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ABSTRACT

Question Answering (QA) over Knowledge Bases, particularly Knowledge Graphs (KGs),
has become an essential task in Natural Language Processing. This task allows users
to retrieve precise information from structured datasets by asking questions in natural
language. However, querying KGs typically requires the use of complex query languages
like SPARQL, which necessitates a deep understanding of both the KG’s structure and
ontology. For non-expert users, generating accurate queries in these technical formats
can be highly challenging. To make Knowledge Graphs more accessible, it is essential to
develop interfaces that allow users to interact with KGs through simple, natural language
questions, without needing to understand SPARQL. In this study, we build on this concept
by addressing the challenge of geospatial Question Answering, specifically focusing on
generating GeoSPARQL queries that correspond to any given natural language question.

This thesis investigates the development of an end-to-end system for generating Geo-
SPARQL queries from natural language inputs leveraging LLMs. This study targets the
YAGO2geo Knowledge Graph. The motivation behind this thesis is that traditional meth-
ods for query generation struggle with fixed vocabularies and complex KG structures, par-
ticularly for geospatial data. To address these challenges, this work focuses on leveraging
open-source LLMs, with a particular emphasis on the Mistral 7B model, and introduces
novel URI-injection techniques to enhance the accuracy and efficiency of SPARQL query
generation.

The study evaluates several state-of-the-art (SOTA) LLMs of various sizes, comparing
open-source models to proprietary models. Through named-entity disambiguation, fine-
tuning, and prompt engineering, the thesis demonstrates how injecting relevant URIs dur-
ing query generation can significantly improve model performance, particularly in cases
where knowledge about specific entities is sparse. We produce a fine-tunedMistral model,
trained on a carefully processed train set, that shows substantial improvements in query
accuracy, outperforming larger, more resource-intensive models.

The ma in contributions of this work are:

• A systematic evaluation of existing LLMs for SPARQL query generation: We
will conduct three distinct evaluations and present them in detail, drawing conclu-
sions on the current capabilities of various LLMs in this specific task. Our findings
are verified by cross-examining the results from multiple evaluation metrics.

• Anovel prompt-engineering framework for geospatial question-answering: ”URI-
injection,” designed to enhance LLM performance in SPARQL query generation
without expensive fine-tuning, making it versatile and easy to apply across multiple
tasks and ontologies.

• A fine-tuned and quantized Mistral v0.2 7b model, matching the state-of-the-art
accuracy on the GeoQuestions1089 dataset, while maintaining computational effi-
ciency through 4-bit precision.

SUBJECT AREA: Natural Language Processing, Large Language Models

KEYWORDS: NLP, LLM, KG, Question Answering, Artificial Intelligence, NED



ΠΕΡΙΛΗΨΗ

Πρόσφατα επιτεύγματα των Μεγάλων Γλωσσικών Μοντέλων (ΜΓΜ) σε διάφορα προβλή-
ματα Επεξεργασίας Φυσικής Γλώσσας (ΕΦΓ) επιτρέπουν την δημιουργία καινοτόμων συ-
στημάτων ερωταπαντήσεων που βασίζονται σε Γνωσιακά Διαγράμματα (ΓΔ), αξιοποιώ-
ντας τη δύναμη των ΜΓΜ. Στόχος είναι η δημιουργία ενός συστήματος που θα μετατρέπει
φυσική γλώσσα σε GeoSPARQL ερωτήματα που την απαντούν, χρησιμοποιώντας ένα
ανοιχτού-κώδικα ΜΓΜ. Ωστόσο, προκύπτουν πολλές προκλήσεις, καθώς η παραγωγή
SPARQL ερωτημάτων αποτελεί δύσκολο έργο ακόμη και για προηγμένα μοντέλα τελευ-
ταίας τεχνολογίας.

Η μελέτη επικεντρώνεται στο ΓΔ YAGO2Geo και χρησιμοποιεί το μεγαλύτερο σχετικό σύ-
νολο δεδομένων, το GeoQuestions1089. Υπάρχουσες μέθοδοι για την παραγωγή ερωτη-
μάτων αδυνατούν να διαχειριστούν μεγάλο πλήθος ερωτήσεων λόγο σταθερών λεξιλογίων
και πολύπλοκων δομών ΓΔ, ιδιαίτερα όσον αφορά τα γεωχωρικά δεδομένα. Για την αντιμε-
τώπιση αυτών των προκλήσεων, η εργασία επικεντρώνεται στη χρήση ΜΓΜ, με ιδιαίτερη
έμφαση στο μοντέλο Mistral 7B, και εισάγει μια καινοτόμο τεχνική εισαγωγής URIs για την
αύξηση της ακρίβειας και αποδοτικότητας στην παραγωγή SPARQL ερωτημάτων.

