi,j(E + iη)| ≥ Nδ

 ≤ CN−D. (2.6.26)

The constant Ca in (2.6.26) is the constant mentioned in Theorem 2.3.14.

Proof. The proof is based on Theorem 2.6.4 and is similar to the proof of Proposition 3.17 in

[5], so we will just describe the key ideas behind the proof. The proof is done in steps. Set

p =
⌈
D+30
δ

⌉
and consider the function F2p(x) = |x |2p+1. Note that F2p satisfies the hypothesis

of Theorem 2.6.4. Moreover by Corollary 2.5.15 there exists a constant C′ = C′(a, b, ν, ρ)

such that

P

 sup
E∈[− 1

2Ca ,
1

2Ca ]
sup

η≥Nς−1
max
i,j
|G0
i,j(E + iη)|

 ≤ C′N−D.
Fix ϸ0 and ω, the constants from the application of Theorem 2.6.4 for the function Fp.

Moreover define the quantities

B(δ, η) = P
 sup
γ∈[0,1]

max
i,j
|Gγ(E + iη)| ≥ Nδ

 ,
for E ∈

[
− 1

2Ca
, 1

2Ca

]
and η ≥ Nς−1. Set s = ϸ

4 . Then one can show that there exists a constant

A = A(δ, D) such that,

B(δ, η) ≤ ANAB(
ϸ0
2
, Nση) + AN−D, (2.6.27)

which can be proven by (i) integrating over Ψ in the conclusion of Theorem 2.6.4 for Fp after

using (2.6.28), (ii) Corollary 2.5.15, (iii) Markov’s Inequality applied for γ ∈ N−20Z ∩ (0,1)

and (iv) the deterministic estimates in the end of the proof of Lemma 4.3 in [5].

Thus in order to conclude, one can use induction over all k ∈
[
−1,

⌈1−ς
s

⌉]
to show that

B

(ϸ0
2
, N−kσ

)
≤ AN−D

and then extend to all E ∈
[
− 1

3C ,
1

3C

]
and η ≥ Nς−1 by deterministic estimates of the form

|Gγ(z) − Gγ(z′)| ≤ N6|z − z′| for an appropriately chosen grid. □

Corollary 2.6.6. Fix F : R → R such that it satisfies the assumption of Theorem 2.6.4

and E ∈
[
−1
3C ,

1
3C

]
and η ≥ Nς−1, for an arbitrary small ς > 0. Then there exists a constant

c = c(a, b, ν, ρ, C0) and a large constant C = C(a, b, ν, ρ) such that

sup
γ∈[0,1]

∣∣∣∣EF (Im(Gγi,j(z))) − EF (Im(G0
i,j(z)))

∣∣∣∣ ≤ CN−c, for all i, j ∈ [2N].

Proof. Firstly note that due to Chernoff bound there exists a constant C′ such that

P

(
|(i, j) : Hi,j ∈ [N−ρ,∞)| <

(
N1+aρ

C′
, C′N1+aρ

))
≤ C′ exp

(
−N

C′

)
. (2.6.28)
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Set Ω =
{
(i, j) : |Hi,j | ∈ [N−ρ,∞)| ∈

(
N1+aρ

C′ , C
′N1+aρ

)}
. Moreover by the deterministic estimate

|Gγi,j | ≤ η
−1 ≤ N and the hypothesis for F one has that |F (Im(Gγi,j)| ≤ N

C0 and hence,∣∣∣∣EF (Im(Gγi,j(z))) − F (Im(G0
i,j(z)))

∣∣∣∣ ≤ ∣∣∣∣E1 (Ω)F (Im(Gγi,j(z))) − F (Im(G0
i,j(z)))

∣∣∣∣ + NC0C′ exp
(
−
N

C′

)
.

Note that on the set Ω we can apply Theorem 2.6.4. Moreover by Proposition 2.6.5, one

has that Q0(z, ϸ) ≤ CN−D for any D > 0 and similarly show that

Ξ ≤ NC0Q0(z) + CNC0ϸ.

So the proof is complete after choosing an appropriately large D > 0. □

Next, we extend the comparison result in such way that we can use in order to approxi-

mate the gap probability.

Proposition 2.6.7. Fix parameters a, b, ρ, ν as in (2.2.1). Let q : R → R a C∞ function

with all its derivatives bounded by an absolute constant M greater than 1. Then for any

η ≥ N−2 and any positive sequence r(N) such that lim r(N) = r > 0 there exist constants

ω = ω(a, ρ, ν, b, r), ϸ = ϸ(a, ρ, ν, b, r) and C = C(a, ρ, ν, b, r) such that

sup
γ∈[0,1]

∣∣∣∣∣∣∣Eq
∫ r(N)

N

−
r(N)
N

2N∑
i=1

ImGγi,i(y + iη)dy

 − Eq

∫ r(N)
N

−
r(N)
N

2N∑
i=1

ImG0
i,i(y + iη)dy


∣∣∣∣∣∣∣ ≤

C
(
MN−ω +MNCQ(ϸ, η)

)
,

(2.6.29)

where

Q(ϸ, η) = P

 sup
E∈[− 1

3C ,
1

3C ]
max
i,j
|Gγi,j(E + iη)| ≥ Nϸ

 .
Moreover if we suppose that η ≥ Nς−1, for arbitrary small ς > 0, then there exists a constant

c = c(a, ρ, ν, b) such that,

sup
γ∈[0,1]

∣∣∣∣∣∣∣Eq
∫ r(N)

N

−
r(N)
N

2N∑
i=1

ImGγi,i(y + iη)dy

 − Eq

∫ r(N)
N

−
r(N)
N

2N∑
i=1

ImG0
i,i(y + iη)dy


∣∣∣∣∣∣∣ ≤ CN−c. (2.6.30)

Proof. For simplicity we will assume r is a constant. The proof of (2.6.29) is similar to the

proof of Theorem 2.6.4. Next we highlight the differences.

Note that similarly to the proof of Corollary 2.6.6, it is sufficient to prove that for any

matrix Ψ with at most N1+aρ non-zero entries it is true that,

sup
γ∈[0,1]

∣∣∣∣∣∣∣EΨq
∫ r

N

− r
N

2N∑
i=1

ImGγi,i(y + iη)dy

 − EΨq

∫ r
N

− r
N

2N∑
i=1

ImG0
i,i(y + iη)dy


∣∣∣∣∣∣∣

≤ C
(
MN−ω +MNCQ(ϸ)

)
.

(2.6.31)

Furthermore one can compute the derivative of the previous quantity with respect to γ,

as in Theorem 2.6.4. Thus by Leibniz integral rule, Fubini Theorem and (2.6.11) it is true

that ∣∣∣∣∣∣∣ ddγEΨq

∫ r
N

− r
N

2N∑
i=1

ImGγi,i(y + iη)dy


∣∣∣∣∣∣∣ ≤
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≤

∫ r
N

− r
N

2N∑
i=1

∑
p,q∈[2N]:|p−q|≥N

∣∣∣∣∣∣∣Eψq′
∫ r

N

− r
N

2N∑
i=1

ImGγi,i(y + iη)dy

 Im(Gγi,pG
γ
q,i)

Ap,q − γt1/2wp,q

(1 − γ2)1/2

dy
∣∣∣∣∣∣∣ .

As a result it is sufficient to prove that for any y ∈
(
− rN ,

r
N

)
,

∑
p,q∈[2N]:|p−q|≥N

∣∣∣∣∣∣∣EΨq′
∫ r

N

− r
N

2N∑
i=1

ImGγi,i(y + iη)dy

 Im(Gγi,pG
γ
q,i)

Ap,q − γt1/2wp,q

(1 − γ2)1/2


∣∣∣∣∣∣∣ (2.6.32)

≤
C

(1 − γ2)1/2
M(N−ω + Q(ϸ, η)NC). (2.6.33)

But the proof of (2.6.32) is similar to the proof of (2.6.12), with the main difference

located in the Taylor expansion which now instead of being applied as in (2.6.18), it will

be applied for the quantities
∫ r

N

− r
N

∑2N
i=1 ImGγi,i(y+ iη)dy and

∫ r
N

− r
N

∑2N
i=1 ImRi,i(y+ iη)dy for fixed

p, q. But eventually, this does not affect the proof since each (p,q)-summand can again be

expressed into monomials of Ap,q, wp,q, which do not depend on the parameters η and y,

and since the quantity Q0(ϸ, η) is replaced by Q(ϸ, η) in the bound.

Moreover, if we assume η ≥ Nς−1, then Q(ϸ, η) is smaller than N−D for any D and for

sufficient large N . Thus similarly to the proof of (2.6.6), one can prove (2.6.30) by (2.6.29).

□

Moreover, we wish to prove that the righthand side of (2.6.29) tends to 0 as N tends to

infinity for η = O( 1
N1+ς ), below the natural scale. This is achieved via the following lemma.

Lemma 2.6.8 ([50],Lemma 2.1). Let Y be an N × N matrix. Set the following quantity

Γ(Y, E + iη) = max{1,max
i,j
|(Y − (E + iη)I)−1

i,j |)}.

Then for any M ≥ 1 and η > 0 the following deterministic inequality holds

Γ

(
Y, E + i

η

M

)
≤ MΓ(Y, E + iη). (2.6.34)

Corollary 2.6.9. Fix ς and δ arbitrary small positive numbers. Set η1 = N−ς/2−1. Then by

(2.6.34) and (2.6.26) one has that for any D > 0 and for sufficient large N, it is true that

P

 sup
γ∈[0,1]

sup
E∈[− 1

3C ,
1

3C ]
max
i,j
|Gγi,j(E + iη1)| ≥ Nδ+ς

 ≤ CN−D. (2.6.35)

So in the setting of Proposition 2.6.7, it is implied that there exist two positive constants

C = C(a, b, ν, ρ, r), c = c(a, b, ρ, ν) such that

sup
γ∈[0,1]

∣∣∣∣∣∣∣Eq
∫ r(N)

N

−
r(N)
N

2N∑
i=1

ImGγi,i(y + iη1)dy

 − Eq

∫ r(N)
N

−
r(N)
N

2N∑
i=1

ImG0
i,i(y + iη1)dy


∣∣∣∣∣∣∣ ≤ CN−c. (2.6.36)
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2.6.2 Approximation of the gap probability

The goal of this subsection is to approximate the gap probability, i.e., the probability that

there are no eigenvalues in an interval, by C∞ functions of the Stieltjes transform as in

Proposition 2.6.7. In order to prove the latter, we use similar tools as in Section 5 of [5].

First, define the following quantities for any r > 0, γ > 0 and η ≥ 0.

Xx (t) = 1 {t ∈ (−x, x)} , for all x ∈ R

θη(x) =
1
π

Im
(

1
x − iη

)
=

1
π

η

η2 + x2 , for all x ∈ R

Tr Xr * θη(Hγ) =
1
π

∫ r
2N

− r
2N

2N∑
i=1

ImGγi,i(x + iη)dx =
1
π

∫ r
2N

− r
2N

2N∑
i=1

η

(λi(Hγ) − x)2 + η2
dx.

(2.6.37)

Moreover for any N×N matrix Y with eigenvalues denoted by λi(Y ) and for any E1, E2, E ∈ R

such that E1 ≤ E2 and E > 0, we denote

iN (Y, E1, E2) = #{i ∈ [N] : λi(Y ) ∈ (E1, E2)},

iN (Y, E) = #{i ∈ [N] : λi(Y ) ∈ (−E, E)}.
(2.6.38)

Moreover set {λγi }i∈[2N] the eigenvalues of Hγ arranged in increasing order.

Lemma 2.6.10. For any γ ∈ [0,1] and I ⊆
(
− 1

3C ,
1

3C

)
such that |I | = Nς/2−1, it is true that∣∣∣{i ∈ [2N] : λγi ∈ I}

∣∣∣ ≤ 2|I |N1+ς/2

with overwhelming probability.

Proof. For the convenience of notation, suppose that

I = (E − η, E + η)

.

Moreover set the event

Ωη =

 sup
γ∈[0,1]

sup
E∈[− 1

3C ,
1

3C ]
max
i,j
|Gγi,j(E + iη)| ≥ Nς/2

 . (2.6.39)

By (2.6.5), Ωcη holds with overwhelming probability. Then

1

(
Ωcη

)
Nς/2 ≥

1

(
Ωcη

)
2N

2N∑
i=1

Im(Gγi,i(E + iη)) ≥
1

(
Ωcη

)
2N

∑
λi∈I

Im(Gγi,i(E + iη)) (2.6.40)

=
1

(
Ωcη

)
2N

∑
λi∈I

η

(λi − E)2 + η2 ≥
1

(
Ωcη

)
2N |I |

|{i ∈ [2N] : λγi ∈ I}| (2.6.41)

□
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Next fix ϸ > 0 arbitrary small and r ∈ R. Set

η1 = N
−1−99ϸ , l = N−1−3ϸ , l1 = lN

2ϸ.

Lemma 2.6.11. For any γ ∈ [0,1], it is true that there exists an absolute constant C such

that with overwhelming probability∣∣∣∣∣i2N (
Hγ ,

r

N

)
− Tr Xr * θη1(Hγ)

∣∣∣∣∣ ≤ C (
N−2ϸ + i2N

(
Hγ ,−

r

N
− l,−

r

N
+ l

)
+ i2N

(
Hγ ,

r

N
− l,

r

N
+ l

))
.

Proof. Firstly note that by elementary computation as in (6.10) of [51] one has that,

|X r
N

(x) − Xr * θη1(x)| ≤ Cη1

(
2r

Nd1(x)d2(x)
+

Xr/N (x)
d1(x) + d2(x)

)
, (2.6.42)

where C is some absolute constant, d1(x) =
∣∣∣ r
N + x

∣∣∣ + η1 and d2 =
∣∣∣ r
N − x

∣∣∣ + η1. Moreover

note that the right hand side of (2.6.42) is always bounded by an absolute constant and is

O(η1/l) if mindi ≥ l. Thus by Lemma 2.6.10 one has that with overwhelming probability

∣∣∣∣∣i2N (
Hγ ,

r

N

)
− Tr Xr * θη1(Hγ)

∣∣∣∣∣ ≤ C (
Tr (f1(Hγ) + Tr(f2(Hγ)) +

η

l
i2N

(
Hγ ,
−r

N
+ l,

r

N
− l

))
(2.6.43)

+ C
(
i2N

(
Hγ ,−

r

N
− l,−

r

N
+ l

)
+ i2N

(
Hγ ,

r

N
− l,

r

N
+ l

))
, (2.6.44)

where

f1(x) = 1 {x ≤ −E − l}
2rη1

Nd1(x)d2(x)
, f2(x) = 1 {x ≥ E + l}

2rη1

Nd1(x)d2(x)
.

