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1 Introduction

The aim of this dissertation is to study the representation theory of finite Coxeter groups, in the light
of their associated Hecke algebras, as well as to highlight the relationship, that exists between their
representations of them. A guiding example throughout our study will be the groups GL,(q) (the
general linear group over a finite field of order ¢, where q is a prime power) and the symmetric group
Sh.

The outline of Thesis:

In the 2nd chapter we introduce some basic concepts from the classical representation theory and their
correlation with the theory of modules, emphasizing the usage of group algebra of a finite group, as a
means of describing the representations of finite groups (i.e in the language of modules).

In the 3rd chapter we refer to the Coxeter groups focusing on their connection to the reflection
groups and later on their classification. In particular, we start by introducing all the basic facts in
order to define the groups generated by reflections and study their structure, through the concept of
roots and fundamental roots. Afterwards, we move to a more combinatorial approach, through the
concept of length function of an element, which leads us to very basic theorems such as (cancellation
law, exchange condition, Matsumoto Theorem). Also, we introduce a presentation that defines the
Coxeter groups through the Coxeter systems, and we state the 1-1 correspondence with the reflection
groups. Finally, we introduce the concept of Coxeter graphs, which lead us to the final classification
of Coxeter systems.

In 4th chapter we study the concept and the properties of finite groups with BN-pairs, concluding
with the fundamental theorem of their connection with Coxeter groups. We also prove that the group
GL,(q) is a group with a BN-pair and associated Weyl group be the symmetric group S,.

In the 5th chapter we introduce the central concept of Hecke algebras H as endomorphism algebras
of induced presentations 1% for groups with BN-pair. Through the study of it’s structure we will
see an isomorphic interpretation of it, which will lead us to find a basis T,, for H, indexed by the
elements of the associated Coxeter group W, which in turn determines for us the proper generators
and relations, in order to get a presentation of H. Finally, we are arriving at the central result of
this chapter: The 1-1 correspondence between the irreducible representations of Hecke algebras and of
irreducible CG-modules appearing as components of an appropriate vector space V.

In the 6th chapter we present a construction of the generic Hecke algebra H, as a special case of the
more general concept of generic algebras over an arbitrary commutative ring, by proper choice of the
base ring. Through the multiplication rules of the basis elements T, of the H, we show that they are
invertible, while being described through the definition of R-polynomials. Furthermore, we define a
specific involution 6 on H, which combined with the T-basis and the introduction of Kazhdan-Lusztig
polynomials, leads us to the construction of a new basis (C-basis) for #H, which has more convenient
properties. By further studying of the multiplication formulas between the T-basis and the C-basis,
allow us to present an act of the T-basis on C-basis, which lead us to obtain representations for the
Hecke algebras.

In the 7th chapter we define the Cells in Coxeter groups, which lead us to the construction of
lower-dimension representations of finite Coxeter groups and the associated Hecke algebras, using the
theory developed by D.Kazhdan and G.Lusztig. The cells of a particular type, partition the group in
a way compatible with the theory that developed in the previous chapters. It turns out that each cell
affords a representation of the Hecke algebra, where the dimension of the representation is equal to
the number of elements in the cell. By specialising the parameter q in the generic Hecke algebra to
1, it can be shown that we obtain a representation of the Coxeter group. The examples given will be
from the symmetric groups for Ss and Sy, in this case, we obtain all irreducible representations over
C using these methods.

In the 8th chapter we give a description of the Tits Deformation Theorem, focusing more on it’s
application to the Hecke algebra associated with a finite group with a BN-pair, and a Weyl group W
form a Coxeter system (W,S). In particular, it gives us an isomorphism of Hecke algebras with the
group algebra of W over C. As corollary, we get a decomposition of the characters for the induced
trivial representation 1% in terms of the irreducible characters of the Coxeter group W.



2 Representation Theory

2.1 The basics of Representations

Definition 2.1.1. Let G be a group and V be K-vector space, where K is a field. Let p: G — GL(V)
be a homomorphism, where GL(V') be the general linear group on V, such that

p(9192) = p(g1)p(g2), V91,92 € G

The map p is called a representation of G and the vector space V is the representation space.
1If further the vector space V is of finite dimension, such asn = dimgV , we can choose a basis of V,
and then in the above group homomorphism we can identify the GL(V) with GL,(K), the group of nxn
invertible matrices over the field K, and the dimension of V is called the degree or dimension of the
representation. Also in this situation, the representation p is called matrixz (or linear) representation.
In this thesis, all the representations that we will see it will be finite representations.

Remark 2.1.1. We can also think of a representation p of G with representation space V, as a pair
of Vand amap GXV —V, g-v:=p(g)(v). Then, G XV — V the axioms that should satisfy are:

1. it is a group action (the action is associative and e-v =wv, for allv eV )
2. themapV —V | v+ g-v is linear for all g € G.
So a representation is nothing but a linear action of G on V.

Definition 2.1.2. A homomorphism of representations T : (V,p) — (V,,p,) s a linear map T :
V. — V' such that

Top(g) = p (9)0T

for all g € G. T is an isomorphism if T is invertible. Two representations are isomorphic if there
exists an isomorphism between them.

Definition 2.1.3. A subrepresentation of a representation V of a group is a subspace W <V which
is invariant under all the operators py, for g € G, i.e p(g)(W) C W, forall g € G. We will called
such a subspace W of V as a G-invariant subspace.

Definition 2.1.4. A representation (V, p) is irreducible if it is nonzero and there does not exist any
proper nonzero subrepresentation of V. So a representation (V,p) of G is irreducible if there dose not
exists any proper G-invariant subspace W of V.

2.2 Group Algebra

Let G be a group and R a ring. We will construct an R-module that having the elements of G as a
basis, and then by the use of the operations of both the group G and the ring R, we define a ring
structure on it. We will donate that construction by RG.

So in this direction, we let RG to be the set of all formal linear combinations of the form

> Aag
geG

where Ay € R and \; = 0 almost everywhere, i.e only finite number of coefficients are from 0 in each
of these sums.

Notice that it follows from our definition that given two elements, a = > geG g9 and b =
deG byg € RG, we have that a = b if and only if ay = b, for every g € G.

Now we define the sum of two elements in RG pointwise, i,e :

(Z agg) + (Z agg) = Z(ag +bg)g

Also, given two elements a = Y 4 099 and b=>" g byg € RG we define their product by

ab = Z agbpgh
g,heG



Notice that, the way we have define their product is just defining the product of two elements in the
basis by means of their product in G.
Reordering the terms in the formula above, we can write the product ab as

ab = Z Cy

ueG

where ¢, =Y gh=u agby, It is easy to verify that, with the operations above RG becoming a ring, which
has unity the element 1 := " 9 Ug9; where the coefficients corresponding to the unit element of the
group is equal to 1 and u, = O for every other element g € G.

We now can also define and an scalar multiplication of elements in RG by elements A € R as

AQ ag9) =) (Naglg

And again we can verify that RG with the above scalar multiplication rule becoming an R-module.
Furthermore, if R is commutative it follows that RG is an algebra over R.

Definition 2.2.1. The set RG, with the operations defined above, is called the group ring of G over
R, and in the case where R is commutative, RG is called group algebra of G over R.

In the following chapters we will focusing more in the case where R = C, and so to the group
algebra of a finite group G over the complex numbers, notated by CG.

Remark 2.2.1. An alternative way of define the the group ring RG is as the set of all functions
f + G — R such that f(g) # 0 only for finite numbers of elements in G. In this situation, we
could realize the formulas of the sum and scalar multiplication, as the usual definitions of sum of two
functions and of product of a function by a scalar. Also, the definition of the product, is this case,
corresponds to the convolution product of two functions.

Moreover, we can define an embedding map i : G — RG by assigning to each element x € G the
element i(z) = Zg agg, where a, =1 and ay =0 if g # x. So we could see the group G as a subset of
RG, and hence with this identification we can say that G is a basis of RG over R. As an immediate
consequence we see that, if R is commutative, the dimension of a free module over R is well defined,
and thus if G is finite we get that dimpRG = |G|

For the rest of thesis, as already stated, we will refer to the group algebra CG, except something
else said.

2.3 The representation theory in the point view of modules

Proposition 2.3.1. The representations of a group G over a C—wvector space V are into 1-1 corre-
spondence with the CG-modules.

Definition 2.3.1. An R-module is called simple (or irreducible) if is non-zero and has no proper,
nontrivial submodules.

So by combined the above definition with interpretation of the representations as CG-modules, we
have the proposition.

Proposition 2.3.2. A representation it will be irreducible if and only if the corresponds CG-module
1s irreducible.

Now we present some important facts about the group algebra CG and the association of it, to the
representation theory of finite groups.

Theorem 2.3.1. e (Maschke’s Theorem): If G is finite then KG is semisimple if and only if K
is semisimple and |G| € U(K), where K is a field. So for our purposes where K = C the above
holds.

o CG is semisimple.



o Form Wedderburn-Artin Theorem we obtain that
CG = [[ Mn.(C)
i=1

where

— 1 is the number of non-isomorphic simple CG-modules, i.e equivalent r is presenting the
number of the irreducible representations of G over C, which it can been showed that is
equal to the number of the different conjugacy classes of G.

— n; = dimggVi, with V; be simple CG-modules, i.e equivalent n; is the degree of the repre-
sentations that corresponds to the V; C—wector spaces.

- |Gl =i n®

2.4 Character Theory

Another important concept that appears in the representation theory for finite representations is the
character theory.

Definition 2.4.1. The character of a matriz representation p : G — GLp(V), where V is a finite
dimensional C—wvector space, is the function x, : G — C such that

Xp(9) = tracep(g)
Its common in notation to write xy for the character of the representation (V, p).

Proposition 2.4.1. Isomorphic representations have the same character. For the converse, if G is
finite is also true.i.e
(Vip) = (W,0) < xv = xw

In the case that G is finite by Maschke’s theorem, we have that every finite representation is com-
pletely reducible, i.e every finite representation of a finite group G is the direct sum of irreducible
subrepresentations, where with direct sum of representations we mean that given two representa-
tions (Vi,p1) and (Va, pa) is the representation (Vi @ Va,p := p1 @ p2), where p1 ® p2(g)(v1,v2) =

(P1(g)(v1), p2(g)(v2))-

Now we introduce the idea of a character table:

Definition 2.4.2. The character table of G is the table whose the (i,j)-entry is xv,(g;).

Where {(V1,01), -, (Vin, pm)} be a complete set of irreducible representations of a finite group G and
the number m equals to the number of conjugacy classes of G. Also label C1,--- ,C,, these conjugacy
classes and let g; € C; be a representative of conjugacy class C;.

Note that the definition does not depend on the choice of V; up to isomorphism nor on the choice

of representatives g;.

2.5 Representations of Algebras

Similar definitions we could write for the representations of algebras. So

Definition 2.5.1. A representation of an algebra A (also called a left A-module) is a vector space V
together with a homomorphism of algebras p : A — End(V)

Definition 2.5.2. A subrepresentation of a representation (V, p) of an algebra A is a subspace W <V
such that p(a)(W) C W, for all a € A.

Definition 2.5.3. A representation (V, p) of an algebra A is irreducible is non zero and does not exists
non proper, non trivial subrepresentations.



3 Coxeter Groups

3.1 Finite Reflection Groups

Definition 3.1.1 (Euclidean space). Let V be a finite R—uvector space, with dim V = n < oo and
assume that V is equipped with a symmetric, positive define bilinear form (, ) : V xV — R such
that (z,y) € R, for z,y € V. We call (V, (, )) Euclidean space and we refer to the bilinear form (, )
as an inner product on V. Obviously, the form is non-degenerate.

Definition 3.1.2 (The group of Orthogonal transformations). The group of orthogonal transforma-
tions on is defined by

O(V)={s € EndgV : (sz,sy) = (z,y), for allz,y € V}

Definition 3.1.3 (Orthogonal Complement). For a subspace U of V, we call orthogonal complement
of U the set
Ut={yeV: (y,2)=0, forallz € U}

Remark 3.1.1.

Let a € V, with a # 0, then the space V decompose it as V =< a > ©< a >+, where < a > is the vector
space generated by a and the orthogonal complement of the space < a > denoted by H, := < a >*.
The H, 1is called the orthogonal hyperplane to the vector a, and dim H, =n — 1

Definition 3.1.4 (Reflection). A reflection is a linear map s : V. — V such that s € O(V), s # 1,
and s fizes every vector in some hyperplane in V. In particular, for every a € V, with a # 0, we
define as a reflection in the direction of the vector a, with respect to the hyperplane H,, the linear map
Sq 1 V. — V', such that

sq(a) = —a,
sa(z) =2, Vo € H,

Proposition 3.1.1 (Properties of Reflections). Let a € V, with a # 0, and H, be the orthogonal
hyperplane to the vector a, as previous. Then we have that:

(i) There exists a unique reflection s € O(V') that leaves fived the elements of H,. Then s*> =1 and
s can be calculated by the formula

Sq(v) =v — 2((:’;)) forallveV

(ii) a = kb, where k € R if and only if so = sp. In particular, s, = $_q
(iti) a = kb, where k € R if and only if H, = Hy,

(iv) The minimal polynomial my(x) of the reflection s, is ma(x) = (v — 1)(x + 1). Also s, is
diagonizable in R, with 1,—1 be the eigenvalues of s, and the eigenspaces be Vs (—1) =< a >
and Vs, (1) = H,. The space V. =< a > ®H, has a basis as to which one the matriz of the
reflection s, is the diagonal matriz diag(—1,1,--- ,1)

(v) From (i) we have that s, € O(V) and for every g € O(V) we get
g 0Sq0 g_l = Sg(a)
1

In particular, let x,y € V and g € O(V). If y = g(x) then s, = s4() = 9529~

(vi) The reflections s, maintain the inner product as a orthogonal transformations,
i.e
(sa(@), sa(y)) = (,y) Yo,y eV
(vit) $q8p = $pSq < (a,b) =0, for a,b# 0 and a,b are linearly independent.

Definition 3.1.5 (Reflection Group). A subgroup G of the orthogonal group O(V), that generated by
reflections, will be called the group generated by reflections.

10



3.2 Roots Systems

Definition 3.2.1 (Root System). A set of vectors, A, it we be called a root system if A C'V, where
V' is Euclidean space, and satisfying the following conditions:

(i) A consists of non-zero elements, and the vectors in A are spanned the space V.

(i1) (Reduced Condition) If a € A, then —a € A. Furthermore, if a € A and k € R such that ka € A,
then k = +1.

(iii) For each a € A, we have that s,(A) = A, where s, is the reflection firing the hyperplane H,.
A crystallographic root system is a root system A satisfying the additional condition:

(iv) (Crystallographic Condition) For all pairs of roots a,b € A, we have that 2%‘;:53 eZ.

Remark 3.2.1. The group W = W(A) that is generated by reflections s,, such that a € A is called
the group genmerated by reflections associated with the root system A. Thus

W=W(A)=<s, : a €A >

Moreover, the only reflections that are in the group W(A), are the reflections that they come from the
root system A.

Proposition 3.2.1. For every group generated by reflections associated with some root system A, i.e
W = W(A), we have that W is isomorphic to a subgroup of the permutation group of A. Thus there
exist a subgroup H < Sa such that

W =W(A)~H < Sa

Corollary 3.2.1. If the root system, A is finite, then the group generated by reflection associated to
this root system, W(A), is also finite group.

From now on the root systems that we will be concentrated it will be finite, so and the reflection
group associated to the root system it will be finite, from the previous corollary.

Proposition 3.2.2. If A, A" are two different root systems that are associated with the same reflection
group W, i.e )
W=<s, :a€A>=<s5, : be A >

then we have that:
o For each b e A" there exist k € R: b= ka, for some a € A.
o For each a € A" there exist A € R: a = b, for some b € A.
Furthermore, if let VA, V5 be the subspaces of that are generated by the roots of A, A, respectively.

Proposition 3.2.3. Let W be a finite reflection group, i.e W =< Sq,, -, 84, >, where s,, are
reflections. Then by letting A be the set of unit vectors orthogonal to the hyperplanes fized by reflections
mn W.

i.e

A={x eV : s, be a reflection in W and ||z|| = 1}

Then A is a root system, where the reflection group W is associated with it. Thus
W=W(A)=<s, : a €A >

Proposition 3.2.4. For every subgroup G of the orthogonal group O(V') there exist a group G such
that

G=G and also V,(G') = {0}
where Vo(G) = Fizy(G) = Nyeg Vo =Nyeglz €V + gz =2}

11



Definition 3.2.2 (Effective group). A group G that is satisfying the relation V,(G) = {0} it will be
called effective group.

Corollary 3.2.2. Since every reflection group W = W(A) is a subgroup of the O(V) we have that
there exist a group W such that: ) ,
W =W with Vo(W') =0

In particular, by letting Va be the space that generated by the root system A which is associated with
the reflection group W, i.e VA =< A >, then
Vo(W) = Va™t and V(W)™ = Va

Proposition 3.2.5. Let W = W(A) =< sy, ,8r, : 15 € A >, A be a root system and VAo =<
T1,: ,Tn >. Then
W is ef fective < V,(W) = {0}
< VAl = {0}
< VA=V
<= the root system A include a basis of the space V

Remark 3.2.2. In general a reflection group associated with a root system, i.e W = W(A), is not
an effective group. But if we restrict ourselves to the space that is generated by the roots of A, hence
Wlv,, the action of W leaves invariant the root system A, and thus the same is true for Va. So by the
above proposition we get a isomorphic group W' to W, that is effective. So w.l.o.g we can let V = VAa.

3.3 Positive and Fundamental Roots

Now let A be a root system associated with the reflection group W = W(A), where the group W
generated by the set {s, : a € A}. As we seen already we can let V = Va.
For every a € A we recall that we can define the hyperplanes H,, as

H,={z€V : (a,z) =0}
Then we can define the semi-spaces
HYt={zcV : (a,x) >0} and H,” ={z €V : (a,2) <0}
Theorem 3.3.1. V\J,ca Ha # O.

The proof of the above Theorem is based to the following Lemma;:

Lemma 3.3.1. Let V be a vector space over a infinity field E. Then V it can’t be written as finite
union of proper subspaces of it. Thus if V.= X1U---x, withx; SV, then at least one of the subspaces
X is the whole space V. i.e for some ig we have that V = X,

From the above Theorem we get that there exist a vector u such that (a,u) # 0, for all a € A.
So for every x € V\{J,ca Ha and for every a € A we have that either (z,a) > 0 or (z,a) < 0.
Equivalently, « € H,* or H,™.

Now we can define a equivalence relation on the set V\ |, Ha, which will lead us to the definition
of the Weyl chambers, which in their turn, will be help us define the positive and negative roots.

Definition 3.3.1 (Weyl Chambers). We define a equivalence relation on V\U,ca Ha, ~, by :
Ifz,z € V\ Usea Ha, then

T~T = YacA, (z,a), (x/,a) have the same sign.

iex~x if and only if for every a € A they ’re exist in the same semi-space Hy ™ or H, ™.
The equivalence class of an element xV\|J,ca Ha it will be called the Weyl Chamber and it will be
the set
] ={y eV : (z,a), (y,a) have the same signVa € A}

12



Proposition 3.3.1. FEvery Weyl chamber give us a partition of the root system A. In particular, if
let C be a Weyl chamber then we can define the sets

At ={acA : (a,z) >0, Vo € C}
AT ={acA : (a,2) <0, Vz € C}
Notice that, the partition A into AY and A~ depends in our choice of the Weyl chamber C.

Definition 3.3.2 (Positive Roots). We define the positive roots to be the elements of AT and similarly
the negative Toots to be the elements of A~. So we have a partition of A into positive roots AT and
negative roots A~ .

Let AT be such a positive root system, that occurs from a Weyl Chamber C. We have the following
definition.

Definition 3.3.3 (Fundamental Root System). A fundamental (or simple) root system ¥ we will call
a subset of AT, such that satisfying the following properties:

(i) Every positive root in A can be expressed as linear combination of elements of X, with non-
negative real coefficients. i.e Ya € AT exist \y € R: A\ > 0 such that a = ZAQO Aiay, where
a; € . -

(i) The elements of ¥ are linear independently.

i.e the X constitutes a basis of the space Va so because we have restrict to the Va we obtain that ¥ is

a basis of V.
Theorem 3.3.2. Every positive root system AT contains a unique fundamental Toot system X.

Now a natural question that is created from this construction is: If we give us a fundamental root
system, can we found a Weyl chamber from whom they come the positive roots.

Proposition 3.3.2. Let ¥ = {a1, - ,a,} be a fundamental root system. We define the set Cy = {v €
Vi(v,a;)) >0, Vi=1,--- ,n} then:
(i) Co # Q.

(ii) Cy is a Weyl chamber and will be called the fundamental Weyl chamber.

(iti) Cy determines the specific fundamental root system X.
Theorem 3.3.3. There exist a 1-1 correspondence from the set of all the Weyl chamber to the set of
all the fundamentals root systems.
{Weyl Chambers} «— {fundamentals root systems}
Thus we obtain that:

(i) For each Weyl chamber C we get a unique fundamental root system.

(it) For each fundamental root system we construct the fundamental Weyl chamber Cy.

Let A be a finite root system which is associated with the group of reflections W = W(A). We
fixed a fundamental root system ¥ that is comes from fundamental Weyl chamber Cy. Then, from
there, we determined a partition to the root system A into A = At LUA~. The AT is a positive root
system with ¥ = {ay, -+ ,a,}

Definition 3.3.4. The roots a; € ¥ are called fundamental roots (or simple roots). The reflections
{Sa; 1 a; € B} are called fundamental reflections and we denoted by s,, := s;, for each i.

Proposition 3.3.3. Let ¥ be a fundamental root system and AT the positive root system containing
Y. Then every fundamental reflection change the sign only of two roots, in particular of the roots a;
and —a;.

Thus each fundamental reflection s; permutes every positive roots expect the root a;.

i.e

si(A"\{ai}) = A"\ {ai}
Theorem 3.3.4. Let ¥ = {a1, - ,an} be a fundamental system in A. Then the reflection group
associated with the root system A, i.e W = W(A), is generated by the fundamental reflections s;.
Moreover, every root r is in the W-orbit of some fundamental root. i.e for every r € AT exist w € W
st w=S8q, " Sa,, Where s,, are fundamental reflections, such that w(r) € X.
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3.4 The length function

Now from the above theorem we get that, for every w € W can be written as w = sq,, *** Sq,, , Where
it is possible to have a repetition of some roots a;, in the expression of w. The fundamentals roots s,
of an expression of some w € W called words.