Η μελέτη αξιολογεί αρκετά μοντέλα κορυφαίας τεχνολογίας όπως τοMistral, το Llama και το
GPT-4o. Μέσω της αποσαφήνισης οντοτήτων, της προσαρμοσμένης εκπαίδευσης (fine-
tuning) και της μηχανικής προτροπών (prompt engineering), η εργασία δείχνει πώς η εισα-
γωγή σχετικών URIs κατά τη διάρκεια της παραγωγής ερωτημάτων μπορεί να βελτιώσει
σημαντικά την απόδοση των μοντέλων, ιδιαίτερα σε περιπτώσεις όπου η γνώση για συ-
γκεκριμένες οντότητες είναι περιορισμένη. Τα προσαρμοσμένα μοντέλα, εκπαιδευμένα σε
ένα προσεκτικά επεξεργασμένο σύνολο δεδομένων, παρουσιάζουν σημαντικές βελτιώσεις
στην ακρίβεια των ερωτημάτων, υπερβαίνοντας μεγαλύτερα και πιο απαιτητικά μοντέλα,
και καθιερώνουν ένα νέο σημείο αναφοράς για την παραγωγή GeoSPARQL ερωτημάτων
έναντι του YAGO2Geo ΓΔ. Επιπλέον, επισημαίνονται οι τομείς στους οποίους τα τρέχο-
ντα μοντέλα δεν ανταποκρίνονται πλήρως, υποδεικνύοντας μελλοντικές ερευνητικές κα-
τευθύνσεις, όπως η προσαρμοσμένη εκπαίδευση για τη βελτιωμένη αυτόματη δημιουργία
URIs.

Οι κύριες συνεισφορές αυτής της εργασίας είναι:

• Μια διεξοδική ανάλυση δημοφιλών ΜΓΜ στην παραγωγή GeoSPARQL, χρησι-
μοποιώντας τρεις διαφορετικές μεθόδους αξιολόγησης, οι οποίες θα επιβεβαιωθούν
μέσω διασταυρωμένης εξέτασης (cross-examination).

• Ένα καινοτόμο πλαίσιο μηχανικής προτροπών, η "Εισαγωγή URIs", σχεδια-
σμένο για να ενισχύει την απόδοση τωνΜΓΜ στην παραγωγή SPARQL ερωτημάτων
χωρίς την ανάγκη δαπανηρής εκπαίδευσης.

• Ένα προσαρμοσμένο και κβαντισμένο μοντέλο Mistral v0.2 7b, που θέτει νέο
σημείο αναφοράς στην ακρίβεια στο σύνολο δεδομένων GeoQuestions1089, διατη-
ρώντας παράλληλα την αποδοτικότητα μέσω 4-bit ακρίβειας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας, Γλωσσικά Μοντέλα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ΕΦΓ, ΜΓΜ, ΓΔ, Συστήματα ερωτωαπαντήσεων, TN
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Natural Language Questions

1. INTRODUCTION

Question Answering is a computer science discipline within the fields of information re-
trieval and natural language processing that is concerned with building systems that auto-
matically answer questions that are posed by humans in a natural language. These sys-
tems typically analyze and interpret natural language questions to retrieve relevant inform-
ation, often from structured databases, knowledge graphs, or unstructured text. The goal
is to provide accurate, concise responses based on the input question.

The challenge of question answering becomes even more pronounced when users pose
questions with a geospatial dimension, such as “Which rivers cross London?”, “Is there
a Levi’s store in Hannover?”, or ”Are any countries bordering Greece in the EU, having
joined after 1997, but don’t use the Euro as their currency?”. Answering such questions is
crucial, especially when geospatial information is combined with thematic data like popu-
lation statistics, environmental factors, or economic indicators. This integration allows for
deeper analysis, offering insights into how spatial relationships influence specific themes.
For instance, understanding how population density overlaps with flood-prone areas can
enhance disaster preparedness, while combining economic and geographic data can drive
regional development. This makes geospatial question answering an invaluable tool for
tackling complex, real-world issues across various sectors. [26] highlights this by show-
casing a digital assistant’s value in three key use cases: vessel detection for maritime
surveillance, monitoring water bodies dynamics (e.g., floods), and constructing training
datasets for AI models. The assistant simplifies the process of answering geospatial ques-
tions using satellite data , serving both experts and non-experts.

