
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Benchmarking Support for RISC-V CPUs in Serverless
Computing

Georgios T. Pournaras

Supervisor: Vasileios Karakostas, Assistant Professor

ATHENS

SEPTEMBER 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υποστήριξη Αξιολόγησης RISC-V Επεξεργαστών στην
Υπολογιστική χωρίς Εξυπηρετητή

Γεώργιος Θ. Πουρνάρας

Επιβλέπων: Βασίλειος Καρακώστας, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2024

BSc THESIS

Benchmarking Support for RISC-V CPUs in Serverless Computing

Georgios T. Pournaras
S.N.: 1115201800162

SUPERVISOR: Vasileios Karakostas, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υποστήριξη Αξιολόγησης RISC-V Επεξεργαστών στην Υπολογιστική χωρίς Εξυπηρετητή

Γεώργιος Θ. Πουρνάρας
Α.Μ.: 1115201800162

ΕΠΙΒΛΕΠΩΝ: Βασίλειος Καρακώστας, Επίκουρος Καθηγητής

ABSTRACT

Serverless computing has emerged as a competitive cloud computing paradigm. At the
same time, the open-source RISC-V ISA has gained a lot interest and the first RISC-
V systems have already started to appear in the server market for datacenter and cloud
computing. The combination of these two computing trends necessitates the performance
assessment of the impact of the RISC-V ISA and relevant processor implementations
when executing serverless workloads, particularly with respect to well-established ISAs
and processor designs. However, currently, there is no benchmarking support for sys-
tematically evaluating serverless workloads on RISC-V systems. The goal of this thesis is
to bridge this gap in benchmarking support across the layers of the computing stack, from
the microarchitecture up to the application. We rely on vHive’s vSwarm that is a recently
proposed serverless benchmark suite, and on vSwarm-u that provides infrastructure for
executing serverless workloads in the gem5 microarchitecural simulator. We port several
workloads from vSwarm to the RISC-V ISA enabling their execution on RISC-V systems.
We also enhance vSwarm-u to enable the execution of those serverless workloads on sim-
ulated RISC-V CPUs using gem5. To achieve our goal, we address several challenges
that mostly stem from the immaturity of the RISC-V software ecosystem. To demonstrate
the usefulness of the enhanced benchmarking infrastructure, we evaluate the execution of
the ported serverless workloads on a simulated RISC-V out-of-order multicore system. We
also compare its execution with an equivalent x86 system. Our evaluation results highlight
the important performance trade-off of cold vs warm execution for serverless workloads.
Overall, our contributions pave the way for further experimentation with serverless work-
loads on RISC-V platforms, as well as for further comparison across various ISAs and
processor microarchitectural parameters.

SUBJECT AREA: Computer architecture

KEYWORDS: Serverless computing, benchmarking, RISC-V, software porting,
vSwarm, docker, gem5, microservices

ΠΕΡΙΛΗΨΗ

Η υπολογιστική χωρίς εξυπηρετητή (serverless computing) εχει ξεχωρίσει ως ένα ανταγω-
νιστικό μοντέλο εκτέλεσης εφαρμογών στο υπολογιστικό νέφος (cloud computing). Συγ-
χρόνως, η ανοιχτού κώδικα RISC-V αρχιτεκτονική έχει συγκεντρώσει αρκετό ενδιαφέρον
και τα πρώτα RISC-V συστήματα έχουν ήδη αρχίσει να εμφανίζονται στην αγορά δια-
κομιστών για κέντρα δεδομένων. Ο συνδυασμός αυτών των δύο τάσεων στην υπολο-
γιστική απαιτεί την αξιολόγηση της απόδοσης του αντίκτυπου της αρχιτεκτονικής RISC-
V και των σχετικών υλοποιήσεων επεξεργαστών κατά την εκτέλεση serverless φορτίων
εργασίας, ιδιαίτερα σε σύγκριση με τις καθιερωμένες αρχιτεκτονικές και μοντέλα επεξερ-
γαστών. Ωστόσο, προς το παρόν, δεν υπάρχουν μετροπρογράμματα (benchmarks) που
επιτρέπουν τη συστηματική αξιολόγηση των serverless φορτίων εργασίας σε συστήματα
RISC-V. Στόχος αυτής της πτυχιακής εργασίας είναι να γεφυρώσει αυτό το χάσμα στην
υποστήριξη αξιολόγησης μέσω μετροπρογραμμάτων όλων των επιπέδων της υπολογιστι-
κής στοίβας, από τη μικροαρχιτεκτονική μέχρι τις εφαρμογές. Βασιζόμαστε στη vSwarm
σουίτα του vHive, η οποία είναι μια πρόσφατα προτεινόμενη σουίτα μετροπρογραμμάτων
για serverless περιβάλλοντα εκτέλεσης, καθώς και στο vSwarm-u framework που παρέχει
υποδομή για την εκτέλεση serverless φορτίων εργασίας στον μικροαρχιτεκτονικό προσω-
μοιωτή gem5. Μεταφέρουμε διάφορες εφαρμογής από τη σουίτα vSwarm στην αρχιτε-
κτονική RISC-V ISA, επιτρέποντας την εκτέλεσή τους σε συστήματα RISC-V. Επιπλέον,
επεκτείνουμε το vSwarm-u ώστε να επιτρέπεται η εκτέλεση αυτών των serverless εφαρ-
μογών σε προσομοιούμενους RISC-V επεξεργαστές μέσω του gem5. Για να πετύχουμε
τον στόχο μας, αντιμετωπίσαμε διάφορες προκλήσεις που προέρχονται κυρίως από την
ανωριμότητα του οικοσυστήματος λογισμικού για RISC-V. Για να επιδείξουμε τη χρησιμό-
τητα της ενισχυμένης υποδομής αξιολόγησης που παρέχουμε, εκτελούμε τις serverless
εφαρμογές σε ένα προσομοιωμένο πολυπύρηνο RISC-V σύστημα που αποτελείται από
επεξεργαστές εκτέλεσης εντολών εκτός σειράς (out-of-order). Επίσης, συγκρίνουμε την
εκτέλεσή τους με ένα αντίστοιχο σύστημα αρχιτεκτονικής x86. Τα αποτελέσματα της αξιο-
λόγησής μας αναδεικνύουν το σημαντικό ζήτημα απόδοσης μεταξύ "κρύας" και "ζεστής"
εκτέλεσης που προκύπτει για serverless εφαρμογές. Συνολικά, οι συνεισφορές μας ανοί-
γουν το δρόμο για περαιτέρω πειραματισμούς με serverless φορτία εργασίας σε πλατφόρ-
μες RISC-V, καθώς και για περαιτέρω συγκρίσεις μεταξύ διαφόρων ISA και μικροαρχιτε-
κτονικών παραμέτρων των επεξεργαστών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική υπολογιστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Υπολογιστική χωρίς εξυπηρετητή, αξιολόγηση μέσω
μετροπρογραμμάτων, RISC-V, μετατροπή λογισμικού, vSwarm,
docker, gem5, μικροϋπηρεσίες

Το my parents Mantha and Thomas and my siblings Kostas, Aris, Angeliki as well as
their families for their love and support all those years

ACKNOWLEDGEMENTS

I would like to thankmy supervisor, Assistant Professor Vasileios Karakostas for coming up
with the topic of the thesis. This thesis would not have been possible without his guidance
and assistance.

I would also like to express my gratitude to Professor Dimitrios Gizopoulos and researcher
George Papadimitriou for their insightful contributions and feedback during the course of
the research.

CONTENTS

1. Introduction 14

1.1 Motivation . 14

1.2 Goal & Approach . 15

1.3 Thesis Contributions . 16

1.4 Organization . 16

2. Background 17

2.1 Serverless Computing . 17

2.2 The RISC-V Instruction Set Architecture . 18

2.3 QEMU . 18

2.4 gem5 . 18
2.4.1 gem5 System Modes . 19
2.4.2 gem5 CPU Models . 19
2.4.3 gem5 Utilities . 19

3. Porting Serverless Benchmarking to RISC-V 21

3.1 Selecting the Serverless Benchmark Suite . 21
3.1.1 The vSwarm Benchmark Suite . 22
3.1.2 The vSwarm-u Framework . 23

3.2 Creating a RISC-V Development Platform . 23
3.2.1 Selecting Linux Distribution . 23
3.2.2 Installing Docker . 24

3.3 Porting Serverless Benchmarks to the RISC-V ISA 24
3.3.1 Standalone Functions . 24

3.3.1.1 Go and NodeJs . 24
3.3.1.2 Python . 24

3.3.2 Online Shop Application . 25
3.3.3 Hotel Application . 25

3.3.3.1 Alternatives to MongoDB . 26
3.3.3.2 Introducing alternative databases in the Hotel Application 26

3.4 Enabling the Execution of the Benchmarks in gem5 27
3.4.1 The vSwarm-u Framework . 27
3.4.2 gem5 & RISC-V . 28

3.4.2.1 Building gem5 . 28
3.4.2.2 RISC-V Linux Kernel for gem5 simulations 28

3.4.2.3 RISC-V Bootloader . 29
3.4.2.4 gem5 RISC-V configuration file . 29

3.5 Enhancing the existing infrastructure for x86 . 29
3.5.1 Serverless Functions for x86 CPUs . 29
3.5.2 gem5 & x86 . 30

3.5.2.1 Configuration file and disk image . 30
3.5.2.2 x86 Linux Kernel for gem5 Simulations 30
3.5.2.3 Limitations . 30

4. Evaluation 32

4.1 Experimental Methodology . 32
4.1.1 Software and Hardware Configuration . 32
4.1.2 Step-by-step Experimentation Process . 33

4.1.2.1 Image Preparation . 33
4.1.2.2 Setup Mode . 33
4.1.2.3 Evaluation Mode and Stat Collection . 34

4.2 Results . 35
4.2.1 RISC-V Results . 35

4.2.1.1 Standalone Functions and Online Shop 36
4.2.1.2 Hotel application . 37

4.2.2 x86 Results . 41
4.2.2.1 Standalone Functions and Online Shop 41
4.2.2.2 Hotel application . 42

4.2.3 RISC-V vs x86 Results . 43
4.2.3.1 Standalone Functions and Online Shop 43
4.2.3.2 Hotel application . 46

4.2.4 MongoDb vs Cassandra . 47
4.2.5 RISC-V vs x86 Container Sizes . 47
4.2.6 Similar Work Size Comparison . 47

5. Related Work 49

6. Conclusions & Future Work 50

ABBREVIATIONS - ACRONYMS 51

REFERENCES 55

LIST OF FIGURES

4.1 Experiment Process. 33
4.2 System Stack. 34
4.3 Overview of the multicore system that is used in the experiments with gem5. 35
4.4 Number of cycles for the standalone functions and the online shop applic-

ation on the RISC-V simulated system. 36
4.5 Number of cycles for the hotel application on the RISC-V simulated system. 37
4.6 Number of L1 cache misses for the hotel application on the RISC-V simu-

lated system after cold execution. 38
4.7 Number of L1 cache misses for the hotel application on the RISC-V simu-

lated system after warm execution. 38
4.8 Percentage of L1 cache misses for the hotel application on the RISC-V

simulated system after cold execution. 39
4.9 Percentage of L1 cache misses for the hotel application on the RISC-V

simulated system after warm execution. 39
4.10 Number of cycles for the Go functions on the RISC-V simulated system. . . 40
4.11 Number of L2 misses for the Go functions on the RISC-V simulated system. 40
4.12 Number of cycles for the standalone functions and the online shop applic-

ation on the x86 simulated system. 41
4.13 Number of L2 misses for the Python functions on the x86 simulated system. 42
4.14 Number of cycles for the hotel application on the x86 simulated system. . . 42
4.15 Number of cycles for the standalone functions and the online shop applic-

ation on the RISC-V and the x86 simulated systems. 43
4.16 Number of executed instructions for the standalone functions and the online

shop application on the RISC-V and the x86 simulated systems. 44
4.17 Number of L1 instruction misses for the standalone functions and the online

shop application on the RISC-V and the x86 simulated systems. 44
4.18 Number of L2 misses for the standalone functions and the online shop ap-

plication on the RISC-V and the x86 simulated systems. 45
4.19 Number of cycles for the hotel application on the RISC-V and the x86 sim-

ulated systems. 46
4.20 Execution time comparison betweenMongoDB andCassandra usingQEMU

for the x86 ISA. 47

LIST OF TABLES

3.1 Summary of the currently available serverless benchmark suites. 21
3.2 Overview of the vSwarm standalone functions and the supported runtimes. 22
3.3 Overview of the functions of the vSwarm Online Shop application and their

corresponding runtimes. 22
3.4 Overview of the functions of the vSwarm Hotel application, their corres-

ponding runtimes, and their dependencies on the MongoDB database and
the Memcached caching system. 23