So in order to complete the proof we need to show that the first term on the right

side of the inequality is of order N−2ϸ. Note that due to Lemma 2.6.10 and the fact that

the length of the interval
(
− rN − l,

r
N + l

)
is smaller than Nς−1 for any ς > 0 one has that

η1
l i2N

(
Hγ ,− rN − l,

r
N + l

)
≤ N−2ϸ with overwhelming probability.

Moreover after splitting the interval
(
− 1

3C ,−
r
N − l

)
into intervals with length O(N−1), like

in [3] (5.61) and since

f1(x) ≤
η1

|E − x |
1

{
x ∈

(
−1
3C

,−
r

N
− l

)}
+

η1

|E − x |
1

{
x ∈

(
−∞,

−1
3C

)}
,

one can show that Tr f1(Hγ) ⪯ N−2ϸ. Similar bound can be proven for Tr f2(Hγ). □

Lemma 2.6.12. For any γ ∈ [0,1] there exists an absolute constant C such that

Tr Xr * θη1−l1(Hγ) − CN−ϸ ≤ i2N
(
Hγ ,

r

N

)
≤ Tr Xr * θη1+l1(Hγ) + CN−ϸ. (2.6.45)

Proof. We will prove the second inequality of (2.6.45). The proof of the first inequality is

similar.
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First note that by definition, one has that for any y1 ≥ y2 > 0,

i2N (Hγ , y2) ≤ i2N (Hγ , y1) (2.6.46)

Tr Xy2 * θη1(Hγ) ≤ Tr Xy1 * θη1(Hγ)) (2.6.47)

So we get that with overwhelming probability

i2N
(
Hγ ,

r

N

)
≤

1
l1

∫ r
N +l1

r
N

i2N
(
Hγ ,

r

N
+ y

)
dy (2.6.48)

≤
1
l1

∫ r
N +l1

r
N

Tr XNy * θη1(Hγ) + C
(
N−2ϸ + i2N (Hγ , y − l,−y + l) + i2N (Hγ ,−y − l,−y + l)

)
dy


(2.6.49)

≤ Tr Xr * θη1+l1(Hγ) + CN−ϸ (2.6.50)

In the first inequality of (2.6.48) we used (2.6.46), in the second we used Lemma 2.6.11

and in the third we used (2.6.47) for the first term in the sum and Lemma 2.6.10 for the

second. □

Next we proceed as in Lemma 5.13 of [3]. Set q̃(x) : R→ R+ be a C∞, even function, with

all its derivatives bounded by a constant M, such that

• q̃(x) = 0 for x ∈
(
−∞, −2

9

)
∪

(
2
9 ,∞

)
• q̃(x) = 1 for x ∈

(
−1
9 ,

1
9

)
• q̃(x) is decreasing on

(
1
9 ,

2
9

)
.

In the following Lemma we prove the approximation of the gap probability of Hγ by function

of the form appearing in (2.6.36).

Lemma 2.6.13. For any γ ∈ [0,1] and D > 0 it is true that

Eq̃
(
Tr Xr * θη1+l1(Hγ)

)
− N−D ≤ P

(
i2N

(
Hγ ,

r

N

)
= 0

)
≤ Eq̃

(
Tr Xr * θη1−l1(Hγ)

)
+ N−D. (2.6.51)

Proof. By Lemma 2.6.12 and for large enough N , it is true that if i2N
(
Hγ , rN

)
= 0 then

Tr Xr * θη1−l1(Hγ) ≤ 1
9 with overwhelming probability. This implies that for any large D > 0

and for N sufficiently large one has that,

P
(
i2N

(
Hγ ,

r

N

)
= 0

)
≤ P

(
Tr Xr * θη1−l1(Hγ) ≤

1
9

)
+ N−D ≤ P

(
Tr Xr * θη1−l1(Hγ) ≤

2
9

)
+ N−D

(2.6.52)

= P
[
q̃
(
Tr Xr * θη1−l1(Hγ)

)
≥ 1

]
+ N−D ≤ Eq̃

(
Tr Xr * θη1−l1(Hγ)

)
+ N−D (2.6.53)

In (2.6.53), we used the Markov inequality for the random variable q̃
(
Tr Xr * θη1−l1(Hγ)

)
. So

we have proven the second inequality of (2.6.51).
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For the first, note that again by Lemma 2.6.12, with overwhelming probability it is true

that if q̃
(
Tr Xr * θη1+l1(Hγ)

)
≤ 2

9 then i2N (Hγ , rN ) ≤ CN−ϸ + 2
9 . Thus,

Eq̃
(
Tr Xr * θη1+l1(Hγ)

)
≤ P

[
q̃
(
Tr Xr * θη1+l1(Hγ)

)
≤

2
9

]
(2.6.54)

≤ P
[
i2N

(
Hγ ,

r

N

)
≤ CN−ϸ +

2
9

]
+ N−D = P

[
i2N

(
Hγ ,

r

N

)
= 0

]
+ N−D. (2.6.55)

□

2.6.3 Proof of Theorem 2.1.2

At this subsection we prove Theorem 2.1.2. Fix r ∈ (0,∞) and ϸ > 0 small enough. Set

η1 = N−1−ϸ and l = N−1−99ϸ. Furthermore r ∈ (0,∞). Let q̃(x) denote the function defined

before Lemma 2.6.13.

• For the first part of Theorem 2.1.2 note that due to (2.6.36) and Lemma 2.6.13 one

has that there exist constants C = C(r) > 0 and c > 0, such that for large enough

D > 0 it is true that

Eq̃
(
Tr Xr * θη1+l(H

0)
)
− N−D − CN−c ≤ Eq̃

(
Tr Xr * θη1+l(H

1)
)
− N−D (2.6.56)

≤ P
(
i2N

(
H1,

r

N

)
= 0

)
≤ Eq̃

(
Tr Xr * θη1−l(H

1)
)
+ N−D (2.6.57)

≤ Eq̃
(
Tr Xr * θη1−l(H

0)
)
+ CN−c + N−D. (2.6.58)

Next note that by the definition of the symmetrization of a matrix, the gap proba-

bility is actually the tail distribution of the smallest singular value, i.e.,

P
(
i2N

(
H1,

r

N

)
= 0

)
= P

(
s1(DN ) ≥

r

N

)
.

Moreover note that the limiting distribution of the least singular value of a Gaussian

matrix is 1 − exp(−r2/2 − r) as mentioned in Theorem 1.3. of [2]. Let LN be a matrix

with i.i.d. entries all following the Gaussian law with mean 0 and variance N−1. Set

s1(LN ) the least singular value of LN . Let WN be the symmetrization of LN . As before

one can notice that

P
(
i2N

(
EN ,

r

N

)
= 0

)
= P

(
s1(LN ) ≥

r

N

)
.

So after another application of Lemma 2.6.13 for the matrix H0 and Corollary 2.4.5

for r′ = rξ−1, where ξ is defined in (2.1.4), one has that there exists a small constant

c̃ > 0 and a large constant such that

P
(
Ns1(LN ) ≥ r − N−ϸ

)
− CN−c̃ ≤ P (ξNs1(DN ) ≥ r) ≤ P

(
Ns1(LN ) ≥ r + N−ϸ

)
+ CN−c̃,

which implies universality of the least singular value for DN multiplied by Nξ .

• For the proof of the second part, it is well-known that bounding the entries of the

resolvent implies the complete eigenvector delocalization. So by (2.6.26), one can

prove the complete eigenvector delocalization as in Theorem 6.3 in [49].



Chapter 3

The limit of the operator norm for

random matrices with general

variance profile

3.1 Statement of the results

Notation. For any N × N matrix A = (ai,j)i,j∈[N] ∈ R
N×N with eigenvalues {λi(A)}i∈[N], the

measure

µA :=
1
N

∑
i∈[N]

δλi (A)

will be called the Empirical Spectral Distribution (E.S.D.) of A. When the eigenvalues are

real, write λmax(A) for the maximum among them. We will use the following two norms on

square matrices. For A ∈ RN×N ,

|A|op := max
x∈RN :||x ||2=1

||Ax ||2 =
√
λmax(AAT ) (3.1.1)

||A||max := max
i,j∈[N]

|ai,j |. (3.1.2)

It is easy to see that |A|op ≤ N ||A||max and if the matrix A is symmetric, then

|A|op := max
i∈[N]
|λi(A)|. (3.1.3)

Throughout this section, (AN )N∈N+ is a sequence of symmetric random matrices with

independent entries (up to symmetry), AN = (a(N)
i,j )i,j∈[N] is an N × N matrix, and all {a(N)

i,j :

N ∈ N+, i, j ∈ [N]} are defined on the same probability space and take real values.

A standard assumption for the sequence is the following (see relation (2.2.1) in [52]).

Assumption 3.1.1.

1. Ea(N)
i,j = 0 for all N ∈ N+, i, j ∈ [N], and supN∈N+,i,j∈[N] E|a(N)

i,j |
2 < ∞.
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2. For any ε > 0,

lim
N→∞

1
N2

∑
i,j∈[N]

E

{
|a(N)
i,j |

2
1
|a(N)
i,j |≥ε

√
N

}
= 0. (3.1.4)

This is satisfied in the case that {a(N)
i,j : N ∈ N+, i, j ∈ [N], i ≤ j} are i.i.d. with mean 0

and finite variance. But it is not enough to guarantee that the ESD of the appropriately

normalized AN converges to a nontrivial limit. To state a sufficient condition for this, we

introduce some notation that will be used throughout the work. We let

s(N)
i,j := E{|a(N)

i,j |
2} (3.1.5)

for all N ∈ N+, i, j ∈ [N] and V0 := supN∈N+,i,j∈[N] s
(N)
i,j ∈ [0,∞).

Also, let Ck be the set of ordered rooted trees with k edges (where k ∈ N) of all non-

isomorphic plane rooted trees with k + 1 vertices, i.e. all trees with k + 1 vertices, a vertex

distinguished as a root and an ordering amongst the children of any vertex. The number

of such trees is the k−th Catalan number, i.e.,

|Ck | =
1

k + 1

(
2k
k

)
, (3.1.6)

and a trivial bound that we will use is |Ck | ≤ 22k. For each such tree, we consider its

vertices ordered v0 < v1 < · · · < vk so that v0 is the root, each parent is smaller than

its children, and the children keep the order they have as vertices of an ordered tree. A

labeling of such a tree is an ordered k+1-tuple (ℓ0, ℓ1, · · · , ℓk) of different objects, the object

ℓi is the label of vertex vi .

A quantity of fundamental importance for the sequel is the following sum

MN (k) :=
∑
T∈Ck

∑
i∈[N]k+1

labeling of T

∏
{i,j}∈E(T )

s(N)
i,j . (3.1.7)

E(T ) denotes the set of edges of the tree T . Note that MN (0) = N since by convention the

product over an empty index set equals 1.

Assumption 3.1.2. There is a probability measure µ on R such that for each k ∈ N it holds

lim
N→∞

MN (k)
Nk+1 =

∫
x2k dµ(x). (3.1.8)

A tool for checking this assumption is explained in Remark 3.1.13 below.

If the sequence (AN )N∈N+ satisfies both Assumptions 3.1.1 and 3.1.2, then µAN/
√
N ⇒ µ

with probability one (see the proof of Theorem 3.2 of [13]). The measure µ is symmetric with

compact support contained in [−2
√
V0,2

√
V0]. The compactness of the support follows

from (3.1.8), MN (k) ≤ |Ck |Nk+1V k0 , and |Ck | ≤ 22k. Let

µ∞ := sup suppt µ. (3.1.9)
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We seek conditions under which the maximum eigenvalue of AN/
√
N converges to µ∞

in probability. An easy argument will give us the lower bound, and since λmax(A) ≤ |A|op

for any symmetric matrix A ∈ RN×N , it will be enough to prove the upper bound for the

operator norm of AN/
√
N .

For this purpose, we need stronger assumptions. The following is stronger than As-

sumption 3.1.1.

Assumption 3.1.3.

(a) Ea(N)
i,j = 0 for all N ∈ N+, i, j ∈ [N], supN∈N+,i,j∈[N] E|a(N)

i,j |
2 ≤ 1, and supN∈N+,i,j∈[N] E|a(N)

i,j |
4 <

∞.

(b) For any ε > 0 it is true that

lim
N→∞

∑
i,j

P(|a(N)
i,j | ≥ ε

√
N) = 0. (3.1.10)

Note that condition (3.1.10) is satisfied if we assume that all {a(N)
i,j : N ∈ N+, i, j ∈ [N]} have

the same distribution with finite 4-th moment.

We gain control over |AN |op through the traces of high moments of AN , and the main diffi-

culty, which the next conditions (Assumption 3.1.4 and Assumption 3.1.6) try to address,

is how to connect these traces with µ∞, which emerges out of {λi(AN ) : i ∈ [N]} only after

we take N → ∞.

Assumption 3.1.4. For every N ∈ N+ and i, j ∈ [N] it is true that

s(N)
i,j ≤ min{s(2N)

2i,2j , s
(2N)
2i−1,2j, s

(2N)
2i−1,2j−1}. (3.1.11)

For example, this assumption is satisfied if s(N)
i,j = h(i/N, j/N) for all N ∈ N+, i, j ∈ [N],

where h : [0,1]2 → [0,∞) is a function decreasing separately in each variable.

In order to give the next sufficient condition, we first give some definitions.

Definition 3.1.5. (i) We call graphon any Borel measurable function W : [0,1]× [0,1]→ R

which is symmetric and integrable.

(ii) For any bounded graphon W and any multigraph G = (V, E), we call isomorphism

density from G to W the quantity

t(G,W ) :=
∫

[0,1]|V |

∏
{i,j}∈E

W (xi,xj)
∏
i∈V

dxi . (3.1.12)

Now, let (AN )N∈N+ be a sequence of random matrices with elements having finite second

moment. Each AN defines a graphon, WN , through the relation

WN (x, y) := s(N)
⌈Nx⌉,⌈Ny⌉ (3.1.13)

for each (x, y) ∈ [0,1] × [0,1]. For this relation, ⌈0⌉ denotes 1.
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Assumption 3.1.6. There exists a graphon W such that the WN of (3.1.13) satisfies

lim
N→∞

t(T,WN ) = t(T,W ) (3.1.14)

for any finite tree T . Moreover, for any D > 0 there exists some C = C(D) ∈ (0,∞) and

N0 = N0(D) ∈ N+ such that for any N ≥ N0 it holds∫
[0,1]2

|WN (x, y) −W (x, y)|dx dy ≤ CN−D. (3.1.15)

This assumption together with Assumption 3.1.3 implies Assumption 3.1.2 (This will be

explained in Lemma 3.3.2). Again, we denote by µ∞ the maximum of the support of µ.