However, answering geospatial questions requires structured data enriched with spatial in-
formation, typically stored in geospatial knowledge graphs (e.g., YAGO2 [15], YAGO2geo
[19], WorldKG [9], and KnowWhereGraph [17]) or linked geospatial data. Traditionally,
the standard way to retrieve knowledge from geospatial KGs or RDF stores is through the
SPARQL query language and its geospatial extensions such as GeoSPARQL [29] and
stSPARQL [22].

Unfortunately, the requirement of SPARQL knowledge reduces the accessibility of KGs for
non-technical users. Enabling non-technical users to pose geospatial questions in natural
language introduces several additional complexities. The system must be able to identify
and interpret the spatial representation of entities, such as points or polygons, based on
the context of the question. The interpretation of spatial operations and relationships can
also vary depending on the scale or scope of the query. For instance, the term ”near” is
understood differently when comparing questions like “Which countries are near Greece?”
and “Which POIs are near the Acropolis?”. Furthermore, the system needs to account for
the variability in spatial language, such as differentiating between ”north of Greece” and
”northern Greece.” Finally, certain questions may require complex geometric calculations,
which can be computationally demanding.

Another challenge in generating SPARQL queries is the need to ground the queries in the
target KG using Uniform Resource Identifiers (URIs), which represent abstract or physical
resources, like places or concepts. Every resource has a unique URI that must be known
to reference it in a query. This becomes difficult because URIs often have irregular names
that don’t follow predictable patterns. Therefore, a GeoSPARQL generation system must
not only understand the GeoSPARQL language and natural language nuances but also
consistently retrieve or infer the necessary URIs for accurate query generation.

S. Kakalis 13
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To meet these challenges, it is crucial to develop robust, user-friendly systems that seam-
lessly convert natural language queries into valid geospatial queries, utilizing the power
of Knowledge Graphs and advanced QA techniques.

For this purpose, many techniques have already been used. One popular method is the
use of neural machine translation (NMT) [45] which usually involves an encoder-decoder
architecture, where input sentences pass through the encoder to generate a vector that
holds semantic information, then the decoder produces tokens at each time step based on
the encoder’s output and previous tokens. However, this method has a few drawbacks.
First, these models have fixed vocabularies, which will not cover all KGs, URIs and exten-
sions of SPARQL such as GeoSPARQL. Furthermore, training such models is very difficult
as you will need a very large model with a huge relative training corpus since the problem
at hand is very complex [8].

The recent advancements in generative Large Language Models have led to remarkable
breakthroughs in a wide array of Natural Language Processing tasks, ranging from lan-
guage translation [49] to text summarization [24] and even code generation [6]. Their
ability to model complex linguistic structures and perform tasks across multiple domains
has sparked considerable interest in extending their capabilities to more specialized fields.
One such area is the automatic generation of SPARQL queries from natural language
prompts, which has significant potential for improving accessibility to structured data in
Knowledge Graphs and other semantic data repositories [36], [25], [23], [32], [5], [34].

At first glance, it might seem intuitive that the same success achieved in other NLP tasks
would carry over to SPARQL query generation. LLMs have already demonstrated a high
degree of proficiency in generating structured outputs like code, SQL [50], or mathematical
formulas [27] from natural language instructions, and SPARQL query generation would
appear to follow the same logic. However, many challenges specific to SPARQL query
generation remain unresolved, and the task proves to be significantly more complex than
it initially appears.

One major issue LLMs face in this context is hallucination. LLMs often generate inaccur-
ate or entirely fictitious URIs, a problem attributed to their reliance on parametric memory
[48]. While LLMs excel at storing vast amounts of information learned from training data,
their internal representations may not capture the precise knowledge needed to generate
exact URIs, especially when dealing with highly specialized knowledge domains such as
those found in geospatial or domain-specific Knowledge Graphs (e.g., YAGO2geo). The
models are prone to substituting missing information with plausible but incorrect alternat-
ives, leading to invalid or inaccurate SPARQL queries. This poses a significant challenge
when the goal is not just to generate syntactically correct queries but to ensure their se-
mantic accuracy by linking them to the right entities and relationships in the Knowledge
Graph.