Definition 3.4.1 (The length). Let A be a root system, with a given set At of positive roots and a
fundamental system %. We define, for every w € W, it’s length £(w) to be the minimal number of
factors needed to express the element w € W, as a product of fundamental reflections. An expression
W= S, ‘S, 18 called reduced if the number of the fundamental reflections appears in the expression
is the minimal possible, and thus {(w) = k.

Remark 3.4.1. o Let w € W we called that this element has a length L(w) = r, if we could
expressed as w = s1 - -+ Sy, but it can’t be written as a product of smaller number of fundamental
reflections. Also we made the admission that £(1) = 0.

o Ifs; €8S then £(s;) =1, where S = {s1,--- ,s,} the set of all fundamental reflections.

Proposition 3.4.1 (Properties of the length). (i) f(ww') < l(w) + ((w') and [((w) — L(w")] <
Lww), for each w,w € W.

(ii) L(w) = L(w™Y), for each w € W.

(i11) If w = s1--- 54 be a reduced expression of w with {(w) = g, then every subexpression of w is also
reduced.

Theorem 3.4.1. Let ¥ = {ay, -+ ,a,} C AT be a fundamental root system and S = {s1,---s,} the
set of all the fundamental reflections. Then for each w € W and s € S we have that {(sw) = £(w) + 1
or {(sw) = L(w) — 1. Similarly, ((ws) = L(w) + 1 or L(ws) = L(w) — 1.

Corollary 3.4.1. o [fl(sw) = L(w)+1 then there not exist a reduced expression of w that it begins
with s.

o Ifl(sw) = L(w) — 1 then there exist a reduced expression of w that it begins with s.
o Ifl(ws) = L(w)+ 1 then there not exist a reduced expression of w that it ends with s.

o Ifl(ws) =Ll(w) — 1 then there exist a reduced expression of w that it ends with s.

3.4.1 A Geometric Interpretation of length function

Definition 3.4.2. For each w € W, we define the subset of A to be the set
N(w)=ATNnw (A7)

e
N(w)={0€ AT :0=w""(a), whereac A"} ={# € AT :w(0) € A~}
Finally we define

Proposition 3.4.2. If s; € S, i.e s; be a fundamental reflection occurs from a fundamental root
a; € . Then for every w € W we have that:

o n(ws;) = n(w)+1 , if w(a;) >0
' n(w)—1 , if w(a;) <0

o n(sw) = 4 "W LY w(a;) >0
T =1 i et a) <0

It’s clear that its also true and the converse statements of the above.

Proposition 3.4.3. n(w) = n(w™1!) for every w € W.
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3.5 The Cancellation law and the Exchange Condition

Theorem 3.5.1 (Cancellation Law). Let w = $1--- Sk, where s; € S, not necessarily reduced. If
n(w) < k then there exist integers i, j, with 1 <i < j < j, such that w = s18g---§;---§j - -+ Sk.

Corollary 3.5.1. For each w € W we have that n(w) = {(w).
Proposition 3.5.1. (i) If w € W is such that w(AT) = AT, then w = 1.

(ii) There exists a unique element w, € W of maximal length. This element has the properties:

Uw,) > l(w), YweW

o l(w,) = |AY]
o w,(AT)=A"
o w,l=1

Theorem 3.5.2 (Exchange Condition). 1. If w = s1--- sk, not necessarily reduced and s € S, with
L(ws) < L(w). Then there exists a unique integer i, with 1 < i <k such that ws = s1--- ;- - s

2. Similarly we can formulate the exchange condition for the case that {(sw) < £(w). Then there
exists a unique integer i, with 1 <1i < k such that sw=81---8; - Sk

We can also make the following alternative forms of the exchange condition according to Matsumoto.

Proposition 3.5.2. 1. Suppose that w = s1 - - 8y, be a reduced expression of w, i.e {(w) =m, and
also £(s182 -+ Sm+y1) < m~+ 1 where each s; € S. Then there exist an integer j, with 1 < j < m,
such that

§182°+Sj = 82835541
2. We can go even further, and obtain two integers i,j, with 1 < i < j < m such that
8i418i42 " Sj—15; = 8;Si41 " Sj—1

Theorem 3.5.3 (Strong Exchange Condition). 1. If w = s1--- s, not necessarily reduced and s,
a reflection with a € A1, with {(ws,) < (w). Then there exists a unique integer i, with 1 <1i < k
such that ws, = 81+++8; -+ Sk,

2. Similarly we can formulate the exchange condition for the case that {(sw) < £(w). Then there
exists a unique integer i, with 1 < i < k such that sqw =81 -+-8; -+ Sk
3.6 Coxeter Systems and Coxeter groups

Definition 3.6.1 (Coxeter System). Let W be a finite group and S = {s1,--- , sn} be a set of involutory
generators of W. Then if the group W has a presentation

W =< s1," 8y : (si8;)" =1 for alli,j >
where the m;; are positive integers such that
my =1, my; > 1 ifi#j, and my; =my; for all i,j
the pair (W,S) called it a finite Coxeter system.

Definition 3.6.2 (Coxeter Group). A group W it will be called Cozxeter group if there exists a proper
Coxeter system, thus a pair (W,S) such that the group W has a presentation as described in the previous
definition. The cardinality of the set S called the rank of the Coxeter system, i.e rank(W,S) = |S| and
the defining relations in the presentation called Coxeter relations.

Remark 3.6.1. 1. The same group W could admits different Coxeter systems, so it might have
different Cozeter presentations.

2. Additionally to the (1) we could have even that the same group W not only admits different
Coxeter system, but also of different ranks.
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Theorem 3.6.1 (Matsumoto). Let W = W(A) be a finite reflection group associated to a S =
{81, ,8n} be the induced set of fundamental reflections, and (M, -) be a monoid with identity e. Let
f:8 — M be a well-defined map such that

FOFOf()f@) - = FO)f(s)f)f(s) - if stst--- = tsts---

Then there exist a unique extension of f, f : W — M such that for each w = sq---s, arbitrary
reduced expression of w, the following holds:

flw) = f(s1)-+ f(sq)

Theorem 3.6.2. Let W = W(A) be a finite reflection group associated with a root system A, and let
Y ={a1, - ,an} be fundamental root system, with ¥ C A. Also let S = {s1, -+, sn} be the induced
set of fundamental reflections of the set 3. Let the order of the elements s;s; be m;j = o(s;s;). i.e

(sis;)™ =1, foralli,j and m;; > 2, Vi # j, m;y =1
Then (W,S) is a Cozeter system and hence the group W = W(A) has a presentation
W=W(A)=<s€8:8%=1,(sis;,)"" =1>

So W is a Coxzeter group that occurs from the Coxeter system (W,S) and the above presentation for
the group W is unique in terms of isomorphism, i.e is independent of the choice of the fundamental
root system.

In other words, if we choose another fundamental root system Y, with® #* Y, and S, S be the set
of the fundamental reflections, respectively from the fundamental root systems X, Y. Then from these
two fundamental root systems arise the isomorphic presentations for the group W.

Our goal now is to prove the converse of the above theorem, i.e we would like to claim that every
finite Coxeter group can be identified with a reflection group that acting on a proper Euclidean space.
In particular, let W be a Coxeter group, with associated Coxeter system (W, .S), we shall show that
there exist (up to isomorphism) a finite reflection group, that is also effective, such that W is isomorphic
to this reflection group and define a action of W on proper Euclidean space V.

Theorem 3.6.3. Let (W,S) be a finite Coxeter system, with generators S = {s1, - ,s,}. Let V be
a finite dimensional R—vector space, with dimgV = n, and let {as, : i =1,--- ,n} be a basis of V.
Define a bilinear form B:V xV — R by

™ ..
Blas,;,as;) = —cos—, 1<1i,j <n,
mij

where m;; is the order of the element s;s; in W. For each s; € S, we define a linear transformation
ps; -V —=V by ps,(as;) = as, —2B(as,, as,)e;, 1 < j <n. Then we have the following statements,
that lead us to the claim we mentioned earlier :

1. First for the linear transformation ps,, for each s; € S we have that:

(a) ps,2 =1y, where s; € S.

(b) ps;(as;) = —as and ps,(v) = v, for every v € V such that (v, as,) =0, where s; € S and as,
be the corresponding basis element of V.

(¢c) We can decompose the space V into V =< as,,as; > ®(H,,, N Hasj) and the maps ps,, ps;
leaves the space < as,,as; > invariant

(d) The order of the ps,ps; is Myj.
(e) B(ps(v), ps(u)) = B(u,v), for every u,v € V.
(f) For each s; € S we have ps, € GL(V).
2. From the linear transformation we can define a map p : S — End(V), that can be extended to

a faithful representation p : W — GL(V'). Moreover, the representation p define an action of
the group W to V.
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3. The bilinear form B is symmetric, positive defined, and as an extension to (c), is invariant with
respect to py, for all w € W. Hence the space (V,B) is an Euclidean space, with inner product
the bilinear form B.

4. The group p(W) is a finite reflection group and the set {ps,, - ,ps, } can be identified with a
set of fundamental reflections in p(W). In particular, we can call, for each s; € S, the map ps,
a reflection of V according to the direction of the element as, into the hyperplane H,, := {ve
V : B(v,as,) = 0}.

Corollary 3.6.1. Following the notation from the above theorem we get that the groups W and p(W)
is isomorphic, and since the p(W) is a reflection group we conclude that every Cozeter group is corre-
sponding (up to isomorphism) to a reflection group.

Corollary 3.6.2. Now by the above two theorems we can established a 1-1 correspondence such that :

finite reflection groups onto finite Coxeter groups

{ Isomorphic classes of } 1-1 { Isomorphic classes of }

3.7 Classification of Coxeter Systems

Definition 3.7.1 (Coxeter Graph). Let (W,S) be a finite Cozeter system. We define as a Cozeter
graph associated to the (W,S), the graph that consists of vertices, edges, and positive integers as labels
to the edges, that satisfying the following properties:

e For the set of the vertices : We identify as vertices the elements of the set S.

o For the set of edges: We join two vertices s,s by an edge if and only if the elements s,s of §
doesn’t commute, i.e iff the order m,, # 2. In this case we label the edge by the positive integer
m,., where m . be the order of the ss/, with m,» > 3. Note that it is common to omit the label

in the case where the order m o = 3. Also, recall that s, s commutes if and only if m o =2, so
i this case the elements s, s doesn’t joined by an edge.

Theorem 3.7.1. There is 1-1 and onto correspondence from the class of finite Coxeter system to the
Cozxeter graphs, i.e :

{finite Coxeter systems} <1;t1> {Cozxeter graphs}
onto

Definition 3.7.2 (Reducible Coxeter system). A Cozeter system (W,S) is called reducible if we can
written the set S as a disjoint union of subsets of W, S1,S2 C W, such that (Wy,5S1) and (W2, S2) be
Cozeter systems and W = Wy x Wy. Differently, we say that the Cozeter system (W,S) is irreducible.

Proposition 3.7.1. The Coxeter system is irreducible if and only if the corresponding Coxeter graph
is connected.

Definition 3.7.3. Let (W,S) is a Cozeter system the irreducible representation p, as defined in the
Theorem 3.0.11 is called reflection representation of W.

Proposition 3.7.2. If (W,S) is an irreducible Cozeter system then the reflection representation is
irreducible.

Theorem 3.7.2. Let (W,S) be a finite Coxeter system that is reducible, and let T' be the induced
Cozxeter graph from this system. Also, let S1,--- , Sk be the subsets of S associated with the connected
components T'; of the Coxeter graph T' =T U ---UTg. Then for every i € {1,--- ,k} (W;,S;) is a
finite Coxeter system where W; =< S; > and the Cozeter group W decomposed into the direct product

W=W; x- - x Wy

So is clear that in order to classification the finite Coxeter systems it’s enough to classified the
induced Coxeter graphs that come from them, and moreover by combining the theorems the problem
of classification comes down to classification of the connected Coxeter graphs.

A list of the Coxeter graphs of systems associated with the irreducible:
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(i) Type An
Al AQ A3 ot An

(ii) Type I2(m), m >4, m # 6.

m

— o
(iii) Type By :
B B B
2 A 3 4 o e e l 4
—o o o oo o —o
) Type D; :
. e D,
—o
) 3 tinov E,
Eg E7

e

(vi) 1 Type F, :

F
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*———o—0—0

(vii) 2 Type H, :

H3 H4
) 5

* ——o—eo  o—0—0 0
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4 Groups with BN-pair

4.1 Definition and Consequences

Definition 4.1.1 (Groups with BN-pair). Let G be a finite group and B,N < G. We say these
subgroups form a BN-pair of the group G or that the group G is a group with BN-pair, if the following
axioms satisfied:

1. G=< B,N > (i.e the group G is generated by the elements of B, N)
2. Let H:= BNN and H<<N. So we can form the quotient group

N py—
BNN

Let m: N — W be the natural homomorphism.
3. W = N/u generated by a subset S = {s1,...,8,} of involution’s, i.e s;> =1 Vs; € S.

W= <s; |Si2:1>

4. For each w € W choose a coset representative wH € N/ then :
(i) $;Bw C BwB U Bs,;wB
(ii) $;BS; # B
Remark 4.1.1. o The group W = N/u will be called the Weyl group associated with the BN-pair.

e The generators S of W will be called distinguished generators of W, and the cardinality |S| is
called the rank of the BN-pair. (Both S and the rank are uniquely determined.)

o The subgroup B < G is called Borel subgroup of G.

Remark 4.1.2. 1. The relations (41),(4ii) in the definition, are equivalent to the relations via the
natural homomorphism m: N — W,

(a) n;Bn C BnB U Bn;nB

where n;,n € N s.t m(n;) =s; and w(n) = w. (i.e n;,n are representatives of the elements s;, w
respectively)

2. The relation (b) can be written in the equivalent forms
niBn;"*# B or n; 'Bn; # B

where n; € N s.t w(n;) = s;, for s; € S.

Proof. Indeed, s;2 =1in W, Vi = 1, ...,n, thus 7(n;2) = W(ni)2 =s5;2=1. Som(n;?) =1in W.
Hence, n;2 € H <= n;’H = H <= n;H = n;, 'H, so exists h € H : n; = n; " 'h. Therefore,

niBn; # B <= n;Bn; 'h # B
But, since H <N, n;"th = h/ni_l, for some h' € H. Thus
n;Bn; 'h # B <= n;Bh'n,”" #+ B
From H = BN N, follow that Bh' = B. So

n;Bh'n;~' #+ B <= n;Bn; ' #+ B
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Finally, from all the above
ni;Bn; # B <= n;Bn; ' # B

In the same way, we can show the equivalent

. Another equivalent form for the relation (b) is

niBn; # B <= n;Bn; ¢ B
Proof. Indeed, (<) is obvious.

(=) Let n;Bn; # B and let n;Bn; C B. Then n;Bn;~! C B which is equivalent to B C
n; 'Bn; = n;Bn;. Thus, B = n;Bn,;, which is false due to assumption n;Bn; # B O
. The relation (a) has the equivalent form :

n;Bn C Bn,nBU BnB <— Bn;nB - BnB C Bn;,nBU BnB < BnB-Bn;B C Bnn;BU BnB

Proof. Let C(w) := BwB the double cosets BwB.
(a) C(1)=B-1-B=B
(b) C(ww') C C(w) - C(w'), for all w,w” € W (i.e Buw B C BwB - Bw B.)

Indeed, if z € C(ww/) = 3bb €B : z=>bwwb. Thus,
z=bwb bw'b € BuB-Bw B = C(w)C(w)
(c) Clw™t) =C(w)~L. (i.e Bu='B = (BwB)™!)
Indeed, if z € Bw™'B = 2 = bjw by = (by 'wb, " ")~! € (BwB)~".
Conversely, if + € (BwB)™' = z = (bywby)™" = by 'w= ;"' € Bw 'B. Thus,
Clw™) =Cw) ™.
Now, by multiplying left and right with B the relation
n;Bn C Bn;nB U BnB
we have equivalent that
Bn;BnB C B(Bn;nBUBnB)B C B(Bn;nB)BUB(BnB)B = Bn;nBUBnB = C(n;n)JC(n)

So,
C(n;)-C(n) = Bn;B- BnB = Bn;BnB C C(n;n)UC(n)

Now, by taking inverses in the same relation as previous we have :
(niBn)™* C (BnynBUBnB) ' <= n"'Bn;/' C Bn"'n;,/'BUBn'B
but n;2 € H=BNN = n;? € B= Bn,;, ' = Bn; and n;B =n; ' B.
Therefore,
n'Bn; C Bn 'n;BUBn 'B
The last relation is true for every n € N, so by replacing n € N by n™
nBn; C Bnn;B U BnB

1 we obtain :

Now, again by multiplying left and right the above relation with B we have :
BnB - Bn;B C (Bnn;B) U (BnB)

Finally, we have the equivalent forms for the relation n;Bn C Bn;nB U BnB
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i. Bn;B-BnB C Bn;nBU BnB
ii. nBn; C Bnn;B U BnB
ili. BnB - Bn;B C Bnn;B U BnB

5. For every s; € S applies that s; # 1

Proof. If s; = 1, for some s; € S then 3n; € N : w(n;) =s;, =1 = n; € H=BNN. Thus,
n;Bn; = B which is a contradiction due to n;Bn; # B. O

6. Lastly, also since W has a set of involutory generators S, we can define the length {(w) of elements
w € W, as well as the concept of reduced expression for elements of W.

4.2 Bruhat Decomposition

Theorem 4.2.1 (Bruhat Decomposition). Let G be a finite group with a BN-pair. Then

G = BNB = |_| BnB
neN

In particular, the map w — BwB gives a bijection W <— B\G/B

Proof. Since G is a group with BN-pair we have that G = < B, N >. So G is the minimum group
that containing both the subgroups B and N. Furthermore, B, N C BN B. Thus we just have to show
that BNB is subgroup of G, i.e we show that BNB is closed under multiplication and inversion.

e (BNB)™' = B"IN~!B~! = BNB, i.e is closed under inversions.

e BNB-BNB = BNBNB (since B < (G). We have to show that, BNB- BNB C BNB or
equivalent that BNBNB C BNB.

Indeed, let nBn' C NBN, with n,n/ € N. Now, consider the reduced expression s;,...s;, =
w = 7(n), with s;, € S. (needn’t consider powers since s;,2 = 1). Choose n;,...n;, € N with
w(ni,) = si, s.t ng..n;, = n. Notice that n;, Bn' C Bn;n'BUBn'B C BNB (from axiom
(41)). So,

n;, Bn C BNB

Then, again from axiom (4i) we have that

ng,_,ni,Bn Cn;,  BNBC BNB-B=BNB

Now, continuing inductively, we take that
n;,..n;, Bn C BNB

So /
nBn C BNB

and therefore NBN C BNB.

Thus,
BNB-BNBC BNBNBCB-BNB-BC BNB

(i.e we have show that BNB is closed under multiplication.)

Therefore, from all the above, we take that BNB is subgroup of G and that completes the
proof.
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Corollary 4.2.1. Every double coset of B in G contains an element of N. Hence any double coset can
be written as BnB forn € N.

Proof. For every g € G by the Bruhat Decomposition Theorem we have that
BgB = Bbnb B = BnB
forsomeb,b,eBandneN. O

Theorem 4.2.2. Let n,n' € N. Then,

’

BnB = Bn'B <= n(n) =n(n)

Proof. If 7(n) = 7(n') = nH = nH = n' € nH. So, n' = nh, for some h € H.Then
Bn'B = BnhB = BnB (since h € H=BNN C B).

Conversely, suppose BnB = Bn' B. Let 7(n) = w and m(n') = w'. We want to show that w = w’.
Now, every element of W is a product of elements of S. Let ¢(w) be the shortest length of any such
expression. W.l.o.g suppose that ¢(w) < ¢(w ) and we apply induction on length £(w):

e Suppose {(w) = 0. Then w = 1. Son € H = BN N and thus BnB = B. Moreover, from
hypothesis Bn B = BnB. Hence, Bh B=B=n ¢ BONN=H=7(n)=1.1cw =1.

e Suppose now that ¢(w) > 0. Then w = s;w  where ¢(w") = ¢(w) — 1. Choose, n; € N and
n' € Nstn(n)=s; and 7(n”) =w". Then,

" " from the 1st part of thm

m(nin ) =s;w =w=mn(n) Bnm”B = BnB

So Bn'B = BnB = Bnin//B, and thus
nm”B C Bn'B = n'B - ni_an/B
But n;2 € B = n; !B = n;B, since m(n;) = s; and s;2 = 1, so
n' B - niBn'B
but by axiom (4i) n;Bn’ € Bn;n' BU Bn' B, so
n B C (Bn;n BUBn' B)B = Bn;n' BU Bn'B

Hence, . ) /
Bn B = Bnin Bor Bn B
But by the property of double cosets it must be equal to one or the other or its intersection will
be = o
Recall /(w ) = ¢(w) — 1 so we can apply induction and thus we have that

1" /

7(n") = w(nin) or w(n)

’ /

—w = S;w Oor w
But, ((w”) < f(w) < €(w'), so w” #w'.
So we must have

Then,

since s;2 =1

’

Thus, 7(n) = w(n ).
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Corollary 4.2.2. The number of double cosets of B in G is equal to |W|. In particular, when G =
GL,(k), B = triangular subgroup , the number of double cosets is n!.

Proposition 4.2.1. Let w € W, s; € S and w(n;) = s;, m(n) = w, where n;,n € N. Then
1. If ¢(s;jw) > (w) then m;Bn C Bn;nB
2. If U(s;w) < l(w) then n;BnN BnB # &

Remark 4.2.1. Note that they must always intersect since n;n € n;Bn N Bn;nB.

Proof. For (1):

We apply induction on #(w)

o If /(w) =0: then w =1 and so n € BN N. Hence, n;Bn = n;B and Bn;nB = Bn;B, but
n; B C Bn;B so n;Bn C Bn;,nB.

e Now suppose £(w) > 0. Then, exists w € W such that w = w/sj, with s; € S and l(w') =
L(w) — 1.