The assumptions we made so far will lead to convergence in probability of the largest

eigenvalue. Next we give some extra condition, which will lead to the almost sure conver-

gence of the largest eigenvalue.

Assumption 3.1.7. (AN )N∈N+ is a sequence of symmetric random matrices, the entries of

each AN are independent (up to symmetry), and there exists a random variable X with mean

0, variance 1, and finite 4 + δ moment for some δ > 0, which stochastically dominates the

entries of AN in the following sense

P(|{AN }i,j | ≥ t) ≤ P(|X | ≥ t), for all t ∈ [0,∞), N ∈ N+, i, j ∈ [N]. (3.1.16)

We are now ready to present our first main result.

Theorem 3.1.8. Let (AN )N∈N+ be a sequence of matrices satisfying Assumption 3.1.3. Then

if either Assumptions 3.1.2 and 3.1.4 hold or Assumption 3.1.6 holds, it is true that

lim
N→∞

|AN |op
√
N
= µ∞ in probability (3.1.17)

where µ∞ is defined in (3.1.9). Moreover, if the sequence (AN )N∈N+ satisfies Assumption

3.1.7, the convergence in (3.1.17) holds in the almost sure sense.

Note that Assumption 3.1.4 is restrictive and does not cover several of the well-known

and studied models. Thus, in what follows, we try to extend the domain of validity of

Theorem 3.1.8. We first give two definitions.

For N ∈ N+ and U ⊂ [N]2:

• We call a (x, y) ∈ U internal point of U if {(x + d1, y + d2) : d1, d2 ∈ {−1,0,1}} ⊂ U . We

denote by U o the set of internal points of U .

• We say that U is axially convex if (i, j) ∈ U, (i, j′) ∈ U, r ∈ [N], (r − j)(r − j′) < 0 imply

(i, r) ∈ U and (i, j) ∈ U, (i′, j) ∈ U, r ∈ [N], (r − i)(r − i′) < 0 imply (r, j) ∈ U .

Definition 3.1.9 (Generalized step function variance profile). Let (AN )N∈N+ be a sequence

of symmetric random matrices, AN of dimension N×N , with each element having zero mean
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and finite second moment. Moreover, suppose that there exists an N+−valued sequence

(dN )N∈N+ with limN→∞ dN/N = 0 and such that for each N there is a partition PN := {B(N)
i :

i = 1,2, . . . , dN } of the grid [N]2 consisting of dN axially convex sets with the following

properties.

(a) If A ∈ PN then R(A) := {(i, j) : (j, i) ∈ A} ∈ PN .

(b) For any m ∈ [dN ] there exists f ∈ [d2N ] such that

2B(N)
m ⊂ B

(2N)
f . (3.1.18)

(c) For any N ∈ N, m ∈ [dN ] and i ∈ [N] the line segment x = i intersects B(N)
m \ (B(N)

m )◦ at

most 2 times.

Then if for all (i, j) ∈ [N]2 the variance of the (i, j)-entry of AN is given by

s(N)
i,j :=

∑
m∈[dN ]

s(N)
m 1(i,j)∈B(N)

m
(3.1.19)

for some set of numbers {si}i∈[dN ] so that s(N)
m = s(N)

k if R(B(N)
m ) = B(N)

k , we will call the

sequence of matrices (AN )N≥1 random matrix model whose variance profile is given by a

generalized step function.

The following Theorem is a corollary of Theorem 3.1.8 and gives results of the type

(3.1.17) for the operator norm of the matrix

• AN when AN is a non-periodic band matrix with band size proportional to N or has a

step or continuous profile.

• ANATN (i.e., Gram matrix) when AN is a rectangular matrix with step or continuous

variance profile.

Details are given after the next theorem and in subsection 3.7.2.

Theorem 3.1.10. Let (AN )N∈N+ be a random matrix model whose variance profile is given by

a generalized step function. If it also satisfies Assumptions 3.1.2, 3.1.3, and for every N ∈ N

and (i, j) ∈ [N]2 it is true that

s(N)
i,j ≤ s

(2N)
2i,2j , (3.1.20)

then

lim
N→∞

|AN |op
√
N
= µ∞ in probability, (3.1.21)

where µ∞ is defined in (3.1.9). Moreover, if the sequence (AN )N∈N+ satisfies Assumption 3.1.7

the convergence in (3.1.21) holds in the almost sure sense.
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For any N ∈ N+ and any two N ×N matrices A, B we will denote by A⊙B their Hadamard

product, which is the entry-wise product of A, B,i.e., the N × N matrix with entries

{A ⊙ B}i,j = {A}i,j{B}i,j for all i, j ∈ [N]. (3.1.22)

Note that Assumption 3.1.7 is satisfied if AN can be written as

AN = ΣN ⊙ A
′
N , (3.1.23)

where A′N is a sequence of symmetric random matrices with i.i.d. entries all following the

same law, with 0 mean, unit variance and finite 4 + δ moment for some δ > 0 and for each

N the entries of ΣN are elements of [0,1].

Next, we study the operator norm of two widespread random matrix models.

Definition 3.1.11 (Step function variance profile). Consider

a) m ∈ N+ and numbers {σp,q}p,q∈[m] ∈ [0,1]m×m with σp,q = σq,p for all p, q ∈ [m].

b) For each N ∈ N+, a partition of [N] into m intervals {I (N)
p }p∈[m]. The numbering of the

intervals is such that x < y whenever x ∈ I (N)
p , y ∈ I (N)

q and p < q. Let L(N)
p and R(N)

p be

the left and right endpoint respectively of I (N)
p .

c) Numbers 0 = α0 < α1 < · · · < αm−1 < αm := 1. We assume that limN→∞ R
(N)
p /N = αp

for each p ∈ [m].

d) A random variable X0 with E(X0) = 0,E(X2
0 ) = 1.

For each N ∈ N+, define the matrix ΣN ∈ RN×N by (ΣN )i,j = σp,q if i ∈ I (N)
p , j ∈ I (N)

q , and let

{AN }N∈N+ be the sequence of symmetric random matrices defined by

AN = ΣN ⊙ A
′
N (3.1.24)

where A′N is symmetric and its entries are independent (up to symmetry) random variables

all with distribution the same as X0. Then (AN )N∈N+ will be called symmetric random matrix

model whose variance profile is given by a step function.

Let Îp := [αp−1, αp) for p ∈ [m − 1], and Îm := [αm−1,1]. These intervals together with the

numbers from a) determine a function σ : [0,1]2 → [0,1] as follows

σ(x, y) := σp,q if x ∈ Îp, y ∈ Îq. (3.1.25)

We call the function σ2 the variance profile of the model.

Definition 3.1.12 (Continuous function variance profile). For
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a) a continuous and symmetric function σ : [0,1]2 → [0,1] (i.e, σ(x, y) = σ(y, x) for all

x, y ∈ [0,1]),

b) a sequence (ΣN )N∈N+ of symmetric matrices, ΣN ∈ [0,1]N×N , with the property

lim
N→∞

sup
1≤i,j≤N

∣∣∣(ΣN )i,j − σ(i/N, j/N)
∣∣∣ = 0, (3.1.26)

c) a random variable X0 with E(X0) = 0,E(X2
0 ) = 1,

consider the sequence {AN }N∈N+ of symmetric random matrices, AN of dimension N × N ,

defined by

AN = ΣN ⊙ A
′
N (3.1.27)

where the entries of A′N are independent (up to symmetry) random variables all with distri-

bution the same as X0. Then we say that (AN )N∈N+ is a random matrix model whose variance

profile is given by a continuous function. Again, we call the function σ2 the variance profile.

Remark 3.1.13 (Checking Assumption 3.1.2). A sufficient condition for the validity of As-

sumption 3.1.2 is that (AN )N∈N+ satisfies Assumption 3.1.1 and there is a graphon W such

that WN → W almost everywhere in [0,1] × [0,1].

Indeed, the bounded convergence theorem gives that t(T,WN ) → t(T,W ) for all trees.

Then Theorem 3.2 (a) of [13] shows that the ESD of AN/
√
N converges almost surely weakly

to a probability measure µ
√
W whose 2k moment equals

lim
N→∞

∑
T∈Ck

t(T,WN ) (3.1.28)

while the moments of odd order are 0. Then, for each T ∈ Ck,

0 ≤ t(T,WN ) −
∑

i∈[N]K+1

labeling of T

N−k−1
∏

{i,j}∈E(T )

s(N)
i,j = O(1/N), (3.1.29)

because t(T,WN ) is simply the same as the sum in the previous relation with the only

difference that i is not required to be a labeling, i.e., it can have repetitions. It follows that

Assumption 3.1.2 holds. As we remarked after (3.1.8), µ
√
W is symmetric and has bounded

support. Denote by µ
√
W
∞ the largest element of the support.

If, in the two models above, X0 has finite 4 + δ moment for some small δ > 0, then

it is easy to see that the sequence (AN )N∈N+ satisfies Assumptions 3.1.3. It also satis-

fies Assumption 3.1.2 because it satisfies Assumption 3.1.1 and, in both cases, WN (x, y)

converges to σ2(x, y) for almost all (x, y) ∈ [0,1]× [0,1], thus the preceding remark applies.

Our result for the model (3.1.24) is the following.
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Theorem 3.1.14. Let (AN )N∈N+ be a random matrix model whose variance profile is given

by a step function as above. Assume that X0 has mean value 0, variance 1, and finite 4 + δ

moment, for some small δ > 0. Then it is true that

lim
N→∞

|AN |op
√
N
= µσ∞ a.s. (3.1.30)

The previous theorem together with an approximation result that we prove in Section 3.6

(Proposition 3.6.1) has the following consequence for the model (3.1.27).

Corollary 3.1.15. Let (AN )N∈N+ be a sequence of matrices whose variance profile is given by

a continuous function. If X0 has mean zero, variance one, and finite 4 + δ moment, then

lim
N→∞

|AN |op
√
N
= µσ∞ a.s. (3.1.31)

Remark 3.1.16. 1) Theorem 3.1.14 covers the cases in the Wigner matrix model [i. e.,

AN := (ai,j)i,j∈[N] with {ai,j : 1 ≤ i ≤ j ≤ N, N ∈ N+} i.i.d. with E(a1,1) = 0,E(a2
1,1) = 1] where

E(|a1,1|
4+δ) < ∞ for some δ > 0. Recall that the necessary and sufficient condition for the

validity of (3.1.30) in that model is E(|a1,1|
4) < ∞.

2) Corrolary 3.1.15 holds also in the case that the function σ of Definition 3.1.12 is

piecewise continuous in a sense explained in the end of Section 3.6.

3.2 Analysis of high order moments

Assume at the moment that the entries of AN have finite moments of all orders.

We will relate the largest eigenvalue with a high moment of the measure µN and at the

same time this moment will be controlled by µ∞. In general, for k ∈ N, it is true that

E tr(A2k
N ) =

∑
i1,i2,........,i2k∈[N]

E

 2k∏
l=1

a(N)
il ,il+1

 (3.2.1)

with the conventions that i2k+1 = i1, when k = 0 the sum is only over i1 ∈ [N], and the

product over an empty set equals 1.

Now, for a term with indices i1, i2, . . . , i2k, we let i := (i1, i2, . . . , i2k) and X (i) :=
∏2k
l=1 a

(N)
il ,il+1 .

For such an i we also use the term cycle. Then consider the graph G(i) with vertex set

V (i) = {i1, i2, . . . , i2k}

and set of edges

{{ir , ir+1} : r = 1,2, . . . ,2k}. (3.2.2)

As explained in [52] (in the proof of relation (3.1.6) there, pages 49, 50 or in Theorem 3.2

of [13]), the limit

lim
N→∞

1
Nk+1 E tr(A2k)
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remains the same if in the sum of (3.2.1) we keep only the summands such that

the graph G(i) is a tree with k + 1 vertices (3.2.3)

Then, necessarily, the path i1 → i2 → · · · → i2k → i1 traverses each edge of the tree exactly

twice, in opposite directions of course. Such a G(i) becomes an ordered rooted tree if we

mark i1 as the root and order children of the same vertex according to the order they appear

in the cycle.

Cycles i that don’t satisfy (3.2.3) we call bad cycles. So, for k ∈ N, the sum in (3.2.1) can

be written as

E tr(A2k) = MN (k) + BN (k), (3.2.4)

where

MN (k) :=
∑
T∈Ck

∑
i∈[N](2k)∨1:G(i)∼T

∏
{i,j}∈E(G(i))

s(N)
i,j , (3.2.5)

BN (k) :=
∑

i∈[N]2k :bad cycle

EX (i). (3.2.6)

Recall that Ck are the ordered rooted trees with k edges and G(i) ∼ T means that the graphs

are isomorphic as ordered rooted trees. Note also that MN (k) has already been defined in

(3.1.7) but the two definitions for it agree. Also, MN (0) = N, BN (0) = 0.

The plan is to control the expectation of the trace in (3.2.4) through an appropriate bound

involving various MN (j)′s. To control the term BN (k), we adopt the analysis of Section 2.3

of [16].

Proposition 3.2.1. Let AN be an N × N symmetric random matrix with independent entries

(up to symmetry) and with E(a(N)
i,j ) = 0, s(N)

i,j ≤ 1 for all N ∈ N, i, j ∈ [N]. Assume additionally

that the absolute value of the entries of the matrix are all supported in [0, CN
1
2−ϸ] for some

ϸ > 0. Then for all N large enough and all integers 1 ≤ k < N it is true that

|BN (k)| ≤
k∑
s=1

(4k5)2k−2s
(
CN

1
2−ϸ

)2k−2s
(s+1)∧k∑
t=1

(4k4)4(s+1−t)MN (t − 1). (3.2.7)

Proof. We bound each term of the sum defining BN (k). Take a bad cycle i and let

• t: the number of vertices of G(i),

• s: the number of the edges of G(i),

• e1, e2, . . . , es: the edges of G(i) in order of appearance in the cycle,

• a1, a2, . . . , as: the multiplicities of e1, e2, . . . , es in the cycle.
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That is, aq is the number of times the (undirected) edge eq appears in the cycle. Note that

t ≤ s + 1 (true for all graphs) and t ≤ k because the cycle is bad.