Another limitation stems from the logical reasoning required to generate complex SPARQL
queries. While LLMs can often learn the basic syntax and structure of SPARQL queries,
they frequently lack the deep reasoning abilities needed to construct queries that correctly
capture the intent behind a natural language prompt. This is especially true when the query
involves intricate relationships, filters, or advanced geospatial operations. In these cases,
the model might produce a syntactically correct SPARQL query that fails to retrieve the
desired results because it misinterprets the question or incorrectly structures the query
logic. We will document this behaviour in detail.

Furthermore, the variability in natural language expressions adds another layer of com-
plexity. Different phrasings of a question can change the structure or focus of a query,

S. Kakalis 14
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and the model must not only comprehend the surface meaning of the question but also
translate that understanding into precise SPARQL operations. This requires both a deep
understanding of the domain and an ability to reason through multiple linguistic and con-
textual variations.

Despite these challenges, the potential for LLMs to revolutionize SPARQL query genera-
tion remains highly promising. To address these issues, we propose investigating a com-
bination of techniques aimed at improving accuracy and reliability. Specifically, we will
explore fine-tuning models on domain-specific datasets to enhance their understanding of
GeoSPARQL and the associated ontologies. Additionally, we will introduce and evaluate a
prompt-engineering method called URI-injection which aids the query generation process
by supplying the model with the necessary URIs. As LLMs continue to advance, these
strategies will contribute to overcoming existing limitations, making natural language-to-
SPARQL query generation more practical and robust.

In this study, we will compare a wide range of state-of-the-art LLMs on the task of SPARQL
query generation from natural language prompts. We will evaluate these models against
a carefully selected set of handcrafted prompts and provide empirical metrics to assess
their performance. Our goal is to identify the best small-scale, open-source LLM (limited to
models that can run on 16GBs of VRAM) as a baseline for SPARQL generation tasks. To
provide further context, we will also compare these results to GPT-4, a large-scale model
with allegedly 1.76 trillion parameters by OpenAI [30], and assess how the smaller LLMs
measure up. Building on these findings, we will then develop a complete system for gen-
erating SPARQL queries from natural language prompts, leveraging the best-performing
models. This system will incorporate advanced techniques such as prompt engineering,
information-augmented prompting through named entity recognition and disambiguation,
and fine-tuning on the available training corpus for the YAGO2geo KG.

All of the files relative to this work are included in the thesis’ GitHub page 1 and the best
performing fine-tuned model weights are openly available on Hugging Face through the
Transformers library 2.

The remainder of this thesis is structured as follows. Chapter 2 presents a review of related
works and the current state of geospatial question answering systems. Chapter 3 provides
a systematic evaluation of existing models, identifying the most suitable approaches for
geospatial question answering tasks. Chapter 4 explores the Chain-of-Thought frame-
work, examining its impact on enhancing model reasoning capabilities. Chapter 5 invest-
igates the URI-injection method, applying it to several models and assessing the resulting
improvements. Chapter 6 discusses common fine-tuning techniques and presents QLoRA
fine-tuning experiments conducted on a selected model, along with an evaluation of the
findings. Finally, Chapter 7 concludes the thesis by discussing the results of the research
and suggesting directions for future work in the field of geospatial question answering.

1https://github.com/StratosKakalis/Thesis
2https://huggingface.co/Stratos-Kakalis/norm_trunc_no_rdfs_8_epoch
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2. BACKGROUND AND RELATED WORK

The field of geospatial question answering has experienced significant growth in recent
years. One good example of this work is GeoQA2 [34], the most recent version of the
GeoQA family of engines [33] . GeoQA2 is a geospatial question-answering system de-
signed to handle complex geographic queries by leveraging traditional NLP methods. The
system integrates various components, including a dependency parse tree generator, a
concept and instance identifier, a geospatial relation identifier, a property identifier, and
a query generator. The dependency parse tree generator performs part of speech tag-
ging. Based on these generated tags the system targets certain words and checks if
they belong to existing libraries of URIs using string similarity measures. This system
also makes use of TagMeDisambiguate [11], an entity linker system that accepts string
input and links resources with their respective URIs. These components work together to
analyze user input, identify relevant geographic features, and generate SPARQL queries
based on the YAGO2geo ontology. This structured approach enables GeoQA2 to effi-
ciently handle complex questions by breaking them down using linguistic and geospatial
processing techniques. GeoQA2 is of significant importance for this work as it targets the
same underlying Knowledge Base, YAGO2geo, and also serves as the baseline of our
research.