Suppose the result is false for contradiction, i.e n;Bn ¢ Bn;nB. Then, by the axiom (4i)
n;Bn C Bn,nB U BnB, we take that

n;BnN BnB # & (%)
Choose n € N with 7(n') =w" and n; € N : m(n;) = s;. Then, n = n'n;, so

niBn/nj N BnB # &

from (%)
but, m(n'n;) = w = m(n) theorem, Bn'n;B = BnB.
So,

niBn/nj N BnB # & = n:Bn' N BnBn;™' # @

Now, since njg € B we have that

n;Bn' N BnBn; # @
We have E(siw/) > f(w') (because otherwise we would have £(s;w’) < £(w') = £(w) — 1, but
from s,w = s;w s; = £(s;w) < (s;w ) +1 < L(w) —1+ 1 = L(w), which is contradiction due to
hypothesis £(s;w) > {(w).)
So, {(s;w') > £(w') and from the inductive hypothesis we have that

niBn’ C Bnm’B

Now, since n;Bn’ N BnBn; # & we obtain that

Bn;n' BN BnBn; # & (1)
But from axiom (4i) nBn; C Bnn;B U BnB = we get

BnBn; C BnnjBU BnB (2)

From the previous relations,(1) and (2), we have that there exists a common element in both
Bn;n B, Bnn;B U BnbB, so as double coset we take that

Bnin/B = Bnn;B or BnB
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Hence by Theorem :> siw = ws; or w.
If slw = ws; = 8 w S$;=w = s;w=w=5; =1, contradlctmg the construction of S.
So, siw =w = w = s;w, since ;2 = 1. Thus, from ¢(w’) < ¢(w) we obtain that

l(s;w) < L(w)
contradicting our hypothesis.

So, we conclude that if
l(s;w) > 4(w) = n;Bn C Bny,nB

For (2) :

We have that, n;Bn; C Bn;?B U Bn;B by axiom (4i) for n = n;.
Also, since n;2 € B we have that Bn;2B U Bn,B = B U Bn;B.
On the other side by axiom (4ii) n;Bn; = n;Bn; "' # B.

So, from all the above, we obtain that
n;Bn; N Bn;B # &
= n;BNBn;Bn;, ' # @
= n;,BN Bn;Bn; # &
= n;Bn N Bn;Bn;n # &
Now, £(s;s,w) = £(w) > £(s;w) so s;w satisfies the conditions of (1), of this proposition, and hence
n;Bn;n C Bn;>nB = BnB

So,
Bn;Bn;n C BnB

Thus,
n;Bn N BnB # &

i.e we have shown that if
U(s;w) < l(w) = n;BnN BnB # &

Corollary 4.2.3. {(s;w) # £(w). Specifically, ¢(s;w) = £(w) £ 1
Proposition 4.2.2. Suppose w € W, s;,5; € S satisfy

o ((siw) = L(w) +1

o l(ws;) =L(w) + 1,

o Ufsws;) = ((w).

Then

s;w = ws; and S0 S;WS; = W
Proof. Let w' = ws; and n,n/,nhnj € N with n(n') = w',7(n) = w,w(n;) = si, m(nj) = s;.
Since

l(s;w) =L(w) + 1 brov 221, n.Bn C BnnB

and from ) it
Usiw ) = 0(w') — 1 ZL=== . Bn N Bn'B# @
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So ) )
n;Bn n; N Bn Bn; # &

and hence we get

n;Bn N Bn/an # O (4)
From (3), (4) we obtain that

Bn;nB N Bn'Bn; # @

Now, from axiom (4i)
n/an - Bn/njB N Bn' B

So by the property of double cosets,
Bn,nB = Bn/njB or Bn B

since it intersects and their union is non-trivially and they’re all double cosets.

So from Theorem above,

’ ’

S{W = W S; OT W

. / . . . . .
But if s,w = w s; = s;w = ws;s; = ws;*> = w then s; = 1, which is contradiction by the construction
of S.

!
S0 8w =W = 5w = WS; = S;WS; = W O

4.3 The Fundamental Theorem

Theorem 4.3.1. For every finite group G with BN-pair, with Weyl group W = % and the S be
the set of distinguished generators of W, we have that W is a Coxeter group and S is a set of Coxeter
generators. In particular (W,S) is Cozeter System.

Proof. Let s;,s; € S with s; # s;. Let m;; be the order of s;s; if this is finite.
We have (s;5;)™ = 1. We need to show that it’s a set of defining relations.

So we must prove that, if G* is any group generated by elements g; in 1-1 correspondence with elements
s; € Ss.t g2 =1, (9ig;)™7 =1, then there exist a homomorphism 6 : W — G* s.t 0(s;) = g;.

This will show that W is the universal group with these generators and relations.

e STEP 1 : We first show that if w € W has two reduced expressions
W = Sy ...84, = Sj5,---Sj,
then
gil"'gik = gjlgjk
We use induction on £(w).

— If {(w) = 0 then w = 1 so we are ok.

— Suppose this is true for every w with ¢(w) < k, but that exist w € W with ¢(w) = k for
which it fails. Then

W = 8§j,...85, = Sij...Sjk+1
but
9j1---9j 7é Gjok-Gjrt1

Note that sj,...s;, is reduced since s, ...s;, is reduced.
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Claim 1. We shall show that sj,...s;5,5;,., 5 also reduced.

. _ . o
Proof. Indeed, suppose thit isn’t. Then sj,...55,55,., = Saq;---8a,_, reduced. So, s;,...55, =
Say-+Say_2Sjey, SINCE S5, 7 =1

Both of these expressions are reduced of length k — 1 (since sj,...s;
the same length and they’re equal)

. is reduced, they're

So by our choice of k (minimality) we must have that

9jo---95, = YGai---Gar_295k+1 (*)
Also

Sjok - Sikte = Sj1Sik Sk = Sj1Sa1---Sap_o

from the fact that sj,...5), = Sa;..-Sa,_,Sj,,, and s;, ., 2 =1
Both sides are reduced of length k& — 1, so again by minimality of k
Gjor - Fjure = GjrGar - Jap_o  (%%)
So eliminating the g, s from the relations (x), (%) we get
9jz-- 951 9ir+1 = i1 9d2n -2 < Jj1---9jx = jan -+ Ijus1

which is contradiction.

So, we have shown that sj,...sj, s, is reduced.

Claim 2. We shall show that sj,...5;, = 5j,...55, ., but gj,...05, F Gjo---Gjrs1-
Proof. Now, we have that
5j,...8j, is reduced of length k-1
84, 8j,...55, is reduced of length k
8jy -8, Sjps, 18 reduced of length k
8418585 Sjy, 15 DOt reduced £(sj,...55,,,) =k —1

(since 8j,...55, = Sjpp-+8jii1 = SjrSjusr = Sjop-+Sjpra)
So by previous proposition we get

818y = SjperSjsy (KK K)
We shall show that
9j1+-Yjr 7& Gjz+-Girt1
Suppose that is possible g, ...gj, = Gjo-+-Gjpss -

) .. e . ) 2 _
NOW, )y, - 8jy 0 = Sj1 -5 Sjurs = Sjo---5j, DY (xxx) and 55, % =1
Hence, gj,, ---9j,10 = 9j»---95, by induction.

So
Gj1---95% = 9jo--Gjrr1 = Gizk - Djrt29dk+1

which is contradiction, by assumption and above.

Thus
i1+ = Gjor - Girt1
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So

8jySjp = Sjgee-Sjpyy DU GjiGiy F GineGirin

Hence, having started with
Sj1+Sik = Sjok-Sirt1 but 9j1+--Gj 7é Gjok - Gjrt1
we have derived that
SjySjp = Sjgee-Sjpyy DU Gj1Gi F Gine-Girin
We repeat this process, considering
Sj2-~-5jk+1 = Sjl "'Sjk

to get
Sjy-8jrir = Sj3-Sjus15in DU GjoerGii s F Gz Gjrsr Gin
Repeat again, also swapping Lh.s and r.h.s again, gives
SjaSirs15in = SjaSirt155kSin1 but 955 --9jk+195k 7é Gja--9iret195k 9kt
By continuing in this way we end up with

SikSik4159k Sikt1 - = Sint1 ik Sikt1Sin

but
95195141955 Dirot1 -+ # Ijr4195x Gjr1 9 -+

Hence, since the Sa s have order 2 this says that
k k
(Sjksijrl) =1 and (gjkgijrl) 7é 1
So k is a multiple of the order of s, s;, .., i.e of my, 5, .

Thus, (gj,9j...)" = 1, which is contradiction by our construction of G*.

So, we have shown that any two reduced expressions for w € W give equal expressions
in G*.

e STEP 2 : Know we define the map 6 : W — G* in the following way:

Take a reduced expression for w € W. Define 6(w) to be the corresponding product in G*.
Then, from the Step 1 we obtain that the map 6 is well-defined.

Now, we have to show that # is a homomorphism.

Claim 3. In this direction, it’s sufficient to show that
O(s;w) = 0(s;)0(w)

Vs; € S, w e W, since all the elements of W are products of elements of S.
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Proof. If {(s;w) = £(w) + 1 then the result is obvious.

Now suppose that ¢(s;w) = ¢(w) — 1. Then put w = s;w and so we get
w = s;w

with (s;w’) = £(w) + 1, since ;2 = 1

So ) )
O(siw ) = 6(s;)0(w )
— ()0

’

But 0(s;) = g; and has order 2 so 6(s;)0(w) = 6(w )

= 0(w)

ie
O(s;w) = 0(s;)0(w)
in this case also. O

So we have shown that the map 0 as defined above is homomorphism.

It’s also clear from the definitions of the homomorphism 6 that is 1-1 and onto, is isomor-
phism.

This shows that W is isomorphic to the abstract group with generators and relations as given.

So W is a Coxeter group.
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4.4 An Example of a BN-pair Group

Let K be any field and G = GL,,(K) be the group of all invertible n X n matrices with entries over K.
(Note that for an arbitrary field K the group G may be infinite)

Let:

B = group of upper triangular matrices = {(a;;) € G : a;; =0, if i < j}
N = group of monomial matrices in G = {(a;;) : exactly one non-zero element for every row and column}
H = BN N = group of diagonal matrices in G

Theorem 4.4.1. The subgroups B and N defined above form a BN-pair in G = GL,(K) of rank n,
whose Weyl group W is isomorphic to the symmetric group S, .

Proof.
Claim 4. H = BN N = group of diagonal matrices in G

Proof. Let h € H. Then h = (h;j)nxn is an n x n matrix such that is upper triangular and simulta-
neously every row and every column has exactly one non-zero element. Thus,

hii#Oandhij:O Vl<j

Now
hij =0 Vi>j

since if exists ¢ > j s.t h;; # 0 then either the j—column or the i—row would have a second non-zero
element beside the element h;;, which is contradiction due to the definition of matrices in the subgroup
N and h € N.

So
H = BN N = group of diagonal matrices in G

O

e Let S, be the symmetric group of degree n. We will construct a epimomorphism 7 : N — S,

1. First we defined the homomorphism 7 : N — S, in the following way:
Let A € N a monomial matrix

e.g A will be of the form

O O X
o O O
O X O
*x O O

0~ 0 -+ 0
i.e a n x n matrix with exactly one non-zero element for every row and column.

Now suppose the non-zero entry in +—row appear in j;—column. i.e

0 - . ) 0
0
ji — column

Then we construct the permutation o4 in the following way :
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We map the index of every row to the corresponding index of the column that has the
non-zero element.

Thus we have:

1 = J1

2 = jz
oA = .

n +— In

i.e : we have the permutation

or = ( 1 2 ... n)
4 ,jl j2 e jn
Claim 5. Indeed, 04 € S,

Proof. — o 4 is 1-1:

If i # i (i.e we have choose two different rows from the matrix A) then we obtain
that in the j; and j, —column we have a non-zero element of the matrix. Thus by the
property of the monomial matrices we have that it isn’t possible to have two non-zero
elements in the same column. So j; # j. Hence o4 is 1-1.

— _o is onto:
Let k € [n]. We will show that exists ¢ € [n]: ca(i) =k

From the definition of the matrix A € N we obtain that exits a row s.t in the k—column
has a non-zero element. Let k;—row be the row with the non-zero element. Then from
the definition of the o4 we have that:

O'A(ki) = ]C

Thus o4 is onto.
Sooy €8, ]

Now, we are ready to define the map w: N — 5,,:

We map the matrix A to the permutation o4 by

1 2 o n
@ )0 ”A_<j1 jo jn>65”

i — column
. The map 7: N — S, is well defined :

Suppose A = A" € N. From the way they have been defined, the same non-zero elements
must correspond to the same rows for the same columns. So

oA =0y

since for every i € [n] we will have that the same column j; will correspond to the i—row
and then

oa(i) = ji = o4 (1)
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Let the unity monomial matrix Iy € N = diag(1,---,1). Then

non-zero element of 1st-row ~» non-zero element of 1st-column

non-zero element of nth-row ~» non-zero element of nth-column

So
1 92 ... .
m(In) =on = (1 9 .. Z) =idn

i.e the map 7 is sending the unity matrix of the subgroup N to the identity permutation of
the S,,.

. The map 7 is indeed homomorphism and moreover epimorphism :
In this direction, we will present an equivalent way of defining the above map =:

Notice that the subgroup N permutes the lines Ke;, i.e the subspaces < e; >, where
{e1,---en} be the canonical basis of the vector space K™, and so we obtain an act of
N on < e; >. Therefore, from this action it defined an epimorphism p : N — S, such
that maps every i-row of a matrix A € N into the permutation 0,4, where the o4 is such
that i — j;, with j;-column be the column of matrix A with the non-zero element. Now
it’s obvious from the way the maps 7 and p have been defined, that are the same map, and
hence we get that the map 7 is an epimorphism.

. Kerm=H
Let A € Kerm.
Then

where j;—column is the column of the matrix A that has the non-zero element for i—row.

So
ji = O’A(i) = idsn(i) =1

i.e the matrix A is diagonal.

Obviously, vice versa if A is a diagonal matrix then
7T(A) = 04A = Z'dsn

Hence we obtain that
Kerm = H = diagonal matrices of G

. Now from the 1st Isomorphism Theorem for groups we obtain that

N
Kerm

imm =S,
Since Kerm = H by (4) we have that H < N and we conclude that
Ng=W =S85,

So
WS,

31



e Now
pair.

1.

we will show that the group G satisfies the axioms in the definition of the group with BN-

For Axiom 1:

Consider left multiplication by elements of B

a c\(r y\ _ far+cz ay+ct
0 b)\z t) bz bt

So left multiplication by an element of B transforms any row into a multiple of itself and a
linear combination of later rows.

On the other hand consider right multiplication by elements of B

x y\(a c\ _[(ax cx+by

z t)\0O b) \az cz+0bt
So right multiplication by an element of B transforms each column into a multiple of itself
and a linear combination of earlier columns.

Hence the left and right multiplication by elements of B is corresponding to row and column
transformations.

Thus any element of G can be transformed by left multiplication by b € B into a ma-
trix s.t the first non-zero positions in the rows 1,..,n are in different columns. So any
matrix of the G after left multiplication by an element of B it will be of the form :

*
0

0O --- 0 «x
0

Now by right multiplication by b’ € B we can make the above matrix monomial. So fi-
nally it will be of the form :

0 0 O
0 0 %
* 0 0
0 % 0

Thus for every g € G and appropriate choose of elements in B, we obtain that exists
b,b € Bs.tbgb € N,iebgb =mn, for somen € N. So

g=0b""n(b)"' € BNB (Bruhat Decomposition)
So
G=<B,N >
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i.e we have show that the group G satisfy the axiom 1.

. For Axiom 3 :

W = §,, we have that
W=<s : 82=1>
where s; = (i i+ 1), for i € [n].

So there exists a set of generators S = {sy, -+ ,8,_1} for W with s;2 = 1 (s; is trans-
portation’s)

Thus S clearly satisfy the axiom 3.
. For Axiom (4i) and (4ii):

Let n; € N, where n; be a monomial matrix that has unit in the diagonal except the
(i,i) and (i+1,i4+1) positions where we have zero’s, and zero anywhere else except the posi-
tions (i,i+1) and (i+1,i) where we have unity. Also let 7(n;) = s;

Let U be the subgroup of upper-triangular matrices with unit in the diagonal i.e

U ={(ai) : aj; =0ifi > j, a;; =1}

and U; < U be the subgroup of the upper-triangular matrices with unit in the diagonal and
0 in the ¢ + 1—position above the diagonal i.e

U, = {(ai]‘) eU : a;41 =0}

Let e;; be the elementary matrix which has in every position zero except the (¢, j)-position
that has unit. For i # j define X;; = {I + Xe;; : VA € k} so X;; it will be consists of
matrices that have

— zero under the diagonal

— unit in the diagonal

— A in the (i, j)—position
We will write X; = X; ;41 , X_; = X;41, these are subgroups of G.

Now, we have that U <« B and so if b € B,u € U = b~ 'ub € B. It’s obvious from
the way multiplication works between matrices that B = UH = HU since

1 * e % * * e %

0 1 - * 0 % o %
diag(x,--+ %)= 1. . ) .| eB

0 - 0 1 0 - 0 «

Similarly if we multiple by an element of H an element of U we obtain a matrix in B. Also
obviously a upper-triangular matrix in B can decomposed it, as a product of a matrix in U
and a matrix in H or vice versa.

Furthermore U N H = {I} since a matrix in U N H is simultaneously a diagonal matrix
(because is in H) with unit in the diagonal (because is in U).

Also clearly U = X;U; = U; X; and U; N X, = {1}

Now by simple calculations we obtain that n; X;n; ~' = X_;, e.g in the case of 2 x 2:
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(o) )G o)=G )

Thus if n;Bn;~! = B we would have that

Also niUini_l =U;

X ;= TliXiniil - niBnifl CB

which is contradiction since X _; is lower-triangular and B is the subgroup of upper-triangular
matrices of G, hence must X_; ¢ B.

So
nianl # B
thus the axiom (4ii) holds.
Now for axiom (4i):
— —17: X n; ,.n,*lz o
n;Bn B=HU n;HUn = n;Hn; " 'n;Un HaN_ Hn;Un =V Hn;Uin; " 'n; X;n mlini ZUs

HU;CB

Consider m(n) = o and w(n;) =0, = (ii+1) € S,

Then
T X = Xo(i)o()

SO
-1
n;X;n =ninn” " X;n = ninXe (i) (it1)

We have two cases to consider:

(a) If o(i) <o(i+1):

Then X;(iyo(i41) S B since X, (i)o(i+1) i upper-triangular. So
n; Xqin = ninX, (o (i+1) S ninB

and hence
n;Bn C Bn; X;n C Bn;nB

so the axiom 4ii) holds for this case.

(b) If o(i) > o(i+ 1) :

’

Let n° = nm and n(n')o. So o = 7w(n') = w(n))m(n) = s;o since m(n;) = s;.
Thus ¢ (i) <o (i+1) since s; = (1 i+ 1)

Then
’
niXin = niXini lnin = X_i’I’L
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(o \

S

\ Y

for short, where a occurs in the (i,i) position.

We notice that multiplication of the large matrices of this form corresponds to multi-
plying the ones as if they were normal 2 x 2 matrices and vice versa.

1 0 1 AL Al 0 0 1 1 At
If/\;«éOthen<>\ 1>=<0 1)( 0 A)(l 0)<0 1>
So

Now when A = 0 we get the unit matrix I, € B

Thus in general we obtain that
X_,CBUBn;B= X_n CBn UBn;Bn
because o (i) < o (i + 1) so by the previous case we have that
niBn/ C Bnm/B

and hence ) ) ) ) /
X_n C€Bn UB-BnnB=Bn UBnn B

Also n; X;n = X_;n’ from above so we get that
n; X;n C Bn' U Bnm,B = Bn;nU Bn;n;nB

Now n;2 € B so
n; X;n € Bn;nU BnB

So
n;Bn C Bn;X;n C B(Bn;nU BnB) C Bn;nBU BnB

Hence
n;Bn C Bn;nB U BnB

and so the axiom (4ii) holds.
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5 The Hecke Algebra

5.1 Double Cosets

Definition 5.1.1. Let G be a group, and let H and K be subgroups. We define on group G the equiv-
alence relation :

Forz,yeG:

r~y< if dheH, ke K: y=hzk

For each x € G the equivalence classes of x under this equivalence relation is called the (H, K)— double

coset of x and is the set
HaK ={hak : he Hke€ K}

The set of all (H, K)-double cosets is denoted H\G/K.

If K = H the (H,H)—double coset of G due to subgroup H, is the sets of the equivalence classes
HxH, for each x € G and the x is called representative os the double coset.

The set of all (H, H)—double cosets is denoted by H\G/H.
[Double Cosets]

Remark 5.1.1. FEquivalently the (H, K)-double cosets of G may be described as orbits for the product
group H x K acting on G by

(h,k) -z =hxh™, forhec Hke K,z €G

Proposition 5.1.1. Some Properties of Double Cosets :

1. Two double cosets HrK and HyK are either disjoint or identical.
2. G is the disjoint union of its double cosets. i.e G =| | .o HxK

3. There is a 1 —1 correspondence between the two double coset spaces H\G/K and K\G/H given
by identifying Hx K with Kz~ H.

4. A double coset HxK is a union of right cosets of H and left cosets of K.

Proposition 5.1.2. Let HxH a double coset for x € G.

Then the HxH double coset is written as a disjoint union of right cosets. Specifically,

HxH = |_|H:vsz

i

where {s;} is a complete system of right representatives of the subgroup K := HNx~'Hx in H, (i.e
H:KleIK32U---)

Proposition 5.1.3. It follows that the number of right cosets of H contained in HxK is the index
[K : KNz 'Hz] and the number of left cosets of K contained in HxK is the index [H : HNxKxz™1].
Therefore

|HzK|=[H: HNnxKz '||K| = |H|[K : KNz 'Ha]

If |G| < oo then
HIK||HIK]
|[HNnaKz~1| |KNz 'Hzx|

|HeK| =
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Particularly, if H = K and G is finite then

|HeH|=|H|-[H: HNa 'Ha] = |H> - |HNz 'Hzx|

5.2 The Structure of Hecke Algebra

We now assume that G is a finite group, with BN-pair (e.g G = GL,,(Fy), Fy is a field with g elements,
where ¢ = p®, with p be a prime)

Let CG be the group algebra of G. Thus CG is the set of elements of the form Zg Agg, where
A € C, g; € G. We recall also that, sometimes is convenient to identify the group algebra CG with
the set of C—functions on G. The element Zg Agg € CG corresponding to the function f: G — C
defined by f(g) =Xy, g€ G, Ay €C.

Now the group algebra CG is a vector space over C and also CG is a ring, because the elements of
G admit multiplication g;g; € G, extended linearly.

A C—algebra is a vector space over C which is also a ring.

We can regard CG as a left G-module since for every g € G, v € CG we get gv € CG and
(99 )v =g(g v), for g,g € G, v e CG.

Let e = ﬁZbeBb € CB is a idempotent in CB, since > = e (e = ﬁZb,b’GB b =
ﬁ\B\ > bep b = e). Also note that for every b € B is true that be = e. Thus the space Ce is a

CB—module, and in particular is a 1-dimensional left CB-module, that giving the trivial representa-
tion of B (since Ce is B-invariant). i.e defined the representation 15 : B — GL1(C), with b — 1.