Additionally, in case t ≥ 2, we let T (i) be the rooted ordered tree obtained from G(i) by

keeping only edges that lead to a new vertex at the time of their appearance in the cycle.

The root is i1 and we declare a child of a vertex smaller than another if it appears earlier in

the cycle. In case t = 1, T (i) is the graph with one vertex, i1, and one edge (loop) with end

vertices i1, i1. Thus, T (i) has t vertices and 1 ∨ (t − 1) edges.

To bound |EX (i)|, notice that if any of a1, a2, . . . , as is 1, we have EX (i) = 0 by the

independence of the elements of AN and the zero mean assumption. We assume therefore

that all multiplicities are at least 2. Using the information about the mean, variance, and

support of |a(N)
i,j |, we get that for any integer a ≥ 2 it holds E(|a(N)

i,j |
a) ≤ (C1N1/2−ϸ)a−2s(N)

i,j .

Thus

E|X (i)| =
s∏
q=1

E|Xeq |
aq ≤ (CN1/2−ε)a1+···+as−2s

∏
{i,j}∈E(G(i))

s(N)
i,j ≤ (CN1/2−ε)2k−2s

∏
{i,j}∈E(T (i))

s(N)
i,j .

(3.2.8)

In the second inequality, we used the fact that s(N)
i,j ∈ [0,1] for all i, j, N . For integers

s, t ≥ 1, a1, . . . , as ≥ 2 and T ∈ Ct−1 let

NT,a1,a2,...,as =
the number of bad cycles with T (i) ∼ T , indices 1,2, . . . , t, appearing in this order,

and edge multiplicities a1, a2, . . . , as.
(3.2.9)

Using the bound on NT,a1,a2,...,as provided by Lemma 3.8.1, we obtain

|BN (k)| ≤
k∑
s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s

1t=1

∑
i∈[N]

s(N)
i,i + 1t≥2

∑
T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2k :T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j


(3.2.10)

≤

k∑
s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s

1t=1

∑
i∈[N]

s(N)
i,i + 1t≥2

∑
T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2(t−1):T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j


(3.2.11)

≤

k∑
s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(CN1/2−ε)2k−2s(4k4)4(s+1−t)+2(k−s)MN (t − 1). (3.2.12)

We used here the fact that s(N)
i,i ≤ 1, so that

∑
i∈[N] s

(N)
i,i ≤ N = MN (0). The inside sum in

(3.2.12) is over all s-tuples of integers a1, a2, . . . , as greater than or equal to 2 with sum

2k. By subtracting 2 from each ai , we get an s-tuple of non-negative integers with sum

2k − 2s. The number of such s-tuples is
((

s
2k−2s

))
(combinations with repetition), which is at

most s2(k−s) ≤ k2(k−s). Thus the above sum is bounded by

k∑
s=1

(4k5)2(k−s)(CN1/2−ε)2k−2s
k∧(s+1)∑
t=1

(4k4)4(s+1−t)MN (t − 1). (3.2.13)
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□

Proposition 3.2.2. Let (AN )N∈N+ be a sequence of symmetric matrices and R > 0 so that the

sequence satisfies Assumption 3.1.3 and the following condition Σ(R):

For each C1 > 0 there are C2 > 0 and N0 ∈ N
+ such that

MN (k) ≤ C2N
k+1R2k (3.2.14)

for all N, k ∈ N+ with N ≥ N0 and 1 ≤ k ≤ C1 logN.

Then for each ϸ > 0, it holds

lim
N→∞

P

(
|AN |op
√
N
≥ R(1 + ϸ)

)
= 0. (3.2.15)

Proof. Fix η ∈ (0,1/8) and define the N × N matrices A≤N , A
>
N by

(A≤N )i,j := a(N)
i,j 1

|ai,j |≤N
1
2 −η
, (3.2.16)

(A>N )i,j := a(N)
i,j 1

|ai,j |>N
1
2 −η

(3.2.17)

for all i, j ∈ [N]. For a random matrix H := (hi,j), EH denotes the matrix whose (i, j) element

is Ehi,j provided that the mean value of hi,j can be defined. Note that

1
√
N
|AN |op ≤

1
√
N

(
|A≤N − EA≤N |op + |EA

≤
N |op + |A

>
N |op

)
. (3.2.18)

We will bound the three terms in the right hand side of the last inequality. For the first

two, we use only Assumption 3.1.3 and the arguments in the proof of Theorem 2.3.23 in

[16].

1) The term N−
1
2 |E(A≤N )|op is a deterministic sequence that converges to 0 because, since

a(N)
i,j is centered, we have

|(EA≤N )i,j | = |(EA>N )i.j | ≤ N−3( 1
2−η) sup

N
max
i,j

E|a(N)
i,j |

4. (3.2.19)

And using the inequality |C|op ≤ N ||C||max, we get that

|E(A≤N )|op ≤ N
3η− 1

2 sup
N

max
i,j

E|a(N)
i,j |

4 N→∞
→ 0.

2) The term N−
1
2 |A>N |op converges to 0 in probability. Indeed, for any δ1 > 0,

P(|A>N |op > δ1
√
N) ≤P(|a(N)

i,j | > δ1
√
N for some i, j ∈ [N]) (3.2.20)

+P(|A>N |op > δ1
√
N and |a(N)

i,j | ≤ δ1
√
N for all i, j ∈ [N]). (3.2.21)

The first quantity goes to zero as N → ∞ because of (3.1.10). For the second, it is an easy

exercise to show that if each entry of a matrix M has absolute value at most a and each
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row and column of M has at most one non-zero element then |M |op ≤ a (use the expression

|M |op = supx:||x ||2=1 ||Mx ||2). Consequently, the probability in (3.2.21) is at most

N∑
i=1

∑
1≤j1<j2≤N

P(|ai,j1 | > N
1
2−η, |ai,j2 | > N

1
2−η) +

N∑
j=1

∑
1≤i1<i2≤N

P(|ai1,j | > N
1
2−η, |ai2,j | > N

1
2−η)

(3.2.22)

≤2N
(
N

2

)supN∈N+,i,j∈[N](E{|a
(N)
i,j |

4})2

N4−8η ≤
1

N1−8η sup
N∈N+,i,j∈[N]

(E{|a(N)
i,j |

4})2 N→∞
→ 0. (3.2.23)

We used the independence of the entries in each row or column and Markov’s inequality.

3) To deal with |A≤N − EA≤N |op, we will use Proposition 3.2.1. Let

ÃN := A≤N − EA≤N , (3.2.24)

s(N),≤
i,j := E{(ÃN )2

i,j}. (3.2.25)

Proposition 3.2.1 applies to ÃN because any element of the matrix, say (ÃN )i,j, has zero

mean and variance s(N),≤
i,j ≤ E{(A≤N )2} ≤ E(A2

N ) = s(N)
i,j ≤ 1. Thus, if we denote by M̃N (m) the

terms (3.1.7) for m ∈ [N] and for the matrix ÃN , we will have M̃N (m) ≤ MN (m) for all m ∈ N,

and Proposition 3.2.1, gives that for any 1 ≤ k < N ,

E tr(Ã2k
N ) ≤ MN (k) +

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(s+1)∧k∑
t=1

(4k4)4(s+1−t)MN (t − 1) (3.2.26)

Now fix C1 > 0, its value will be determined in (3.2.32) below. For 1 ≤ k ≤ C1 logN ,

E tr(Ã2k
N ) ≤ C2N

k+1R2k + C2

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(s+1)∧k∑
t=1

(4k4)4(s+1−t)N tR2(t−1).

(3.2.27)

Next, we focus on the second summand in the right hand side of the previous inequality for

N large enough. In the sum in t we factor out (4k4)4(s+1)R−2, and in the resulting sum of

geometric progression with ratio a larger than 1 we use the bound a + a2 + · · · + a(s+1)∧k ≤

ka(s+1)∧k. Thus the sum in (3.2.27) is bounded by

C2
k

R2

k∑
s=1

(4k5)2k−2s
(
2N

1
2−η

)2k−2s
(4k4)4(s+1)

(
NR2

(4k4)4

)(s+1)∧k

(3.2.28)

= 28C2k
17Nk(R2)k−1 + C2

k

R2 (NR2)k+1
k−1∑
s=1

(
4(4k5)2

N2ηR2

)k−s
(3.2.29)

≤ 28C2k
17Nk(R2)k−1 + 27C2k

11(R2)(k−1)Nk+1−2η ≤ 29C2k
17Nk+1−2ηR2k−2 (3.2.30)

[in summing the geometric series in (3.2.29), we used the bound c + c2 + · · · + cr ≤ 2c if

0 ≤ c < 1/2]. Thus, returning to (3.2.27),

E tr(Ã2k
N ) ≤ Nk+1R2k{1 + o(1)}2k. (3.2.31)
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with o(1) depending on R, C2, η.

Fix ϸ > 0, pick

C1 >
2 + ϸ

log(1 + ϸ)
, (3.2.32)

and apply the above for k := [C1 logN]. Relation (3.2.31) implies

P

(
|ÃN |op
√
N
≥ R(1 + ϸ)

)
≤ P

 |ÃN |2kop

Nk
≥ R2k(1 + ϸ)2k

 ≤ 1
R2k(1 + ϸ)2k

1
Nk

E|ÃN |
2k
op

≤ N

(
1 + o(1)

1 + ϸ

)2k

= O
( 1
N1+ϸ

)
,

(3.2.33)

for any N large enough. The last equality is true because of the choice of k and C1. □

A tool for proving almost sure convergence of the sequence |AN |op/
√
N is the following

lemma.

Lemma 3.2.3. Let (AN )N∈N+ be a sequence of matrices, AN is N × N, and R > 0 so that the

sequence satisfies Assumption 3.1.3(a), condition Σ(R), and Assumption 3.1.7. Then

lim sup
N→∞

|AN |op
√
N
≤ R a.s. (3.2.34)

Proof. Pick η ∈ (0,1/8), its exact value will be determined below, and define the matrices

A≤N ,EA
≤
N as in the proof of Proposition 3.2.2. The proof will be accomplished once we show

that

lim sup
N

|A≤N |op
√
N
≤ R, a.s., and (3.2.35)

P

(
AN , A

≤
N for infinitely many N

)
= 0. (3.2.36)

Proof of (3.2.35). Since Σ(R) holds for the sequence (AN )N≥1, the proof of Proposition

3.2.2 (the part with heading 3) shows that

lim sup
N

|A≤N − EA≤N |op
√
N

≤ µ∞ a.s. (3.2.37)

because the upper bound in (3.2.33) is summable with respect to N . In the same proof it

is shown that

lim sup
N

|EA≤N |op
√
N
= 0 a.s.

Using these two facts and the triangle inequality we get (3.2.35).

Proof of (3.2.36). Let X be the random variable that stochastically dominates the entries

of AN in the sense of (3.1.16). Let XN be a sequence of symmetric random matrices after

an appropriate coupling such that for all N ∈ N and i, j ∈ [N] it is true that

|a(N)
i,j | ≤ |(XN )i,j | (3.2.38)
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and the entries of XN are independent up to symmetry and all following the same law as X.

It is an easy exercise to show that for any a, c > 1 and Y real valued random variable we

have
∞∑
k=1

akP(|Y | ≥ ck) ≤
1

a − 1
E
{
|Y |

loga
logc

}
. (3.2.39)

Using this inequality and the fact that the random variable X has finite 4 + δ moment, we

get that all η ≤ δ
δ+4 satisfy

∞∑
m=1

22m
P(|X | ≥ 2

m
2 (1−η)) < ∞. (3.2.40)

Thus, picking in the beginning of the proof an arbitrary η with 0 < η < (1/8) ∧ (δ/(4 + δ)),

we have

P

(
AN , A

≤
N for infinitely many N

)
= P

(
for infinitely many N there are i, j ∈ [N] : |a(N)

i,j | > CN
1
2−η

)
(3.2.41)

≤ P

(
for infinitely many N there are i, j ∈ [N] : |X (N)

i,j | > CN
1
2−η

)
= P

(
XN , X

≤
N for infinitely many N

)
.

(3.2.42)

In the second line, the inequality is a consequence of (3.2.38), and the matrix X≤N is the

matrix whose (i, j) element is (XN )i,j1
|(XN )i,j |≤CN

1
2 −η

. The convergence of the series in (3.2.40).

implies that the probability in the right hand side of (3.2.42) is 0 (see [52], pages 94 and

95) and finishes the proof of (3.2.36). □

3.3 Proof of Theorem 3.1.8

The convergence µAN/
√
N ⇒ µ in probability implies that

lim inf
N

|AN |op
√
N
≥ µ∞ in probability, (3.3.1)

that is, for all ϸ > 0, limN→∞ P(|AN |op/
√
N < µ∞ − ϸ) = 0. So in order to prove Theorem 3.1.8

one needs to prove that

lim sup
N

|AN |op
√
N
≤ µ∞ (3.3.2)

in probability. By Proposition 3.2.2, it is enough to prove that condition Σ(µ∞) is satisfied.

We will prove condition Σ(µ∞) separately for each of the Assumptions 3.1.4 and 3.1.6 in

the next two lemmas.

Lemma 3.3.1. Let (AN )N∈N+ be a sequence of matrices that satisfies Assumptions 3.1.2,

3.1.3, and 3.1.4. Then for every k, N ∈ N+ such that k < N it is true that

MN (k) ≤ Nk+1µ2k
∞ .

In case µ∞ > 0, the inequality is true (as equality) for k = 0 also.
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Proof. Fix N, k ∈ N+ with k < N and a tree T ∈ Ck. Then, for each d := (d1, d2, . . . , dk+1) ∈

{−1,0}k+1 consider the function

φd : [N]k+1 → [2N]k+1

with

φd (i1, i2, · · · , ik+1) = 2 (i1, i2, · · · ., ik+1) + (d1, d2, · · · , dk+1)

for all i1, i2, . . . , ik+1 ∈ [N]. Each φd is one to one and, for different vectors d,d′ ∈ {−1,0}k+1,

the image of φd is disjoint from that of φd’. If G is a plane rooted tree whose vertices in order

of appearance in a depth first search are (i1, i2, . . . , ik+1) ∈ [N]k+1, and φd(i1, i2, . . . , ik+1) =

(j1, j2, . . . , jk+1), we denote by φd(G) the plane rooted tree with vertex set {j1, j2, . . . , jk+1},

root j1, and edges {{ja , jb} : {a, b} is an edge of G}. Note that if all coordinates of i ∈ [N]k+1

are different, the same is true for the coordinates of φd(i).