4.1 Common configuration parameters that were used for the simulation of the
x86 and RISC-V processors with gem5. 32

4.2 RISC-V specific configuration parameters. 32
4.3 x86 specific configuration parameters. 32
4.4 Docker Container Compressed Size in MB. 48
4.5 GPour/Natheesan RISC-V Docker Container Compressed Size in MB. . . . 48

PREFACE

This thesis was completed at the Department of Informatics and Telecommunications of
the National and Kapodistrian University of Athens under the guidance of Asst. Prof.
Vasileios Karakostas and the valuable contributions of Prof. Dimitris Gizopoulos and Dr.
George Papadimitriou.

Benchmarking Support for RISC-V CPUs in Serverless Computing

1. INTRODUCTION

Serverless computing has gained a lot of interest recently [1, 23, 5, 27], as it provides
important benefits for both the users and the cloud service providers. The end users pay
only for the resources they use, while the cloud providers collocate multiple workloads
on the same physical servers to maximize the profit from the invested resources [58, 62].
However, the performance challenges of serverless computing require careful consider-
ation, as they severely affect the profit of cloud service providers [38, 5, 10]. Because of
the short-living nature of serverless workloads, prior works have shown that the perform-
ance of serverless workloads can be significantly affected by the chosen architectural and
microarchitectural parameters of the system’s processor [57, 3] and have proposedmech-
anisms for improving performance [52, 69, 53].

At the same time, the interest in the RISC-V ISA has increased significantly, thanks to its
open-source nature that fosters processing sovereignty and the growing support from sys-
tem and software vendors. While CISC-based systems have dominated the server market
so far, cloud service providers have started to adopt RISC-based (Arm) systems in their
production clusters [42] and more recently to introduce RISC-V platforms. For example,
SiFive [59] and Ventana [63] provide high-performance RISC-V data center-class CPUs,
while Scaleway [51] launched a range of RISC-V servers in the cloud on February 2024.
Hence, having relevant benchmarking support is critical for enabling further research and
development towards its successful adaptation.

1.1 Motivation

Despite the growing interest in serverless computing and the RISC-V ISA, there is currently
no benchmarking support that combines these two technologies together and that allows
the systematic analysis and evaluation of the architectural andmicroarchitectural paramet-
ers of RISC-V systems in serverless computing. It is well known that different ISAs offer
different trade-offs with respect to performance, power, and energy efficiency [7]. Hav-
ing such benchmarking support would be crucial to quantify the potential of RISC-V for
serverless computing concerning other ISAs. In addition, prior works have shown that the
unique nature of serverless workloads exposes novel opportunities for microarchitectural
optimizations [57, 3, 52, 69, 53]. Such benchmarking support would allow the evaluation
of the impact of different microarchitectural designs for RISC-V systems.

While there are multiple benchmark suites for serverless computing [30, 31, 71, 33, 24,
11, 66], they lack support for the RISC-V ISA. Only a few prior works [61, 60, 16] have
used individual serverless workloads on RISC-V-based systems. Howerver, those works
have only considered few individual serverless workloads but none of them has ported or
used any existing benchmark suite for exploring the impact of architectural and microar-
chitectural choices. In addition, those works did not consider the impact of the containeriz-
ation/virtualization layers that play a critical performance role in the serverless computing
stack. Finally, they do not provide support for running serverless workloads in microarchi-
tectural simulators, e.g., gem5, for the RISC-V ISA.

G. Pournaras 14

Benchmarking Support for RISC-V CPUs in Serverless Computing

1.2 Goal & Approach

The goal of this thesis is to bridge the gap in benchmarking support between serverless
computing and the RISC-V ISA. To meet this goal, we enhance existing infrastructure that
supports serverless benchmarking along two axes. We first port serverless benchmarks
to the RISC-V ISA. This enables the experimentation on real platforms that are equipped
with RISC-V processors. Second, we enhance the benchmarking methodology to support
the evaluation of the serverless benchmarks on RISC-V CPUs using microarchitectural
simulation. This allows for the evaluation of the impact of various microarchitectural com-
ponents on the execution of serverless workloads, as well as for the direct comparison of
different ISAs for this emerging cloud computing paradigm.

More specifically, we base our approach on vSwarm [66] and vSwarm-u [67]. vSwarm is
a benchmark suite for serverless systems that currently provides support for x86 and Arm
platforms. vSwarm provides plenty of benchmarks including: standalone functions (i.e.,
Fibonacci, Authentication, Aes-Cipher), an online-shop suite, and a hotel booking collec-
tion, among others. vSwarm-u provides the necessary infrastructure (i.e., scripts, config-
uration files, and experimental methodology) for executing the aforementioned workloads
in the gem5 simulator [19] with x86 and Arm CPUs. We extend vSwarm and vSwarm-u to
enable the evaluation of serverless workloads on RISC-V CPUs using the gem5 simulator.

Accomplishing our goal was not an easy task, as we faced numerous challenges due to
various software dependencies and the immaturity of the RISC-V software ecosystem.
First of all, we had to create a proper development environment based on QEMU [43]
for porting the serverless workloads. Some well known software tools, e.g., Docker [14],
were not available through packet managers for the RISC-V ISA, so we had to build and
install them using their source codes. Still, building software components was not always
sufficient. For example, we were unable to compile the gRPC [26] module for RISC-V
which is necessary for running python containers, due to another software dependency.
Similarly, the Hotel application from vSwarm depends on the MongoDB database. How-
ever, MongoDB has not been ported to RISC-V. We overcame this obstacle by modifying
the application to use Apache Cassandra instead as an alternative NoSQL database [49].
Finally, to enable the execution of the serverless workloads in gem5 we had to create
a custom Linux kernel image that allows the execution of docker containers. Overall, in
spite of these challenges we successfully managed to port the workloads to the RISC-V
ISA and provide support for executing them in gem5.

To validate our porting effort and demonstrate the usefulness of our enhanced bench-
marking infrastructure, we evaluate the execution of the ported serverless workloads on a
simulated RISC-V out-of-order multicore system using gem5. Our results highlight the im-
portant performance trade-off of cold vs warm execution for serverless workloads, and its
correlation with various microarchitectural statistics, such as L1 data/instruction misses
and L2 misses, among others. In addition, we compare the performance of the ported
serverless workloads on a RISC-V system with respect to a equivalent x86 system with
the same microarchitectural characteristics using the same system setup (i.e., identical
gem5 version, Ubuntu version, Linux kernel version and similar configuration). Our res-
ults show that all the ported benchmarks run faster in the RISC-V system than in the x86
one, whereas the cold execution time in the RISC-V system is faster for some workloads
than the corresponding warm execution time in the x86 system. The main reason for this
performance difference is the fact that the execution of the functions in the RISC-V sim-
ulated platform resulted in significantly fewer executed instructions than the execution of

G. Pournaras 15

Benchmarking Support for RISC-V CPUs in Serverless Computing

the functions in the x86 simulated platform.

1.3 Thesis Contributions

In summary, the main contributions of this thesis are:

• We port the vSwarm benchmarks in the RISC-V ISA addressing several challenges
due to the immaturity of the software ecosystem.

• We extend the vSwarm-u infrastructure for executing the benchmarks on the gem5
simulator.

• We use the developed infrastructure to comprehensively evaluate the impact of cold
vs warm execution on RISC-V systems.

• We compare the performance of RISC-V and x86 microprocessors in the context of
serverless computing.

1.4 Organization

The rest of this document is organized as follows. Section 2 provides background inform-
ation regarding serverless computing, the RISC-V ISA, and the emulation and simulation
tools that we use in this work. Section 3 describes our effort towards enabling benchmark-
ing support for serverless computing for RISC-V CPUs. Section 4 describes our evaluation
methodology and experimental results. Section 5 summarizes prior works on benchmark-
ing serverless applications and the impact of microarchitecture on their execution. Finally,
Section 6 concludes this thesis and provides directions for future work.

G. Pournaras 16

Benchmarking Support for RISC-V CPUs in Serverless Computing

2. BACKGROUND

In this section we provide background information regarding the two main trends in com-
puting that this thesis bridges by providing relevant benchmarking support, i.e., serverless
computing (also known as Function-as-a-service or FaaS) and the RISC-V ISA. We also
describe briefly the two tools that we use in this thesis for emulating and simulating RISC-V
systems, i.e., QEMU and gem5, respectively.

2.1 Serverless Computing

Serverless Computing was first introduced in 2008 by Google’s ”Google App Engine” [22]
and gained mass-market appeal in when Amazon released AWS Lamda [45]. Serve-
less Computing is a cloud computing paradigm in which an application is a set of many
event driven functions that require minimal resources. Serverless computing is similar
to microservices as they are both part of modern cloud-native architectures and aim to
break down monolithic applications into smaller, more manageable components. The key
feature of serverless computing is the scalability that provides. Developers run code in-
side containers in response to specific events or requests without specifying or managing
the infrastructure required to run the code. Furthermore, the users only pay for the ex-
ecution time of their functions, because a Pay-as-you-go model is applied. This model
motivates the user to implement even smaller functions, in the order of a few hundreds
of milliseconds [28], which facilitates the provider’s task to quickly shutdown and initiate
functions minimizing resource waste.

Regarding performance, one of the most critical metrics in the execution of serverless
functions is the execution latency. That latency is heavily affected by the state of the
function on the system. Functions can have three states: Running, Waiting, and Dead.
When a function is in the dead state, it does not occupy any memory or resources on
the server and its execution requires costly initialization steps (i.e., booting the function).
When a function is in the waiting state, it means that it is still present in the memory of the
server and occupies resources. The term cold execution refers to the first invocation of a
function that is currently in dead state. In contrast, subsequent executions of a function
that is in the waiting state are called warm executions and are much faster. The difference
in performance between cold and warm execution can be significant and even affect the
billing policy of the providers [62]. Furthermore, because of the function’s short execution
time, initializing/booting a function from the dead state may dominate the total execution
time. To reduce as much as possible the cold execution of functions, the provider selects
the criteria that will change a function’s state fromwaiting to dead and vise-versa. The goal
is to keep functions that will soon be needed again present in memory and to deactivate
the ones that will probably used very far in the future.

In addition, prior works [52, 53] have shown that, the repetitive execution of thousands
short-lived functions in the same core in combination with relative sparse time intervals
between the invocations, make subsequent function callings unable to capitalize on the
microarchtectural state of previous callings. In an ideal scenario where every execution
happens consecutively, one can witness exceptional low execution times. In reality, the
execution of other functions in between cause the thrashing of caches and the microar-
chitectural state, leading every invocation to lukewarm execution, i.e., to behave as if it
was called for the first time.