Now we could make the following definition:

Let V = CGe < CG be the left CG-module generated by e. We will call V the induced module of Ce.
So Ce gives the trivial representation 15 of B and V = CGe gives the induced representation 1¢ g of
G.

5.2.1 The Definition of Hecke algebra H

Proposition 5.2.1. dim V = [G : B]

Proof. Let g1, ..., gr be a set of left coset representatives of B in G. So
G=g1BUgBU..Ug.B

We notice that,

re = Z Agge = Z Ag(ge)

geG geG
forr=73,cqcAgg € CG

So the elements ge, with ¢ € G will spanned the CG-module V.i.e
V=<gelgeG>
as a C-vector space.

Now, since g is in some left coset of B in G we have that g = g;b where b € B for some i € [r].
Then

ge = gibe = gie
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and so the elements g;e spanned V. Thus
V=< gie,- - ,gre >

We will show that the elements g;e are linearly independent.

Suppose

Z)\igie =0= ﬁaZ)\l(Z‘qzb) =0

beB

But ), 9:b is the sum of all the elements of cosets g;B and two such different sums are disjoint
between them i.e the addends are in different cosets. Hence, as i € [r] we get the linear combination of
all the elements of the group G, which are linear independent since they are form a basis for the CG
as C-vector space. So A\; = 0 and thus the set {g1e, ..., gre} are linearly independent. Furthermore, the
set {gie : i € [r]} form a basis for the C-vector space V. Thus

dimcV =[G : B
0

Remark 5.2.1. The basis {g1e,...,gre} we construct in previous proposition, for the C-vector space
V, is independent of the choice of the representatives of the left cosets.

Now a C-linear map 6 : V — V is called a CG—endomorphism if
0(gv) = g(Ov), Vge Gandv eV

Let 601,02 be CG-endomorphisms, then so are 01 + 63, 0162 (defined by (61602)v = 61(62v)), and Ay,
for A € C. Thus the CG-endomorphisms form the structure of an C—algebra. i.e The space EndcgV
is an C—algebra.

We are ready to define the Hecke algebra of a finite group G with BN-pair.

Definition 5.2.1 (Hecke Algebra). Let G be a finite group with BN-pair and e = ﬁZbEBB be

a idempotent element of CB such that the left ideal CGe affords the induced representation 1§, We
define as Hecke algebra the space of the CG-endomorphisms of the CG-module V generated by e, where
V = CGe. i.e the Hecke algebra of G with respect to B is the space EndcgV and we will denote by
H=H(G,B,1p).

Now let A = eCGe = {ere : r € CG} < CG. A is a subalgebra of CG since it’s closed under
addition, multiplication (e(rie - ery)e € eCGe) and scalar multiplication.

Proposition 5.2.2. dimA = |B\G/B|

Proof. Let x1,x2,...,xs be a set of double coset representatives of B in G.

G=| |Bx:B

Now eCGe is spanned by the elements ege, with g € G. But g = ba;b, for b,b € B. So
ege = ebzib/e = ex;e
since eb=b'e = e.
So A = eCGe is spanned by the elements ex;e, i.e
eCGe =< exe | i € [s] >

We show that these elements are linearly independent. Suppose

Z)\ie:vie =0= ﬁ Z Z Z)\ibxib/ =0

beBp ecB i
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Now X

brib =brb < 2,7 b bx; =bb  =b € (BNa; 'Bx;)b

Conversely for each b € (BN x; ' Bx;)b there’s a unique b s.t

_ -1
z; b e =bb
So g = ba;b occurs |BNx;~ ! Br;|—times in the sum. The coefficients of this element in the given sum
is
1

|B|?
which are equal to zero by the same argument as in the previous proposition. So A; = 0 and thus the
{ex1e,...,exse} are a basis for A. Hence

|B n xi_lBlﬂ/\i

dimA = |B\G/B|
O

Remark 5.2.2. The basis we construct in previous proposition, for the subalegra A of CG, is inde-
pendent of the choice of the representatives of the double cosets.

5.2.2 An Isomorphic expression for the Hecke algebra

Proposition 5.2.3. 1. IfveV,aec Athenva eV
2. The map pg : V — V s.t v va lies in H = EndcgV
3. The map (a — pg) is a bijective map A — H
4. The bijection a — p, is an anti-isomorphism. (i.e pap = pupPa)
Proof. 1. V.=CGe, A =eCGe so VA =CGe - eCGe = (CGeeCGe) CCGe =V

2. pg is clearly linear. Now if g € G then p,(gv) = (gv)a = g(va) = gpa(v)

(acting by g on left and a on right. Hence actions commuting.)

3. Suppose p,(v) = pp(v) for every v € V. So

but ea = a, eb =1 since a,b € eCGe.

So a=b.

Thus the map a — p, is injective.

Now suppose 8 € H, 0 : V — V. Let 0(e) = a € CGe

We have that
a € eCGe

since ef(e) = 6(e-e) =0(e) = ea = a. So a = ea € eCGe
We show that 6 = p,. Let v € CGe, so ve = v. Thus

0(v) = O(ve) = vl(e) = va
Hence 0 = p,.

4. pap(v) = v(ab) = (va)b = py(va) = pppa(v). SO pab = PoPa-
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Corollary 5.2.1. dimH = |B\G/B| = |W|

Proof. Consider the map i : G — G with i(g) = g~ then

i(9192) = (9192) " = g2 ' Tt = i(g2)ilgn)

So i is an anti-automorphism of G.
Extend linear this map to CG to get a map i : CG — CG with i(>. \igi) = > Nigi L.
Then ¢ is an anti-automorphism of CG.

Let z € CG then i(exe) = i(e)i(x)i(e). Now since e = \7119| > pep b we get that

ie:L l=¢
(e) |B|Zb

beB

So
i(exe) = ei(z)e € eCGe

So i gives an anti-automorphism of eCGe, i: A — A.
Combining the above map i, with an anti-isomorphism A — H, such as in the previous proposi-

tion, we obtain an isomorphism A — H. So the Hecke algebra H = H(G, B, 1p) is isomorphic to the
subalgebra eCGe of CG, O

5.2.3 A basis for the Hecke algebra H

Proposition 5.2.4. Let w € W, s; € S with {(s;w) = £(w)+1. Let n;,n € N have m(n) = w, w(n;) =
s;. Then

ene - ene = en;ne
Proof.

1
en;e - ene = en;ene = @ g en;bne
beB

But n;Bn C Bn;nB
So

n;bn € Bn;nB = n;bn = byn;nby
for some by,bs € B.
Now

en;bne = ebyn;nbye = en;ne

since be = e = eb for each b € B.
So

" 1B
en;e - ene = —— en;ne = —— en;ne = en;ne
1 ‘B| beB 1 |B| 1 1

Proposition 5.2.5. Let ¢; = [B : n;Bn;~* N B]. Then

1 q; — 1
en;e - en;e = —e + en;e

qi qi
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Proof. By axiom 4 in the definition of the BN-group we have that n; Bn; C BU Bn;B. So

Now n;Bn; = n;Bn; ! and |n;Bn; | = |B]

1
IniBn; "' N B| = — - |B|

K2

by the definition of g;.

So
1 1 1
[niBn; ' N Bn;B| = [n;Bn;~'| — —|B| = |B| — —|B| = (1 — —)|B]
q; q; qi
Thus 1
en;e - en;e = en;en;e = Bl Z e(n;bn;)e
1Bl i
Then
1 1 ) .
— Z e(n;bn;)e = — [(# times) n;bn; € B) - e + (# times n;bn; € Bn;B) - en;e]
Bl 2+ B
11 g — 1
= —(—|B| e+ B| - ense (5)
T
1 i — 1
= —e+ L en;e
qi q;

Example 5.2.1. Let G = GL,(q) where ¢ = p® for some prime p.
Recall B=UH = X;U;H and niHni_l =H, niUmi_l =U,, niXmi_l =X_;. So
niBni_l = ’I’LiXiUiH’I’Li_l =X_,UH

Also

since X;NX_; =1,.
So 1
|BNn;Bn;~ | = |Uj||H| = -|U||H|
q

since in U the entry (i, i + 1) could be chosen in q different ways.

Then 1
|BNn;Bn; | = ~|B|
q

and so
[B:BnNn;Bn;, ' =gq

So in GL,(q) we obtain that all ¢; = q.

We shall consider only the case when all ¢; = ¢q. So

qg—1

1
en;e - en;e = —e + en;e
q

Let us choose, for each w € W, an n € N with 7(n) = w. Now we have that ebne = ene, since
b € BNN because 7(bn) = w and hence ene is independent of the choice of n. So take such an element
ene for each w € W. These elements are linearly independent in CG, from the fact that the double
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cosets of G with respect to B are precisely those of the form BnB as n ranges over a set containing
one preimage under 7w of each element of W. Also, from the corollary 5.2.1 we have that the number
of such elements is |W| = dim eCGe. So from the above we obtain that these elements form a basis
for the A = eCGe.

So now we choose an isomorphism ¢ : eCGe — H, with ¢“®ene — ¢(¢'“ene) := T, where
m(n) = w. Thus, through the isomorphism ¢ we get a basis T,,, w € W for the Hecke algebra H.

We now want to find out how these basis elements multiply together. The following Theorem gives
the results we want.

Theorem 5.2.1. 1. Suppose £(s;w) = l(w) + 1. Then Ts, Ty, = Ts,u
2. Suppose £(s;w) = L(w) — 1. Then Ty, Ty = qTs;00 + (¢ — 1)Ty,
Proof. 1. The element T;,T,, corresponds to

w)+1 w)+1

genie - ¢"Wene = ¢ enge - ene = ¢'t en;ne

So
Ts,, Tw = Tsiw

by the previous corresponds.

2. Let w = s;w’. Then £(s;w’) = f(w') + 1. Now Ty, Ts, corresponds to

1 g1
q-enie-q-ene=q*(—e+ ==, en;e)
q
=qge+(qg—1)-gense

Thus
T, Ts, = qTy + (¢ — )T,

but T,, = T5, T, by (1) of the theorem.

So

TSiTSz‘Tw/ = quTw/ + (q - 1)TSiTw/
T, Tw =41, + (q - I)Tw (7)
TsiTw = quiw + (q - 1)Tw

These are known as the Iwahori relations.

These results suffice to define the multiplication between any two basis elements (since the Ty,
generate H as an algebra), and thus the entire algebra structure is determined in terms of this basis.

Remark 5.2.3. Also notice that, if w = s;,...8;, reduced then T, = T, ...Ts,ik. So to calculate T, T,

we express w' as a reduced word in s;’s and then we apply the theorem repeatedly.
Corollary 5.2.2. If {(ww') = £(w) + £(w') then T, =TT, .

So the product of any pair T,,7,» can be deduced from the Iwahori relations.

The Hecke algebra H is determined up to isomorphism by the Weyl group W and the parameter
q.
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5.2.4 A presentation for Hecke algebra

Corollary 5.2.3. The Hecke algebra H is generated by elements {Ty,--- ,Ts, }, where S = {s1,-- , s, }.
These generators satisfy the quadratic relations

T.2=q +(q+ 1T, 1<i<n
and the homogeneous relations
(Ts,Ts,)™ = (Ts,Ts,)™ if msj = even
(T, Ts,)" Ty, = (Ts,Ts,)" " Ty, if miy = odd
where m;; is the order of the elements s;s; in W.

Theorem 5.2.2. The generators and relations given in the above corollary, define a presentation of
the Hecke algebra H.

Since the proof of the above Theorem is similarly to the corresponding proof for the presentation
of the Generic Hecke algebra, which we will introduce it in the next chapter, we will skip it for now.
Notice that, in particular the quadratic relation Ty,? = ¢T} + (¢ — 17,), 1 < i < n can also be
expressed in the form

(T, — gT)(To, + T1) =0, 1<i<n

since

T5i2 =qh + (ql)TSi = T5i2 - ((] - 1)TSz —¢Ih =0= (TS'L - qu)(TSi + Tl) =0

Remark 5.2.4. By the above observation we can see that in order to construct representations of the
Hecke algebra H, it’s enough to define a homomorphism such that for each generator Ts, of H, we
mapped it to a matriz A;, with the following properties:

o The matriz A; has eigenvalues either q or —1
o Also every such matrixz A; satisfy the homogeneous relations.

Now, let demonstrate some simple examples of constructions of representations for the Hecke alge-
bra H.

Example 5.2.2. The simplest construction of representations for the Hecke algebra H, are the I-
dimensional representations of H. So

(i) We define the homomorphism ind : H — C, where indTs, — q, 1 <i <n. The representation
that occur from this homomorphism we will call it the index representation.

(ii) Another 1-dimensional representation is the sign representation, that is defined by the homomor-
phism sgn : H — C, such that sgn Ts, = —1, 1 <14 <n. Also, notice that, it can been shown
that the sign representation corresponds to Steinberg representation.

5.3 The Semisimplicity of the Hecke Algebra
Now will show that the Hecke algebra H is semisimple algebra.

Lemma 5.3.1. Let R be a semisimple C—algebra with unit. Then any irreducible left R-module M is
isomorphic to a left ideal L of R.
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Proof. Let m € M, with m # 0.

Consider the map 6 : R — M s.t r — rm, for each r € R.

6 is a homomorphism of left R-modules. Also § # 0, 6(1) = m # 0.

So §(R) is a non-zero submodule of M. Now since M is irreducible we get that 6(R) = M.
Let K = kerf, K is a left R-submodule of R.

Since R is semisimple we have that R = K @ L, for some left R-submodule L. Thus

M:G(R)%%%L

O

Proposition 5.3.1. If R is a semisimple C—algebra with 1 and e € R is idempotent, then eRe is also
a semisimple C—algebra.

Proof. Let N be submodule of eRe, i.e eReN C N. We must find a complement N " C eRe s.t
eReN CN andeRe=N& N .

Let
M=RN=<mm|neN,reR>

Now since Ne = N = eN we have that
M = RN = RNe C Re

By the fact that R is semisimple there is an R-module M  s.t Re = M @ M.

Claim 6. N =eM

Proof. Indeed,
eM = eRN =eReN C N

Conversely,
N =eN CeRN =eM

O
Let N' =eM'. Then eRe =eM +eM =N+ N,
Now NCM,N CM =NNN CMNM =0
So eRe = N @ N'. Furthermore,
eReN/ = eReeM’ C eM =N
i.e N'is a complimentary left ideal. O

Corollary 5.3.1. Take R =CG, e = \Tél > bep b and eRe = H. So H is semisimple.

Lemma 5.3.2. Let R be a semisimple C—algebra with 1. Then any left ideal of R has the form Re
for some idempotent e.
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Proof. Let L be a non-zero left ideal of R, and let L’ be a complimentary ideal, thus
R=Lol

So we have )
l=e+e
where e € L, ¢ € L Then

’ 2 ’ 2 ’
l=e4+e =>e=e“"+eec =e=c¢“, ee =0

by the uniqueness of direct sum decomposition.

Nowee L so ReC L )
tel=/V0="Vle+Le

where le € L, le' € L'. Now ) )
{—Vle=0le e LNL =0

So
le=10te =0=L=LeCReCL=L=Re

O

Definition 5.3.1 (Primitive element). An idempotent e € R is called primitive if e cannot be expressed
as e = e1 + ey, where ey, eq # 0, €2 = 61,622 =e9, €160 =0 = eseq

Lemma 5.3.3. Re is irreducible <= e is primitive.

Proof. (<) Suppose Re is not irreducible. Then

Re = My & M,
where My, Ms # 0 left R-submodules.
So e = ey + eq for e; € M; also e; € Re, thus e;e = ¢;

Now
e =eje= 612 +e1e0 = 612 =e1, 61620 =0

and
_ _ 2 2 _
€9 = €3e = €9€1 + €2” = e3” = €9, ege1 =0

Finally, e; # 0, otherwise e = e3, Re C My, M7 =0
Similarly es # 0. But e is primitive and so we have a contradiction.

(=) Suppose e isn’t primitive. Then
e=e1+ e
with ;2 = e;, eie; =0 (i # j), e; #0.
So
Re = Re1 + Res
We need to show that Re; N Res =0

Indeed, we take x € Rey N Res = © = xey = xes = xejeg =0

So
Re = Rey @ Res

but Re is irreducible and thus we obtain a contradiction. O

45



5.4 The Correspondence Theorem

Theorem 5.4.1. Let e € CG be idempotent and V = CGe.

Then there is a 1-1 correspondence

between irreducible CG—modules occurring as components of V (up to isomorphism) and irreducible
modules for eCGe (up to isomorphism). The dimension of an irreducible module for eCGe is equal to
the multiplicity of the corresponding CG—module as a component of V.

Proof. e STEP 1:

Let M be an irreducible CG-module.

Claim 7. M appears as a component of V = CGe <= Homcg(CGe, M) #0

Proof. First, suppose that M is a component of V. Then V'

:M@Ml,thusvzm—t—m/.

The projection pys : V. — M where v — m is a non-zero CG— homomorphism.

Conversely, if § € Homcg(CGe, M) with 6 # 0. Then
V=Ka&L

where K = kerf. So

h
1%

~iml =M

==

since 6 # 0 and M is irreducible.
Hence we get that V is a component of M.

e STEP 2 :

Claim 8. There is a bijection Homca(CGe, M) «— eM

Proof. Indeed, we show that

®: Homea(CGe, M) — eM

60— 0(e)

is an isomomorphism.

First, by taking an element § € Homcg(CGe, M), then 6
map P is well-defined.

Now, suppose that 0,0 € Homcg(CGe, M) s.t 6(e) = 6 (e)

’ /

(e) = O(ee) = ef(e) € eM. So the

. Then

O(re) =rb(e) =10 (e) =0 (re)

for every r € CG.
So # =6 and hence ® is 1-1.

Now, let m € M. We define 6(r) := rm, for r € CGe. Then

0 € Homcg(CGe, M) and 6(e) =em =m

So ®(0) =m

Thus we have proved that the map 6 — 6(e) is bijective.
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Now, from the two previous claims we obtain that M appears as a component of V' = CGe if and
only if eM # 0

STEP 3 :

Consider the map M — eM, where M is irreducible CG—module.
Now eM is an eCGe—module since e(CGee)M C eM.

We will show that eM is in fact irreducible:

Take m € eM, m # 0. Then
eCGem = eCGm = eM

since M is irreducible and we get that CGm = M

So eM is an irreducible eCGe—module.

STEP 4 :

Hence we could obtain that there exists a correspondence

{irreducible CG — modules as components of the V } +— {irreducible eCGe — modules}
M — eM

Note that this correspondence could be written also in the language of the representations:

Particularly, there is 1-1 correspondence:
{irreducible representations of G appearing in V +— {irreducible representations of eCGe}

We already know that if M appears in V then eM # 0 and eM is an irreducible eCGe—module.
So it remains to show that this map is bijective.

— First, we show that the map M —— eM is surjective.

Let N be an irreducible eCGe—module. Then by previous lemma and proposition we have
that
N =2 eCGe-n

where n € eCGe and n? = n.
Now since n € eCGe and en = n we obtain that
N =2 eCGn

So it remains to show that CGn is an irreducible CG—module.
Suppose not. Then by previous proposition n isn’t primitive. So

n=mni+ ne
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where nyi,ng # 0, n12 = nq, ne? =ngy, ning =0 = nyn;.

Then
ny = nny = nnin = ennine € eCGe
Similarly no € eCGe
So
ni,ng € eCGe
So m isn’t primitive in eCGe, which is contradiction due to
N is irreducible eCGe — module = (eCGe)n irreducible eCGe — module
= n is primitive

So CGn is irreducible and eCGn =2 N. So the map is surjective.

— Now will show that the map is also injective.
Suppose M’ is an irreducible CG—module with eM 22 N as left eCGe—modules.

We will show that M = CGn.

Let n € N son € nN and thus nlN # 0. Hence using the isomorphism eM = N we
get that neM # 0. But ne =n so nM # 0. Thus there exist m € M with nm # 0.

Consider the map )
CGn — M

’
T Tm

This is a homomorphism of left CG—modules (clear from the definition). Also it’s non-zero

by our choice of m’ . Both sides are irreducible. So we must have CGn = M.

So the map is bijective.

e STEP 5 :
Consider dim eM = dim Homca(CGe, M) and V = CGe.
By Maschke’s theorem V =V, & V5 & - -+ &V}, where V; are irreducible CG—modules.
Let 6 € Homcg(V, M). Then 6 induces, by restriction, 8; € Hom(V;, M).

If V; 2 M then 0, = 0.
If V; = M then Hom(V;, M) = C by Schur’s Lemma.

So
dim Homcg(CGe, M) = # of Vs isomorphic to M

i.e the multiplicity with which M appears as a component of V.

Corollary 5.4.1. Take e = ﬁ Y pep b, eCGe = H.

Then exists 1-1 correspondence that :

{irreducible H-modules} «— {irreducible CG — modules appearing as components of V= CGe}
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So in the language of the representation theory we get that:
{irreducible representations of G appearing in V +— {irreducible representations of H}

and
the dimension of irreps of H <> multiplicity of irreps of G appearing in 'V

where with terminology irreps we mean the irreducible representations.
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5.5 The Examples of GLs(q) and GL3(q)

1. Let G = GLy(q) and B be the subgroup of triangular matrices. Then W = Sy, |W| = 2, and
dim H = 2.
By a combinatorial argument, in particular, for any matrix in G, we can take any vector, except
the zero element, as the first row, and the second row can’t be a multiple of the first. Hence

Gl=(¢* —1)(¢* —q) = q(g — 1)(¢* 1) = q(g — 1)*(¢ + 1)

By similarly argument, for any element in the subgroup B, we get that

1Bl = (¢ 1)(¢* —q) = q(q — 1)

since this time our choices for the first vector is further restricted, due to any element in B has

the form *

*
0
So dim V =[G : B] = ¢+ 1, where V = CGe, as defined above. Then V = V; @ V5, where V}
gives rise to an irreducible representation of order 1, and V5 to one of order ¢ called the Steinberg
representation.

H has dimension 2 so is generated by 77,75, where

T.2 = qTy + (¢ — 1)T,

since s2 = 1, i.e £(s?) < {(s).
So H has two irreducible representations by the above Correspondence Theorem, both of degree
1. Under these representations
T —1, Ty — b
, where ¥ =g+ (¢—1)b — b —(¢—1)b—q¢=0= (b—¢q)(b+1) =0.
So the two irreducible representations of H are

p:T1—1,Tg— -1, and o:T1— 1,Ts —q
2. Let G = GL3(q). Similarly to above we have
Gl =(*-1)(® - 9)(¢® - ¢*) = (e —D(* - D(¢* - 1)
and ;
1Bl=(¢-1)(¢* - )¢’ —¢*) =¢* (¢ — 1)
SodimV =[G:Bl=(q+1)(¢?+q+1)=¢+2¢*+2¢+1
Also W =2 S3, and so dim H =6
In fact H has irreducible representations of degrees 1,1,2 and V = V; & Vo & V3 @ Vy, where V;

irreps and Va = V3, giving representations of dimension 1, (¢> + q), (¢* +q), ¢° respectively. The
q> representation called the Steinberg representation.