Lastly, by assumption 3.1.4, for any T ∈ Ck , i ∈ [N]2k such that G(i) ∼ T and d ∈

{−1,0}k+1, it is true that ∏
{i,j}∈E(G(i))

s(N)
i,j ≤

∏
{i,j}∈E(φd(G(i)))

s(2N)
i,j . (3.3.3)

So if one sums over all possible trees in Ck and d ∈ {−1,1}k+1, (3.3.3) implies that

2k+1MN (k) =
∑

d∈{−1,0}k+1

∑
T∈Ck

∑
i∈[N]2k :G(i)∼T

∏
{i,j}∈E(G(i))

s(N)
i,j ≤

∑
d∈{−1,0}k+1

∑
T∈Ck

∑
i∈[N]2k :G(i)∼T

∏
{i,j}∈E(φd(G(i)))

s(2N)
i,j ≤ M2N (k).

(3.3.4)

By applying (3.3.4) inductively, one can prove that for fixed N, k ∈ N the sequence

qm := M2mN (k)/(2mN)k+1, m ∈ N

is increasing in the variable m. So by (3.1.8) it is true that

sup
m
qm = lim

m→∞
qm =

∫
x2k dµ(x) ≤ µ2k

∞ .

In particular, q0 ≤ µ2k
∞ , completing the proof. □

Lemma 3.3.2. Suppose (AN )N∈N+ is a sequence of matrices such that Assumptions 3.1.3,3.1.6

hold. Then for each C1 > 0 there is C2 > 0 such that

MN (k) ≤ C2N
k+1µ2k

∞ (3.3.5)

for all N ∈ N+ and 1 ≤ k ≤ C1 logN.

Proof. Note that for 1 ≤ k < N ,

1
Nk+1MN (k) ≤

∑
T∈Ck

∫
[0,1]k+1

( ∏
{i,j}∈E(T )

WN (xi , xj)
)
dx1dx2 · · ·dxk+1 =: ΞN (k). (3.3.6)
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The inequality holds because the left hand side results if on the right hand side we re-

strict the domain of integration to the union of the sets
∏k+1
r=1 ((ir − 1)/N, ir/N] where all

i1, i2, . . . , ik+1 ∈ [N] are different. Thus, it is enough to show (3.3.5) with the left hand side

replaced by Nk+1ΞN (k).

Fix T ∈ Ck and enumerate the edges of T in the order of first appearance during a depth

first search algorithm. For {i, j} ∈ E(T ), let {i, j}ord be its enumeration. Then for any integer

l ∈ [0, k] define the following quantities.

µ(l)
N (k, T ) =

∫
[0.1]k+1

∏
{i,j}∈E(T ):{i,j}ord≤l

WN (xi , xj)
∏

{i,j}∈E(T ):{i,j}ord≥l+1

W (xi , xj)dx1dx2 · · ·dxk+1. (3.3.7)

Note that ∑
T∈Ck

µ(0)
N (k, T ) = µ2k ,

∑
T∈Ck

µ(k)
N (k, T ) = ΞN (k) (3.3.8)

Fix D > 0. Since all the variances are uniformly bounded by 1, Assumption (3.1.15) implies

that there exists some N0(D) and C > 0 such that for N ≥ N0(D) and any 1 ≤ l ≤ k < N it is

true that

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| ≤
∫

[0,1]2
|WN (x, y) −W (x, y)|dx dy ≤ C

1
ND

. (3.3.9)

Consequently, since |Ck | ≤ 22k, for k < N we have

|ΞN (k) − µ2k | ≤
∑
T∈C

∣∣∣∣ k∑
l=1

{µ(l)
N (k, T ) − µ(l−1)

N (k, T )}
∣∣∣∣ ≤ ∑

T∈Ck

k∑
l=1

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| ≤
Ck22k

ND
.

(3.3.10)

Pick any D > −2C1 log(µ∞/2). Then there is N ′0 ∈ N
+, N ′0 > N0(D) such that Ck22k/ND ≤ µ2k

∞

for all N > N ′0 and 1 ≤ k ≤ C1 logN . And since µ2k ≤ µ2k
∞ , we will have ΞN (k) ≤ 2µ2k

∞ for the

same N and k. If we choose a constant C2 ≥ 2 so that (3.3.5) is satisfied for N ∈ [N ′0] and

1 ≤ k ≤ C1 logN , then we will have (3.3.5) for all N, k claimed. □

3.3.1 Proof of almost sure convergence under the additional Assumption

3.1.7

The convergence in probability that we have proven so far gives

lim inf
N→∞

|AN |op
√
N
≥ µ∞ a.s. (3.3.11)

The opposite inequality follows from Lemma 3.2.3 whose assumptions are satisfied, with

R = µ∞, because, under both scenarios of the Theorem, assumption Σ(µ∞) holds.

3.4 Proof of Theorem 3.1.10

The plan is to write the matrix AN as A(1)
N + A

(2)
N so that for the sequence {A(1)

N }N≥1 we can

apply Theorem 3.1.8 while for {A(2)
N /
√
N}N≥1 the operator norm will tend to zero.
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Let

DN := {(i, j) ∈ [N]2 : there exists m ∈ [dN ] : (i, j) ∈ (B(N)
m )◦}. (3.4.1)

Then define the matrices

{A(1)
N }i,j := 1(i,j)∈DN {AN }i,j, (3.4.2)

{A(2)
N }i,j = 1(i,j)<DN {AN }i,j. (3.4.3)

The proof follows from the triangle inequality for the operator norm and the following two

statements, which we are going to prove next.

lim
N→∞

|A(2)
N |op
√
N
= 0 in probability. (3.4.4)

lim
N→∞

|A(1)
N |op
√
N
= µ∞. (3.4.5)

Proof of (3.4.4). For any k ∈ N denote by M (2)
N (k) the quantity (3.1.7) but with the role of

AN played by A(2)
N , i.e., s(N)

i,j is replaced by s(N)
i,j 1(i,j)<DN By Proposition 3.2.2 it is sufficient to

prove that for any constant C1 > 0 it is true that for any k ≤ C1 logN ,

M (2)
N (k) ≤ N(8dN )k. (3.4.6)

This is true because each product in (3.1.7) is at most 1, then the inner sum has at most

N(2dN )k non zero terms [there are N choices for i1, and then, for each choice of i1 there are

at most 2dN choices for i2 that have s(N)
i1,i2 , 0 due to condition (c) of Definition 3.1.9, and

the same restriction holds for i3, . . . , ik+1] and the outer sum has |Ck | ≤ 4k terms.

Proof of (3.4.5). We will show that Theorem 3.1.8 can be applied to the sequence {A(1)
N }N≥1.

First we prove that

µA(1)
N /
√
N ⇒ µ in probability as N → ∞. (3.4.7)

As remarked after relation (3.1.8), µAN/
√
N ⇒ µ in probability as N → ∞. Then, from a well

known inequality (Corollary A.41 in [52]), the Levy distance between µAN/
√
N and µA(1)

N /
√
N is

bounded as follows.

L3(µAN/
√
N , µA(1)

N /
√
N ) ≤

1
N

tr
{( 1
√
N
AN −

1
√
N
A(1)
N

)2}
=

1
N2

∑
i,j∈[N]

{(A(2)
N )i,j}2. (3.4.8)

The expectation of the rightmost quantity is at most N−2N2dN (since each row of A(2)
N has

at most 2dN elements that are not identically zero random variables and these random

variables have second moment at most 1), which tends to 0 as N → 0 because of the

assumption on dN .

Then the sequence {A(1)
N }N≥1 satisfies:

• Assumption 3.1.2 with the same measure as {AN }N≥1. This follows from Lemma 3.8.2.
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Assumption (c) of that lemma is satisfied because of (3.4.7).

• Assumption 3.1.3, this is clear,

• Assumption 3.1.4. Indeed, fix (i, j) ∈ [N]2. If (i, j) ∈ DN , there exists some m ∈ [dN ] such

that

{(i + d1, j + d2) : d1, d2 ∈ {−1,0,1}} ⊆ B(N)
m .

Then Assumption (3.1.18) implies that there exists some f ∈ [d2N ] such that

{(2i + d1,2j + d2) : d1, d2 ∈ {−2,0,2}} ⊆ B(2N)
f .

But since B(2N)
f is axially convex (see before Definition 3.1.9), one can conclude that

{(2i + d1,2j + d2) : d1, d2 ∈ {−2,−1,0,1,2}} ⊆ B(2N)
f .

Now since (k, ℓ) 7→ s(2N)
k,ℓ is constant in B(2N)

f [see (3.1.19)] and we assumed (3.1.20), our

claim follows.

Thus, all the Assumptions of Theorem 3.1.8 hold for A(1)
N , and hence (3.4.5) holds.

Almost sure convergence under the additional Assumption 3.1.7. Using Lemma 3.2.3, we

will prove that

lim sup
N→∞

|A(1)
N |op
√
N
≤ µ∞ a.s. (3.4.9)

lim sup
N→∞

|A(2)
N |op
√
N
≤ ϸ a.s. for any ϸ > 0. (3.4.10)

And these are enough to prove our claim.

Notice that the validity of Assumptions 3.1.3(a) and 3.1.7 for the sequence (AN )N∈N+ im-

plies the validity of the same assumptions for the sequences (A(1)
N )N∈N+ and (A(2)

N )N∈N+ . As

was mentioned above, the sequence {A(1)
N }N≥1 satisfies Assumption 3.1.2 with the same

measure as {AN }N≥1. And then Lemma 3.3.1 implies that the sequence (A(1)
N )N∈N+ satisfies

condition Σ(µ∞), while (3.4.6) and limN→∞ dN/n = 0 imply that, for any ϸ > 0, the se-

quence (A(2)
N )N∈N+ satisfies condition Σ(ϸ). Thus, Lemma 3.2.3 applies and gives the desired

inequalities.

3.5 Step function profile. Proof of Theorem 3.1.14

Proof of Theorem 3.1.14. The inequality lim infN→∞ |AN |op/
√
N ≥ µσ∞ almost surely is justi-

fied with the same argument as (3.3.1) with the only difference that here we have µAN/
√
N ⇒

µσ a.s., and so the inequality will be true in the a.s. sense.

For the reverse inequality, we will apply Lemma 3.2.3. To check Assumptions 3.1.3(a)

and 3.1.7, required by that lemma, note that the (i, j) element of AN is of the form σp,qX ′0
for a constant σp.q ∈ [0,1] and X ′0

d
= X0, and clearly X0 can play the role of X in relation
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(3.1.16). We will prove that (AN )N∈N+ satisfies condition Σ(c) for all c > µ∞, and this will

finish the proof.

Define the matrix Σ̂N ∈ RN×N by

(Σ̂N )i,j = σp,q if
ap−1 + (1/N) ≤ i/N < ap and

aq−1 + (1/N) ≤ j/N < aq,
(3.5.1)

and ÂN := Σ̂N ⊙ A′N .

Also, let

εN := max
{∣∣∣∣R(N)

p

N
− αp

∣∣∣∣ : p ∈ [m − 1]
}
. (3.5.2)

By Definition 3.1.11, it holds limN→∞ εN = 0.

Claim 1: a) With probability one, ÂN/
√
N has the same limiting ESD as AN/

√
N .

b) For ÂN , Lemma 3.3.1 applies.

Consequently,

M̂N (k) ≤ Nk+1(µσ∞)2k (3.5.3)

for all 1 ≤ k < N .

Proof of Claim 1:

a) This is true because by Theorem A.43 in the Appendix A of [52], the Kolmogorov

distance between µAN/
√
N and µÂN/

√
N is at most

1
N

rank(AN − ÂN ) ≤
m

N
max
p∈[m]

(max{Rp, Nap} −min{Rp, Nap}) = mϸN
N→∞
→ 0. (3.5.4)

b) Assumption 3.1.3 is satisfied because E(|X0|
4+δ) and σp,q ≤ 1 for all p, q ∈ [m]. To show

that Assumption 3.1.2 is satisfied, we repeat the argument just before the statement of the

Theorem. For the sequence (ÂN )N∈N+ , the corresponding WN (x, y), as N → ∞, converges to

σ2(x, y) for almost all (x, y) ∈ [0,1]2. Assumption 3.1.4 is satisfied because if for some i, j

we have Var[(ÂN )i,j] > 0, then this equals σ2
p,q for the unique p, q as in (3.5.1). Then

2i − 1
2N

∈ [ap−1 +
1

2N
, ap −

1
2N

),
2i
2N
∈ [ap−1 +

1
N
, ap), (3.5.5)

2j − 1
2N

∈ [aq−1 +
1

2N
, aq −

1
2N

),
2j
2N
∈ [aq−1 +

1
N
, aq). (3.5.6)

Thus, (3.1.11) holds as equality.

Claim 2: There is θ ∈ (0,∞) so that MN (k) ≤ eθ(k+1)εN M̂N (k) for all k < N .

Proof of Claim 2: Define the following sets of indices.

∆
(N)
p := I (N)

p ∩ [ap−1N + 1, apN), (3.5.7)

∆(N) := ∪mp=1∆
(N). (3.5.8)
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When p = m, the interval in the intersection becomes closed on the right also. Then

MN (k) ≤ M̂N (k) +
∑

∅,J⊂[k+1]

∑
T∈Ck

∑
i1···ik+1

1

(
il < ∆

(N) if l ∈ J and il ∈ ∆(N) if l < J
) ∏
{i,j}∈E(T )

s(N)
i,j

(3.5.9)

= M̂N (k) +
∑

∅,J⊂[k+1]

∑
T∈Ck

∑
m1,...,mk+1∈[m]k+1

a(T, J,m1, m1, . . . , mk+1) (3.5.10)

where

a(T, J,m1 · · ·mk+1) :=
∑

i1∈I
(N)
m1 ,···ik+1∈I

(N)
mk+1

1(il < ∆(N) if l ∈ J, il ∈ ∆(N) if l < J, (iℓ)ℓ∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j .