G. Pournaras 17

Benchmarking Support for RISC-V CPUs in Serverless Computing

2.2 The RISC-V Instruction Set Architecture

Unlike closed-source processor architectures, RISC-V [47] represents an open-source
instruction set architecture (ISA) utilized for the development of custom processors aimed
at a broad spectrum of end applications. Initially designed at the University of California,
Berkeley, RISC-V ISA stands as the fifth iteration of processors grounded in the principle
of the reduced instruction set computer (RISC). Its popularity has surged in recent times
due to its open nature and technical advantages. The standard is now managed by RISC-
V International [46], which has more than 3,000 members. RISC-V enables efficient task
execution and allows designers to create numerous custom processors for faster market
deployment while the shared processor IP reduces software development time. RISC-V
International reported that more than 10 billion chips containing RISC-V cores had been
shipped by the end of 2022 [48].

Key benefits of the RISC-V ISA include its open-standard architecture fostering industry-
wide collaboration and innovation. The common ISA simplifies software development
across a range of devices from embedded systems to supercomputers. Besides the base
instruction set that allows for the implementation of a simplified general-purpose com-
puter, the RISC-V ISA also provides support for ISA customization through extensions
with unique features tailored to specific requirements and needs. Finally, the RISC-V ISA
provides enhanced security through open-source designs and tools that allow thorough
public scrutiny and prevent from back doors and hidden vulnerabilities.

2.3 QEMU

QEMU [43] serves as a versatile, open-source tool capable of emulating machines and
functioning as a virtualization layer. Its primary application lies in system emulation, of-
fering a simulated environment comprising a CPU, memory, and emulated peripherals to
support the execution of guest operating systems (OS). This emulation can either fully
replicate the CPU behavior or collaborate with hypervisors, like KVM, to enable direct
execution of the guest OS on the host CPU. Additionally, QEMU facilitates user-mode
emulation, enabling the execution of applications designed for one processor architecture
on another through CPU emulation. Beyond these core functionalities, QEMU includes
various standalone command-line tools, notably the qemu-img utility for managing disk
images, including creation, conversion, and modification operations.

2.4 gem5

gem5 [32, 19] is a modular open source computer architecture simulator that is widely
used in academia and industry for computer-system architecture and microarchitecture
research. Its development started roughly 15 years ago at the University of Michigan as
the m5 project, and at the University of Wisconsin as the GEMS project. The two projects
merged in 2011 and, since then, gem5 has been cited by over 2900 publications.

gem5 supports multiple ISAs (Alpha, ARM, SPARC, MIPS, POWER, RISC-V and x86)
and provides four CPU types. A simple one-CPI CPU, a detailed model of an in-order
CPU, and a detailed model of an out-of-order CPU. These CPU models use a common
high-level ISA description. In addition, gem5 features a KVM-based CPU that uses virtu-

G. Pournaras 18

Benchmarking Support for RISC-V CPUs in Serverless Computing

alization to accelerate simulation. Furthermore gem5 comes with rich memory simulation
support. In particular, the memory system is event driven and includes caches, crossbars,
snoop filters, and a fast and accurate DRAM controller model, for capturing the impact of
current and emerging memories, e.g. LPDDR3/4/5, DDR3/4, GDDR5, HBM1/2/3, HMC,
WideIO1/2. The components can be arranged flexibly, e.g., to model complex multi-level
non-uniform cache hierarchies with heterogeneous memories.

2.4.1 gem5 System Modes

gem5 can run in two different modes called “full system” (FS) and “syscall emulation”
(SE) [21]. In full system mode, gem5 emulates the entire hardware system and runs an
unmodified kernel. Full system mode is similar to running a virtual machine.

Syscall emulation mode, on the other hand, does not emulate all of the devices in a system
and focuses on simulating the CPU andmemory system. Syscall emulation is much easier
to configure since it is not necessary to instantiate all of the hardware devices required
in a real system. However, syscall emulation only emulates Linux system calls, and thus
only models user-mode code.

2.4.2 gem5 CPU Models

gem5 supports various CPU models that provide different trade-offs between accuracy
and simulation speed. Next we breifly describe the CPU models that we use in this thesis.

KVM CPU Model. gem5’s KVM model [4] is a handful way to speed up parts of the
simulation that are not taken into consideration during the collection and analysis of stat-
istics, such as the booting stage of a machine. When using KVM, the simulator executes
commands fast directly to the host’s CPU. However, as it will be mentioned later, since
the simulation lacks accuracy in favor of execution speed, the state of the core (i.e., the
simulation) can be inconsistent.

Atomic CPU Model. When the Atomic CPU model (AtomicSimpleCPU) [4] is used,
memory accesses happen instantaneously and there is no CPU pipeline. This is the fast-
est simulation CPU model after KVM, but it is not realistic at all. It is mostly useful for
booting Linux fast and then checkpointing and switching to a more detailed CPU.

Out-of-Order CPU Model. The Out-of-Order CPU model (DeriveO3CPU) [39] is a de-
tailed core model that is loosely based on the microarchitecture of the Alpha 21264 mi-
croprocessor. The model uses five pipeline stages (i.e., fetch, decode, rename, issue /
execute / writeback, and commit). It provides cycle-level accuracy, as it actually executes
the instructions at the execute stage of the pipeline. In general, we use the Out-of-Order
CPU model for measuring the performance of the application’s region of interest by sim-
ulating the CPU in the highest possible detail.

2.4.3 gem5 Utilities

Checkpoints. In this thesis the term checkpoint is used in several occasions since it is one
of gem5’s helpful mechanisms. Checkpoints are essentially snapshops of a simulation.
A typical Ubuntu disk image boot can take up to 6 hours using an atomic core, given
that so many services need to start. So checkpointing after getting terminal access in a

G. Pournaras 19

Benchmarking Support for RISC-V CPUs in Serverless Computing

successful boot is one of the most common practices when working with gem5. Doing
that allows the user to run different kinds of experiments without waiting each time for
executing the common initialization instructions. The user restores the system state from
the checkpoint and continues the execution of the workload with a more detailed core
model exactly from the next instruction.

gem5 Standard Library. Configuring the simulator to perform experiments can be tricky,
especially if one uses the fs.py and se.py configuration scripts. Despite being provided
as examples of how to configure a simulation with gem5, these scripts have been exten-
ded and used as a de-facto configuration approach to run experiements with gem5, while
they were never intended to be. These configuration scripts are an inefficient, poorly doc-
umented way to configure a system and leads to many problems [12]. To resolve this
issue, a gem5-stdlib was created. With the gem5 stdlib users can configure simulations
in a few lines of Python. In addition, stdlib is a part of the project that is continually tested,
and significant engineering resources are targeted towards maintaining its stability and
extending it with new features.

M5 Magic Instructions. M5 magic instructions are used in full system (FS) mode to
issue special instructions to trigger simulation specific functionality, e.g., stat resetting,
stat dumping, checkpoint, end of simulation, and others.

G. Pournaras 20

Benchmarking Support for RISC-V CPUs in Serverless Computing

3. PORTING SERVERLESS BENCHMARKING TO RISC-V

In this section, we provide information about our approach and experience with enabling
benchmarking support for serverless computing in RISC-V CPUs. The selection of rep-
resentative serverless workloads is critical in the realization of our goal. In addition, the
porting process itself is not straightforward. The major challenges arise from the fact that
the RISC-V software ecosystem is less mature compared to that of other well-established
ISAs, e.g., x86 and Arm. This current status of the RISC-V software ecosystem intro-
duces additional software dependencies that, in turn, affect the selection and utilization
of the software tools and components. Additionally, we faced difficulties in generating a
Linux Kernel to run our workloads in gem5 for both RISC-V and x86.

In summary, in our porting effort, we had to address the following challenges: (i) selection
of an existing benchmarking framework, (ii) creation of a RISC-V development platform,
(iii) installation of system dependencies, (iv) porting of the serverless workloads, and (v)
enabling the execution of the workloads in gem5.

3.1 Selecting the Serverless Benchmark Suite

Table 3.1 summarizes the currently available serverless benchmark suites. vSwarm [62,
66] is a serverless benchmark suite that is part of the vHive ecosystem [64]. vSwarm
includes multi-function benchmarks and standalone function benchmarks, and provides
support for multiple languages and runtimes, ISAs, and allows experimentation on both
real and simulated platforms. FunctionBench [30, 31, 17] is a suite of various function
workloads that are implemented in Python and provides support for executing them on
multiple cloud service providers. ServerlessBench [71, 56] is a benchmark suite for char-
acterizing serverless platforms that allows the exploration of several metrics of serverless
platforms and provides four real-world serverless workloads. FaaSdom [33, 15] is another
benchmark suite for serverless computing platforms. It comes with a variety of bench-
mark tests written in multiple implementation languages and runtimes. BeFaaS [24, 6]
is a serverless benchmarking framework that also supports federated benchmark runs, in
which the benchmark application is distributed over multiple providers. SeBS [11, 55] is
a comprehensive benchmark suite for public cloud providers that consists of the specific-
ation of representative workloads, their implementation, and the evaluation infrastructure
and methodology.

In this work we decided to use the vSwarm benchmark suite for the following reasons: (i)
it comes with a variety of representative workloads for serverless computing, ranging from
simple functions to real-world applications, (ii) it supports multiple languages and runtimes,

Benchmark suite Languages & Runtimes Infrastructure ISAs gem5 support

FunctionBench [17] Python Public & Private x86 No
ServerlessBench [56] C, Java, Python, NodeJs, Ruby Public & Private x86 No
FaaSdom [15] Node.js, Python, Go, .NET Public x86 No
BeFaaS [6] Node.js Public & Private x86 No
SeBS [55] Python, Node.js Public x86 No
vSwarm [66] Python, Go, Node.js Private x86/Arm Yes

Table 3.1: Summary of the currently available serverless benchmark suites.

G. Pournaras 21

Benchmarking Support for RISC-V CPUs in Serverless Computing

(iii) it supports both the x86 and Arm ISAs, and (iv) it comes with additional support for
executing serverless functions in the gem5 simulator.

3.1.1 The vSwarm Benchmark Suite

vSwarm [62, 66, 65] presents a curated selection of serverless benchmarks, tailored for
easy deployment and designed to reflect real-world scenarios involving intensive data pro-
cessing. These benchmarks are composed of interconnected serverless functions, aim-
ing to simulate practical workload conditions. This suite encompasses not only complex,
multi-function benchmarks but also simpler, standalone functions compatible with both
x86 and Arm ISAs. vSwarm offers two types of microbenchmarks: those involving the
combination of synchronous and asynchronous functions, known as multi-function bench-
marks; and standalone function benchmarks, which consist of individual functions without
any composite structures (e.g., avoiding producer-consumer setups).

The benchmarks that we test ιn our thesis can be narrowed into three large categories:

• The standalone functions (i.e., AES, Auth, Fibonacci) that are written in all three
tested languages, i.e., Go, NodeJs, Python (Table 3.2).

• The online-shop collection is derived from Google’s Online Boutique. It consists of
several functions that are written in Go, NodeJs, or Python (Table 3.3).

• The hotel-app collection that is composed of Go microfunctions that simulate the
backend of a hotel booking site. The hotel-app collection is based onDeathStarBench’s
Hotel Reservation Application [18]. Each function communicates with a database in-
stance and some of them also with a lightweight caching instance (Table 3.4).

Function Go Python NodeJs

Fibonacci Yes Yes Yes
Auth Yes Yes Yes
Aes Yes Yes Yes

Table 3.2: Overview of the vSwarm standalone functions and the supported runtimes.