5.6 The Reflection representation of the Hecke algebra H(G, B, 1p)

Let G be a finite group with BN-pair, W be the Weyl group of G, and S = {s1,- - , s, } the distinguished
generators of W. Then let H = H(G, B,1p) be the associated Hecke algebra of G with respect to
the subgroup B. As we have already seen, the Hecke algebra H has a presentation with generators
{T,, -, T, } and satisfying the homogeneous and quadratic relations. i.e

T2 =qTi+ (¢ — 1T, 1<i<n
and
(T, Ts,)™" = (Ts,Ts,)™" if m;; = even
(Ts,Ts,)" T, = (Ts,Ts,)" " Ts, ifm;; = odd
where m;; is the order of the elements s;s; in W.

We have seen that the reflection representation of the Coxeter group W is irreducible if and only
if the Coxeter system (W,S) is irreducible. So we can make the assumption that (W,S) is irreducible,
and thus the Coxeter graph of (W,S) is tree.

Let V =&, ,~,, Cv; be an n-dimensional C—vector space, where |S| = n. Also, let {¢;;}1<i j<n €
C such that:

50



® i =¢q +1
o cij=cj; =0 ifmy =2
® cijcj; = q; +qj + 2\/@005% if my; > 2
Theorem 5.6.1. Let (W,S) be an irreducible Coxeter system associated with a finite group G with

BN-pair, and let be the corresponding Hecke algebra H = H(G, B,15). There exists a representation
p: H — EndcV such that

(6 + DBi,v)

(3] I s 91
Bl forall veV, s; €8

p(TSi)v = q;V —

The representation p is irreducible, and the bilinear form B is nondegenerate on V.
For the proof we will need the following lemmas.

Lemma 5.6.1. For each 1 < i,j < n and the above complex numbers c;;, there exists a symmetric
bilinear form B on V, such that B(v;,v;) # 0 fori=1,--- ,n and it’s satisfying the following property:
(¢i +1)B(vi,v;) -
P 1< <
Cij Blos,v7) , for 1<i,5<n
Lemma 5.6.2. Fori # j, we take the subspace of V generated by a elements v; and vj, i.e the subspace
< w;,v; >, then the restriction Bl<y, ;> is nondegenerate.

Proof of the Theorem . First we have to show that the map p, as defined in the above theorem, pre-
serves the defining relations of the Hecke algebra H, i.e that on the generators T, the map p preserves
the quadratic and homogeneous relations, for each i € {1,--- ,n}

-So for the quadratic relation:

For each 4, with 1 < i < n since B(v;,v;) # 0 we obtain V =< v; > &< v; >+, where < v; >+ =
{v € V : B(v,v;) = 0}. Then by simple calculations of the act of the map p on the subspaces
< w; >, < v; >+, we get that p acts as scalar multiplication by ¢; on < v; > and by -1 on < v; >. So
it follows that
p(Te)” = 4Ty + (g — 1)p(Ts,)

and thus the quadratic relations hold.
-For the homogeneous relation:

By the above lemma we have that the restriction B|<y, ,;~, With i # j, is nondegenerate. So we
can decompose the space V as
V=< V5,05 > D< v, 05 >L

Now as in the previous case of the quadratic relation, by simple calculations we get that, the p(T5,)
and p(Ty;) act as scalar multiplications by ¢; and ¢; on the subspace < v;,v; > respectively. So it
occurs that the homogeneous relations for p(T,) and p(T%,) hold on < v;,v; >*. Now on < v;,v; >
the p(Ts,) and p(T,) acts by the matrices

_ -1 Cij o q; 0
R, = < 0 Qi) and R, = (Cji _1>

respectively, by the lemma 5.6.1. Thus the homogeneous relations also hold on < v;,v; >, since by
multiplying from both sides the above matrices Rs,.Rs;, we obtain that the products R, R, and
R, Ry, have the same characteristic polynomial of degree 2, and hence we can diagonaziable them. So
the map p can be extended to a representation of H, by the presentation of the Hecke algebra.

Now we have to show that p is irreducible representation and B is nondegenerated bilinear form.
We apply induction on n. So we assume that the result holds for irreducible Coxeter systems of rank
less than n. Now, choose a subset J C S, such that |J| =n—1 and let V; =< v; : s; € J >. By
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the induction hypothesis we have that By, is nondegenerate, and so we can decompose the space V
into V = V; @ V;* and dimcV;t = 1. Also let H; be the subalgebra of H generated by the set
{Tsj : s; € J}. By induction, we get that the restriction of the representation p to the Hy, p|m,, is
irreducible on V;, while the subspace V;* affords the index representation, since from the first part of
the proof, we have seen that the map p acts on V;© as a scalar multiplication by qj, where s; € J. So
Vy, V;+ as Hy—modules are simple and also are non-isomorphic, for every n > 1, since for n > 3 they
have different dimensions, and for n = 2 the V; affords the sign representation, again by first part of
the proof.

Now in order to finally get that p is irreducible, we assume the opposite for contradiction, i.e by
consider the V as H-module, we assume that V is not simple. So since H is semisimple there exists
non-trivial H-submodules V7, V5, such that V = V; @ V5. Then both Vi, V5 are also Hj;—modules and
so they coincide with Vj, VL, by the above. But by the definition of J and the representation p, we
get that the V; is not a H-submodule of V, and we have a contradiction. Thus the representation p is
irreducible.

Furthermore, we conclude that B is non-degenerate on V. Since if we assume that this is not true,
so V1 £ 0, we get that p acts on V- as a scalar multiplication by g;, for each 1 <4 < n, and thus the
subspace < v >, for v # 0 with v € V1, is a proper H-submodule of V. The last statement contradict
the fact that p is irreducible. So the bilinear form B is non-degenerate on V. O
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6 The Generic Hecke Algebra

The Hecke algebra introduced so far is a C—algebra with basis T,,, w € W, and with multiplication
defined by the rules :

T — Tsw Jif l(sw) = L(w) + 1
Y qTew + (¢ — DTy L if (sw) = H(w) — 1

where s € S, w € W, and q is a prime power, e.g p®.

In order to obtain the generic Hecke algebra, we will begin with a general construction of associa-
tive algebra over a commutative ring A, with 1. In particular, we will see that such an algebra will
be a free A-module, with the elements of the basis be parameterized by the elements of W, and with
multiplication law which in a sense reflects the multiplication in W. Also the construction which we
will illustrate below it will depend on some parameters as, bs € A, for s € S, with the property as = a;
and by = b; whenever s and t are conjugate in W. The starting point of this construction it will be a
free A-module £ on W, such that the basis elements be the T,,, with w € W.

6.1 The Construction of Generic Algebras

Theorem 6.1.1. Let A be a commutative ring with 1 and elements agz,bs € A, s € S, such that as = a;
and by = by whenever s and t are conjugate in W, where (W, S) is a Cozeter system. Then there exists
a unique structure of associative A-algebra on the free A-module £, with Ty acting as the identity, such
that the following conditions hold for all s € S, w € W:

T — T L if L(sw) > f(w)
Y Y asTy + b T if £(sw) < £(w)

Proof. e Existence: The idea behind the proof of the existence of an algebra structure as de-
scribed in the theorem it is not to introduced directly into the A-module £, but instead we
exploit the existing ring structure in End &, the algebra of all A-module endomorphisms of £.
Now if £ has an algebra structure, the left multiplication operators corresponding to the ele-
ments of £ will generate an isomorphic copy of this algebra inside End £. Then by finding the
appropriate subalgebra of End £ and via an isomorphism we will transfer the algebra structure
of the subalgebra to &.

Now we define the endomorphisms (left and right multiplication operators) Ay = A(Ts) and
ps = p(Ts) of A, Vs € S, by

T A L(sw) > f(w)

MNT)T, =
(T:) {asTw + 05T i £(sw) < £(w)

and
Tows ,if L(ws) > f(w
p(Te)ﬂu = . ( ) ( )
asTy + bsTyws ,if L(ws) < £(w)

in order to conform with the multiplication rule of the elements T, T, as described above.

Also let £ be the algebra of endomorphisms of A generated by A(Ty), for all s € .S and R be the
algebra of endomorphisms of A generated by p(Ts), for all s € S.

Lemma 6.1.1. Every operator Ay commutes with every operator p;, Vs,t € S

To prove the above lemma, we will need first the below lemma from the theory of Coxeter groups.

Lemma 6.1.2. Let w € W and s,t € S. If {(swt) = l(w) and {(sw) = L(wt), then sw = wt (or
equivalently, swt = w).
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Proof. Let w = s1...s, be a reduced expression of w, so (w) = r. Then we have two cases :

1. £(sw) > ¢(w) : Then ¢(sw) = r + 1 and thus the expression spsi - --s,, where so = s, is
a reduced expression for the element sw. Now, also, {(w) = {((sw)t) < £(sw), so we can
apply the Exchange condition to the pair sw,? and so we have that there exists 0 < i < r
such that

swt =808+ 8

But we cannot have 1 < i < r, because then

wt:ssosl...gi...ST:51...Si...ST
which contradicts the fact that £(wt) = £(sw) = ¢(w) + 1. So ¢ = 0. Then
Swt =818, =W <= sw = wt

2. {(sw) < £(w) : Then (sw) < £(w) = £(s(sw)). Now, by observe that the hypothesis of the
lemma is satisfied by the element sw in place of w, we could apply the result of the case (1)
to sw. So, we obtain that, s(sw)t = sw, i.e wt = sw.

O
Proof. Now we will prove the lemma 6.1.1 :

Let w € W and compare the action of the operators Asp; and p:A\s on Ty,. This is equiva-
lent an associativity condition, i.e (TsTy)T; = Ts(TwTt). We know that multiplication by s or
t changes the length by 1, so there are six possibilities for the relative lengths of sw,wt, swt, w,
since for example, it is impossible for all of these to have distinct lengths. We distinguish the
following cases:

1. l(w) < L(wt) = L(sw) < L(swt) :
Then by the description of the operators above we have that Aspi(Tw) = Tswr = pitAs(Tw)
2. L(swt) < L(wt) = L(sw) < l(w) :
By direct calculation \spi(Tw) = As(@:Tw + b:Twt) = atAs(Tw) + biAs(Twt) = ar(asTy +
bsTsw) +bt(asth +bs,Tswt) = asas Ty +athsTsw +bsas Tyt +bibs Tyt By similar calculations
of piAs(Ty) yields the same result.
3. L(wt) = L(sw) < L(swt) = L(w) :
In this case the hypotheses of the above lemma are satisfied, so we get sw = wt, which
says that s, t conjugate in W and thus as; = a; and by = b;. Now by direct calculation
Aspt (Tw) = atasTw +atbsT9w +thewt and pt)\s (Eu) = asatﬂu + asthwt + bsTewt- From the
fact that as = a; and by = b; we get equality between the above relations of the operators.
4. L(wt) < L(w) = L(swt) < L(sw) :
Here it’s obvious since, A\spt(Tw) = atTsw + b:Tswt = piAs(Tw)
5. L(sw) < l(w) = L(swt) < L(wt) :
Similarly as in the previous case, we get Aspi(Tw) = asTwt + bsTswt = pers(Tw)
6. L(w) = L(swt) < l(wt) = {(sw) :
Just as in the previous case we have A\;p:(Ty) = asTwt + bsTswt. But peAs(Tyw) = a:Tsw +

b Tswt- Again the above lemma satisfied and so we get sw = wt, which says that as = a;
and b, = b;.

So we have proved that in every case the equality holds, and thus Asp; = piAs, for every
s,teS.
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Now we prove that there exists a isomorphism of A-modules, between the algebras £ and &.
Indeed, we define a map ¢ : L — € by A — Ay = A(T}), thus sending 1 to T} and A to Ty, for
all s € S. It is obvious that ¢ is an A-module map. Moreover, is surjective and injective.

— ¢ is surjective: Let a basis element T, of the free A-module £ and let w = s - - - s,- reduced
expression of w. Then T, = Ty, ---Ts.. We have ¢p(Ag; -+ As,.) = (Ag; -+ A5, )(T1) =
,Tsl te TsT = Tw

— ¢ is injective: Suppose ¢p(A) =0, i.e A(T1) = 0. Let a € £ we will show that A(a) = 0. First
we define the surjective A-module map 1 : R — &€ with ¥ (p) = p(T1), thus sending 1 to T3
and p; to Ty for all t € S. So since ¢ is surjective a = ¥(p) = p(T1), for some p € R.Thus,
Aa) = AMp(Th)) = p(A(T1)) = p(0) = 0. So ¢ is injective.

So ¢ is bijective.

Now since ¢ is an isomorphism of A-modules, it follows that £ has a free A-basis consisting
of all Ay, := Ag, - -+ As,., where w = s1 - - - 8, is reduced and the endomorphism A, is independent
of the choice of reduced expression. (Here \; is the identity element on £.) Furthermore, the
algebra structure on £ can be transferred to £ and make it into an algebra via the map ¢.

It remains only to show that this structure satisfies the relations

T - Tow JAf L(sw) > £(w)
) @y Ty + bs T Jif £(sw) < £(w)

In this direction we have the following remark.

Remark 6.1.1. The relations

T - Tsw L if L(sw) > L(w)
T @l 0T if Esw) < L(w)

are equivalent to the relations
TsTy = Tsw if (sw) > £(w) (9)
T.> = a,Ts + b T} (10)

Indeed, since s2 = 1 we have that ¢(s%) = 0 = £(s) — 1 so T,> = T, Ty = a,Ts + bsT;. Conversely,
if we have shown that the algebra £ satisfying the relations (9) and (10) we will show that in case
L(sw) < £(w) we get the relation TsT,, = asTy, + bsTs,. Note that, when ¢(w) = 1, we must have
w = 8, so we have that T, Ts = a,Ts + bsTss = asTs +b,T1 = Tsz. Thus in that case we have the
result. In general, we have {(s(sw)) > £(sw) so by the relation (9) we get TsTw = Tssw = Tw-
Then by the relation (10) we obtain that TyT,, = T* Ty = (asTs+bsT1) Tsw = asTs Ty +bsTary =
asTy + bsTsy, as required.

So by the above remark we just have to show that the algebra structure we have construct
on & satisfies the relations (9) and (10). Indeed, first let ¢(sw) > ¢(w). We have to verify that
AsAw = Asw- So by taking a reduced expression s; --- s, for the element w, we get a reduced
expression ssp - - - s, for the element sw. Now AsAy, = AgAg, -+ A, agrees with the definition of
Asw-. Now it remains to show that )\32 = as)s + bsA1 in order to show that the algebra satisfies
the relation (10). Moreover it is enough to check sides at a basis element T,, of £. In case
l(sw) > £(w), we have :

)\SQ(Tw) = )\S(Tsw) == asTsw + bsT = (as>\s + bs)\l)(Tw)
In case {(sw) < £(w) we get :

)\SQ(Tw> = As(asTw + bsTsw) = as)\s(Tw) + bsTsTsw = (as>\s + bs)\l)(Tw)
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Thus, from all the above we have prove that there exists an algebra structure on the free A-module
& given by multiplication

T — Tsw Lif L(sw) > (w)
T Y 4Ty + b5 Ty if L(sw) < L(w)

e Uniqueness: Let w = s;---s, be a reduced expression of the element w, by iteration of the
multiplication rule on £ we obtain that T, = T, - - - T,. So £ is in fact generated as an algebra by
the T, with s € S, together with 1 = T7. Now by consecutive applications of the multiplications
rules we can write down the full multiplication table for the basis elements T, of £. So we get
the requested uniqueness.

O

The algebra constructed in the above theorem, we will be denoted by €4 (as, bs), and will be called
a generic algebra.

Remark 6.1.2. The set of generators {Ts : s € S} together with the defining relations R :
T.? = a,T, + b, Ty (quadratic relations)
and the homogeneous relations:
(T, T,)? = (T,T,)" if m(s,t) =2q<oo (ie(st)’?=1)

(T,T,)'T, = (T,T)"Ty if m(s,t) =2¢+1<oo (ie(st) 9T =1)
where s,t € S and m(s,t) is the order of st in W, form a presentation for the algebra .
Proof. Let F be a A-algebra with generators the set {T's : s € S} and defining relations R (as in R,
but replacing T by Ts). Then there exists a canonical epimorphism 7 : F — & given by 7(Ts) = T,
s € S. Now by Matsumoto’s Theorem, there exists a map f : W — F such that f(s) = T
se€Sand f(sy---8.) =Ts, - Ts, for every reduced expression of an element of W. Since the elements
{T}ses form a basis for £, there exists a linear map g : & — F such that g(T},) = T, --- T, , for
every reduced expression s; -« - s, for w € W and g|g = f.
Moreover g is a homomorphism, i.e we will show that ¢(T,,Tw) = g(Tw)g(Tw ). Although, by the
definition of the map g it is sufficient to prove that

9(TsTyw) = 9(Ts)g(Tw)
for all s € S and w € W. In this direction we consider the following cases:

L. If {(sw) > {(w), then T T,, = T4, by the multiplication rules in the algebra £ and the expression
ss1 -+ - 8y is reduced for the element sw. Thus ¢(TsTy) = 9(Tsw) = TsTs, -+ Ts, = f(Ts)g(Tw) =
9(T5)g(Tw).

2. If U(sw) < l(w). Put w' = sw = w = sw’. Then {(sw’) > {(w’), and by the previous case of
the proof, we have that

9(TsTw) = 9(Ts)9(Tw ) = 9(TsTsw) = 9(T5)9(Tsw)

but T Ts, = Ty, so

and thus
F(T)9(Tw) = 9(To)g(Tw) = [9(T:)?g(Tew)

Now by assumption, the elements g(Ts) also satisfy the quadratic relations and hence

F(T)g(Tw) = [9(To)?g(Tsw)
= (asg(Ts) + bsg(Tl))g(Tsw)
= as9(T%)9(Tow) + bsg(Tsw)
= a59(Tw) + bs9(Tsw)
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But Ts;T, = asTy, + bsTsy, so by applying g to the last relation we get that

9(TsTy) = asg(Tw) + bsg(Tsw)

By comparing the last formula with the previous we get g(Ts)g(Tw) = g(TsTyw). So g is homo-
morphism.

Now g is surjective. Indeed, since the Img is a subalgebra of F (because g is a homomorphism)
we have that Img is closed under multiplication. Also note that Img contains all the generators.
So F C Img, and thus I'mg = F.i.e g is surjective.

Moreover, m 0 g = 1¢ and so g is 1-1.

Thus, g is an isomorphism. So & =& F. This completes the proof.

6.2 The Generic Hecke Algebra H

We are ready now to define the generic Hecke algebra H of W. But first let’s make the following
observation. As we already have stated in the beginning of this chapter the Hecke algebra H =
H(G, B, 1p) is a C-algebra with basis T,,, w € W, and with multiplication rules defined by

T Tsw Jf l(sw) = l(w) +1
TV qTew + (¢ — DTy L if (sw) = H(w) — 1

Since 52 = 1 we get that T,? = ¢T} + (¢ — 1)T (the quadratic relation) then by simple calculations we
have

T2 —(q— DTy —qTy — 0= (Ty — 1)) (Ts + Ty) = 0 = (¢ 2T, — *T1)(q *Ts + q 2Ty) =0

N

So it’s obvious from the above that in order to be things nice we would like the elements g~ ,q% to
be in the base ring.

Now, by combining the existing construction of generic algebras £4(as, bs) over a commutative ring
A, with the above observation we understand that by an appropriate choice for the algebra A and for
the parameters ag,bs € A, we will obtain the generic Hecke algebra. Specifically, we choose the ring
A= Z[uiu‘ﬂ be the ring of Laurent polynomials over Z in the indeterminate ¢ = u. Also with
the further convention that as = u and by = u — 1, for all s € S, we get the generic Hecke algebra of

W, denoted by H = Hz[u% _%](u). The relations (9) and (10) from the previous construction now

U

become:

TTyw = Tsw if £(sw) > L(w)
T2 = (u— 1T, +ul}

As we will see in a later chapter Tit’s proved that if we specialize u — ¢, where q is a prime power,
and W finite, then Hc¢(q) = CW, where CW is the group algebra, which we can also think of it as
an example of a generic algebra with a particularly choice of the parameters as,bs to be a; = 0 and
bs = 1.

Tawhori conjectured that Hg(q) = QW, but this turned out to be false. Although, Lusztig finally
proved that HQ[q%](q) =~ Qg |W.

6.3 Bruhat ordering

In this section we introduce the very important concept of the Bruhat ordering on a Coxeter group W,
which will play a key role in our future study of some special properties that have the generic Hecke
algebra.

So let W be a Coxeter group, with fundamental reflections S = {s1,--- ,s,}. We define the set of
reflections of W to be T' = | ,cw wSs~!. By using this, we write u < v if we can build the element
v from u through a series of multiplications by reflections, with length increasing by one each time.
More formally, we have the following definition of the Bruhat order.
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Definition 6.3.1. We say that u < v if there exists ty,--- ,t. € T such that
v =uty -1ty

and for each 1 < i < r —1 we have l(uty---t;) < l(uty---t;11). The resulting relation is a partial
ordering of W, and we will call it Bruhat ordering.

Remark 6.3.1. (i) It is convenient sometimes to have the alternative characterized of the Bruhat
order by the use of the subexpressions. More precisely, if w = s1 -+ s, is a reduced expression for
w, then © < w if and only if v = s;, ---s;, where 1 < iy < iy < -+ <ig < 1. In other words
x < w if and only if we have a reduced expression for x which is a subexpression of w.

(ii) Also we can make the following definitions that lead us to the Bruhat graph. In particular, we write
u— v if ut = v, for some t € T, with £(v) > €(u). Then we can make the alternative definition
of the Bruhat ordering by saying u < v if there exists a sequence u = wg — Wy — +*+ — Wy, = V.
Now the Bruhat graph is a directed graph related to the Bruhat order, by the vertices it will be
the set of elements of the Coxeter group and the edges consists of directed edges (u,v) whenever
U — .

Example 6.3.1. Let S3 be the symmetric group with generators si,ss. Then T = {s1,s2,518251}
Then by further calculations we can get the following Bruhat graph:

515251

6.4 Inverses and A-map of Hecke algebra

Now turning back our point of interest to the generic Hecke algebra, where H = Ha(u) with A =
Z[uz,uz]. Then the clements of A have the form Y., a;uz?, a; € Z and a; = 0 for all but finitely
many i.