Ruled-based approaches likes GeoQA2 have a number of inherent limitations, including
a finite dictionary of predefined terms and templates and a lack of understanding when it
comes to vague or ambiguous natural language. These constraints hinder their flexibility
in dealing with more complex or nuanced queries, making it difficult to scale or generalize
across varied geospatial questions.

To attempt and mitigate some of these issues we turn to several recent approaches for
generating SPARQL queries from natural language queries based on neural architectures.
[41] designed a sequence-to-sequence system that utilizes bi-directional LSTM for gen-
erating SPARQL templates. However, this translational approach cannot handle out-of-
vocabulary tokens, due to a fixed tokenizer vocabulary. [37] presents SGPT, an approach
using a stack of Transformer encoders to embed linguistic features from natural language
questions, as well as entity and relation information, to the GPT-2 model. While entities
and relations representations are fed to the model in SGPT, providing their connections
in the underlying KG is missing. Thus, generating correct triple sequences in the final
SPARQL queries is error prone due to unknown graph structures. Another strong ap-
proach was introduced in [4], where authors improve on the state of the art KGQA by train-
ing the T5 model to generate skeleton SPARQL queries and truncated KG embeddings,
that are used to fetch candidate entities for the skeleton query. Finally, [23] presented
SPARQLGEN, a powerfull one-shot prompting approach for generating SPARQL queries.
Unlike other methods, SPARQLGEN requires no additional training or fine-tuning for the
specific task.

Building on these works, we will explore LLM-powered geospatial QA systems with a focus
on the YAGO2geo knowledge graph, similar to the approach taken by GeoQA2.

We will leverage prompting techniques like zero-shot, few-shot, and Chain-of-Thought
(CoT) prompting [46]. Zero-shot prompting assesses themodel’s ability to generate SPARQL
queries without examples, while few-shot provides a handful of examples to guide the
model. Chain-of-Thought prompting breaks complex tasks into intermediate steps, im-
proving reasoning accuracy. Thesemethodswill be explored to enhance natural language-
to-SPARQL query generation.
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The LLMs relevant to this task are general-purpose pre-trained models, as no SPARQL-
specific models currently exist. We focus on small-scale models that can be trained on
limited hardware and provide fast inference, analyzing various popular options listed in
Table 3.1. As an exception, we will also evaluate GPT 4, which cannot run on our hard-
ware, to compare the performance of small-scale models against that of a massive model.

This work makes use of the GeoQuestions1089 dataset, introduced in [21] and updated
in [20]. It comprises of 1089 questions, their corresponding GeoSPARQL queries and
their answers over the geospatial knowledge graph YAGO2geo. It is the largest data-
set of its kind available for geospatial question answering tasks. We are interested in
the YAGO2geo KG for various reasons. It is based on the subset of YAGO2 which in-
cludes only geoentities i.e., entities that have latitude/longitude co-ordinates associated
with them (presumably, representing their center). YAGO2geo enriches the geospatial
dimension of some of these geoentities with detailed geometries, namely lines, polygons
andmulti-polygons taken from official administrative datasets (for Greece, the United King-
dom and the Republic of Ireland) and the Global Administrative Areas dataset. Hence,
YAGO2geo can be used to answer questions that could not be answered by YAGO2 be-
cause detailed administrative geospatial knowledge is required (e.g., “Which counties of
England are crossed by river Thames?”). Additionally, for natural features such as lakes
and rivers, the respective YAGO2 geoentities are enriched with detailed geometries from
OpenStreetMap. Finally, YAGO2geo includes new geontities present in the above ad-
ministrative datasets and OSM that were not present in YAGO2. YAGO2geo currently
contains 703 thousand polygons and 3.8 million lines. YAGO2geo represents geographic
knowledge by using the YAGO2 ontology, the GeoSPARQL ontology and the ontologies
especially developed by the YAGO2geo developers for each dataset mentioned above.
[21]
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3. MODEL EVALUATION

In this chapter, we conduct a comprehensive evaluation of our candidate LLMs. The
primary objective is to assess their performance in generating GeoSPARQL queries and
to determine the most suitable pre-trained model that will serve as our baseline for sub-
sequent experiments.