Function Runtime

Product Catalog Service Go
Shipping Service Go

Recommendation Service Python (Used with Product Catalog)
Email Service Python

Currency Service NodeJs
Payment Service NodeJs

Table 3.3: Overview of the functions of the vSwarm Online Shop application and their
corresponding runtimes.

G. Pournaras 22

Benchmarking Support for RISC-V CPUs in Serverless Computing

Function Runtime MongoDB Memcached

Geo Go Yes No
Recommendation Go Yes No

User Go Yes No
Reservation Go Yes Yes

Rate Go Yes Yes
Profile Go Yes Yes

Table 3.4: Overview of the functions of the vSwarm Hotel application, their corresponding
runtimes, and their dependencies on the MongoDB database and the Memcached caching system.

3.1.2 The vSwarm-u Framework

vSwarm-u [67] provides additional support for running most of the standalone functions in
the gem5 [32] microarchitectural simulator. The standalone functions are particularly use-
ful for analyzing the performance of serverless computing at the microarchitecture level
using the gem5 cycle-accurate full-system CPU simulator. They serve as valuable mi-
crobenchmarks, initially identifying potential bottlenecks in serverless workload execution
on physical hardware, followed by detailed analysis and optimization using the gem5 sim-
ulator. However, the faithful execution of serverless workloads in simulation platforms is
difficult due to the complex software stack of serverless frameworks. vSwarm-u provides
a set of tools, configurations, and documentation for gem5 to facilitate the client-server
setup, load generation, function deployment, and results analysis.

3.2 Creating a RISC-V Development Platform

For the porting and development process of the serverless workloads, we needed a RISC-
V-based development platform. Since we do not have access to a real hardware platform,
we decided to use an emulated RISC-V virtual machine (VM) based on QEMU [43].

There are many guides available for setting up a RISC-V VM on several linux distribu-
tions, but we chose to use this guide [50] that targets Ubuntu for several reasons. First,
the host x86 machine was also running Ubuntu, so we could test something fast on the
host machine, and be more optimistic when later following the same steps on the slower
emulated RISC-V VM. Second, Ubuntu is one of the most widely used Linux distributions,
has a vast community of users, extensive documentation, and numerous forums (such as
Ask Ubuntu). Third, the choice of Ubuntu helped us to not differentiate our approach from
that supported in the vSwarm-u framework.

3.2.1 Selecting Linux Distribution

We used an x86-based host system that uses Ubuntu 20.04.6 (Focal Fossa). After in-
stalling QEMU and booting the RISC-V VM with the Ubuntu image, we enlarged the disk
image and setup an ssh connection. We initially used the Ubuntu Focal 20.04 distribution
(Ubuntu-focal-preinstalled-server image) in order to use the same software infrastructure
with the one used in the vSwarm-u framework for the x86 ISA. However, after working
with Ubuntu Focal 20.04 for about a month we were faced constantly with challenges. In
particular, it became clear that the RISC-V software ecosystem is less mature that the

G. Pournaras 23

Benchmarking Support for RISC-V CPUs in Serverless Computing

x86 and Arm ecosystems. It was necessary in several occasions to compile individual
packages from source. Considering the fact that Ubuntu 22.04 (Jammy Jellyfish), as the
latest LTS at that time that includes support for the RISC-V ISA, might have packages
that were not available in Focal, we decided to switch to Ubuntu 22.04 for the RISC-V
VM with QEMU. We opted for the preinstalled server image for RISC-V for SiFive’s HiFive
Unmatched platforms.

3.2.2 Installing Docker

The setup procedure of Docker is a classic example of the immaturity of the RISC-V soft-
ware support. Despite being a popular tool for software development and deployment, the
configuration of Docker is not feasible through the packet manager of Ubuntu as of June
2024. To overcome this, we manually compiled and built docker [13]. This was a time
consuming process, because it was performed within the RISC-V VM. Building Docker
and other necessary packages, such as containerd and rootlesskit among others, took
almost 3 hours in our setup. Then we ensured that the RISC-V VM’s kernel was capable
of running docker containers [9]. Finally, we installed an SSH server in the RISC-V VM.

3.3 Porting Serverless Benchmarks to the RISC-V ISA

We now describe our effort on porting the serverless benchamrks. We first focus on the
vSwarm standalone functions, and then we describe the porting process for the Online
Shop and the Hotel applications, respectively.

3.3.1 Standalone Functions

3.3.1.1 Go and NodeJs

We started the porting process with the Fibonacci-Go benchmark. In theory the steps are
relatively simple; we had to find a Go base image for the RISC-V ISA and replace the
corresponding part on the function’s Dockerfile. The rest of the Dockerfile’s instructions
are architecture independent. Indeed, finding a compatible image was relatively easy.
We searched Docker Hub for a GO image and set a filter for RISC-V [54]. Afterwards we
changed the FROM line at Dockerfile and built the container. Finally, we ran the func-
tion. After compiling the client that performs the requests for RISC-V, we managed to
successfully execute the functions in the RISC-V VM. We followed the same steps for the
Fibonacci-NodeJs, as well as for the rest of the standalone functions, i.e., AES and Auth.

3.3.1.2 Python

The primary issue that we faced with porting the Python standalone functions to RISC-
V was importing the gRPC module [26]. We searched Docker Hub to find a compatible
image. The whole trial and error process looked like this: (i) find a candidate image, (ii)
install requirements, (iii) success or failure to finish docker build, (iv) run docker, and (v)
import error for the grcp module (undefined symbol: atomic-compare-exchange-1).

G. Pournaras 24

Benchmarking Support for RISC-V CPUs in Serverless Computing

We started our building process with a vanilla Ubuntu RISC-V image and our first guess
was that it is a python version related error. We experimented with various python ver-
sions, but did not make any progress. The procedure’s major setback was that installing
grpcio and grpcio-tools with pip [41] lasted around 4 hours when done inside the RISC-V
VM.We tried installing thosemodules via packagemanager but the error was not resolved.
Additionally we made an effort to manually compile the grpc source code and pass it into
the container as a binary or executable, but failed because the bazel tool was needed.
When trying to compile bazel we could not do it in our RISC-V VM and also, we did not
succeed in cross compiling it for RISC-V in our x86 host image.

To solve this issue, we changed our way of thinking and started from a different basis. We
tried to run the python function directly inside the RISC-V VM without using containers.
We came across the same error due to undefined symbol to atomic-compare-exchange-1.
While searching GitHub issues we stumbled upon this one [25], which says that the atomic
library needs to be preloaded. We applied the same technique on similar python modules
and we managed to run the python function. Afterwards, we found a similar python base
image to our Jammy RISC-V VM, repeated the steps and eventually fibonacci-python
successfully ran on the RISC-V VM. We followed the same steps for the AES and Auth
functions.

3.3.2 Online Shop Application

Porting the Online Shop application did not impose any substantial problem. In order to
have shorter python builds, we created a Python 3.10 image with grpc and grpcio prebuilt.

3.3.3 Hotel Application

The functions of the Hotel Application are written in Go, a language that did not impose any
important obstacles when porting the corresponding standalone functions. However, all
the functions communicate with a database container, which is initialized in the beginning
of the execution of the application, and then is used for the execution of the application’s
functions. The application uses MongoDB as database.

MongoDB [36] is a source-available database management program. NoSQL (Not only
SQL) is used as an alternative to traditional relational databases. NoSQL databases are
quite useful for working with large sets of distributed data. MongoDB is a tool that can
manage document-oriented information, and store or retrieve data. MongoDB is used
for high-volume data storage, helping organizations store large amounts of data while
still performing rapidly. Organizations also use MongoDB for its ad-hoc queries, indexing,
load-balancing, aggregation, server-side JavaScript execution and other features. Instead
of using tables and rows as in relational databases, as a NoSQL database, the MongoDB
architecture is made up of collections and documents.

However, porting the Hotel Application to RISC-V was not straightforward. The reason is
that MongoDB has not been ported yet to the RISC-V ISA. We tried to port it ourselves but
we did not succeed. We could not resolve the issues that stopped this attempt [35], nor
found relevant information regarding other efforts towards RISC-V porting. As mentioned
here [49], ”MongoDB is not a RISC-V friendly database”. Hence, we decided to replace
MongoDB with another NoSQL database. That database should have similar character-
istics with MongoDB and should be available in the RISC-V ISA.

G. Pournaras 25

Benchmarking Support for RISC-V CPUs in Serverless Computing

3.3.3.1 Alternatives to MongoDB

Apache Cassandra. Apache Cassandra [8] is a distributed NoSQL database created at
Facebook and later released as an open source project in July 2008. Cassandra deliv-
ers the continuous availability (zero downtime), high performance, and linear scalability
that modern applications require, while also offering operational simplicity and effortless
replication across multiple data centers and geographies. It can handle petabytes of in-
formation and thousands of concurrent operations per second, enabling organizations to
manage large amounts of structured data across hybrid and multi-cloud environments.
In addition, one positive aspect of Cassandra is that, there are many RISC-V containers
already uploaded in Docker Hub, that made us optimistic about the porting process.

MariaDB. Another database that we considered as a MongoDB alternative was MariaDb.
MariaDB [34] is a community-driven, commercially supported variant of the MySQL rela-
tional database management system (RDBMS), designed to stay free and open-source
under the GNU General Public License. It is developed by some of the original MySQL
creators who forked it following Oracle Corporation’s acquisition of MySQL in 2009. An
RDBMS is a common type of database that manages predefined relationships between
data, in which data is organized as a set of tables, columns, and rows. The columns in
the table store data attributes, and each row is a record with values for each attribute. A
unique ID or primary key makes it possible to create relationships between the data. The
relational database model is widely used in organizations of all sizes. MariaDB aims to
maintain high compatibility with MySQL, including exact alignment with MySQL APIs and
commands, which often allows it to serve as a direct replacement for MySQL. However,
MariaDB is evolving with new features and diverging fromMySQL, incorporating additional
storage engines such as Aria, ColumnStore, and MyRocks.

Redis. Redis [44] is a source-available, in-memory storage solution designed as a distrib-
uted, in-memory key-value database, cache, and message broker with optional durability.
By storing all data in memory, Redis provides low-latency read and write operations, mak-
ing it particularly effective for caching use cases. As the most popular NoSQL database
and one of the leading databases overall, Redis is utilized by major companies including
Twitter, Amazon, and OpenAI. Redis supports a variety of abstract data structures, such
as strings, lists, maps, sets, sorted sets, HyperLogLogs, bitmaps, streams, and spatial
indices. Redis is in fact RISC-V friendly, boots rapidly and is NoSql. Nonetheless we
turned down this option. The reason is that Redis is rarely used for main database. Its
most common usage is as a caching instance in order to reduce the more time consuming
requests towards the main database.

3.3.3.2 Introducing alternative databases in the Hotel Application

Cassandra. We modified the hotel application to use Cassandra, instead of MongoDB.
When running these new containers in our RISC-V VM we noticed that booting the con-
tainer with the database was taking a significant amount of time (greater than 10 minutes).
This was a common observation among all pre-built docker containers for Cassandra. We
were able to perform requests only after 17-18 minutes. To tackle this we built our own
container with Cassandra and modified settings like heap-size , num-of-tokens, num-of-
nodes, etc. Despite our efforts, we did not manage to lower the 17 minutes threshold. It
is worth noting that in the native x86 environment the corresponding Cassandra boot time
is 30-40 seconds, i.e., five times slower compared to the MongoDB boot time.