We define a map from A to A, by a — @, i.e such that 3 au2’ — Y a;uzi =3 a;u~ 2!
This is an automorphism of the ring A of order 2. Then we can define, as we will see in the next
proposition, an involution 6 : H — H by

00> awTw) =Y Gu(Ty-1)""

weWw weWw

S/

But before these let examine some special features that emerge from the way we have constructed
the generic Hecke algebra. In particular as the following Lemma shows for the algebra H, is the
existence of inverses for the basis elements T}, due to the presence of the indeterminate u~"! in the
base ring.

Lemma 6.4.1. The basis elements T, is invertible in H

Proof. Let w = s1---s, be a reduced expression of w. Then we know that T, = Ty, ---T5,.. So it’s
sufficient to show that each T is invertible. Indeed, by the quadratic relation we have :

T2 = uTy + (u—1)T,
uwIIT? =Ty 4+ (1 —u HT,

T,(u T+ (™ = 1)) =Ty
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where T is the identity element of H. So

T, ' =u M+ (v = DTy

Proposition 6.4.1. For every h,hy,ho € H anda € A
1. 0(ah) = ab(h), i.e 0 is semilinear
2. 0(h1 + he) = 0(h1) + 0(he)
3. 0(h1hs) = 6(h1)6(h2)
4. 02 =1, i.e 0 is an involution.
Proof. 1. Obvious from the definition of ¢
2. Obvious from the definition of #

3. STEP 1: First show 0(T,T,,) = 0(Ts)0(Ty)-
Suppose first £(sw) = £(w) + 1. Then TsT,, = Tsyp SO

e(lrsTw) = H(Tsw) = Tsuﬁlil = walsil = (walTs)_l = Tsilwalil = Q(Ts)a(Tw)

Now suppose £(sw) = £(w) — 1. Let w’ = sw = w = sw’ and {(sw’) = {(w) + 1.

0(TsTy) = 0(TsTsTy)

O((uTy + (u = 1)T) T )

O(uTy + (u—1)T,Ty)

u ' 9(Ty + (™ = 1)0(Ts Ty ), by (1) and (2) of this proposition
= (W' T+ (u™ = 1)0(T3)0(Tw)

= ' + (u ™t = DT, HO(Tw)

Now by calculate 6(Ts)0(Ty,) we get:

0(T$)0(Tw) = 6(Ts)0(Ts T )
= 0(T5)0(Ts)0(Tw ), by first case
=T,7%0(Ty)
=@ ' + (ut = DT, H(Twr)
Since T, ™! = u='T, + (u=' — 1)T} so multiplying by T, ™" gives
T, 2=uw'T + (-7, !

So
Q(TsTw) = G(Te)o(Tw)

STEP 2: We will show that §(Tsh) = 6(Ts)0(h), for every h € H. Write h = > a, Ty SO
O(Tsh) = 00 _ awT.To)
= @ub(T.T,), by (1) and (2)
= @ub(T.)0(T,), by STEP 1

= 9<Ts) Z@H(Tw)
= 0(Ts)0(h)
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STEP 3 : Now show that §(T,,h) = 6(T,)0(h), Vh e H.
For, let w = 51 - -+ s, be reduced. Then T,, =T, ---T5, so

0(Twh) = 0(Ty, -+ Ts, h)

= 9(T81)9(T52 e TsTh)

= = 0(Ty,) - 0(Ts,)0(h)

— 6(T,)0(h)
STEP 4 : Finally show 6(h'h) = 0(h')0(h), for every h',h € H.
Let ' = Z awTw S0

O(h'h) = 603 awTuh) = @uf(Tuh), by (1) and (2)
= @ 0(T)0(h) = 0(h)6(h)

4. 0%(ah) = 0(@d(h)) = ab*(h) = ab?(h), since @ = a.
So 0 is linear. We must show it fixes all T,, for all T;,. By calculations we get:

6*(Tw) = 0(0(Tow)) = (T2 ")
Now Ty-1Tpy-1 "1 =T} 50 O(Tyy=1)0(Tyy1 1) = T1. S0 O(Tpyr 1) = O(Tpy1) "
02(Tw) = H(Tuﬁl_l) = H(Tuﬁl)_l = (Tw_l)il =Ty

So since #? is linear and it fixes all T}, it must be the identity.

6.5 The R-polynomials

Now let examine a little deeper the inverses T, * for the basis elements {Tw}wew. Suppose that
w € W, and that w = s1---s, is a reduced word. Then from the defining relations of the Hecke
algebra, we have that

Tp="Ts, - Ts,

So in order to calculate the inverse T}, ! we could make it by
T, ' =T, ' Ty, !

But it’s clear that as the length ¢(w) is increases it will become unmanageable and progressively more
complicated to compute the inverses from this formula. In this direction, by using the Bruhat ordering,
we will see that the inverses can be written as a linear combination of T, for which z < w, in the
sense of the Bruhat ordering, where the coeflicients can be non zero only if z < w and in fact these
coefficients are polynomials in u, which we will called R-polynomials. More precisely, we would like to
shown the following main Theorem:

Theorem 6.5.1. For all x,w € W we have that the basis elements T, of the Hecke algebra H is
invertible and for the inverse of a typical T,,—1 we have:

Tuj—ll = Z uwilmTw

z<w

where Ry 1y = €1€0Upty " Ry, with u, = ue(””),RLw € Z[u] is a polynomial in u of degree £(w) — £(x)
(Note Ry = 0 whenever x £ w ) and Ry =1
Also Zzgygw €x€yRy y Ry w = 02w

Now, we will quote the following propositions, from which we will obtain an algorithm for computing
the R-polynomials, and also lead us to the proof of the above Theorem.
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Proposition 6.5.1. Suppose {(sy) =¢(y) — 1, s€ S,y € W. Then

Y N uRspsy + (u— )Ry, ifl(sz) = L(x) + 1

Proof. {(sy) =Ll(y) — 1,y =sy,soy=sy and y~! =y 's. Also Ty =T, T,

Ty ' =T, Tyt
=@ ' Ty + (™ = )T Rpyu™"™T)

= ZRx,y’U_(Z(’”)"'l)TSTI + ZR‘”’@’/ (u—l _ 1)u—€(x)Tw

= Y Rypu T+ N Ry pum O (T, + (u— 1))

x,sx>T T, sx<x

+3 Ryy(ut = Du T,

So
Ty71*1 _ Z (mu,[(z)(ufl _ 1) +mu*(£(sz)+1)u)Tx
T,sT>T
+ > Boyu (™ = 1) + Ryp ™ CEDTD L Ry~ CE0 T (g — 1)) T,
x,sr<T
Also

T, ' = Z R, yu™ "™,

Now comparing the coefficients of T, from the above relations gives :

Rz sy if sx <z
Y Ry sy(u™ — 1)+ Ry syu™t  if sz >
Applying the involution once more gives us what we want. O

Proposition 6.5.2. If l(ys) =L(y) — 1, s€ S, y € W. Then

R Rays zy if ts <z
i URgs ys + (U — 1) Ry ys if ts > x

Proof. Using the previous proposition and inverses we get the result we want. O

Proposition 6.5.3.
Ry, #0 then x <y

Proof. By induction on £(y):

If £(y) = 0 then y = 1 and so we have the result from the above working.

So suppose £(y) > 0. Choose s € S with sy < y.

Suppose first that sz < z. Then by the previous proposition R, , = Rey sy. Suppose R, , # 0. Then
Rozsy # 0 and so sz < sy by the induction, but z = s(sz), y = s(sy) with the length increasing in
both cases. So z < y.

Now suppose instead that sz >z, R; , # 0. Then

Riﬂﬂ/ = uRS@EﬁZ] + (u - 1)R$75y

by previous proposition.

So we have Ry sy # 0 or Ry 5y 7 0 or both.

If Rsz sy # 0 we get sz < sy, ie x < sz < sy < and so z < y.

If Ry sy # 0 we have 2 < sy by induction, but + < sy <y. Soxz <y O
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Proposition 6.5.4. If x <y then R, , is a polynomial in u of degree {(y) — {(z).

Proof. By induction on ¢(y):
If {(y) =0,then y =1s0 Ri1 =1, Ry 1 =0 for 2 # 1. So we are ok.
Suppose £(y) > 0. Choose s € S with sy < y.

Case 1: Suppose sz < x. Put 2’ = sz. Also Ry, = Rsysy. Now we have that 2’ < y, sz’ > o,
sy < y so by a lemma in bruhat ordering we get 2’ < sy. Moreover sz < sy. By induction R, s, is a
polynomial in u of degree ¢(sy) — ¢(sx) = £(y) — £(x) since both increasing by 1.

Case 2: Suppose this time sz > . Then

Ry y =uRsp sy + (u—1)Ry sy

and we have x < y, sz > x, sy < y so again by the same lemma as previous we get that x < sy. So
by induction R, , is a polynomial in u of degree {(sy) — ¢(x) = £(y) — £(x) — 1. So when we multiply
it by (u — 1) the degree goes up by 1, i.e to {(y) — £(z).

Also by induction Ry, g, is either 0 if sz £ sy or a polynomial in u of degree ((sy) — {(sz) =
L(y) — l(x) — 2. So even when we multiply by u we just get degree £(y) — ¢(x) — 1 (so doesn’t affect
the overall degree of it).

Thus R, 4 is a polynomial in u of degree {(y) — ¢(z). O

Proposition 6.5.5. Suppose © <y and £(y) — l(x) < 2. Then
Ry, = (u— 1)5(9)*4(1’)

Proof. 1. Suppose £(y) — £(x) = 0. Since x < y this means z = y. Now let z = s1 - - - 5,. be reduced.
Then Ry 5 = Re,.cos,61 -5,
So taking s = s1, we get that sx < x, and thus by a previous proposition

Repo =R s, 515, = Rogoios, 5005

By repeatedly applying the proposition, varying s over sq,--- , s, gives

Rioe = Ruycsp s, =+ = Rig = 1= (u— 1)°

2. Suppose {(y) — b(x) =1
Then exists reduced expression y = s1 -+, with x =s7---8;--+s,.. So

Ry = Rg,...5,...5,,5,...s, since both expressions are reduced

r

= R,...5,--5,.,5,---s, Dy applying the proposition as in the previous case

=R

Sit1°SpySit Sy

wsn_1,85--s._1 Dy applying the analogous proposition as previous for the right handed version

= Rl,si
=uRs, 1 + (u—1)R; 1 since length increasing
=u-0+(u—1)-1 sinces; £ land Ry; =1

:u—lz(u—l)1

3. Finally suppose £(y) = ¢(z) + 2 and = < y. Then exists reduced expression y = s1--- s, 8.t
T=81--"8S. S0

Ryy = Rsyo6ioje50,8105,
sn,s:--s. Dy repeatedly use of the proposition as previous
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So

Roy = uRss 15 1 800105, T (U= DRs sy 1 sipes;

Now the elements s; - --s;_1 and s;41 - - - 5; have the same length, so if s;---s;_1 < 8341 ---5; wWe
must have equality. But if s;---s;_1 = S;41---5; then s1---5. =51 ---8;---§; -5, contradict-
ing the fact that s; - - - s, is reduced.

So s1--8j-1 L Sip1---s; and thus Ry, | s, 4es; =0

So

Rway = (U’ - 1)RS¢+1"'ijl,si+1~~8j
= (u—1)(u—1) by the part (2) of the proof
=(u—1)>2

Example 6.5.1. Let W = W(A;) = S;.
W =< s1,82]51> = 1 = 897, (8182)3 =1>={1,51,52,5152,5251, W, }

where w, = 515281 = S25152. The table for R, looks like :

:c y 1| s1 So S189 8981 Wo

1 Iluwt|wt] (w=17"]@w-1"] (u-1)(w2—u+1)
S1 01 1 0 u-1 u-1 (u—1)°

59 0l o |1 | ut u-1 (u—1)°

S182 0 0 0 1 0 u-1

S281 0 0 0 0 1 u-1

W, 0|0 0 0 0 1

Because from the previous propositions we have that:

e For every y < x we have that R, , = 0, so all the elements under the main diagonal of the above
table have to be 0.

If v =y, then Ry, = R11 =1, so in the main diagonal we will have only 1.

o For every elements of W such that {(y) — {(z) = 1, we will have that R, , = u — 1, by the case
(2) of the proposition 6.5.5

Similarly by the case (3) of the proposition 6.5.5, if {(y) —€(x) = 2 we have that Ry, = (u — 1)2,
e So the only R-polynomial we have to compute is the Ry 4, .
Riw, = Risys5s = URs; spsy + (U= 1) Ry, = u(u— 1) + (u—1)(u— 1)2
from the above statements. Finally Ry, = (u—1)(u?® —u+ 1)
Definition 6.5.1. Let e, = (—1)") and u,, = u*®)

Proposition 6.5.6.

-1
Ry = exeyuzuy Ry

Proof. By induction on ¢(y) :
If {(y) =0. Then y =1 and R, 1 =0, for x # 1, Ry 1 = 1. So in this case we have the result.
Assume £(y) > 0. Choose s € S with sy < y.

Case 1: Suppose sz < z. Then R, , = Rez sy-
By induction

— -1
Rsx,sy = €Esx€sylUszUsy Rsx,sy
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So

Ry, = exeyumuy_le,y
Case 2: Suppose sz > x. Then R, , = uRsy sy + (U — 1) Ry 5y SO
Rz,y = u_lm + (U_l - ]-)Rz,sy
— EstSyusxusyilex,sy +(ut - 1)exeyuxuy71Rx7sy by induction
= Gmfyuw“y_lesw:sy - (U_l — DuRy sy)
= GEEyUzuyil(URsa:,sy + (u - I)RI»S?J)
= Emeyuwuy_lRLy
O

Proposition 6.5.7. If W is finite, then Ry, = Ry, ww,z for all x < w. Where w, is the longest
element of W.

Remark 6.5.1. Recall that it satisfies L(wow) = l(w,) — L(w) for all w € W and that x < w if and
only if wow < wex.

Proof. By induction on £(w):

If {(w) =1 then w =1 and so Ry 1 = Ry, v, = 1.

Assume ¢(w) > 0, choose s € S such that ws < w. There are two cases to consider:

Case 1: If zs < x then also w,x < w,xs. So we can apply the right handed version of proposition to
each of these situations and then by induction we get :

Rz,w - Rms,sw = Rwows,wozs = Rwow,wax
Case 2: If x < zs then again by the proposition we have
Ry w = URps s + (u— 1) Ry ws
Now by induction we get that
URys ws + (U — D) Ry s = U ws,wozs + (U — 1) Ruyws, w,z

So

Rw,w = 'U/Rw(,ws,wuws + (u - 1)Rwuws,wuac = URwows,wows + (U - 1)Rwow,woxs
where the second term replaced by (v — 1) Ry, w,w,zs due to the proposition. By applying again the
same proposition we obtain that

Rw,w = URwows7wo-'L'5 + (’LL - I)Rwow,wows = Rwow,wow

, as required.
O

Theorem 6.5.2. For all x,w € W we have that the basis elements Ty, of the Hecke algebra H is
invertible and for the inverse of a typical T,,—1 we have:

T;}1 = Z um_lmTz

where Ry = €4€0Ugty "Ry w, Rew € Z[u] is a polynomial in u of degree {(w) —£(x) (Note Ry ., =0
whenever x ¢ w ) and Ry, =1
Also ngyéw exeyRe y Ry w = 0z.w
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6.6 The Kazhdan-Lusztig basis of Hecke algebra H

Our goal now is to find a new basis {C,, } for the generic Hecke algebra H, such that indexed again by
the elements of W, but consisting of elements fixed by the involution 6, i.e we will construct a basis
for H such that consisting of f—invariant elements. Recall that the involution 6 : H — H is defined

by
> awTw— Y @p(Ty-1) "

Note also that, as in the case of the calculation of the inverse elements of the basis T, of H, we
had to introduce the concept of P-polynomials, similarly in order to construct the new basis C,, of H,
we will simultaneously obtain a new family of polynomials, which we will call them Kazhdan-Lusztig
polynomials, denoted by P, ., for z,w € W, and which will be reminiscent of R-polynomials but
subtler, and therefore easier to calculate them.

Last but not least, this basis it will play a crucial role in the construction, that we will see in a later
chapter, of relatively low-dimensional representations of ‘H arising from the structure of the underlying
Coxeter group W.

Now, we present the idea behind this construction. More precisely, by experimenting with the
relation:
T, =u M, — (1—u Ty

It is easy to see, by simple calculations of the act of the involution 6, that 6 sends Ts — u1j to
1

u™ (T, — uT1). Now by multiplying the first expression by u~2 and act again with the map 6, we can

see that this element is #—invariant. So we could define

C, = u_%(TS —uTy)

Now we could continue to construct further §—invariants elements of H, by multiplying various Cs,
for s € S, in the spirit of the way the original basis elements T;, of H are built out of the Ts. For
example, if s # ¢, by multiplying Cy with C;, we get

CSC't = uil(Tst - ’LLTS - UTt + U2T1)

and we could define this element as Cy;. At this step of the process, if we consider the only other
possible reduced expression of length 2, i.e the element ts, and we assume that st = ts, then if we
make the multiplication C;C}, we would have obtained again the same element, as we wanted, from
the previous multiplication of CsC;. But as the length of the elements is increasing, this approach
won’t work out because the following problems arise: For example, let an element w € W, such that
£(w) = 3, e.g the element sts, then by calculations we get

C,C.Cy = u_%(TstS —uTy — uTys +u?(1 +u Ty +u?Ty — u3(1 +u™HTY)
If we label this element by Cgs we have that

e 1st Problem: In the case that sts = tst, by calculations we get that Cy s # Cist, which lead to
obvious ambiguity, that is occurs from the way we have until now construct the new basis.

e 2nd Problem: The polynomials that are appearing as coefficients of Ty and T in the above
expressions for the elements Cyg, etc are way more complicated than we would like to be, in
order to be easy to compute them.

But, in order to avoid such situations, we will see below that the expressions such as C;C;Cs — Cy
are §—invariants and also a linear combination of T, where = < sts (by the Bruhat order), with the
coefficients being quite simpler to calculate. So we conclude to the following very important Theorem.

Theorem 6.6.1. There is a unique element Cy, € H such that 0(Cy) = C, (i.e Cy, is 0—invariant)
and

Cw = Ewuw% Z fruzilpz,me
zeW:z<w
where Py, =1, Py € Z[u] has degree < 1({(w) — 0(z) — 1) if z < w.
The Py »(u) is called a Kazhdan-Lusztig polynomial.
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Proof. e Uniqueness:
Let w € W we write

Cy = Z a(y,w)Py Ty, where a(y,w)= eyewuw%uy_l

y<w
and assuming that C,, has the properties we have state in the theorem.

9(011)): Z (1 3 E(w)+L( y)P T

y: y<w
— E €y€uw u 2€(w +é("/ § R ﬁyu_é(l o
y: y<w z: <y

Z( Z €y€wll —20(w)+£(y)— Py )T

z:e<w y: r<y<w

For 6(C,,) = Cy need

ereubt @O S MO HO @R

)

y: x<y<w

U%Z(w)_é(z)PI,w: Z €r€yu” 3(w)+e(y)~ “)R v Py

y: x<y<w

Know we will show that the P, ,, ’s are uniquely determined by induction on ¢(w) — £(y)

If n =0 then P, ., = 1 having been settled by hypothesis.

We then assume P, ,, are all uniquely determined where z <y < w, and we will show that this
forces the choice of P, ., to be uniquely determined.

By multiplying both sides of the above equation with u2‘@ and move the term for y =
from the r.h.s to the left (using the fact that R, , = 1) yields :

WHOHOP @@ o Y e HOHO- MO, (1)
y: x<y<w

Now by induction all P, are already uniquely determined for x < y < w, so everything on
the r.h.s of the equation is known and is unique, so we have to argue that P, ,, is also uniquely
determined.

Since < w, the degree assumption of P, ,, from the theorem, implies that the first term
of L.h.s of the equation is a polynomial in u? with no constant term (otherwise P, ,, would have
to contain u%, which is contradiction due to P, ,, € Z[u]). Similarly, the term u’%z(“’H%@(z)Px@
is a polynomial in u~% with no constant term. So no cancellation occurs, and there is at most
one choice for P, , satisfying the equation (6). So P, ,, is uniquely determined.

o Existence:

If w=1 then Cl = Tl QED

Now we use induction on £(w). So assume w # 1. Also assume Vw' € W with £(w') < f(w).
Let w = sv, where £(v) = {(w) — 1. So C, exists by induction and thus P, , is defined for every
z < v. Let u(z,v) be the coefficient of the highest power of u in P,,. i.e is the coefficient of
w2 @) ~6E=-1 iy P, . We define:

Cw = CSC’U - Z /-L(Z’ U)CZ’

z: z<v,58z<z
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where Cy = u*%Ts — u%Tl and by z < v we mean that z < v and P, , is Kazhdan-Lusztig
polynomial of the maximum possible degree, so

Cyp = (u_%TS — u%Tl)CU — Z w(z,v)C,

z: z=v,8z<z

Now we will show that C,, satisfies the required conditions:

First, C, is §—invariant :
Indeed,

0(Cw) = (T, —u2T)O(C) — Y pulz,0)0(Cs)

z: z<v,5z<z

But §(C,) = C, and 0(C,) = C, by induction. Also
u%ﬂf1 - uféTl = u%(uflTs + (1f1 -1)T) — uiéTl = uféTs — u%Tl

So
0(Cy) = (u_%TS — u%Tl)Cv — Z w(z,v)C, = Cy
z: 2<v,82<%2
Now we calculate the coefficients of C,:
Cyp = (u*%Tsfu%Tl) Z eyevu%e(”)*e(y)Pyvayf Z w(z,v) Z eyezu%e('z)*e(y)Py,zTy

y: y<v 2z 2<v,82<2 y: y<z

Then

Cy = Z eyevuég(”)_z(y)_%Py o IsTy
y: y<v

y: y<v

N Z Z 1z, ”)eyezuéz(z)_e(y)Py’zTy

Y y<v z: y<z<wv,sz<z

Foe the 1st term in the above relation we have that:

1st term = Z eyevu%é(”)*e(y)*%Pyvasy

y: y<v,sy>y

+ Z 6yevuz(v)_é(y)_%Py,v<UTSy + (u—1)T})

y: y<v,sy<y
1p(0)— 1= 1p(0)—l(v)— L e
= E —eyeut TP T E eyeouztW W=z (y —1)P, T,
y: sy<uv,sy<y y: y<v,sy<y

+ Z —eyevuée(”)_l(y)_%Psyvay

y: sy<v,sy>y

So the coefficient of T}, in C, is as follows:
All y appearing have y < w, (since for the 1st term sy < v, sy < y, then y = s(sy),
w = sv = y < w, and similarly for the 2nd term y < v < w).