3.1 LLM Selection

For this study we selected strictly open-source LLMs in the spirit of open collaboration and
transparency. Open-source language models encourage community involvement, peer
review, and accessibility of code and resources. Furthermore, due to hardware limitations,
we will examine ’small-scale’ LLMs. Specifically, models that required less than 16GBs
of VRAM to run. This would typically limit us to models with less than 7B parameters,
however with the use of quantization for lower precision we will be able to load much larger
models of up to 13B parameters. Any observed loss in precision due to quantization will
also be discussed in this thesis.

The selected LLMs are all open-source and comply with the memory limitations, further-
more all of these models were chosen based on their performance including meta’s Llama
3 model which was released during the creation of this work and provides new SOTA
performance across various benchmarks. We also test the proprietary model GPT-4 by
OpenAI. This model is massive (estimated 1.76 trillion parameters [30]), thus we expect
much better performance from it, however it will be informative to showcase how the smal-
ler open-source models will compare. The complete list of the LLMs used in this study is
seen in Table 3.1.

3.2 Empirical LLM Evaluation

We will start our approach to evaluating and choosing the proper LLM based on an em-
pirical evaluation of a few different metrics. Namely, we will test our models on two pro-
posed categories: Overall SPARQLGeneration (OSGen) and Inherent URI Knowledge
(InUK). Each category has several metrics, for OSGen we score the model based on its
ability to:

• M1.) Generate queries (correct or wrong).

• M2.) Not generate repeating words or phrases.

• M3.) Not hallucinate (specifically SPARQL keywords, not necessarily URIs).

• M4.) Generate syntactically correct SPARQL queries.

For InUK we score the model based on its ability to:

• M5.) Generate valid URIs (based on their total count).

• M6.) Generate valid wikidata URIs.
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Model # of Parameters
Llama 2 [42] 7B

Llama 2 (finetuned for text-to-SQL)[42] 7B
Llama 2 [42] 13B (Quantized to 6-bit precision)

CodeLlama [38] 13B (Quantized to 6-bit precision)
Mistral v0.2 [18] 7B

Mistral v0.2 Instruction Tuned [18] 7B
Dolphin mistral v2.8 [18] 7B
Hermes 2 Pro mistral [18] 7B

Google T5 [35] 3B
Google T5 v1.1 xl [35] 3B
Falcon Instruct [2] 7B

Llama 3 [10] 8B (Quantized to 8-bit precision)
Llama 3 Instruction Tuned [10] 8B (Quantized to 8-bit precision)

Google Gemma [28] 2B
Google Gemma Instruction Tuned [28] 2B

GPT-4 [30] 1.76T (estimated)
GPT-4o [30] -

GPT-4o mini [30] -
Table 3.1: Table of examined LLMs and their respective size (in billions).

• M7.) Generate valid DBpedia URIs.

• M8.) Generate valid YAGO URIs.

Each model’s OSGen score will indicate how familiar the model is with SPARQL itself
and it will serve as a good indication of the logical reasoning capabilities of the LLM that
is required to form complex SPARQL queries. On the other hand the InUK score will
appraise the pre-trained model’s embedded knowledge regarding various available KGs
such as: wikidata [44], DBpedia [3] and YAGO.

It is obvious that each metric has a different amount of importance. We translate that
importance into the final score by empirically setting weights according to the expected
significance of each metric. For instance, the M4 metric for the OSGen score is much
more indicative of a model’s capabilities than the M1 metric (which may reward a model
even for incorrect queries).

The formula for OSGen(model) is:

OSGen(model) = 0.4×modelM1 + 0.6×modelM2 + 0.7×modelM3 + 1×modelM4

0.4 + 0.6 + 0.7 + 1
,

where modelMi, for i in {1, 2, 3, 4} are the scores of model in each of the metrics: M1, M2,
M3, M4.

Similarly, the formula for InUK(model) is:

InUK(model) = 0.5×modelM5 + 0.6×modelM6 + 0.6×modelM7 + 0.8×modelM8

0.5 + 0.6 + 0.6 + 0.8
,

where modelMi, for i in {5, 6, 7, 8} are the scores of model in each of the metrics: M5, M6,
M7, M8.
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Model M1 M2 M3 M4 M5 M6 M7 M8
Llama-2-7b 0.929 0.929 0.857 0.231 0.379 0.500 0.600 0.000

Llama-2-7b SQL-tuned 1.000 0.857 0.857 0.571 0.588 0.571 0.818 0.286
Llama 13b (6-bit) 0.929 0.143 0.500 0.462 0.452 0.625 0.500 0.500