G. Pournaras 26

Benchmarking Support for RISC-V CPUs in Serverless Computing

MariaDB. We also modified the hotel application to use MariaDB, instead of MongoDB.
MariaDb features similar times to MongoDB in x86 and takes around 3-4 minutes to boot
in RISC-V VM with QEMU. Additionally, the porting process was pretty straightforward
due to the fact that MariaDB is a ”RISC-V friendly” database (in contrast to Cassandra
that we had to manually compile it because we could not install it via package manager).
Nonetheless, since MariaDB is a relational database we abandoned the porting process
with that database.

Summary. Taking into consideration all the aforementioned trade-offs, we concluded in
Cassandra. In our experiments we study the interval between a function request and its
reply. The boot time of the database is not a factor that we take into account. Furthermore,
it is safe to suppose that a database instance might have different criteria for deactivation,
and will probably be active for a longer period with respect to a simple/regular function
container.

3.4 Enabling the Execution of the Benchmarks in gem5

We now describe our approach on porting the vSwarm-u framework to RISC-V and en-
abling the execution of the aforementioned serverless workloads on simulated RISC-V
CPUs with the gem5 simulator.

3.4.1 The vSwarm-u Framework

We initially got familiar with the existing vSwarm-u framework that allows the execution
of the vSwarm serverless workloads on simulated x86 CPUs using the gem5 simulator.
More specifically, the important steps for using the vSwarm-u framework are:

1. Download prebuilt resources (Ubuntu disk image and Linux Kernel)

2. Install Qemu on host machine

3. Using Qemu:

(a) Install Docker, Go, and the rest of the dependencies for running Docker con-
tainers

(b) Download the image and run simple simulations for testing purposes

4. Download gem5, apply the gem5 patch, and compile gem5.opt for x86

5. Using gem5:

(a) Boot with atomic kvm core for every function
(b) Perform functional warming (setup mode)
(c) Take a checkpoint
(d) Boot again from checkpoint with O3 detailed core (evaluation mode)
(e) Collect statistics

6. Analyze results

G. Pournaras 27

Benchmarking Support for RISC-V CPUs in Serverless Computing

While getting familiar with the existing vSwarm-u framework, we came across a bug quite
often. The setup mode of the framework with the gem5’s KVM core model was not stable.
A lot of times, the gem5 simulator was freezing when amagic M5 instruction was executed.
The most common case was when a checkpoint was taken. This behavior resulted in fail-
ures to complete the setup mode for every function. Other times, despite the setup mode
was being completed successfully, we were unable to boot with the O3 detailed core
model using the corresponding checkpoint. The instability of using the KVM core model
has been acknowledged by the authors of the vSwarm-u framework [68]. To overcome
these issues, we tried disabling the KVM core and using gem5 with the atomic core, but
the host OS terminated the simulation process because it consumed all the memory re-
sources. This behavior is probably due to some memory leakage in the implementation
of the simulator. We made several other attempts to solve this problem and make the
simulations more deterministic without success. In our opinion, a major reason for the
overall lack of stability is that the gem5 system configuration file is based on earlier gem5
configuration files, and not on the later gem5 standard library.

We tackled this issue in our setup by using a more reliable in terms of memory leak-
age script that enabled us to boot using AtomicCore and take a deterministic and reliable
checkpoint, as explained next.

3.4.2 gem5 & RISC-V

After having experimented with vSwarm-u and successfully ported the standalone func-
tions to RISC-V, it was time for also porting the vSwarm-u framework to RISC-V.

3.4.2.1 Building gem5

Initially we were working in an x86 environment without root privileges, and failed to in-
stall all the required dependencies for compiling the gem5.opt executable for RISC-V. We
worked around this issue by creating an x86 Ubuntu Jammy VM that run with KVM on the
host. After setting up this VM, we managed to build the gem5.opt file.

3.4.2.2 RISC-V Linux Kernel for gem5 simulations

Our first thought was booting the simulator with a prebuilt kernel found in the gem5 re-
sources site [20]. In spite of getting terminal access with such kernel, we were only able
to use it with a vanilla Ubuntu disk image. In other words, when running simulations with a
disk image that is capable of executing the serverless functions, the system was entering
in emergency mode. In emergency mode the root file system was mounted as read-only
and almost nothing was set up. This problem was emerging both with the Ubuntu Jammy
and Focal distributions.

Next we tried using the same linux kernel image that we used for the RISC-V VM with
QEMU. This approach would resolve the problem regarding missing dependencies, that
we faced with the prebuilt linux kernel image. However, we also dismissed this alternative
because gem5 is incapable of loading modules dynamically. Even after building all the
modules into the kernel image, we still could not proceed as the resulting linux kernel
image had a size of around 1 GB. This increased size was due to including numerous
modules that were needed by the applications that we wanted to execute.

G. Pournaras 28

Benchmarking Support for RISC-V CPUs in Serverless Computing

Compiling a custom linux kernel was the option that we had to pursue. The search for a
linux configuration file that could handle our demands was ineffective. It is a quite difficult
procedure for x86, let alone for a lesser utilized architecture like RISC-V. We tried using
some kernel configuration files that we came across, but the emergency mode boot re-
mained. Thus, generating our own config file was our next challenge. We were working
with linux versions that vSwuarm-u and gem5.org were providing for the x86 ISA, aiming
not to deviate from the original vSwarm-u framework. We successfully managed to build
custom kernel images based on the 6.5.5 and 5.15.59 versions that are compatible with
the gem5 simulator. The successful attempt consisted of the RISC-V-default-config file,
manual addition of flags provided by this script [9] and mod2yes config so that all modules
are statically built into the kernel.

3.4.2.3 RISC-V Bootloader

During our kernel/disk image trial and error approach there was a third component that
we also had to resolve. This was the bootloader, a necessary file for a full system RISC-V
simulation to run in gem5. This component was not a point of concern in x86 simulations
as it is built into the kernel. Nevertheless, this is not the case for RISC-V. We also had
to pass the OpenSBI [40] executable that is used by QEMU, as an argument in the gem5
configuration file.

3.4.2.4 gem5 RISC-V configuration file

As mentioned earlier, our starting configuration script was fs-riscv.py. It was the script that
we made our first simulations and got familiar with plenty aspects of gem5. On the other
hand, it constitutes a quite complex setup that is challenging to comprehend, much less
debug in case something goes wrong. Additionally it would be also tricky to port this into
x86. After some research we found out the gem5 stdlib and rewrote our workflow process
based on that effortlessly.

3.5 Enhancing the existing infrastructure for x86

Based on our experience with porting vSwarm and vSwarm-u to RISC-V, we decided to
enhance also the existing infrastructure for the x86 ISA, in order to enable a more direct
and fair comparison between the RISC-V and x86 ISAs.

3.5.1 Serverless Functions for x86 CPUs

When it was time for developing the x86 side of the experiment, we rebuilt the vSwarm
images using the most close to their RISC-V counterpart base images. This means, that
it is possible for a x86 python container to get smaller, however, that is not the case for
the RISC-V correspondent. For instance, in spite of available alpine python base images
for x86, we could not find a RISC-V alpine candidate, so both images have an ubuntu
jammy base. In general our goal is to compare the two ISAs with the same variables, so
our development choices reflect our purpose.

G. Pournaras 29

Benchmarking Support for RISC-V CPUs in Serverless Computing

3.5.2 gem5 & x86

3.5.2.1 Configuration file and disk image

Due to vSwuarm-u’s known problems that were mentioned earlier, i.e., the instability of
using the KVM core model and the fact that the original configuration script is not using
the gem5 stdlib, we concluded that creating a new script would be the optimal alternative.
Indeed, implementing our goal was straightforward, given that there is an x86 Ubuntu
configuration file, to which we added components from the RISC-V counterpart. It was
also easy to setup the disk image setup.

3.5.2.2 x86 Linux Kernel for gem5 Simulations

In contrast, building a custom x86 Linux kernel for Ubuntu Jammy was more complex
than expected. Our initial strategy was to produce the kernel image in the same way we
did for RISC-V. Despite trying with various kernel versions, we did not manage to get a
running kernel using the defconfig option with the necessary script flags and mod2yes.
When using the defconfig option as base, we could not get the init service to start due to
a missing IDE driver.

Using the Linux kernel images and the configuration files from the vSwarm-u framework
was our next step. However, those kernel images, whether they were locally compiled or
downloaded, failed to completely fulfill their purpose. More specifically, we managed to
run the functions that are written in Go and Python, but we did not manage to run functions
in NodeJs. The reason is that those kernel images do not support the NodeJs framework
for Ubuntu Jammy. We performed a lot of research on this issue and we were still getting
segmentation fault, despite having made countless attempts with various modifications
(different compilers, NodeJs versions, configuration flags, fresh installation of all compon-
ennts, etc).

Our last option was to use a gem5 resources script with the script flags mentioned earlier.
Unfortunately, we did not overcome the obstacle of running NodeJs functions. We either
got the first problem, of Ubuntu not booting, or a segmentation fault when typing node on
the terminal.

3.5.2.3 Limitations

After spending a significant effort on this, we decided to not proceed with the NodeJs
benchmarks for Jammy x86. In addition, we later discovered that we were also unable to
boot MongoDb in gem5. This was a major setback because a MongoDB vs Cassandra
comparison in gem5 was not feasible, despite being possible in QEMU. Due to time pres-
sure we are unable to port our entire workload for both x86 and RISC-V in the Ubuntu
Focal environment. One key factor is the RISC-V Cassandra gem5 boot which took about
one week for Jammy. This is an issue that we will revisit again in the future. It is worth
noting that a full system simulation boot, using atomic core, takes around 7 hours to com-
plete for RISC-V and around 5 hours for x86. Furthermore, the simulator consumes all
available resources, which forbids us from engaging with another task. Additionally, KVM
usage was not an option neither for x86, as it is not stable, nor for RISC-V, as we did not
possessed a RISC-V board. Finally, gem5’s inability to load modules dynamically obliged

G. Pournaras 30

Benchmarking Support for RISC-V CPUs in Serverless Computing

us to perform countless trial and error attempts to come up with an appropriate linux kernel
configuration.

G. Pournaras 31

Benchmarking Support for RISC-V CPUs in Serverless Computing

4. EVALUATION

In this section we describe in detail the experimental methodology that we followed and
then we present the results.

4.1 Experimental Methodology

4.1.1 Software and Hardware Configuration

Table 4.1 lists the common configuration parameters that were used for the simulation of
the x86 and RISC-V multicore processors with gem5. Tables 4.2 and 4.3 show additional
configuration paramaters that are specific to the RISC-V and x86 processors, respectively.

L1 I Cache 2 Cores x 32KB, 8-way set associative
L1 D Cache 2 Cores x 32KB, 8-way set associative
L2 Cache 2 Cores x 512KB,4-way set associative
RAM 2GB,DDR3 1600, 800MHz, Single Channel

ITLB Page walk caches 2 Cores x 8KB
DTLB Page walk caches 2 Cores x 8KB

ROB 192 entries
LSQs 32 Load entries + 32 Store entries

Registers 256 Int + 256 Float
Number Of Cores 2
Clock Frequency 1GHz
Linux Kernel 5.15.59

Docker Version 25.0.0

Table 4.1: Common configuration parameters that were used for the simulation of the x86 and
RISC-V processors with gem5.

Os Ubuntu Jammy 22.04.3 Preinstalled Server
kernel compiled with gcc riscv64-unknown-linux-gnu-gcc 13.2.0

Table 4.2: RISC-V specific configuration parameters.

Os Ubuntu Jammy 22.04.4 Live Server
kernel compiled with gcc gcc 11.4.0

Table 4.3: x86 specific configuration parameters.