Now suppose y < w and sy < y. Then the coefficient is:

_Eyevuéz(v)ie(yH%Psy v €y€vu%g(v)7£(y)7épy v T Z (=, U)eyezu%az)iay)Py z

z: y<z<w,sz<z

In the other hand, suppose y < w and sy > y. Then the coefficient of T} in C, is:

1

— _1 1 — 1 1 —
_eyevug‘e(v) e(y) 2 Psym _ eyevug‘e(v) 5(y)+2 Py,v _ E /“‘L(Z7 U)Eyezuzz(z) e(y)Py,z
z: Yy<z<v,sz<z
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We would like to put both of these into one formula, so we define:

1, ifsy<wy
CcC =
0, ifsy>y

Then the coefficient of T} in C, for y < w is

*Eyﬁvuée(v)fe(yH%((U71)1_0P3y7v + (Ufl)cpyﬂ)) - Z p(z, U)Eyezuée(z)iz(y)Py,z
z: y<z<v,sz<z

But this coefficient must be, by definition

3(w) = €(y) Py

€yEU2
So
Py = (U_l)licpsy,v + (u_l)CPy,v _ Z p(z, v)ewezu_%(2(“’)_6(2))10%2
2 y<z<v,52<2
Hence
Py = ulicPsy,v +u°P,, — Z nes U)u%(z(w)%(z))pyyz

z: y<z<w,sz<z

So by induction on ¢(w) the above formula determines the P, ., and all the P ’s in r.h.s lie in
Zlu). Hence P, € Z[u] (since pu(z,v) # 0= $(£(v) — {(z) + 1) € Z). It remains to check the
degree hypothesis is satisfied by the above P, .

By induction we get:

Py, » has degree < %(ﬁ(v) —L(sy) — 1) when sy < v
P, ., has degree < %(ﬂ(v) —L(y) — 1) wheny <wv
P, . has degree < %(f(z) —l(y) — 1) wheny < z
Now suppose first that sy > y. Then
Pyw =Py, + P, — Z M(z7U)u%(f(v)—E(z)-H)Py’z

z: y<z<w,sz<z

y # z since sy > y but sz < z s0
Degree of Py, <

(£(z) = £(y) — 1)

Degree of last term < =(£(v) — £(y)) = %(f(w) —Ly) - 1)

— N =

[\)

v # sy since sv > v(if v = sy = sv = y = w = y, but we assume sy > y, i.e sw > w, which is
contradiction since v = sw < w). Also ssy < sy (because y < sy) so

Degree of Py < 3 (00) ~ Hsy) 1) = 5(0(0) ~ y) ~2)
1 1
Degree of uPsy.w < 5(6(v) = £y)) = 5 (£(w) — £(y) — 1)
Moreover, whether y = v or not

Degree of Py, < % = %(((w) —Uy)—1)

So
1
degy#wpy,w < §(€(w) - é(y) - 1)
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Now suppose sy < y and y < w. Then

Pyw =Py +uP,, — Z pu(z, v)ur @G0 p
z: y<z<w,sz<z

sy # v since y # w. So if Psy, # 0, then
degPuyo < 3(0) — sy) 1) = S(0(w) — €(y) ~ 1)
y # v since sy <y, sv > v. Soif Py, #0
degPyo < 3(U(0) — {ly) — 1)
deguPy, < 5 (¢(w) ~ ()

If z # y then by induction

degP,- < 3 (U(z) ~ () ~ 1)
deg(p(z,v)ut (OO, ) < 2 (00) ~ tly)) = 3 (E(w) ~ Uy) 1)
If 2 = y then
deg(u(z V)b NP, ) = 2 (0(0) — £(2) + 1) = L (0(w) ~ £(y))

So Py, has degree < 3(¢(w) — £(y)), but we need to show that

degPya < 5 (¢(w) ~ £ly) ~ 1)

1

. For that, consider the terms of degree 3

terms are:

(U(w) — £(y)), and we will show they cancel. These

leading term of uPy , = u(yvv)u%(l(v)*f(y)*l)ﬂ
v)u%(f(v)—f(y)-&-l)

s () =€)

= u(y,
= :u(ya U)

and from z = y is the term —u(y,v)u%(aw)_e(y)). So the above terms cancel each other out.
Thus by induction

degPy < 5(Lw) — y) ~1)if y #
O

Definition 6.6.1. The polynomial P, .,(u) are called the Kazhdan-Lusztig polynomials and the set
{CWw} is called Kazhdan-Lusztig basis.

Proposition 6.6.1. Forse S, we W

TC. - U3 Clapy + uC,y + ZzszySZQ u%,u(z,w)Cz if sw > w
Y =0y, if sw < w

Proposition 6.6.2. Forse S, we W

cC - Cyw + Zz;z_<w7sz<z w(z,w)C,  if sw>w
o —(u? +u"2)C, if sw < w

Proposition 6.6.3. 1. P, ., has constant term 1
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2. Suppose y < w

o Ifl(y)=4(w)—1then Py, =1
o Ifl(y) =4(w) —2 then Py, =1

Corollary 6.6.1. Let x < w. If sw < w but sx > x for some s € S, then P, , = Py,
Example 6.6.1. Let W = W (A3) = S5
W = {17 51,52, 8152, 5251, wo}

where w, = $15251 = $25152. The following table compute the polynomials P, ,(u):

w

~

81 | 82 | 8182 | S281 | Wo

~

S1
52
5152
5251
Wo

I =
QIS | =
QIR =
Sl | ~| ~| ~|~
Sl ~| S|~~~
[ [ [ (Y I

e By the proposition 6.6.3, if {(y) = {(w) — 1 or l(y) = {(w) — 2 we get that P, ,, = 1.
o Also if y = w we have that Py, , = 1.

e For every time that y £ w, i.e for the polynomials that occurs below the diagonal and on some
other places, we get that Py ., = 0.

e So the only case that remains to calculate again is the polynomial Py .. By setting in the
corollary 6.6.1, s = s1, x =1, and y = w,, we get that Py 4, = P, o, = 1.
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7 Cells in Coxeter Groups

Now that we have defined the Kazhdan-Lusztig polynomials, and construct a new basis {C,, }, indexed
by the elements of W, for the generic Hecke algebra H, we will use them to finally define the cells
of a Coxeter group W, which as we will see, are separated into three kinds of cells (left,right, and
two-sided). Furthermore, it will turn out (by using the theory that we have until now developed in the
previous chapters) that for each type of cell, we can associate a representation of the generic Hecke
algebra H.

In particular, each kind of cell is an equivalence class of a corresponding equivalence relation on
the group, and the set of cells of a given type has a partial order imposed on it. This partial order is
compatible with the multiplication formulas involving the C-basis, as described in the last propositions
of the previous chapter, and we can exploit this to find relatively low-dimensional representations of the
Hecke algebra, which we will called it, later, (left, right, two-sides ) cells representations, respectively.
Also notice that, by specialising uz 1, we obtain a representation of W. The dimension of the
representation will turn out to be the size of the cell, and hence will be small compared to |W]|.

In this direction, first by looking at the action of the elements T of H on the Kazhdan-Lusztig basis
C\, we can see how H acts on itself in the left (regular) representation, relative to the C'—basis. But H
is still very large module, so in order to construct representations of H, is natural to look for smaller
submodules of H (or better as we will see subquotients). At this point, the Kazhdan-Lusztig basis
play important role, since lead us to a constructions of representations associated with a particular
sets, as earlier we called them cells, which partition W.

7.1 The Left Cells of a Coxeter group W

Now, in order to construct the cells of a Coxeter group W, our first goal is to define the preorders
<r, <R, and <y on the group W and the left and right descent sets of an element w € W.

Definition 7.1.1. For any w € W, we define the left and right Descent set of w, respectively, as:
Lw):={seS:sw<w}andR(w):={s€S:ws<w}

Definition 7.1.2. Given z,v € W we write z «— v if either [z < v and p(z,v) # 0] or [z > v and

(v, z) #0]. de
24—V = Z2=<0V orv=<2z

Definition 7.1.3. Let v,y € W. Write y <r, v if there is a chain of elements v = xg, 21, -+ , 2, =y
such that for each i x; +— x;11 and L(z41) € L(x;). So xi41 <p ;.

This isn’t quite a partial ordering since it doesn’t satisfy a < b,b<a=—=a =10

Definition 7.1.4. We define the relation v ~, y to mean both y <p v and v <p y.The ~ is an
equivalence relation on W. The equivalence classes are called left cells of W.

It’s worth saying that the preorder <j gives a partial order on set of left cells.
Example 7.1.1. Let W = W (A3) = S3, i.e
W = {17 S1, 52, 5152, S251, wo}

where w, = $18281 = 828189 the longest element of W. Now the Bruhat partial ordering gave a diagram
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In this case v +— y < v <y and L(v) = L(y) — 1] or [y < v and (y) = £L(v) — 1]. So we get for
the sets L(w), for each w € W:

L1)=0
L(s1) = {s1}
L(s2) = {s2}

L(s1s2) = {s1}
L(szs1) = {s2}
L(w,) = {s1, 52}

Now note that w, <1, s152, W, <, S251
8182 <, 82, 8281 <[, 81
s1<pl,s2<p1
s182 and s1 are joined but L(s152) = L(s1) so s152 £1 1
But we get so <p, s152 and s1 <[, s251
Thus the left cells of Ss are
(1)7 (8178281)7 (8278182)7 (IUO)

and the ordering on these cells gives:

N

81,8281 3273132

~_

The partial order <p, of the left cells.

Now, another useful way to store this information is by using the Kazhdan-Lusztig graph. So we
give the following definition:

7.1.1 Kazhdan-Lusztig graph
Definition 7.1.5. We define as Kazhdan-Lusztig graph, a biweighted directed multi-graph with:

e For each w € W we associate a vertex for the graph.
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e And we label with an arrow x — w, for an edge of the graph, if v <+ w and L(z) € L(w). For
such a pair (z,w) we put one arrow for each s € L(x) — L(w), and weight it with both s and
w(x,w) if © < w, or both s and p(w,z) if w < x. In addition, to these arrows, we also put
arrows © — x for each s € S weighted with s and 1 if s ¢ L(z) and s and -1 if s € L(x). Then
the left cells corresponds to the vertices in each connected component of our graph.

Example 7.1.2. By applying the above definition again when the Coxeter group W = W(Ay) = Ss.
We obtain another way to construct the left cells for W, from the corresponding graph. Below we
present the Kazhdan-Lusztig graph for the Cozeter group W = W (As) = Ss, which by taking the
connected components of it we lead us to the left cells of W.

Wo
/ \

5281 5152

() ()

7.2 Left Cell Representations

Let Z be a left cell of W. Let Iz be the A-submodule of ‘H spanned by the C, for every v € W such
that v <p, w for some w € Z. (i.e all elements in some cell and all smaller ones)

Let Iz be the A-submodule of H spanned by the C,, Yo € W s.t v <; w for some w € Z and
v ¢ Z. (i.e all elements in smaller cells but not in same one).

Lemma 7.2.1. 1. The A-module Iz is a left ideal of H.
2. The A-module I is a left ideal of H.

Proof. 1. Let w € Z, so Cy, € Iz. Consider C;C,,.
If sw < w this is just a multiple of C,,
If sw > w then C;Cy = Csp + .. r<w,52<2 w(z,w)C, and so under these circumstances we
know sw <j w and z <p, w when u(z,w) # 0. So C;C,, € Iz.
So we get that CsI; C Iz (we need those in lower cells too but the above argument holds for
those too).
Thus,
HIz C Iz

and so Iz is a left ideal of H.

2. Now suppose w ¢ Z but w <r, w’ where w’ € Z. So C,, € I 7.
Suppose sw > w, so sw <y w, z <, w when u(z,w) # 0. But sw ¢ Z, since if sw € Z then
sw <pw and w' <p swso sw <y w <pw <p sw=>w ~p w' (which is a contradiction).
Alsoz ¢ Zif u(z,w) # 0, sinceif z € Z then z <j, w <j, w <p w’ <, z (which is a contradiction).
So
HIz Clgz

and thus I, is also a left ideal of H.

Proposition 7.2.1. It is clear that I, C I, so we can form the quotient left H— module

MZ = IZ/TZ

73



Mz has a basis Cy,, w € Z (where Cyy =17 + Cy,)

CsCy

Cisv j_ Zze%:iv,sz<z ,u(Z, v)@ ifS’U >
—(uz +u=2)C, if sv <w

TT - U%CSUJFUCTJJFU%Zzez;z@,sz@#(zvv)cz ifsv>w
o -C, ifsv <w

where the term Cy, in the above relations exists if sv € Z, otherwise, if sv ¢ Z the term involving

Cl, s omitted since then Cy, € Iz and it gets factored out.

Definition 7.2.1. A left cell representation of the Hecke algebra H, coming from the left cell Z, is the

representation afforded by the the H—module M.

Example 7.2.1. Let W = W (Az) = S35, we have seen that the left cells of W are
(1), (s1,8251), (s2,5182), (w,)

Then the 1-dimension representation arising from the left cell (1) is given by:
T,,Cy = uCy, T,,Ci=uCy

The 1-dimension representation arising from the left cell (w,) is given by:

T51 Cwo = _Cwo7 Tszcwo = _Cwo

The 2-dimension representation arising from the left cell (s1,s281) is given by:

__ _ 1 _
Tslcsl = 70813 Tslcs251 = u2031 +/U’C’S231

- - 1
T32081 = ucsl + U’2082817 TSQCszsl = _08281

The 2-dimension representation arising from the left cell (sq, s182) is given by:

1
Tslcsz = ucsz + u2081827 T.SlCSlSQ = _Cslsz

__ __ _ — _
TSQCS2 - 70523 T5205152 - u2032 + ucslsz

Then the matriz representations we get from these modules are:
(12) Ts, = (u), Ts, = (u)
(13) T@l = (_1)7 ,Tsz = (_1)

1

—1 w2 U 0
(14) T31 = ( 0 u ); T52 — <u1 1)

2

u 0 —1 u%
(15)T510—><u; _1>, TS2'—><O u)

The two representations of degree two are equivalent, since

G )0 o)=Y

But the two 1-dimension representations aren’t equivalent.

(12)

(13)

Note that if we replace u by q, where q is a prime power, we shall obtain representations of the

ordinary Hecke algebra, H(q), over Q(q2)

Also if we replace u by 1 we shall obtain representations of W over Q, since we get the group

algebra.
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7.3 The Right Cells of a Coxeter group W

Definition 7.3.1. Let v,y € W we define y <gr v if exists a chain of elements such that v =
To, X1, Ly =Yy where x; <— xip1 and R(xip1) € R(xi), Vi

Definition 7.3.2. v ~gpy if v <p y and y <r v. The equivalence classes are the right cells.

Example 7.3.1. Let W = W(As) = S35 the Bruhat partial ordering on Ss is

Wo

5152 5251

7

Now all Kazhdan-Lusztig polynomials are equal to 1, so only consecutive elements are joined.
So right cells are
(1), (wo), (51,5152), (s2,5251)

and we get the ordering <p on W

TN

81,8281 52,5182

~_

7.4 The Two-sided Cells of a Coxeter group W

Definition 7.4.1. We write y <pgr v if there exists a sequence v = xg,x1, - ,x, =y where at each
stage either x;11 <p x; or x;41 <g x; (Note this isn’t the as saying either y <g ory <p v)

Definition 7.4.2. v~y py ify <prv and v <prvy.
The equivalence classes are called two-sided cells.

Proposition 7.4.1. 1. Suppose x <p y. Then R(y) C R(x).
2. Suppose x ~r, y. Then R(z) = R(y).
3. Suppose x <py. Then L(y) C L(x).
4. Suppose x ~ry. Then L(x) = L(y).

Example 7.4.1. The two-side cells of Ss are (1), (s1, $2, 182, $251), (W)
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Example 7.4.2. Let W = W(As) = S, with dynkin diagram

W =< S1, 82,83 | 82'2 = 1, (8182)3 =1= (8283)3, (8183)2 =1>
and |W| = 24 In details the elements of W are:

1, s1, 82, 83, 5182, 5251, 5183, 5283, $3S2,
515281, 515283, 515352, S25153, 25352, S35251,
51525153, $1525352, 51535251, $2515352, S2535251,
§1525158352, S1528352S51, $2515835251,
515251838281

For the Bruhat ordering, bearing in mind that s153 = S3S1 and $18251 = S$251S2, S253S2 = S3S2S3

w Lw)  R(w)

1 o} 4

S1 S1 S1

S9 S92 S92

S3 S3 S3

S152 S1 S9

5251 52 S1
5153 51,53 51,53

5283 52 S3

5352 53 52
515251 S1, 52 S1, 52

515283 S1 53

515352 51,53 52
525183 52 51,83
§25382 52,83 52,83

535251 S3 S1
51525153 S1, 52 51,83
51525352 51,53 52, 53
51535251 51,53 51,52

§25183852 52 52
§2835251 52,83 51,83
5152515352 S1, 52 52,83
5152835251 51,83 51,53
§251535251 52, 53 51,852

515251535281 51,582,583 S1,52,53
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Now for the left cells of W we have :

Recall from the previous proposition that if w ~p w’ then R(w) = R(w’).

So we make the following list for the sets R(w):

w (1) (s1,8251,538281) (82,5182, 382, 518352, $2518352) (83, S283, 518283)
R(w) o s1 So S3

w (8185251, 51835251,5251535251) (5153, 825183, 51525153, 52535251, 5152535251)
R(w) 81, 82 81,53

w  (S25352,51525352, 5152515352)  (515251535251)
R(w) 82,83 81,82, 53

These sets decompose into left cells.
Recall y < w b(w) = L(y) + 1 = y <— w. So for two elements to be in a left cell we must have
y«—w, L(y) € L(w) and L(w) € L(y). Thus by distinguish in the following cases we get:

(i) Let R(w) = s1:
- 81 < 8182 80 81 <— So. Also L(s1) = s1, L(s281) = 82 $0 81 ~[ $281.
- 8981 < 838251, SO 8281 <— S38281. Also L(s281) = Sa, L(S35281) = S3 S0 S281 ~[ $35251.
So in case all the elements w € W such that R(w) = s1, form one left cell. i.e the left cell
(81, $281, 838281).

(1) Let R(w) = sa:
- 89 < 8182, L(82) = s2, L(s8182) = S1 S0 S3 ~[, $182.
- 89 < 8382, L(s2) = 82, L(8382) = 83 $0 83 ~[, $382.
- 81892 < 515382, E(Slsg) = 851 Q [,(515382) = {81,53}.
- 8359 < 818382, £(5382) = S3 Q £(315352) = {81,83}.
- 818382 < 82818352, L£(815283) = {51, 83}, L£(82518382) = S2 $0 $18382 ~ [, $2515382.
So in this case (i.e for the elements such that R(w) = sa) decomposes into two left cells
(82,8182, 8382) and (818382, 52818382)

(#ii) Let R(w) = s3:
- 53 < 8253, L(s3) = 53, L(5253) = 52 50 83 ~[ 5253.
- 8983 < 818283, L£(518283) = $1 S0 283 ~, $15283.
So in that case all elements are in one left cell, i.e form the left cell (s, s253,515253).

(i) Let R(w) = {s1,s2}:
- 518281 < 81835251, L£(818281) = {51, 82}, L(s1838281) = {51, 83}-
- 815838281 < S$251535251, £(8281535281) = {82753} S0 §18281 ~[, §18382S51 ~[, 2581535251 .
So in that case all elements are in one left cell, i.e form the left cell (s18281, 51838251, S2518358251)-

(v) Let R(w) = {s1,83}:
- 5183 < 828183, L(s183) = {1,583}, L(828183) = S2 S0 8183 ~, $25183.
- 525183 < $15251S3, £(828183) = S92 Q £(81828183) = {81,82}.
- 898183 < $2835251. L£(82838251) = {2,835} 2 L(s25183).
- 89838281 < 152838281, L(8152838281) = {81,883} S0 $2835281 ~ $182835251.
- 51528183 < S15825352S1 SO also 51828183 ~Y[, $1525359S51.
So in this case (i.e for the elements such that R(w) = {s1,s3}) decomposes into two left cells,
(8183, S25183) and (51825183, S2838251, $152835251).

7



(vi) Let R(w) = {s2,3}:
- 898382 < $1828382, L(828382) = {82, 83}, L(s1828382) = {s1, 83}-
- 815828382 < §18285153S82, £(8182815382) = {81782} 80 §28389 ~1, 81528382 ~J, §152515352.
So in that case all elements are in one left cell, i.e form the left cell (s25382, S1828382, §15281535281)-

So the left cells are

(1)
(5175251,838251)
(52,5152, 5352)
(s3,5253,515283)
(515352, 52515352)

(5183, 525153)
(313281751535251,5251535251)
(81525153,52838281,8182838281)
(828382781828382,8182818382)
(518251835251)

1

Note that y ~; w <=y~ ~r w™l. So we also know the Right cells:

(1)
(5175152,515253)
(8278281,3283)
(83,5352, 535251)
(525153, 52515352)
(8183,318382)
(815251751525153,8152515352)
(81835231781828382,8182838281)
(525382, 52535251, 5251535251)
(515251535251)

Then the Two-sided cells are:

(1)

S1, S251, S35281,
S2, 8152, 5352,
S$3, S253, 5152853

515352, 52515352,
5153, 525153

515281, 51535251, S251535251,

$1528183, 82535251, S1525352S51,

525352, $1525381, S15251583S52
(818281838281)

Now we present some observations from the above :

(i) Consider those elements of order two, i.e w? = 1. Because of what we know about s; we know
there are 10 of them. So we jave 10 elements satisfying w? = 1 in the left cells list.
Each left cell contains just one element with w? = 1, and each right cell contains just one element
with w? = 1.
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(ii) If L is a left cell and R is a right cell with L,R in the same two-sided cell then |[LN R| = 1. (i.e
consists only of {w} where w? = 1).

(iii) The number of elements in each two-sided cell is a square.
(iv) The sum of the squares of the irreducible representations of W = |W]|.
(v) Each of the two-sided cells gives rise to an irreducible representation.

All the above observations hold for symmetric groups in general, (but not for all Coxeter groups in
general).

7.5 The Relationship between Cell Representations and the Classic Rep-
resentation Theory of 5,

7.5.1 The Classical Representation Theory of 5,

For this section, we specialize to W = W (A, _1) & S,, and consider left cells, right cells and two-sided
cells in S,.