(3.5.11)

Note that ∑
T∈Ck

∑
m1,m2···mk+1∈[m]k+1

a(T, ∅, m1 · · ·mk+1) ≤ M̂N (k). (3.5.12)

We will show that for some constant θ = θ(I1, I2, . . . , Im) ∈ (0,∞) we have

a(T, J,m1 · · ·mk+1) ≤ (θεN )|J |a(T, ∅, m1, · · ·mk+1). (3.5.13)

In the definition of a(T, J,m1, m2, . . . , mk+1), the product is common to all summands

[recall the rectangles of constancy of the map (i, j) 7→ s(N)
i,j ]. We write a(T, J,m1 · · ·mk+1) and

a(T, ∅, m1, . . . mk+1) as

∑
iℓ∈I

(N)
mℓ

for ℓ<J

1(il ∈ ∆(N) for l < J, (iℓ)ℓ∈[k+1]\J distinct)
∑

iℓ∈I
(N)
mℓ

for all ℓ∈J

1(il < ∆(N) for all l ∈ J, (iℓ)ℓ∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j ,

(3.5.14)∑
iℓ∈I

(N)
mℓ

for ℓ<J

1(il ∈ ∆(N) for l < J, (iℓ)ℓ∈[k+1]\J distinct)
∑

iℓ∈I
(N)
mℓ

for all ℓ∈J

1(il ∈ ∆(N) for all l ∈ J, (iℓ)ℓ∈[k+1]distinct)
∏

{i,j}∈E(T )

s(N)
i,j

(3.5.15)

We will compare the inner sums in the two expressions. Notice that there are C1, C2 > 0

that depend on a1, a2, . . . , am only so that

|∆
(N)
p | ≥ C1N, (3.5.16)

|I (N)
p \∆(N)| ≤ C2εNN (3.5.17)

for all p ∈ [m]. For each fixed collection (iℓ)ℓ<J , the inner sum in (3.5.14) is at most (C2εNN)|J |

while the inner sum in (3.5.15) is at least (C1N/2)|J |. The ratio of the first over the second

bound is (2C2εN/C1)|J |. Thus, we get (3.5.13) with θ := 2C2/C1.
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Taking into account (3.5.13) and (3.5.12), we get that the second summand in (3.5.10)

is bounded above by

k+1∑
t=1

∑
J⊂[k+1]:|J |=t

M̂N (k)(θεN )t = M (1)
N (k)

k+1∑
t=1

(
k + 1
t

)
(θεN )t = M̂N (k)

{
(1 + θεN )k+1 − 1

}
(3.5.18)

Consequently, MN (k) ≤ (1 + θεN )k+1M̂N (k) ≤ eθ(k+1)εN M̂N (k), and this proves Claim 2.

Now, combining this with (3.5.3), we get that condition Σ((1 + ε)µ∞) is satisfied for each

ε > 0. □

3.6 An approximation result and proof of Corollary 3.1.15

Proposition 3.6.1. Let (AN )N∈N+ be a sequence of symmetric random matrices, AN of dimen-

sion N × N, of the form

AN = ΣN ⊙ A
′
N , (3.6.1)

where ΣN ∈ [0,∞)N×N and A′N is a random N ×N symmetric matrix with independent entries

(up to symmetry) all with zero mean and unit variance.

For every n ∈ N+ consider a sequence (Σ(n)
N )N∈N+ of matrices, with Σ(n)

N ∈ [0,∞)N×N , and

define

A(n)
N := Σ(n)

N ⊙ A
′
N for each N ∈ N+. (3.6.2)

(a) Assume that

(i) the sequence (A′N )N∈N+ satisfies Assumption 3.1.3,

(ii) for each n ∈ N+ it holds

lim
N→∞

|A(n)
N |op
√
N
= µ(n)
∞ in probability, (3.6.3)

where µ(n)
∞ is a finite constant,

(iii)

lim
n→∞

µ(n)
∞ =: µ∞ ∈ R, (3.6.4)

(iv)

lim
n→∞

lim sup
N→∞

|ΣN − Σ
(n)
N |max = 0. (3.6.5)

Then

lim
N→∞

|AN |op
√
N
= µ∞ in probability. (3.6.6)

(b) Assume that, in addition to the assumptions of (a), the convergence in (3.6.3) holds in the

a.s. sense and Assumption 3.1.7 holds for the sequence (A′N )N∈N+ . Then the limit in (3.6.6)

holds in the a.s. sense.
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Proof. (a) Fix ϸ ∈ (0,1/2) and n0 large enough such that for every n ≥ n0 it is true that

|µ∞ − µ
(n)
∞ | ≤ ϸ and lim sup

N→∞
|ΣN − Σ

(n)
N |max < ϸ.

Fix an n ≥ n0. There is an N0 = N0(n) ∈ N+ so that |ΣN − Σ
(n)
N |max < ϸ2 for all N ≥ N0. Then

for N ≥ N0 we have

P

(∣∣∣∣∣∣ |AN |op
√
N
− µ∞

∣∣∣∣∣∣ ≥ 5ϸ
)
≤ P

(∣∣∣∣∣∣ |AN |op
√
N
− µ(n)
∞

∣∣∣∣∣∣ ≥ 4ϸ
)
≤ P

 |AN − A(n)
N |op

√
N

≥ 3ϸ

 + P


∣∣∣∣∣∣∣ |A

(n)
N |op
√
N
− µ(n)
∞

∣∣∣∣∣∣∣ ≥ ϸ
 .

(3.6.7)

The last term in (3.6.7) converges to zero as N → ∞ due to (3.6.3). For the previous term

we will apply Proposition 3.2.2. Notice that the sequence (AN − A
(n)
N )N∈N+ satisfies

• Assumption 3.1.3 because (AN − A
(n)
N )i,j = ((ΣN )i,j − (Σ(n)

N )i,j)(A′N )i,j and |(AN − A
(n)
N )i,j | ≤

|(A′N )i,j | (for all N ∈ N+, i, j ∈ [N]) and we assumed that (A′N )N∈N+ satisfies Assumption

3.1.3

• condition Σ(2ε) because if, for t ∈ N+ with t < N , we call M ′N (t) the quantity defined in

(3.1.7) for the matrix AN − A
(n)
N , and note that the (i, j) element of AN − A

(n)
N has mean

zero and variance {(ΣN )i,j − (Σ(n)
N )i,j}2, we obtain that

M ′N (t) ≤ N t+122t(|ΣN − Σ(n)
N |max

)2t < N t+1(2ϸ)2t . (3.6.8)

Since 3ϸ > 2ϸ(1 + ϸ), Proposition 3.2.2 implies that the penultimate term in (3.6.7) goes

to zero as N → ∞.

(b) It is enough to prove that with probability 1 it holds limN→∞
|AN |op
√
N
≤ µ∞. Because of

(3.6.3) (holding a.s.) and (3.6.4), it is enough to prove that for all ϸ > 0 and all n large

enough, with probability 1, it holds

lim
N→∞

|AN − A
(n)
N |op

√
N

≤ 2ϸ. (3.6.9)

To prove this, we will apply Lemma 3.2.3. Take n0 so that for all n ≥ n0 it holds

lim supN→∞ |ΣN − Σ
(n)
N |max < ϸ2. Now fix n ≥ n0. There is N0 = N0(n) ∈ N+ so that

|ΣN − Σ
(n)
N |max < ϸ2 for all N ≥ N0. Then the sequence (AN − A

(n)
N )N≥N0 satisfies Assump-

tion 3.1.3(a) as we saw in part a) of the proposition, Assumption 3.1.7 (because A′N does so

and |ΣN − Σ
(n)
N |max < 1), and assumption Σ(2ϸ) because of (3.6.8). Then Lemma 3.2.3 gives

the desired inequality. □

Proof of Corollary 3.1.15. We will apply Proposition 3.6.1(b) for the sequence (AN )N∈N+ . The

sequence (A′N )N∈N+ mentioned in that Proposition is exactly the sequence (A′N )N∈N+ of re-

lation (3.1.27) and it satisfies Assumption 3.1.3 because for it the discussion following

Assumption 3.1.3 applies (X0 has finite fourth moment).
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For each n ∈ N+, we define the following obvious approximation to σ.

σ(n)(x, y) := n2
∫
Ik

∫
Iℓ

σ(a, b)da db if (x, y) ∈ Ik × Iℓ for k, ℓ ∈ [n], (3.6.10)

where Ik := [k−1
n , kn ) for k ∈ [n −1] and In := [(n −1)/n,1]. Then, we define the matrices Σ(n)

N

through the relation (Σ(n)
N )i,j := σ(n)(i/N, j/N).

For each n ∈ N+, the sequence of matrices (Σ(n)
N ⊙ A

′
N )N≥1 satisfies the assumptions of

Theorem 3.1.14. Consequently, as N → ∞, the sequence (µA(n)
N /
√
N )N∈N+ converges almost

surely weakly to a symmetric measure, say µ(n), with support contained in [−µ(n)
∞ , µ(n)

∞ ] and

(3.6.3) holds in the a.s. sense. In a claim below we prove that condition (3.6.4) is satisfied.

Finally, to check (3.6.5), note that∣∣∣∣(ΣN )i,j − (Σ(n)
N )i,j

∣∣∣∣ ≤ ∣∣∣(ΣN )i,j − σ(i/N, j/N)
∣∣∣ + ∣∣∣σ(i/N, j/N) − σ(n)(i/N, j/N)

∣∣∣ . (3.6.11)

In the right hand side of the last inequality, the first term converges to zero as N → ∞ due

to (3.1.26), and the second term is at most the supremum norm of σ − σ(n), which goes to

zero as n → ∞ because σ is uniformly continuous in [0,1]2. Thus, Proposition 3.6.1(b)

applies and completes the proof.

Claim: Condition (3.6.4) is satisfied.

We modify the proof of Lemma 6.4 of [12]. Call µ the weak limit as N → ∞ of µAN/
√
N ,

then FN , F
(n)
N the distribution function of µAN/

√
N and µA(n)

N /
√
N respectively, and F, F (n) the

distribution function of µ, µ(n) respectively. Let

λN,1 ≤ λN,2 ≤ · · · ≤ λN,N ,

λ(n)
N,1 ≤ λ

(n)
N,2 ≤ · · · ≤ λ

(n)
N,N

the eigenvalues of AN/
√
N, A(n)

N /
√
N respectively.

Let ϸ ∈ (0,1/2). There is n0 = n0(ϸ) so that for all n ≥ n0 it holds lim supN→∞ |ΣN−Σ
(n)
N |max <

ϸ2. Take now n ≥ n0 fixed. There is N0 = N0(n) ∈ N+ so that |ΣN − Σ
(n)
N |max < ϸ2 for all

N ≥ N0. As explained in the proof of Proposition 3.6.1, limN→∞ P

(
|AN − A

(n)
N |op ≥ 3ϸ

√
N
)
= 0.

There is sequence (Nk)k≥1 so that in a set Ωϸ of probability 1, eventually for all k we have

|ANk − A
(n)
Nk
|op < 3ϸ

√
Nk. Since

max
i∈[N]
|λ(n)
Nk ,i
− λNk ,i | ≤ |ANk − A

(n)
Nk
|op/

√
Nk ,

in Ωϸ (the inequality is true by Theorem A46 in [52]), we will have eventually for all k ∈ N+

that

F (n)
Nk

(a − 3ϸ) ≤ FNk (a) ≤ F (n)
Nk

(a + 3ϸ) (3.6.12)

for all a ∈ R. From here, using the convergence as N → ∞ of FN to F and of F (n)
N to F (n), we

have that for all a ∈ R it holds

F (n)(a − 3ϸ) ≤ F (a) ≤ F (n)(a + 3ϸ). (3.6.13)
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[First we get this for all a outside a countable subset of R and then using the right continuity

of F, F (n) we get it for all a ∈ R.] This implies that |µ(n)
∞ − µ∞| ≤ 3ϸ and finishes the proof of

the claim. □

Remark 3.6.2. The above proof easily generalizes to the case that the function σ is piecewise

continuous in the following sense. There are m ∈ N+, 0 = a0 < a1 < · · · < am−1 < am = 1 so

that letting Ip := [ap−1, ap) for p = 1,2, . . . , m − 1, and Im = [am−1,1] the function σ |Ip × Iq is

uniformly continuous for all p, q ∈ [m] (i.e., when σ extends continuously in the closure of

each rectangle Ip × Iq. Recall that to handle the last term in (3.6.11) all we needed was the

uniform continuity of σ.

3.7 Examples

3.7.1 Random Gram matrices

Let (XN )N∈N+ be a sequence of matrices so that XN is an M(N)×N matrix with independent,

centered entries with unit variance, and M : N+ → N+ a function with limN→∞
M(N)
N =

c ∈ (0,∞). It is known that the empirical spectral distribution of XXT , after rescaling,

converges to the Marchenko-Pastur law µMP [9]. Moreover, the convergence of the rescaled

largest eigenvalue to the largest element of the support of µMP has been established in [53]

under the assumption of finite fourth moment for the entries. However, some applications

in wireless communication require understanding the spectrum of XXT , where X has a

variance profile, see for example [54] or [55]. Such matrices are called random Gram

matrices. In this subsection, we establish the convergence of the largest eigenvalue of

random Gram matrices to the largest element of the support of its limiting empirical spectral

distribution for specific variance profiles. Firstly we give some definitions.

Definition 3.7.1 (Step function variance profile). Consider

a) m, n ∈ N+ and numbers {σp,q}p∈[m],q∈[n] ∈ [0,∞)mn.

b) For each K ∈ N+, two partitions {I (K)
p }p∈[m], {J

(K)
p }p∈[n] of [K] in m and n intervals

respectively. The numbering of the intervals is such that x < y whenever x ∈ I (K)
p , y ∈

I (K)
q or x ∈ J (K)

p , y ∈ J (K)
q with p < q. Let LI (K)

p and RI (K)
p be the left and right endpoint

respectively of I (K)
p and similarly LJ (K)

p and RJ (K)
p for J (K)

p .

c) Numbers 0 = α0 < α1 < · · · < αm−1 < αm := 1. We assume that limM→∞ RI
(M)
p /M = αp

for each p ∈ [m].

d) Numbers 0 = �0 < �1 < · · · < �n−1 < �n := 1. We assume that limN→∞ RJ
(N)
q /N = �q

for each q ∈ [n].

e) M : N+ → N+ a function,
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f) A random variable X0 with E(X0) = 0,E(X2
0 ) = 1.