G. Pournaras 32

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.1.2 Step-by-step Experimentation Process

4.1.2.1 Image Preparation

We start our experiment by creating the Ubuntu disk image via QEMU. That image will
be later used with gem5 to perform detailed simulation experiments. We download a
server image and install any dependencies needed for running it with QEMU. Afterwards
we integrate everything required for Docker Container Engine to operate. After having
a running Docker process, we can pull our containers and test them. We now have our
benchmarks saved on the disk. We deactivate some unnecessary services to speed up
the gem5 booting process and we shutdown the VM.

Figure 4.1: Experiment Process.

4.1.2.2 Setup Mode

We boot our image with gem5 using AtomicCPU. This takes several hours to complete.
After that we perform a checkpoint. This allows us to begin each experiment from that
state. For each function, we launch the container, pin it into a specific core, and perform
10 requests. We take a checkpoint right before the first request.

G. Pournaras 33

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.2: System Stack.

Figure 4.2 presents the system stack that is simulated using gem5. The figure is based
on the vSwarm-u Original Picture.

4.1.2.3 Evaluation Mode and Stat Collection

In evaluation mode we initiate the simulator with an out-of-order detailed CPU. This is a
substantially slower CPU model than Atomic, but it is very accurate. With this CPU we
reset the simulator stats , thenmake the first request and finally dump the stats after getting
a reply from the server. This also takes for the 10th request. In other words we measure
the response time of a serverless function. To differentiate the two cases we refer to the
first execution as cold execution and to the tenth execution as warm execution.

For each function we collect the following stats from the Cold and Warm execution: Num-
ber of Cycles, Number of Instructions Issued, Cycles Per Instruction, and Cache misses.

G. Pournaras 34

https://github.com/vhive-serverless/vSwarm-u/blob/main/docs/figures/serverless-stack.jpg

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.3: Overview of the multicore system that is used in the experiments with gem5.

Figure 4.3 depicts how the CPU of our setup is organized. The server containers are
pinned to a specific core and any data we collect come from that core. The client is pinned
to the other core. The figure is based on the vSwarm-u Original Picture.

4.2 Results

4.2.1 RISC-V Results

In this section we present the results and discuss our findings regarding the RISC-V ISA.

G. Pournaras 35

https://github.com/vhive-serverless/vSwarm-u/blob/main/docs/figures/simple_system.jpg

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.1.1 Standalone Functions and Online Shop

Figure 4.4: Number of cycles for the standalone functions and the online shop application on the
RISC-V simulated system.

Figure 4.4 shows the number of cycles for the standalone functions and the online shop
application on the RISC-V simulated system. We observe that the Go benchmarks tend
to have the fewest cold cycles. On the other hand, the NodeJs benchmarks feature a 50%
speedup in warm executions. Regarding the Fibonacci set of functions, we notice that the
Python version despite having the longest cold execution, takes the shortest amount of
time to complete in the warm execution.

G. Pournaras 36

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.1.2 Hotel application

Figure 4.5: Number of cycles for the hotel application on the RISC-V simulated system.

Figure 4.5 shows the number of CPU cycles when running the Hotel Suite on the RISC-V
simulated system. Regarding Hotel, that consists only of Go functions that also commu-
nicate with a Cassandra database instance, we notice that the cold execution times last
significantly longer with respect to that of the standalone functions. In other words, the
standalone functions had cold executions of around two and three million cycles, while in
Hotel we observe sizes ten time greater. In particular for the profile function, cold boot
lasts 351 million cycles, but we decided to not depict that in the graph. We opted for
that because otherwise we would be unable to make any substantial comments. Further-
more, we detect smaller amount of cycles for the first three functions but not for the last
three functions. This stems from the fact that, the last three functions also use a caching
instance database. They firstly communicate with Memcached and afterwards perform
requests to the Cassandra database. After getting a reply from Cassandra, they are ob-
liged to populate the middle base, for later usage. This back and forth is also visible in the
cache statistics.

G. Pournaras 37

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.6: Number of L1 cache misses for the hotel application on the RISC-V simulated system
after cold execution.

Figure 4.7: Number of L1 cache misses for the hotel application on the RISC-V simulated system
after warm execution.

Figures 4.6 and 4.7 portray the combined data and instruction L1 cache misses during the
cold and warm executions. We see that the functions that depend onMemcached undergo
slowdown due to cache misses. On the other side, those functions take advantage of the
middle base in the warm execution, with profile, the least fast function in Cold, having the
least misses and therefore number of cycles.

G. Pournaras 38

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.8: Percentage of L1 cache misses for the hotel application on the RISC-V simulated
system after cold execution.

Figure 4.9: Percentage of L1 cache misses for the hotel application on the RISC-V simulated
system after warm execution.

Figures 4.8 and 4.9 display the total percentage of Instruction and Data cache misses.
We observe that in cold executions, the data cache misses are 60% of misses on average
while in warm execution they are close to 30%. It is a behavior that we expect since in the
first execution the functions request plenty of data for the first time. Subsequently, on the
10th run of the function, some of that data, are already present in cache hierarchy.

G. Pournaras 39

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.10: Number of cycles for the Go functions on the RISC-V simulated system.

Figure 4.11: Number of L2 misses for the Go functions on the RISC-V simulated system.

Figures 4.10 and 4.11 illustrate the reason theMemcached subgroup from the hotel applic-
ations exhibits 10 times slowdown in relation to other Go Benchmarks. Those functions get
plenty of L2 misses and hence they frequently experience the costly process of accessing
the main memory.

G. Pournaras 40

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.2 x86 Results

4.2.2.1 Standalone Functions and Online Shop

Figure 4.12: Number of cycles for the standalone functions and the online shop application on the
x86 simulated system.

In the x86 experiments we come into different conclusions. Looking at Figure 4.12 we
observe that the Python benchmarks perform poorly in cold executions. They are near
10 times slower compared to warm executions. Nonetheless, we see an exception to this
phenomenon. This exception is the emailservice benchmark. Its better performance is
thanks to its lower number of L2 cache misses as depicted below.

G. Pournaras 41

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.13: Number of L2 misses for the Python functions on the x86 simulated system.

4.2.2.2 Hotel application

For the Hotel collection we see similar results to its RISC-V counterpart. The only differ-
ence is the absence of the extreme execution of the profile benchmark.

Figure 4.14: Number of cycles for the hotel application on the x86 simulated system.

G. Pournaras 42

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.3 RISC-V vs x86 Results

4.2.3.1 Standalone Functions and Online Shop

Figure 4.15: Number of cycles for the standalone functions and the online shop application on the
RISC-V and the x86 simulated systems.

Figure 4.15 shows the number of cycles for the standalone functions and the online shop
application on the RISC-V and the x86 simulated systems. Our first observation is that
the RISC-V containers seem to be doing better than their x86 counterparts. In fact, most
of the times, the cold execution time in the RISC-V simulated system is even shorter
than the warm execution time in the x86 simulated system. The RISCV containers run for
approximately 2,5 million and less cycles. We cannot say the same for the cold executions
of the x86 ones. The main reason for this performance difference is the fact that the
execution of the functions in the RISC-V simulated platform resulted in significantly fewer
executed instructions than the execution of the functions in the x86 simulated platform.

G. Pournaras 43

Benchmarking Support for RISC-V CPUs in Serverless Computing

Figure 4.16: Number of executed instructions for the standalone functions and the online shop
application on the RISC-V and the x86 simulated systems.

Figure 4.16 depicts the number of instructions executed. Looking at this we observe that
x86 containers execute more instructions than the RISC-V containers in the cold execu-
tion, but that is not the case in the warm phase. Here, we can point some cases where
x86 is more effective (aes-go, auth-go, auth-python)

Figure 4.17: Number of L1 instruction misses for the standalone functions and the online shop
application on the RISC-V and the x86 simulated systems.

Figure 4.17 shows the misses in the L1 Instruction Cache. It is very clear that for the
majority of the comparisons RISC-V comes victorious either with slight margins (Warm

G. Pournaras 44

Benchmarking Support for RISC-V CPUs in Serverless Computing

Go benchmarks) or with more visible ones (Python Benchmarks).

Figure 4.18: Number of L2 misses for the standalone functions and the online shop application on
the RISC-V and the x86 simulated systems.

This figure is very similar to 4.15. It provides us with confidence to claim that the L2 cache
is possibly responsible for the fact that we see better performance in RISCV. Note that a
L2 miss costs at least 600 cycles which shutters the CPU’S pipeline. Additionally, as the
size of function is encouraged to get smaller, its going to become ever more difficult for
the CPU to mask the time lost with another segment of code.

G. Pournaras 45

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.3.2 Hotel application

Figure 4.19: Number of cycles for the hotel application on the RISC-V and the x86 simulated
systems.

In Hotel we continue to see RISCV performing better on most occasions. In Figure 4.19
we see neither architecture can perform well in the cold execution. An interesting fact is
that the cold RISCV profile benchmark that has the worst performance of all the workloads,
is the quickest in warm executions.

G. Pournaras 46

Benchmarking Support for RISC-V CPUs in Serverless Computing

4.2.4 MongoDb vs Cassandra

Figure 4.20: Execution time comparison between MongoDB and Cassandra using QEMU for the
x86 ISA.

As mentioned earlier, we were left with no choice but comparing those two databases
in QEMU. Figure 4.20 shows the performance of Cassandra and X86 in cold and warm
executions. MongoDB appears to have shorter times in cold executions. However, we
cannot say that this also happens to a substantial extend in the warm execution of the
experiment. In general, we could argue that MongoDB performs better, but the nature of
the experiment does not grand us with confidence to claim that this can also happen in
the gem5 simulation.

4.2.5 RISC-V vs x86 Container Sizes

Table 4.4 depicts the compressed size for x86 and RISC-V containers. It is quite clear
that the Go runtime containers are the lightest. NodeJs come second and the Python
ones come last. Looking at this graph along with the results in Section 4.2.3 we have
reasonable basis to claim that the container size plays an important role in cold execution
time. Aside from the hotel benchmarks that have dependency on the database container,
we observe that the shortest cold boots are from the Go containers and the longest are
from those having a Python base image.

4.2.6 Similar Work Size Comparison

During the porting process, we used to compare our RISC-V compressed sizes to their
vSwarm counterparts in order to see how closewe are. During such searches, we stumbled
upon this profile in Docker Hub [37]. To our surprise all the workloads where successfully
ported, even the hotel suite. We tested these containers and validated using QEMU that

G. Pournaras 47

Benchmarking Support for RISC-V CPUs in Serverless Computing

Function x86 RISC-V
Fibonacci-Go 8.39 7.76

Fibonacci-Python 99.4 132.62
Fibonacci-NodeJs 58.43 35.16

Aes-Go 8.67 8.04
Aes-Python 99.45 132.67
Aes-NodeJs 57.11 35.42
Auth-Go 8.67 8.04

Auth-Python 99.4 132.62
Auth-NodeJs 70.5 48.81

Product-Catalog-service-Go 10.81 10.33
Shipping-service-Go 10.8 10.3

Recommendation-service-Python 108.09 114.68
Email-service-Python 107.7 114.46

Currency-service-NodeJs 60.12 38.44
Payment-service-NodeJs 59.04 80.64

Geo-Go 8.17 7.76
Recommendation-Go 8.14 7.74

User-Go 8.12 7.73
Reservation-Go 8.18 7.79

Rate-Go 8.18 7.79
Profile-Go 8.19 7.79

Table 4.4: Docker Container Compressed Size in MB.