We will demonstrate the connection between the cells and the Young tableau. In this direction we
quote the following definitions:

Definition 7.5.1 (Partition). Given a positive integer n, we define a partition A of n to be a set of
positive integers X\ = (A1, Aa, -, Ak) with Ay > Ao > - > A >0andn =X\ + -+ \p. We write
for a partition A of n, A+ n.

Definition 7.5.2 (Young Diagram). Fach partition is associated with a Young diagram, a diagram of
left justified boxes with k rows and \; boxes in each row, with the 1-st row being the one on the top and
the k-th row being on the bottom.

For example, a partition of 8 can beA = (A1, A2, A3, \y) = (4,2, 1,1) with the Young diagram

[ ]

To any partition A of n and its associated Young diagram, we say that a standard Young tableau
of A is a bijection between the boxes of the Young diagram and the natural numbers {1,--- ,n} such
that each column of boxes increases from top to bottom and each row increases from left to right. So
we have the following definition:

Definition 7.5.3 (Young Tableau). A A—tableau is a A—diagram filling it with the numbers 1,--- . n
in the squares, such that each number appears once.

A standard A—tableau obtained by filling in the numbers in the increasing order along the rows and
down the columns.

A standard tableau of the partition considered before is

3 5|8\

’\1|® DN | =

Definition 7.5.4. We let SYT) to be the set of standard tableaux T of the partition X\ = n, also we
let SYT =y, SYT, and a given tableau T € SY T\, we define the descent set D(T) to be the set
of s; € {s1,-++,8n — 1} such that i+ 1 appears in a strictly lower ro of T.
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Now, given a symmetric group Sy, the classical theory gives us that the irreducible representations
can be indexed by the conjugacy classes of S,,. But these conjugacy classes can be indexed by partitions
A F n: a conjugacy class is characterized by the size of its cycles. For example, the conjugacy class
containing the trivial element has cycle sizes (1,1,...,1), and can be identified with the partition of n by
(1,1,---,1). Therefore, by the representation theory of a finite group, the number of the inequivalent
irreducible representations, over C, is equal to the number of partitions of n. So from the above is
clear, that we have 1-1 correspondence between the irreducible representations and the partitions of
n, and hence there exists 1-1 correspondence of Young diagrams with irreducible representations.

Also notice that, the dimension of the irreducible representation py of the symmetric group S,
corresponding to the the partition A of n, have dimension |[SYTy|, i.e is equal to the number of
different standard Young tableaux that can be obtained from the diagram of the representation. This
number can be calculated by the hook length formula. More precisely, the hook length of a certain
box in Young diagram of shape A, denoted by d is the number of boxes that are in the same row to
the right of it plus the boxes in the same column below it, plus one for the box itself. By the hook
length formula we obtain that the dimension of the irreducible representation are given by

n!

dy = dim p\ =
A P product of all hooks lengths of boxes in the Young diagram

One way to transmute the irreducible representations is of what we called Specht modules. In partic-
ular, we have the following Theorem, from the combinatorial point of view in representation theory of

Sh:

Theorem 7.5.1. The subspace Vy := C[Sp]en of C[Sy] is an irreducible representation of S,, under
left multiplication. Every irreducible representation of Sy, is isomorphic to Vy for a unique \. For the
definition of cx. We can define two subgroups of S, corresponding to SY Ty :

1. The row subgroup Py : the subgroup which maps every element of 1,...,n into an element standing
i the same row in SYT).

2. The column subgroup Qy: the subgroup which maps every element of 1,...,n into an element
standing in the same column in SYT).

Then we define the Young projectors

1
a)\::ﬁZg

gEPy

and

b= —— 3 sgnlg)g

|Q>\‘ gEQ N

and finally we let cy = a)by

7.5.2 The Robinson-Schensted Correspondence

We now state the Robinson-Schensted Correspondence, along with some miraculous facts about it.
Since the proofs of these theorems are largely combinatorial, we will leave them out due to space
considerations.

Earlier we represented each w € S,, with reduced word expressions w = 81 - - - §,.. Another way to
represent permutations, however, is by simply writing where each letter is sent. For example, we write
W =27 Ty, where w(i) = z;.

Now we associate to each w € S, a pair (A(w), B(w)) of tableaux, where both A(w) and B(w)
are tableaux of the same partition. To do this, let w = 27 --- 2, and let us construct (A(w), B(w))
recursively. Supposing that the (i-1)-th step has already been completed, the i-th step goes as follows:

1. Consider x; and the A that has been constructed so far.
2. Compare x; with the elements of the first row, from left to right.
3. If x; is greater than all the elements of the row, create a box at the end of the row, and put z;

into it.
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4. If not, then let the first box that x; is less than have p in it. Put z; in the box that p was in,
and start this process over again considering p and now going to the second row.

5. Continue this process until there are no rows left.
6. In B, place a new box with i in it in the location that a new box was created in A.

Let us do an example: let w = 43125 € S5. The process goes as follows, with A on the left and B
on the right.

[+]
-]

(3] 1]
4 2
1] 1]
3 2
4 3
12\ 14\
3 2
4 3
12|5\ 14|5\
3 2
4 3
Example 7.5.1. W = 53
w A(w) B(w)
1 2 3
1_<123> 123 12 3
/1 2 3 1 3 13
1=\ 1 3 2 2
1 2 3 1 2 1 2
2711 3 9 3 3
1 2 3 1 2 13
S192= {3 1 9 3 2
1 2 3 1 3 1 2
5251 = 9 3 2 3
1 2 3 1 1
Wo=1{3 9 1 2 2
3 3

All standard X\-tableaux appear. Some appear more than once.
Then we get, for a given A(w) the sets
(1), (s1,8251), (82, 8182), (wo)
and for given B(w) the sets
(]—)7 (8178132)7 (8278281)a (wo)

Also notice that B(w) = A(w™!) and that the sets for the same A(w) gives the left cells of Ss and
similarly for the same B(w) we get the right cells of Ss. Furthermore, we have the following theorem.
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Theorem 7.5.2. For W =W (4,_1) =S,

(i) w,w’ lie in the same left cell if and only if A(w) = A(w").

(1) w,w" lie in the same right cell if and only if B(w) = B(w').
(#ii) w,w’ lie in the same two-sided cell if and only if A(w) and A(w’) have the same shape.
(i) The maps A: S, — SYT and B : S, — STY are surjective.

(v) The map S, — |\, (SYT\ x SYT)\) defined by w — (A(w), B(w)) is bijective. (Note A(w)
and B(w) always have the same shape).

(vi) There is a bijection between 2-sided cells of Sy, and partitions of n. The 2-sided cell corresponding
to X has d\? elements, dy = |SY Ty |

(vit) There is a bijection between left cells of S, and standard tableauzr. The number of elements in
each left cell contained in the 2-sided cell corresponding to A is dy. Similarly for the right cells.

(viit) If L, R are a left cell and a right cell contained in the same 2-sided cell then |[LNR| =1

(iz) Each left cell contains just one element with w? = 1
Fach right cell contains just one element with w? =1

(z) FEach left cell representation o Sy, is irreducible.

Two left cell representations are equivalent if and only if the left cells lie in the same two-sided
cell.

7.6 The Example of the Left Cell representations of S,

Left cell representations of Sy

As we already have seen, there are 5 2-sided cells :

(1)

81, S251, S35281,
S2, 8152, 5352,
83, S253, 5152853

515382, 52515352,
5153, 5$25153

515281, 51835281, 52518352851,

51525183, S2535251, S152535251,

$25352, §1525381, 8152518352
(515251535251)

and the number of left cells in each 2-sided cell is respectively: (1,3,2,3,1)

Now take one left cell in 2-sided cell, e.g :

(1)
(s1,8251,535251)
(818382,32818382)
(515251751535251,8251535251)

(wo)
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Each left cell from above gives an irreducible representation of H, and also with specialization by
u — 1,we get representations of W.

So

For the left cell (1):

Tsl = (u)v T52 — (u)v TSS = (u)

This gives rise to the trivial representation of W by specialization u +— 1.

For the left cell (s1, 8251, $35251):

-1

Tgl = 0
0

For the left cell (518382, $2515382):

0 0 w 0 0
—1 u% R 'T€3 — [0 U 0
0 wu 0 wuz -1

—1 u% u 0 -1 ’U,%
TSIH(O u)’TszH(ué 1>’T83H<0 u)

For the left cell (s1s251, 81535281, $251538251):

-1 0 0 -1
T, =0 -1 w2z, Ty,— |0
0 0 u 0

For the left cell (w,):

uz 0 w 0 0
u 0|, Ty [uz -1 0
us  —1 0 0 -1

T‘il = (71)5 T‘32 = (71)a T‘33 = (71)

This is a complete set of irreducible nonequivalent representations.

Now we will use the classical representation theory of Sy in order to construct the irreducible rep-
resentations by characters, but retain the association with partitions from the combinatorial approach
into the representations of S;. After that, by specialising u — 1 we will get irreducible representations
of Sy, but by using the methods of the left cells and the corresponding left representations that occurs.
Finally, from the Robinson-Schensted Correspondence we will see that the irreducible representations,
which have been constructed by the two different methods described above, are in reality the same.

So

e From the classical theory: We have that the symmetric group Ss has 5 conjugacy classes,
{1}, C(s183), C(s1), C(s15283), C(s152).Thus there are five irreducible representations. Three of
these are common to every symmetric group : the trivial representation 1, the sign representation
sgn, both of dimension 1 and the standard representation std of dimension 3 (obtained by the
action of S; on the 3-dimensional subspace of vectors whose sum of coordinates in the basis is
zero). Thus, as the sum of the dimensions squared must be the order of the group, we get the
other two representations, let p and o, which will be of dimension 2 and 3, respectively. And
as the sum of all characters must be the character of the regular representation, we have the

following character table:
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{1} 0(8183) C(Sl) 0(818283) C(8182)
trivial 1 1 1 1 1
sign 1 1 -1 -1 1
p 2 2 0 -1
standard | 3 -1 1 -1 0
o 3 -1 -1 1 0

Now, in previous section we have seen the connection between the irreducible representations to
the partitions and further to the Young diagrams. So we have that:

1<—>D:I:I:‘ sgn < p std < | ‘ o]

e Left Cell Representations: By specialising u + 1 into the previous relations, we get the left
cell representations of Sy. More precisely, we obtain the following maps:

— For the left cell (1):
TSl = (1)’ T82 — (1)7 T83 = (1)
This gives rise to the trivial representation of W.

— For the left cell (s, 5251, $35251):

-11 0 1 0 0 10 0
T,— |0 1 0], T, (1 -1 1|, 7,0 1 0
0 0 1 0 0 1 01 -1

By simple calculations of the action of T into the elements of every conjugacy class of Sy,
we get that the character of this cell has

x({1}) =3, x(C(s183)) = =1, x(C(s1)) =1, x(C(s15253)) = —1, x(C(s182)) =0

Show by the character table of the classical theory, we conclude that this representation
corresponds to standard representation.

— For the left cell (515382, 52518382):

-1 1 1 0 -1 1
Tsl'—>(0 1),T32n—>(1 1),Ts3n—>(0 1)
Again by calculations we get the character of this cell to be:
x({1}) =2, x(C(s183)) =2, x(C(s1)) =0, x(C(s15253)) =0, x(C(s152)) = —1

Show by the character table of the classical theory, we conclude that this representation
corresponds to p.

— For the left cell (s18251, 51535251, $251538251):

-1 0 0 11 0 1 0 0
To—|0 -1 1|, T,—[0 1 0], T,—([1 -1 0
0 o0 1 0 1 -1 0 0 -1

Similarly to the previous cases we get that the character of this cell has

x({1}) =3, x(C(s183)) = —1, x(C(s1)) = =1, x(C(s18283)) = 1, x(C(s152)) =0

Show by the character table of the classical theory, we conclude that this representation
corresponds to o.
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— For the left cell (w,):
TS1 = (_1)7 T52 = (_1)7 T33 — (_1>

This gives rise to the sign representation of W.

Now by taking a representative of each cell, we will find its tableau shape under the Robinson-
Schensted Correspondence. Recall the notation we have introduced previous, A(w) = A(xy - - x,,),
where w = 1 - - - x,, with w(i) = z;. So we get:

A =408y T T 1]

A(sy) = A(2134) © [ ]

A(5153$2) = A(2413) <~

A(818281) = A(3214) 4

A(818281838281) = A(4321) <~

so indeed we have the same associations of representations to Young diagrams, as desired.
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8 Tits Deformation Theorem

Theorem 8.0.1. The Hecke algebra over C is isomorphic to the group algebra over C of the Weyl
group. Specifically, let G be a finite group with BN-pair, and let (W,S) be the Weyl group of G. Let H
be the Hecke algebra H(G, B,1g). Then there exists an isomorphism of C-algebras :

H=CW

We consider homomorphisms : Clu] — C such that f(u) — f(t) if u — ¢. These homomorphisms
are called specializations.

Proposition 8.0.1. Let Ec(u) be the generic algebra of a finite Coxeter System (W, S), over Clu].

(i) Assume that we have in the way that described above a specialization f : Clu] — C such that
u+— 1. Then the generic algebra specialized to group algebra over C, i.e

Ec(l)=CW
as C-algebras.

(ii) Assume that W is the Weyl group of a finite group G with BN-pair, with parameter q. We
consider the specialization [’ : Clu] — C such that u — q. Then the generic algebra Ec(q)
specialized to the Hecke algebra H(G,B,1p), i.e

&elq) = H(G, B, 1p)
as C-algebras.

Lemma 8.0.1. The Ec(u) is semisimple when u specializes to q, and also when specializes to 1 and
for all but a finite number of values of u.

Proof. Let £ be a finite dimensional algebra over a field and a € £. Consider the map p(a) : € — &
such that x — xa. We also consider the map T : £ x £ — field such that (a,b) — T'(a,b), where

T(a,b) = trace(p(a),p(b))
T called the trace form of the algebra &, it is a symmetric bilinear form and we say that
T is non-degenerate if and only if T'(a,b) = 0, Vb € £, implies a = 0

The discriminant of the form with respect to a given basis is the determinant of the matrix of the form
with respect to this basis of £. So if e1,--- e, is a basis of £ then, discriminant = det(T'(e;, e;)) It
can be shown that

T is non-degenerate if and only if the discriminant is different from zero

So when we specialize u +— 1, from the above the generic alg O

Recall that a finite dimensional semisimple algebra over an algebraically closed field is a direct sum
of a complete matrix algebras of a certain degrees over the field.

Definition 8.0.1. o We call a finite dimensional associative algebra S separable, if it is semisim-
ple, when the based field is extended to it’s algebraic closure.

o The degrees of the resulting matriz algebras called numerical invariants of S.

Proposition 8.0.2. Let B be an associative finite dimensional simple algebra over an algebraically
closed field L. So B is the direct sum of complete matriz algebras of certain degrees over L, say
di,++ ,d.. Let by, -+ b, be a basis for B over L and x1,--- ,x, independent indeterminates over
L. Consider Br(s,,... x,) and let b € Br(y, ... o) be the element

b= szbz
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where Bry, ... x,) = @ L(x1,--+ ,2,)b;. We call b a general element of B. Let also Bry, ... x,) —
Br(a, . z,) be the transformation such that z + bz and P(t) the characteristic polynomial of this
transformation with coefficients in L(xy, -+ ,x,).

Let
P = [ P0"
the factorization of P(t) into distinct monic irreducible polynomials over L(xy,--- ,xy,). Then
(i) The multiplicities {p;} are the numerical invariants of B.
(ii) p; = degP;(t), for all i.

(ii) If P(t) = [1Q;(t)¥ be another factorization of P(t) over L(z1,--+ ,,) such that ¢; = degQ;,
for all j. Then the polynomials Q;(t) are distinct and coincide with the polynomials P;(t). So g;
are the numerical invariants of B.

Proof. First, the statements of the proposition are independent of the choice of the basis and the set of
indeterminates used to define a general element. So we let Ef] be the basis of elementary matrices for
B where k =1,---,r, 4,j = 1,2,--- ,d;. By denoting the indeterminates {xz;;}, the general element
b € B is represented by the matrix

b= Z xf//j/Eﬁlj/

3! 4 ’
i,3",k

. So when Ezkj — bEfj we have that

kE _ "k gk k pk gk _ k ok

bES, = > ak Bl EE = ab ENEE =" al, B,
Z‘l,jl)k:/ i/ i/

Thus the characteristic polynomial with respect to this basis is

r

d
H (det(tI — z))™
k=1
)
iglt
The two factorization of the P(t) are the same. For det(tI — 2(*)) is irreducible, by specializing

where z(®) = [z

o 1 --- 0
2F) :
0 0 1
C1 C2 Cdy,
Then det(tI — 1'(k)) specializes to t% — Cd,, td=1 ... — ¢yt —c;. By proper choose of the ¢y, - - - , Cdy, We

obtain a specialization for the characteristic polynomial, that is given by t% — ¢;. But this polynomial
is irreducible by Einstein’s criterion, so it follows that the original polynomial is also irreducible.
Moreover if k # k' then det(t] — ) # det(t] — z*)) because their coefficients involve different
indeterminates.

So the d;’s coincide with the p;’s and dj, =deg of det(tI — 2*)). So p; = degP;(t). Finally, let

P =T[Rer =] 0"

where the first factorization is as given above, and where ¢; = detQ;(t), Vj. If some @, is equal to
some Qy, for k # j, then for the @); we would have a contradiction to (ii). Now, from the fact that
the polynomials P; are distinct irreducible polynomials, since they involve different indeterminates, we
have that the factors P;(t) shows up exactly p; times in the polynomial P(t). So if Q;(t) # P;(t), we
would have that the polynomial P;(t) would occur more than p; times in P(t) which is a contradiction.
Hence the polynomials {Q;} are a permutation of the {P;}. O

Also later we will need the following property that is true for the separable algebras:
Two separable algebras over a field K are isomorphic if and only if in a extension K of the field, they
have the same numerical invariants.
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Lemma 8.0.2. Let R* be the integral closure of R in F and 1, , Ty indeterminates over F. Then
R*[x1,- -+ ,my] is the integral closure of R[x1,- -+ ,xy] in Flz1, -, xp).

Lemma 8.0.3. Let R* as previous. Then (by using Zorn’s Lemma) any homomorphism f: R — K,
where K field, can be extended to a homomorphism f* : R* — K*, where K* is an algebraic closure

of K.

Theorem 8.0.2 (Tits Deformation Theorem). Let R be an integral domain, F it’s field of fractions,
and f : R — K be a homomorphism of R into a field K. Let S be a finite dimensional associative
R-algebra, and let Sp and Sk be the resulting specialized algebras over F and K, respectively. If both
Sr and Sk are separable, then they have the same numerical invariants.

Sketch of the proof. Let {a;} be a basis for S over R, hence also for Sg over F. Let {z;} be independent
indeterminates over F and also over K. The given homomorphism f : R — K by the above Lemma
can be extended to a homomorphism f* : R* — K and then naturally to a homomorphism, also
denoted by f*, from R*[z1,--- ,x,] into K[z, - ,x,]. Now if a = >, x;a; is a general element of the
algebra Sf(th ) WE consider the map z — az of Sf(th z,,) nto itself. Let P(t) = [[ P:(t)"" be
the characteristic polynomial of the transformation above, where the P;(t) are its irreducible factors
over F[zy1,--- ,x,]. Then, by the fact that P(t) is monic, its roots are integral over R[zy,--- ,y].
Then the coefficients of the factors P;(t), lie in the field generated by the roots of P;(t). In particular
each root of P;(t) is also a root of P(t), and the roots of P(t) are integral over R[z1,- -+ ,xy]. Thus the
coefficients of each P;(t) are integral over R[z1,- - ,x,] hence belong to R*[x1, - -+ , x,] by the previous
Lemma. Now we can apply the homomorphism f* to P(t). We specializes P(t) to the characteristic
polynomial of the map z +— f(a)z of Sf(m’m z,) nto itself. Then we obtain

Frew) =11

over K[z, ,2y), i.e each polynomial f*(P;(t)) are over K[z, ,2,]. Now for each i, we have
that p; = degP;(t) so by (i) of the above proposition are the numerical invariants of Sp and by (ii)
from the same proposition, we also have p; = degf*(P;(t)), for every i. So finally, by the (iii) of
the proposition, we obtain that the multiplicities p; are also the numerical invariants of Si. So the
theorem is proved. O

As an application of the above we have the main result that we stated in the beginning of this
paragraph. Particularly we have the below theorem:

Theorem 8.0.3. Let G be a finite group with BN-pair, and let (W,S) be the Weyl group of G. Let H
be the Hecke algebra H(G, B,1g). Then there exists an C-algebras isomorphism:
H=CW

Proof. Let R = Clu], so ' = Clu]. We take S to be the generic algebra over Clu]. Then by the
specialization f : u — q we take Sc(,) = H, and by the specialization f : u + 1 we take Scp) = CW.
Both algebras H and CW are separable, so from the above theorem they have the same numerical
invariants. Now, since C is algebraically closed we get that H = CIV. O

Corollary 8.0.1. Let G be a finite group with BN-pair and with |B : n;Bn;~' N B| = q for every
i. Then there is a 1-1 correspondence between irreducible components of lg (over C) and irreducible
characters ® of W. The multiplicity of a component in 13 is the degree ®(1) of ®.

Example 8.0.1. Let G = GL,(q) and W = S,,. The irreducible characters of S, correspond to
partitions A\ n. Let @) be an irreducible character of S,,. Then

D, (1) = Number of standard Young tableauz of A

By the discussion we have already done in the section of the classical approach into the representation
theory of S, we get that

n!

d,(1)=di =
A1) UTPA Product of all hooks lengths of boxes in Young diagram

e.g for the symmetric group on 3 letters, i.e for Ss, we have the following correspondence between the
SYTy with hook length entries and the degrees of irreducible representations :
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(i) the SYTy with hook length entries gives rise to irreducible representation of degree
1.

1
(ii) the SY Ty with hook length entries ‘

3
N gives rise to irreducible representation of degree 2.

(3]
(#ii) the SY Ty with hook length entries 2] gives rise to irreducible representation of degree 1.
1

Now back to GL,(q).
Let xx be the component of 1§ corresponding to A. xx appears with multiplicity ®(1) = H#kw)’
where hy(i,7) be the hook length for each box (i,j). So we get that

L Mat2Aet3Asd - (¢—D(@—-1)---(¢"—1)
Ya(1) = greRratshat @ D@ (@)

As previous let see for example GL3(q). Then we have:

1. For A\—tableau D:Ij we get xx(1) = 1, since in this case xx(1) = ¢° - %

)P —1)(g%—
2. For \—tableau ‘ we get XA (1) = q(q+1), since in this case xx(1) = ¢* - %

3. For \—tableau we get xx(1) = ¢3, since in this case x\(1) = ¢* 2 - %
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