For each M,N ∈ N+, define the matrix ΣM,N ∈ RM×N by (ΣM,N )i,j = σp,q if i ∈ I (M)
p , j ∈ I (N)

q , and

let {AN }N∈N+ be the sequence of random matrices defined by

AN = ΣM(N),N ⊙ A
′
M(N),N (3.7.1)

where A′M(N),N is an M(N) × N matrix whose elements are independent random variables

all with distribution the same as X0. We say that AN in (3.7.1) is a random matrix model

whose variance profile is given by a step function.

Definition 3.7.2 (Continuous function variance profile). For

a) a continuous function σ : [0,1]2 → [0,1],

b) M : N+ → N+ a function

c) a sequence (ΣM(N),N )N∈N+ of matrices, ΣM(N),N ∈ [0,1]M(N)×N , with the property

lim
N→∞

sup
i∈[M(N)],j∈[N]

∣∣∣(ΣM(N),N )i,j − σ(i/M(N), j/N)
∣∣∣ = 0, (3.7.2)

d) a random variable X0 with E(X0) = 0,E(X2
0 ) = 1,

consider the sequence {AN }N∈N+ of random matrices, AN ∈ RM(N)×N , defined by

AN = ΣM(N),N ⊙ A
′
N (3.7.3)

where the entries of A′N are independent random variables all with distribution the same

as X0. Then we say that (AN )N∈N+ is a random matrix model whose variance profile is given

by a continuous function. Again, we call σ the variance profile.

Symmetrization To study the eigenvalues of ANATN , where AN falls in one of the cases of

the two last definitions, we use the trick of symmetrization. If A is an M × N matrix, where

M,N ∈ N+, we call symmetrization of A the (M + N) × (M + N) symmetric matrix Ã defined

by

Ã :=

OM,M A

AT ON,N

 (3.7.4)

where, for any k, l ∈ N+, Ok,l denotes the k × l matrix with all of its entries equal to 0. The

characteristic polynomials of AAT , Ã are connected through the relation

λM det(λIM+N − Ã) = λN det(λ2IM − AA
T ) (3.7.5)

for all λ ∈ C. Thus, in the case M ≤ N , if we call (t1, t2, . . . , tM+N ) the eigenvalues of the

symmetric matrix Ã, then the vector (t21 , t
2
2 , . . . , t

2
M+N ) contains twice each eigenvalue of
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AAT and N −M times the eigenvalue 0 (multiple eigenvalues appear in the previous vectors

according to their multiplicities). Thus, the empirical spectral distributions of AAT , Ã are

related through

µÃ ◦ T
−1 =

2M
M + N

µAAT +
N −M

M + N
δ0 (3.7.6)

with T : R→ [0,∞) being the map x 7→ x2.

Step function profile: If (AN )N∈N+ is as in Definition 3.7.1 with M(N) := ⌈cN⌉ for some

c ∈ (0,1], then the sequence (ÃN )N∈N+ is of the form given in Definition 3.1.11 with the

following modification. We require that there is some γ : N+ → N+ with limN→∞ γ(N) = ∞

so that the N-th matrix is of dimension γ(N) × γ(N) and, for each N ∈ N+, the family

(I (N)
p )p∈[m] is a partition of [γ(N)]. The numbers ap satisfy limN→∞ R

(N)
p /γ(N) = ap. With this

modification, Theorem 3.1.14 holds if the denominator in (3.1.30) is replaced by
√
γ(N).

The sequence (ÃN )N∈N+ fits into this framework. We have γ(N) = ⌈cN⌉ + N , the role of m

(of Definition 3.1.11) is played by m + n (m, n from Definition 3.7.1), the (m + n)2 constants

are

σ̃p,q :=



0 if p ∈ [m], q ∈ [m],

σp,q−m if p ∈ [m], q ∈ [m + n]\[m],

σq,p−m if p ∈ [m + n]\[m], q ∈ [m],

0 if p ∈ [m + n]\[m], q ∈ [m + n]\[m]

(3.7.7)

for each N , and the partition of [γ(N)] into m +n intervals consists of the intervals (we write

M instead of ⌈cN⌉) {
[Map−1, Map) ∩ N+ : p ∈ [m]

}
, (3.7.8){

[M + N�q−1, M + N�q) ∩ N+ : q ∈ [n]
}
. (3.7.9)

Dividing the right endpoints of the intervals by γ(N) and taking N → ∞, we get the m + n

numbers

c

1 + c
a1 <

c

1 + c
a2 < · · · <

c

1 + c
am <

c

1 + c
+

1
1 + c

�1 < · · · <
c

1 + c
+

1
1 + c

�n. (3.7.10)

If we feed these data to the recipe of Definition 3.1.11, relation (3.1.24) will give as AN
the matrix ÃN where AN is given by (3.7.1). The discussion preceding Theorem 3.1.14

applied to the sequence (ÃN )N≥1 gives that the ESD of ÃN/
√
γ(N) converges almost surely

weakly to a symmetric probability measure µ̃σ with compact support. Call µ̃σ∞ the largest

element of the support. Relation (3.7.6) implies that the ESD of ANATN/N converges to a

measure with compact support contained in [0,∞) and the largest element of this support

is µ∞ = (1 + c)(µ̃σ∞)2. Then Theorem 3.1.14 has the following corollary.
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Corollary 3.7.3. Assume that (AN )N≥1 is as in Definition 3.7.1 with M := ⌈cN⌉ for some

c ∈ (0,1] and E(|X0|
4+δ) < ∞ for some δ > 0. Then it is true that

lim
N→∞

|ANATN |op

N
= µ∞ a.s. (3.7.11)

Continuous function profile: If (AN )N∈N+ is as in Definition 3.7.2 with M(N) := ⌈cN⌉ for

some c ∈ (0,1], then we apply the discussion preceding Theorem 3.1.14 to the sequence

(ÃN )N∈N+ . The graphon, WN , corresponding to ÃN converges pointwise in [0,1]2 to the

graphon σ̃ with

σ̃(x, y) :=


0 if (x, y) ∈ [0, c/(1 + c)]2 ∪ (c/(1 + c),1]2,

σ(x(1 + c)/c, (1 + c)y − c) if (x, y) ∈ [0, c/(1 + c)] × (c/(1 + c),1],

σ(y(1 + c)/c, (1 + c)x − c) if (x, y) ∈ (c/(1 + c),1] × [0, x/(1 + c)].

(3.7.12)

We used (3.7.2) and the continuity of σ. Since (ÃN )N∈N+ also satisfies Assumption 3.1.1, we

get that the ESD of ÃN/
√
γ(N) converges almost surely weakly to a symmetric probability

measure µ̃σ with compact support. Call µ̃σ∞ the largest element of the support. As above,

the ESD of ANATN/N converges to a measure with compact support contained in [0,∞), and

the largest element of this support is µ∞ = (1 + c)(µ̃σ∞)2.

Corollary 3.7.4. Assume that (AN )N≥1 is as in Definition 3.7.2 with M := ⌈cN⌉ for some

c ∈ (0,1] and E(|X0|
4+δ) < ∞ for some δ > 0. Then it is true that

lim
N→∞

|ANATN |op

N
= µ∞ a.s. (3.7.13)

Proof. The proof does not follow directly from Corollary 3.1.15 because the sequence

(ÃN )N∈N+ does not necessarily have a continuous variance profile in the sense of Defini-

tion 3.1.12. Instead, we mimic the proof of that corollary. We define σ(n) as in (3.6.10),

and the M × N matrix Σ(n)
N as (Σ(n)

N )i,j := σ(n)(i/M, j/N) for all i ∈ [M], j ∈ [N]. Then we apply

an obvious modification of Proposition 3.6.1 (the N-th matrix is of dimension γ(N) × γ(N),

with γ(N) = ⌈cN⌉ + N ) with the role of ΣN and Σ(n)
N played by Σ̃M,N , Σ̃

(n)
N (the symmetriza-

tions of ΣM,N and Σ(n)
N , defined in (3.7.4). The proof continues by adopting the proof of

Corollary 3.1.15 to this setting. Note that |Σ̃M,N − Σ̃
(n)
N |max = |ΣM,N − Σ

(n)
N |max, which has

limn→∞ lim supN→∞ |ΣM,N − Σ
(n)
M,N |max = 0. □

Remark 3.7.5. In [54] the authors showed that if the variances of the entries of AN,M are

given by the values of a continuous function (and some extra assumptions such as bounded

4 + ϸ moments of the entries) the limiting distribution of the E.S.D. of ANATN does exist. So

in Theorem 3.7.3 we prove the convergence of the largest eigenvalue of these models as

well. The authors in [54] also studied the non-centered version of these models, i.e. when

the entries of the matrix do not have 0 mean, but we do not cover this case with our result.
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3.7.2 Further applications of Theorem 3.1.10

In the Random Matrix Theory literature what are commonly described as Random matrices

with variance-profile given by a step function are more or less what we describe in Theorem

3.1.14. In this subsection we give some examples which are covered by the generalized

version of this variance-profile matrices (Definition 3.1.9) but not from the "standard" step

functions.

Let {a(N)
i,j : N ∈ N+, i, j ∈ [N]} identically distributed random variables, a(N)

i,j = a
(N)
j,i for all

N ∈ N+, i, j ∈ [N], {a(N)
i,j : 1 ≤ j ≤ i ≤ N} independent for each N , and a(1)

1,1 has mean 0 and

variance 1. Fix p ∈ (0,1] and let AN be the matrix with entries

{AN }i,j = a
(N)
i,j 1|i−j|≤pN , i, j ∈ [N], (3.7.14)

The sequence (AN )N∈N+ satisfies Assumption 3.1.1 (easy to check) and also Assumption

3.1.2. To see the last point, we follow Remark 3.1.13. The graphon corresponding to AN is

WN (x, y) = 1|⌈Nx⌉−⌈Ny⌉|≤pN which converges to the graphon W (x, y) = 1|x−y|≤p at least on the

set {(x, y) ∈ [0,1]2 : |x − y| , pn}, which has measure 1. Thus, with probability one, the

ESD of AN/
√
N converges weakly to a symmetric measure µ with compact support. Call

µ∞ the supremum of the support of µ.

Corollary 3.7.6 (Non-Periodic Band Matrices with Bandwidth proportional to the dimen-

sion). Assume that for the matrix defined in (3.7.14) we have that a(N)
1,1 has 0 mean, unit

variance and finite 4 + δ moment for some δ > 0. Then

lim
N→∞

|AN |op
√
N
= µ∞ a.s.

Proof. The sequence (AN )N∈N+ satisfies Assumption 3.1.2, as we saw above, and also As-

sumption 3.1.3 because {a(N)
i,j : N ∈ N+, i, j ∈ [N]} are identically distributed and a1,1 has

mean zero, variance one, and finite fourth moment. The corollary then is a straightforward

application of Theorem 3.1.10, where dN = 3, the partition of [N]2 required by Definition

3.1.9 consists of the sets

B
(N)
1 := {(i, j) ∈ [N]2 : |(i/N) − (j/N)| ≤ p}, (3.7.15)

B
(N)
2 := {(i, j) ∈ [N]2 : (i/N) > (j/N) + p}, (3.7.16)

B
(N)
3 := {(i, j) ∈ [N]2 : (j/N) > (i/N) + p}, (3.7.17)

and s(N)
1 = 1, s(N)

2 = s(N)
3 = 0. Condition (b) of that definition is satisfied by f := m for each

m ∈ [3]. □

Remark 3.7.7. The random band matrix models have been extensively studied after the

novel work in [56] and have tremendous application in various research areas. When the

bandwidth of the matrices is periodic, i.e., the distance from the diagonal outside which the
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entries are 0 is periodic, the operator norm has been extensively studied, see for example

[38] or the survey [57]. Moreover when the bandwidth of such matrices is non-periodic

but the bandwidth (the maximum number of non identically zero entries per row) is o(N)

but also tends to infinity has also been examined in [58]. To the best of our knowledge,

the convergence of the largest eigenvalue of non-periodic Band Matrices with bandwidth

proportional to the dimension has not been established.

Our next result concerns the singular values of triangular random matrices. It is well

known under various assumptions for the entries, but we record it here as another appli-

cation of our main theorem.

Let {a(N)
i,j : N ∈ N+,1 ≤ i ≤ j ∈ [N]} identically distributed random variables, {a(N)

i,j : 1 ≤ j ≤

i ≤ N} independent for each N , and a(1)
1,1 has mean 0 and variance 1. Let AN be the matrix

with entries

{AN }i,j = a
(N)
i,j 1i≤j, i, j ∈ [N], (3.7.18)

Corollary 3.7.8 (Triangular matrices). Assume that for the matrix defined in (3.7.18) we

have that a(N)
1,1 has 0 mean, unit variance and finite 4 + δ moment for some δ > 0. Then

lim
N→∞

|ANATN |op

N
= e a.s.

Proof. As in the case of Gram matrices, we denote by ÃN the symmetrization of AN , defined

in (3.7.4). We have |ANATN |op = |ÃN |2op. We will apply Theorem 3.1.10 to the sequence

(ÃN )N∈N+ . The partition of [2N]2 required by Definition 3.1.9 consists of the following three

sets (i.e., dN = 3)

B
(N)
1 := {(i, j) ∈ [2N]2 : |i − j| ≤ N − 1}, (3.7.19)

B
(N)
2 := {(i, j) ∈ [2N]2 : i ≥ N + j}, (3.7.20)

B
(N)
3 := {(i, j) ∈ [2N]2 : j ≥ N + i}, (3.7.21)

and the corresponding values of the variance are s(N)
1 = 0, s(N)

2 = s(N)
3 = 1. Assumption 3.1.2

follows as an application of Remark 3.1.13, in the same way as in the previous corollary.

The measure µ of that assumption satisfies µ ◦ T−1 = ν, where ν is the limit of the E.S.D

of N−1ANAT [recall (3.7.6)]. It was shown in [15] that ν has support [0, e]. It follows that

µ has support [−
√
e,
√
e] [See Remark 2.2 of [59] for a more detailed discussion of this

phenomenon].

Assumption 3.1.3 is satisfied because the elements of ÃN with indices in B(N)
2 ∪ B

(N)
3

are identically distributed with zero mean, unit variance and finite fourth moment (the

remaining elements of the matrix are identically zero random variables). Finally, condition

(3.1.20) is satisfied as equality.