Function Natheesan Gpour
Fibonacci-Go 6.72 7.76

Fibonacci-Python 299.56 132.62
Fibonacci-NodeJs 107.74 35.16

Aes-Go 6.95 8.04
Aes-Python 299.62 132.67
Aes-NodeJs 107.81 35.42
Auth-Go 6.95 8.04

Auth-Python 299.57 132.62
Auth-NodeJs 121.21 48.81

Product-Catalog-service-Go 26.15 10.33
Shipping-service-Go 26.14 10.3

Recommendation-service-Python 401.46 114.68
Email-service-Python 313.06 114.46

Currency-service-NodeJs 58.16 38.44
Payment-service-NodeJs 57.07 80.64

Table 4.5: GPour/Natheesan RISC-V Docker Container Compressed Size in MB.

they provide the same results as we and vSwarm do. However, we were unable to run
the hotel application because it seemed to try to connect to a MongoDB. As mentioned
earlier, there is no available port of MongoDB to RISC-V. That is the reason why we do
not report those containers.

G. Pournaras 48

Benchmarking Support for RISC-V CPUs in Serverless Computing

5. RELATED WORK

In this section we review prior approaches that have targeted serverless on RISC-V plat-
forms. We also describe other prior works that have focused on benchmarking serverless
systems (besides those that are covered in Section 3.1). Finally, we discuss prior works
that have focused on the implications of the microarchitectural components in the exe-
cution of serverless workloads, as well as works that have proposed microarchitectual
optimizations for improving their performance.

Serverless Computing & RISC-V. Feng et al. [16] used an image processing serverless
application as a case study to evaluate the performance of a hardware-software enclave
co-design for RISC-V processors. Starc et al. [61, 60] evaluated the execution of server-
less workloads on several RISC-V soft-cores on FPGA. However, they did not port or use
any existing benchmark suite. Instead, they used standalone functions without consid-
ering the containerization/virtualization layers that play a critical performance role in the
serverless computing stack. Moreover, they do not provide support for running serverless
workloads in microarchitectural simulators, e.g., gem5, for the RISC-V ISA. Finally, the
developed infrastructure is not publicly available.

Other Benchmarking&ProfilingApproaches. Gan et al. [18] proposedDeathStarBench,
a benchmark suite that targets microservice-based applications and enables studying
the architectural characteristics of microservices and their implications on the computing
stack. Shahrad et al. [57] developed a testing and profiler platform for serverless comput-
ing based on OpenWhisk targeting real platforms. Finally, Xu et al. [70] recently proposed
MindPalace, a simulation framework that combines QEMU and ChampSim and allows
studying the architectural behavior of serverless systems for x86 processors.

Impact of Microarchitecture on Serverless Computing. Zhu et al. [72] studied the
microarchitectural implications of server-side JavaScript applications using the NodeJs
framework. Kanev et al. [29] presented a microarchitectural analysis of the Google’s
warehouse-scale computer workloads that typically consist of multiplemicroservices. Shahrad
et al. [57] focused on the architectural implications of serverless computing and showed
that the interleaved execution of different functions affects negatively the microarchitec-
tural processor components that rely on locality. Later, Shahrad et al [58] characterized the
entire production FaaS workload of Azure Functions; however that study did not analyze
results at the microarchitectural level. Finally, Asheim et al. [3] analyzed further analyze
the performance sensitivity of serverless workloads to microarchitectural state thrashing
due to interleaved execution.

Microarchitectural Optimizations for Serverless Computing. Schall et al. [52] high-
lighted the positive impact of executing serverless functions with warm microarchitectural
state and proposed an instruction prefetcher that is specifically designed for reducing the
start-up latency of warm function instances. Later, the authors [53] expanded the scope
of their approach by proposing a restoration mechanism for the entire front-end of the
processor pipeline that includes instructions, the branch target buffer (BTB) and the con-
ditional branch predictor (CBP). Wang et al. [69] showed that the memory management
subsystem plays also a critical role in the performance of serverless workloads, and pro-
posed architectural support for memory management that is specifically tailored to the
needs of serverless computing. Finally, Antoniou et al. [2] proposed a new microarchitec-
tural power management technique for optimizing the cold-start latency for latency-critical
applications based on microservices.

G. Pournaras 49

Benchmarking Support for RISC-V CPUs in Serverless Computing

6. CONCLUSIONS & FUTURE WORK

In this thesis we focused on bridging the gap between serverless computing, that is an
emerging cloud computing paradigm, and RISC-V, that is an open-source RISC-V ISA
that has received a lot of interest recently. To bridge that gap, we ported the vSwarm
and vSwarm-u serverless benchmarking infrastructure to the RISC-V ISA. It was a quite
demanding procedure as the path that we had to follow was not always paved. After a lot of
effort, we managed to: (i) create our RISC-V development environment based on QEMU,
(ii) port several workloads from vSwarm to RISC-V addressing various challenges due to
the immaturity of the RISC-V software ecosystem, and (iii) port the vSwarm-u framework
to enable the execution of the workloads in the gem5 simulator. In addition, we enhanced
the existing x86 infrastructure to enable fair comparison between RISC-V and x86 CPUs
through the gem5 simulator with minimal divergence in the configuration of the simulated
platforms.

Our evaluation using a RISC-V platform with the gem5 simulator shows the important per-
formance trade-off between cold and warm execution of function instances. In addition,
our preliminary results that compare the RISC-V and x86 software stacks in a near identical
setup on CPUs with similar microarchitectural characteristics show that the execution of
functions in the RISC-V simulated platform are faster than that in the x86 simulated plat-
form. The main reason for this performance difference is the fact that the execution of the
functions in the RISC-V platform resulted in significantly fewer executed instructions than
the execution of the functions in the x86 platform. Taking into consideration all the above,
we conclude that our work might provide confidence for more research to be devoted at
RISCV ISA as well as Serverless Computing. We hope that our contributions are a solid
foundation for this research to grow.

Our work can be extended in several ways. First of all, we plan to port the rest of the
vSwarm application to RISC-V and enable their execution in the gem5 simulator. We also
plan to port MongoDB to RISC-V to enable the seamless porting of the Hotel application
avoiding any code modification to the application itself. Regarding the software stack, we
plan to update our infrastructure by using newer components, such as Ubuntu v24.04 and
Linux v6. In terms of experimentation, we plan to run the ported serverless workloads and
measure their performance on real RISC-V platforms. Another interesting direction that
we plan to follow is to perform a detailed design space exploration with respect to various
microarchitectural characteristics, such as caches, branch predictors, and prefetchers,
using the gem5 simulator. Finally, improvements in the gem5 simulator will foster further
research on the topic of serverless computing. These improvements could target on mak-
ing stable the execution with the KVM CPUmodel and extending the current infrastructure
to support the KVM CPU model for the RISC-V as well.

G. Pournaras 50

Benchmarking Support for RISC-V CPUs in Serverless Computing

ABBREVIATIONS - ACRONYMS

RISC-V Fifth version of Reduced Instruction Set Computing

CISC Complex Instruction Set Computer

ISA Instruction Set Architecture

SQL Structured Query Language

NoSQL Not Only Structured Query Language

gRPC generic Remote Procedure Calls

KVM Kernel-based Virtual Machine

VM Virtual Machine

O3 Out Of Order

CPU Central processing unit

DB DataBase

OS Operating System

L1I Level 1 Instruction cache

L1D Level 1 Data cache

L2 L2 cache

G. Pournaras 51

Benchmarking Support for RISC-V CPUs in Serverless Computing

BIBLIOGRAPHY

[1] Amazon AWS Lambda. https://aws.amazon.com/lambda/.

[2] Georgia Antoniou, Davide Bartolini, Haris Volos, Marios Kleanthous, Zhe Wang, Kleovoulos Kalaitzidis,
Tom Rollet, Ziwei Li, Onur Mutlu, Yiannakis Sazeides, and Jawad Haj Yahya. Agile c-states: A core c-
state architecture for latency critical applications optimizing both transition and cold-start latency. ACM
Trans. Archit. Code Optim., jul 2024. Just Accepted.

[3] Truls Asheim, Tanvir Ahmed Khan, Baris Kasicki, and Rakesh Kumar. Impact of microarchitectural
state reuse on serverless functions. In Proceedings of the Eighth International Workshop on Serverless
Computing, WoSC ’22, page 7–12, New York, NY, USA, 2022. Association for Computing Machinery.

[4] Atomic and KVM core info. https://cirosantilli.com/linux-kernel-module-cheat/
#gem5-cpu-types.

[5] Microsoft Azure Functions. https://azure.microsoft.com/engb/services/functions.

[6] BeFaaS. https://github.com/Be-FaaS/BeFaaS-framework.

[7] Emily Blem, Jaikrishnan Menon, Thiruvengadam Vijayaraghavan, and Karthikeyan Sankaralingam. Isa
wars: Understanding the relevance of isa being risc or cisc to performance, power, and energy on
modern architectures. ACM Trans. Comput. Syst., 33(1), March 2015.

[8] What is Apache Cassandra. https://cassandra.apache.org/_/index.html.

[9] Kernel compatibility for running Docker verification script.

[10] Google Cloud. Configuring Warmup Requests to Improve Performance. https://cloud.google.com/
appengine/docs/standard/python/configuring-warmup-requests.

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and Torsten Hoefler. Sebs:
a serverless benchmark suite for function-as-a-service computing. In Proceedings of the 22nd Interna-
tional Middleware Conference, Middleware ’21, page 64–78, New York, NY, USA, 2021. Association for
Computing Machinery.

[12] Why the fs.py got depracated. https://www.mail-archive.com/gem5-users@gem5.org/msg21888.
html.

[13] Install Docker Engine and Client in Riscv Ubuntu. https://forum.rvspace.org/t/
docker-engine-and-docker-cli-on-riscv64/267.

[14] What is docker. https://www.docker.com/.

[15] The FaaSdom benchmark suite. https://github.com/faas-benchmarking/faasdom.

[16] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen.
Scalable memory protection in the PENGLAI enclave. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages 275–294. USENIX Association, July 2021.

[17] Function Bench: A Suite of Workloads for Serverless Cloud Function Service. https://github.com/
ddps-lab/serverless-faas-workbench.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin
Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling
Liu, Jake Padilla, and Christina Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, page 3–18, New York, NY, USA, 2019. Association for Computing Machinery.

[19] What is gem5. https://www.gem5.org/about/.

[20] Linux kernel configurations provided by gem5 resources. https://github.com/gem5/
gem5-resources/tree/develop/src/linux-kernel/linux-configs.

[21] gem5 System Modes. https://www.gem5.org/documentation/learning_gem5/part1/simple_
config/.

G. Pournaras 52

https://aws.amazon.com/lambda/
https://cirosantilli.com/linux-kernel-module-cheat/#gem5-cpu-types
https://cirosantilli.com/linux-kernel-module-cheat/#gem5-cpu-types
https://azure.microsoft.com/engb/services/functions
https://github.com/Be-FaaS/BeFaaS-framework
https://cassandra.apache.org/_/index.html
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://www.mail-archive.com/gem5-users@gem5.org/msg21888.html
https://www.mail-archive.com/gem5-users@gem5.org/msg21888.html
https://forum.rvspace.org/t/docker-engine-and-docker-cli-on-riscv64/267
https://forum.rvspace.org/t/docker-engine-and-docker-cli-on-riscv64/267
https://www.docker.com/
https://github.com/faas-benchmarking/faasdom
https://github.com/ddps-lab/serverless-faas-workbench
https://github.com/ddps-lab/serverless-faas-workbench
https://www.gem5.org/about/
https://github.com/gem5/gem5-resources/tree/develop/src/linux-kernel/linux-configs
https://github.com/gem5/gem5-resources/tree/develop/src/linux-kernel/linux-configs
https://www.gem5.org/documentation/learning_gem5/part1/simple_config/
https://www.gem5.org/documentation/learning_gem5/part1/simple_config/

Benchmarking Support for RISC-V CPUs in Serverless Computing

[22] https://cloud.google.com/blog/products/gcp/google-cloud-platform-your-next-home-in-the-cloud/.

[23] Google Cloud Functions. https://cloud.google.com/functions/.

[24] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max Zhao, and David Berm-
bach. Befaas: An application-centric benchmarking framework for faas platforms, 2021.

[25] Solution to grpc module loading. https://github.com/grpc/grpc/issues/24249#
issuecomment-972555615.

[26] What is grpc. https://grpc.io/#:~:text=gRPC%20is%20a%20modern%20open,tracing%2C%
20health%20checking%20and%20authentication.

[27] IBM Cloud Functions. https://www.ibm.com/cloud/functions.

[28] What is serverless. https://www.ibm.com/topics/serverless.

[29] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-
Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. SIGARCH Comput. Archit. News,
43(3S):158–169, jun 2015.

[30] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function
service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504,
2019.

[31] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for serverless faas. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19, page 477, New York, NY, USA, 2019. Association
for Computing Machinery.

[32] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo
Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón, Lizhong Chen, Nicolas Derumigny, Stephan
Diestelhorst, Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gam-
bord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swapnil
Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Rad-
hika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth,
Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, An-
drea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E.
Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas
Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. The gem5 simulator: Version 20.0+. CoRR,
abs/2007.03152, 2020.

[33] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faasdom: a benchmark suite for
serverless computing. In Proceedings of the 14th ACM International Conference on Distributed and
Event-Based Systems, DEBS ’20, page 73–84, New York, NY, USA, 2020. Association for Computing
Machinery.

[34] What is MariaDb. https://mariadb.com/.

[35] Mongo to riscv attempt. https://forum.sophgo.com/t/risc-v-public-beta-platform-released-database-adaptation-evaluation-on-risc-v-server/
273.

[36] What is MongoDB. https://www.mongodb.com/company/what-is-mongodb.

[37] Natheesan Profile in Docker Hub. https://hub.docker.com/u/natheesan.

[38] Goncalo Neves. Keeping Functions Warm – How To Fix AWS Lambda Cold Start Issues. https:
//serverless.com/blog/keep-your-lambdas-warm.

[39] O3 core info. https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU.

[40] Open SBI, the Runtime Component of the RISC-V bootflow. https://github.com/
riscv-software-src/opensbi.

[41] What Is pip in python. https://pypi.org/project/pip/.

[42] Timothy Prickett Morgan. AWS Adopts Arm V2 Cores For Expans-
ive Graviton4 Server CPU. https://www.nextplatform.com/2023/11/28/
aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/.

G. Pournaras 53

https://cloud.google.com/blog/products/gcp/google-cloud-platform-your-next-home-in-the-cloud/
https://cloud.google.com/functions/
https://github.com/grpc/grpc/issues/24249#issuecomment-972555615
https://github.com/grpc/grpc/issues/24249#issuecomment-972555615
https://grpc.io/#:~:text=gRPC%20is%20a%20modern%20open,tracing%2C%20health%20checking%20and%20authentication.
https://grpc.io/#:~:text=gRPC%20is%20a%20modern%20open,tracing%2C%20health%20checking%20and%20authentication.
https://www.ibm.com/cloud/functions
https://www.ibm.com/topics/serverless
https://mariadb.com/
https://forum.sophgo.com/t/risc-v-public-beta-platform-released-database-adaptation-evaluation-on-risc-v-server/273
https://forum.sophgo.com/t/risc-v-public-beta-platform-released-database-adaptation-evaluation-on-risc-v-server/273
https://www.mongodb.com/company/what-is-mongodb
https://hub.docker.com/u/natheesan
https://serverless.com/blog/keep-your-lambdas-warm
https://serverless.com/blog/keep-your-lambdas-warm
https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://pypi.org/project/pip/
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/

Benchmarking Support for RISC-V CPUs in Serverless Computing

[43] What is qemu. https://www.qemu.org/docs/master/about/index.html.

[44] What is Redis. https://redis.io/.

[45] Aws release announcement. https://aws.amazon.com/about-aws/whats-new/2014/11/13/
introducing-aws-lambda/.

[46] Risc-v international standard management. https://riscv.org/technical/specifications/.

[47] What is Risc-v. https://www.synopsys.com/glossary/what-is-risc-v.html.

[48] Risc-v 10 billion cores. https://riscv.org/announcements/2022/12/
risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/.

[49] RISCV Database Compliance. https://riscv.org/blog/2023/08/
risc-v-public-beta-platform-release-%C2%B7-database-adaptation-evaluation-on-risc-v-server/.

[50] Boot Riscv ubuntu with Qemu. https://wiki.ubuntu.com/RISC-V/QEMU.

[51] Scaleway launches its RISC-V servers in the cloud. https://www.scaleway.com/en/news/
scaleway-launches-its-risc-v-servers-in-the-cloud-a-world-first-and-a-firm-commitment-to-technological-independence/.

[52] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and Boris Grot. Lukewarm
serverless functions: characterization and optimization. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 757–770, New York, NY, USA, 2022. Association
for Computing Machinery.

[53] David Schall, Andreas Sandberg, and Boris Grot. Warming up a cold front-end with ignite. In Proceed-
ings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23, page
254–267, New York, NY, USA, 2023. Association for Computing Machinery.

[54] Docker search for RISC-V images. https://hub.docker.com/search?q=go&architecture=riscv64.

[55] SeBS: Serverless Benchmark Suite. https://github.com/spcl/serverless-benchmarks.

[56] ServerlessBench: A benchmark suite with serverless workloads. https://github.com/SJTU-IPADS/
ServerlessBench.

[57] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural implications of function-
as-a-service computing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 1063–1075, New York, NY, USA, 2019. Association for Computing
Machinery.

[58] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke,
Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud provider. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 205–218. USENIX Association, July 2020.

[59] SiFive Processors. https://www.sifive.com/risc-v-core-ip.

[60] Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic. Serverless? risc more! In Proceed-
ings of the 2nd Workshop on SErverless Systems, Applications and MEthodologies, SESAME ’24, page
15–24, New York, NY, USA, 2024. Association for Computing Machinery.

[61] Roberto Patrick Starc. Exploring the microarchitectural implications of serverless workloads using risc-
v. Master thesis, ETH Zurich, Zurich, 2023-04. D-INFK Master’s Thesis Nr. 439.

[62] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot. Benchmarking,
analysis, and optimization of serverless function snapshots. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’21, page 559–572, New York, NY, USA, 2021. Association for Computing Machinery.

[63] Ventan High Performance RISC-V CPUs and System IP. https://www.ventanamicro.com/
technology/.

[64] vHive: Open Source Framework for Serverless Experimentation. https://github.com/
vhive-serverless/vHive.

[65] What is vSwarm. https://github.com/vhive-serverless/vSwarm/blob/main/README.md.

[66] vSwarm: Serverless Benchmarking Suite. https://github.com/vhive-serverless/vSwarm.

G. Pournaras 54

https://www.qemu.org/docs/master/about/index.html
https://redis.io/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://riscv.org/technical/specifications/
https://www.synopsys.com/glossary/what-is-risc-v.html
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/announcements/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/blog/2023/08/risc-v-public-beta-platform-release-%C2%B7-database-adaptation-evaluation-on-risc-v-server/
https://riscv.org/blog/2023/08/risc-v-public-beta-platform-release-%C2%B7-database-adaptation-evaluation-on-risc-v-server/
https://wiki.ubuntu.com/RISC-V/QEMU
https://www.scaleway.com/en/news/scaleway-launches-its-risc-v-servers-in-the-cloud-a-world-first-and-a-firm-commitment-to-technological-independence/
https://www.scaleway.com/en/news/scaleway-launches-its-risc-v-servers-in-the-cloud-a-world-first-and-a-firm-commitment-to-technological-independence/
https://hub.docker.com/search?q=go&architecture=riscv64
https://github.com/spcl/serverless-benchmarks
https://github.com/SJTU-IPADS/ServerlessBench
https://github.com/SJTU-IPADS/ServerlessBench
https://www.sifive.com/risc-v-core-ip
https://www.ventanamicro.com/technology/
https://www.ventanamicro.com/technology/
https://github.com/vhive-serverless/vHive
https://github.com/vhive-serverless/vHive
https://github.com/vhive-serverless/vSwarm/blob/main/README.md
https://github.com/vhive-serverless/vSwarm

Benchmarking Support for RISC-V CPUs in Serverless Computing

[67] vSwarm-u: Microarchitectural Research for Serverless. https://github.com/vhive-serverless/
vSwarm-u.

[68] vSwarm-u: Simulation Methodology. https://vhive-serverless.github.io/vSwarm-u/
simulation/basics/.

[69] Ziqi Wang, Kaiyang Zhao, Pei Li, Andrew Jacob, Michael Kozuch, ToddMowry, and Dimitrios Skarlatos.
Memento: Architectural support for ephemeral memory management in serverless environments. In
Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23,
page 122–136, New York, NY, USA, 2023. Association for Computing Machinery.

[70] Kaifeng Xu, Georgios Tziantzioulis, and David Wentzlaff. Mindpalace: A framework for studying mi-
croarchitecture design of function-as-a-service. In 2024 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 313–315, 2024.

[71] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin,
and Haibo Chen. Characterizing serverless platforms with serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page 30–44, New York, NY, USA, 2020. Association
for Computing Machinery.

[72] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. Microarchitectural implications
of event-driven server-side web applications. In 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 762–774, 2015.

G. Pournaras 55

https://github.com/vhive-serverless/vSwarm-u
https://github.com/vhive-serverless/vSwarm-u
https://vhive-serverless.github.io/vSwarm-u/simulation/basics/
https://vhive-serverless.github.io/vSwarm-u/simulation/basics/

	CONTENTS
	Introduction
	Motivation
	Goal & Approach
	Thesis Contributions
	Organization

	Background
	Serverless Computing
	The RISC-V Instruction Set Architecture
	QEMU
	gem5
	gem5 System Modes
	gem5 CPU Models
	gem5 Utilities

	Porting Serverless Benchmarking to RISC-V
	Selecting the Serverless Benchmark Suite
	The vSwarm Benchmark Suite
	The vSwarm-u Framework

	Creating a RISC-V Development Platform
	Selecting Linux Distribution
	Installing Docker

	Porting Serverless Benchmarks to the RISC-V ISA
	Standalone Functions
	Go and NodeJs
	Python

	Online Shop Application
	Hotel Application
	Alternatives to MongoDB
	Introducing alternative databases in the Hotel Application

	Enabling the Execution of the Benchmarks in gem5
	The vSwarm-u Framework
	gem5 & RISC-V
	Building gem5
	RISC-V Linux Kernel for gem5 simulations
	RISC-V Bootloader
	gem5 RISC-V configuration file

	Enhancing the existing infrastructure for x86
	Serverless Functions for x86 CPUs
	gem5 & x86
	Configuration file and disk image
	x86 Linux Kernel for gem5 Simulations
	Limitations

	Evaluation
	Experimental Methodology
	Software and Hardware Configuration
	Step-by-step Experimentation Process
	Image Preparation
	Setup Mode
	Evaluation Mode and Stat Collection

	Results
	RISC-V Results
	Standalone Functions and Online Shop
	Hotel application

	x86 Results
	Standalone Functions and Online Shop
	Hotel application

	RISC-V vs x86 Results
	Standalone Functions and Online Shop
	Hotel application

	MongoDb vs Cassandra
	RISC-V vs x86 Container Sizes
	Similar Work Size Comparison

	Related Work
	Conclusions & Future Work
	ABBREVIATIONS - ACRONYMS
	REFERENCES