Thus, the corollary follows from Theorem 3.1.10. □
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3.8 Two technical lemmas

In the next lemma, we prove the crucial estimate we invoked in the proof of Proposition

3.2.1. We adopt and present the terminology of Section 5.1.1 of [52].

Lemma 3.8.1. NT,a1,a2,...,as ≤ (4k4)4(s+1−t)+2(k−s) if t ≥ 2 and NT,a1,a2,...,as = 1 if t = 1.

Proof. When t = 1, since the cycle is bad, we have s = 1 and a1 = 2k, and there is only one

cycle with these s, t and vertex set {1}.

For the case t ≥ 2, take a cycle i := (i1, i2, . . . , i2k) as in (3.2.9) and assume that it has

edge multiplicities a1, a2, . . . , as ≥ 2. Each step in the cycle we call a leg. More formally,

legs are the elements of the set {(r, (ir , ir+1)) : r = 1,2, . . . ,2k}. Edges of the cycle we call

the edges of G(i), and the multiplicity of each edge is computed from i. The graph G(i) does

not have multiple edges.

For 1 ≤ a < b, we say that the leg (a, (ia , ia+1)) is single up to b if {ia , ia+1} , {ic, ic+1} for

every c ∈ {1,2, . . . , b−1}, c , a. We classify the 2k legs of the cycle into 4 sets T1, T2, T3, T4.

The leg (a, (ia , ia+1)) belongs to

T1: if ia+1 < {i1, . . . , ia}. I. e., the leg leads to a new vertex.

T3: if there is a T1 leg (b, (ib, ib+1)) with b < a so that a = min{c > b : {ic, ic+1} = {ib, ib+1}}.

I. e., at the time of its appearance, it increases the multiplicity of a T1 edge of G(i) from 1

to 2.

T4: if it is not T1 or T3.

T2: if it is T4 and there is no b < a with {ia , ia+1} = {ib, ib+1}.

I.e., at the time of its appearance, it creates a new edge but leads to a vertex that

has

appeared already.

Moreover, a T3 leg (a, (ia , ia+1)) is called irregular if there is exactly one T1 leg (b, (ib, ib+1))

which has b < a, va ∈ {ib, ib+1}, and is single up to a. Otherwise the leg is called regular.

It is immediate that a T4 leg is one of the following three kinds.

a) It is a T2 leg.

b) Its appearance increases the multiplicity of a T2 edge from 1 to 2.

c) Its edge marks the third or higher order appearance of an edge.

The number of edges of G(i) is s and the number of its vertices is t (since T (i) ∼ T ∈ Ct−1).

Call

ℓ: the number of edges of G(i) that have multiplicity at least 3.

m: the number of T2 legs.

r: the number of regular T3 legs.
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We have for r, t, and |T4| the following bounds

r ≤ 2m, (3.8.1)

t = s + 1 −m ≤ k, (3.8.2)

|T4| = 2m + 2(k − s). (3.8.3)

The first relation is Lemma 5.6 in [52]. The second is true because if we remove the m

edges traveled by T2 legs, we get a tree with s − m edges and t vertices, and in any tree

the number or vertices equals the number of edges plus one. Then the inequality is true

because s ≤ k (all edges of G(i) have multiplicity at least 2) and if s = k, then m ≥ 1 since

the cycle is bad. For the last relation, note that |T3| = |T1| = t − 1 and thus, using (3.8.2)

too, we have |T4| = 2k − 2(t − 1) = 2k − 2(s −m).

Now back to the task of bounding NT,a1,...,as . We fix a cycle as in the beginning of the proof

and we record

• for each T4 leg, a) its order in the cycle, b) the index of its initial vertex, c) the index

of its final vertex, and d) the index of the final vertex of the next leg in case that leg is

T1. This gives a Q1 ⊂ {1,2, . . . ,2k} × ({1,2, . . . t}2 ∪ {1,2, . . . t}3) with |T4| elements.

• for each regular T3 leg, a) its order in the cycle, b) the index of its initial vertex, and

c) the index of its final vertex. This gives a Q2 ⊂ {1,2, . . . ,2k} × {1,2, . . . , t}2 with r

elements.

We call U the set of all indices that appear as fourth coordinate in elements of Q1. These

are indices of final vertices of T1 legs.

We claim that, having Q1, Q2 and knowing that T (i) = T , we can reconstruct the cycle i.

We determine what kind each leg of the cycle is and what the index of its initial and its

final vertex is. These data are known for the T4 and T3 regular legs. The remaining legs are

T1 or T3 irregular. We discover the nature of each of them by traversing the cycle from the

beginning as follows. The first leg is T4 (if i2 = i1) or T1. The set Q1 will tell us if we are in

the first case and will give us all we want. If we are in the second case, the initial vertex is

1 and the final 2. Assume that we have arrived at a vertex vi in the cycle with the smallest

i for which the nature of the leg ℓi := (i, (vi , vi+1)) is not known yet. If the vertex vi has no

neighbors in G(i) that we haven’t encountered up to the leg ℓi−1, then ℓi is T3 irregular, and

by the defining property of T3 irregular legs, we can determine the index of its final vertex.

If the vertex vi does have such neighbors, call z the one that appears earlier in the cycle.

• If z ∈ U , then in case it was included in U because of ℓi−1 (this can be read off from

Q1. Note that z could not have been included because of an earlier leg because z has not

appeared earlier than vi ), we have that ℓi is T1 with vi+1 = z, while in case it was included

with a leg ℓi′ with index i′ ≥ i, we have that ℓi can’t be T1 (because then vi+1 would be a

neighbor of vi appearing earlier than z, contradicting the choice of z), thus ℓi is T3 irregular.
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ℓq

Figure 3.1: The case z < U .The legs ℓi , ℓj(i < j) are T3, while ℓp, ℓq are T1.

• If z < U , we will show that ℓi = (i, (vi , w)) is T1. Assume on the contrary that it is

T3 irregular. Clearly z , w, and call ℓp (p < i) the T1 leg that has vertices vi , w and is

single up to i − 1. The cycle will visit the vertex vi at a later point, with a leg ℓj = (j, (vj, vi))

with j > i and vj , z, vj , vi , in order to create the edge that connects vi with z (that is,

ℓj+1 = (j+1, (vi , z)) will be T1), see Figure 3.1. The leg ℓj is not T1 because vi has been visited

by an earlier leg, and it is not T4 because we assumed that z < U . It has then to be T3.

Thus, there is a leg ℓq connecting vertices vi , vj that is T1.

If q < i, then we consider two cases. If vj = w, then ℓj is T4, because the edge vi , w

has been traveled already by ℓp, ℓi (recall that p < i < j), and this would force z ∈ U , a

contradiction. If vj , w, then ℓi would have been T3 regular as there are at least two T1 legs

(i.e., ℓp, ℓq) with order less than i with one vertex vi , traveling different edges, and single up

to i − 1, again a contradiction because ℓi is T1 or T3 irregular.

If q > i, then vj(, z) is a neighbor of vi (that is, the T1 leg ℓq goes from vi to vj) that

appears after leg ℓi but earlier than z, which contradicts the definition of z. We conclude

that ℓi is T1.

Thus, having T, Q1, Q2 allows to determine i.

The above imply that the number of bad cycles with given T, t, r is at most

(2kt2(t + 1))|T4 |(2kt2)r ≤ (4k4)r+|T4 |. (3.8.4)

Then (3.8.1) and (3.8.3) give r + |T4| ≤ 4m + 2(k − s), and finally using (3.8.2), we get the

desired bound. □

The next lemma is used in the proof of Theorem 3.1.10.

Lemma 3.8.2. Let (AN )N∈N+ be a sequence of matrices, AN of dimension N × N, that satis-

fies Assumption 3.1.1 and Assumption 3.1.2 with measure µ. Suppose that there are two

sequences of matrices (A(1)
N )N∈N+ and (A(2)

N )N∈N+ such that

(a) AN = A
(1)
N + A

(2)
N ,
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(b) For all N ∈ N+ and i, j ∈ [N], at least one of (A(1)
N )i,j, (A

(2)
N )i,j is identically zero random

variable.

(c) µA(1)
N /
√
N ⇒ µ in probability as N → ∞.

Then (A(1)
N )N∈N+ also satisfies Assumptions 3.1.1, 3.1.2 with the measure µ.

Proof. We only need to check the validity of Assumption 3.1.2 as the validity of Assumption

3.1.1 is immediate.

Because A(1)
N satisfies Assumption 3.1.1, there is a decreasing sequence (ηN )N∈N+ of positive

reals converging to 0 so that

lim
N→∞

1
N2

∑
i,j∈[N]

E

[
({A(1)

N }i,j)
2
1

(
|{A(1)

N }i,j | > ηNN
1
2
)]
= 0. (3.8.5)

Set A(1),≤
N to be the matrix whose (i, j) entry is

{A(1)
N }i,j1

(
|{A(1)

N }i,j | ≤ ηNN
1
2
)
− E

[
{A(1)
N }i,j1

(
|{A(1)

N }i,j | ≤ ηNN
1
2
)]

(3.8.6)

and µN,i,j := E

[
{A(1)
N }i,j1

(
|{A(1)

N }i,j | ≤ ηNN
1
2
)]

.

Claim:

µN−1/2A(1),≤
N
⇒ µ in probability as N → ∞ (3.8.7)

The Levy distance between µA(1)
N /
√
N and µA(1),≤

N /
√
N is bounded as follows.

L3(µA(1)
N /
√
N , µA(1),≤

N /
√
N ) ≤

1
N

tr
{( 1
√
N
A(1)
N −

1
√
N
A(1),≤
N

)2}
(3.8.8)

=
1
N2

∑
i,j∈[N]

{µ2
N,i,j1

(
|{A(1)

N }i,j | ≤ ηNN
1
2
)
+ ({A(1)

N }i,j + µN,i,j)
2
1

(
|{A(1)

N }i,j | > ηNN
1
2
)
}

(3.8.9)

≤
3
N2

∑
i,j∈[N]

µ2
N,i,j +

2
N2

∑
i,j∈[N]

({A(1)
N }i,j)

2
1

(
|{A(1)

N }i,j | > ηNN
1
2
)
. (3.8.10)

Since the entries of A(1)
N have mean 0, we have

µ2
N,i,j =

(
E

[
{A(1)
N }i,j1

(
|{A(1)

N }i,j | > ηNN
1
2
)])2
≤ E

[
({A(1)

N }i,j)
2
1

(
|{A(1)

N }i,j | > ηNN
1
2
)]
.

Thus, the expectation of the expression in (3.8.10) is at most

5
N2

∑
i,j∈[N]

E

{
({A(1)

N }i,j)
2
1

(
|{A(1)

N }i,j | > ηNN
1
2
) }
,

which tends to zero as N → ∞ due to (3.8.5). This, combined with assumption (c), proves

the claim.

Fix k ∈ N+ and set MN (k), M (1),≤
N (k) the asymptotic contributing terms (see (3.1.7)) of AN

and A(1),≤
N respectively. Notice that

M (1),≤
N (k) ≤ M (1)

N (k) ≤ MN (k). (3.8.11)
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The rightmost inequality is true because the variance of {A(1)
N }i,j is either zero or s(N)

i,j due to

assumption (b) of the lemma. The leftmost inequality is true because if W is a real valued

random variable with mean 0 and finite variance and W̃ is a variable with |W̃ | ≤ |W |, then

Var(W̃ ) ≤ Var(W ).

Lemma 3.6 of [13] implies that

M (1),≤
N (k)
Nk+1 =

1
Nk+1 E tr{(A(1),≤

N )2k} + o(1) (3.8.12)

as N → ∞. We will prove that the right hand side converges to
∫
x2kdµ as N → ∞. It will

be convenient to let BN := A(1),≤
N /

√
N and {λi(BN ) : i ∈ [N]} its eigenvalues.

Pick some C > µ∞ and consider the function gC(x) = (|x | ∧ C)2k, which is bounded and

continuous. Then,
1

Nk+1 E tr{(A(1),≤
N )2k} =

1
N

N∑
i=1

E{(λi{BN })2k} (3.8.13)

and the right hand side can be estimated as follows.∣∣∣∣∣∣∣ 1N
N∑
i=1

E{(λi{BN })2k} −
1
N

N∑
i=1

EgC(λi{BN })

∣∣∣∣∣∣∣ ≤ 1
N

N∑
i=1

E{λ2k
i (BN )1|λi (BN )|≥C}

≤
1
N

N∑
i=1

√
Eλ4k

i (BN )
√
P(|λi(BN )| ≥ C) ≤

√√
N∑
i=1

Eλ4k
i (BN )
N

√
E

∑N
i=1 1|λi (BN )|≥C

N

N→∞
→ 0.

(3.8.14)

To justify the convergence to zero, note that the quantity in the second square root con-

verges to zero by our choice of C > µ∞ and the in probability weak convergence of the E.S.D.

of BN to µ. The quantity in the first square root is bounded in N because, due to (3.8.12),

its difference from M (1),≤
N (2k)/N2k+1 is bounded and the latter is less than MN (2k)/N2k+1

which is bounded in N since it converges to
∫
x4k dµ.

The in probability weak convergence (3.8.7) implies that

1
N

N∑
i=1

gC(λi{BN })→
∫
x2kdµ in probability, (3.8.15)

and the boundedness of gC allows to conclude that

lim
N→∞

1
N

N∑
i=1

EgC(λi{BN }) =
∫
x2kdµ. (3.8.16)

Thus, relations (3.8.12), (3.8.13), (3.8.14),(3.8.16) show that

lim
N→∞

M (1),≤
N (k)
Nk+1 =

∫
x2kdµ. (3.8.17)

And this combined with (3.8.11) concludes the proof. □
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[26] A. Auffinger, G. Ben Arous, and S. Péché, ‘‘Poisson convergence for the largest eigen-

values of heavy tailed random matrices,’’ in Annales de l’IHP Probabilités et statistiques,

vol. 45, 2009, pp. 589–610.

[27] J. Heiny and T. Mikosch, ‘‘Eigenvalues and eigenvectors of heavy-tailed sample co-

variance matrices with general growth rates: The iid case,’’ Stochastic Processes and

their Applications, vol. 127, no. 7, pp. 2179–2207, 2017.

[28] ——, ‘‘Large sample autocovariance matrices of linear processes with heavy tails,’’

Stochastic Processes and their Applications, vol. 141, pp. 344–375, 2021.

[29] B. Basrak, Y. Cho, J. Heiny, and P. Jung, ‘‘Extreme eigenvalue statistics of m-

dependent heavy-tailed matrices,’’ in Annales de l’Institut Henri Poincaré, Probabilités
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