CodeLlama 13b (6-bit) 1.000 0.214 0.929 0.500 0.548 0.545 0.818 0.250
Mistral 7b v0.2 1.000 0.643 1.000 0.714 0.679 0.727 0.857 0.500

Mistral 7B v0.2 Instruct 1.000 0.643 0.929 0.286 0.509 0.385 0.636 0.500
Dolphin mistral v2.8 0.857 0.857 0.929 0.167 0.378 0.444 0.273 0.000
Hermes 2 Pro mistral 1.000 0.786 0.786 0.357 0.509 0.643 0.429 0.167

Google T5-3b 0.286 0.000 0.071 0.000 0.467 0.000 0.500 0.429
Google T5v1.1-xl 0.357 0.000 0.000 0.000 0.556 1.000 1.000 0.000
Falcon-7b-Instruct 0.786 0.929 0.857 0.455 0.556 0.750 0.500 0.143
Llama 3-8b (8 bit) 1.00 0.86 1.00 0.36 0.57 0.64 0.60 0.33

Llama 3-8b -it (8 bit) 1.00 0.93 0.93 0.57 0.59 0.60 0.75 0.33
Gemma 2b 0.79 0.50 1.00 0.83 0.66 0.80 0.89 0.50
Gemma 2b-it 1.00 0.71 1.00 0.57 0.56 0.64 0.83 0.67
GPT-4-1.76t 1.00 1.00 1.00 0.93 0.76 0.89 0.80 0.30

Table 3.2: Scores of each model on all metrics.

The test prompts were hand crafted to test each model in all of the above metrics. There
are 14 prompts, for this experiment, and they test SPARQL query generation with zero-
shot, one-shot and few-shot learning. Furthermore, some prompts specify the KG to be
used by the model and the required generated queries vary in complexity.

After running inference on all models and scoring each model in each metric by hand we
received the metric performance scores on Table 3.2, we then calculate the OSGen and
InUK scores in Table 3.3.

In Table 3.2, we can draw a few conclusions from the combined performances of all the
models on the metrics. Specifically:

• It is already obvious that GPT-4 is superior to the rest of the models. This is expected
due to the massive size of the model.

• Models struggle to form syntactically correct SPARQL. Hallucinations and repeating
words or phrases are very prominent.

• Models struggle with the YAGO KG, presumably, because there are not as many
datasets that involve the use of YAGO, thus it appears rarely in the models’ training
corpus.

• Models also struggle withWikidata URI generation, partly due to the fact thatWikidata
URIs contain arithmetic codes which are impossible to guess and, thus, difficult to
independently infer.

• Models tend to perform best at DBpedia, since it’s a well known KG and it has a sim-
pler URI structure so models can often correctly guess the link to a certain entity by
applying reasoning (e.g. ’Mavro’ corresponds to ’http://dbpedia.org/resource/Mavro’).

In Table 3.3, from the final OSGen and InUK scores we draw these conclusions:
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Model OSGen InUK
Llama-2-7b 0.652 0.340

Llama-2-7b SQL-tuned 0.772 0.543
Llama 13b (6-bit) 0.470 0.520

CodeLlama 13b (6-bit) 0.622 0.517
Mistral 7b v0.2 0.815 0.676

Mistral 7B v0.2 Instruct 0.638 0.507
Dolphin mistral v2.8 0.620 0.248
Hermes 2 Pro mistral 0.659 0.412

Google T5-3b 0.061 0.350
Google T5v1.1-xl 0.053 0.591
Falcon-7b-Instruct 0.713 0.457
Llama 3-8b (8 bit) 0.730 0.518

Llama 3-8b -it (8 bit) 0.807 0.550
Gemma 2b 0.795 0.696
Gemma 2b-it 0.778 0.680
GPT-4-1.76t 0.974 0.717

Table 3.3: Final OSGen and InUK scores of all models.

• Our previous observation regarding GPT-4 is validated, as it continues to show su-
perior results across both metrics. However, despite the smaller size of open-source
models, the performance gap is not as wide, suggesting that the difference in cap-
abilities could potentially be bridged with effective fine-tuning.

• Somemodels, like Google T5, struggle with SPARQL query generation, as expected.
Google specifies that thesemodels aren’t pretrained on a large corpus, necessitating
substantial fine-tuning. Given our focus on pre-trained models that require minimal
tuning for SPARQL, T5 is not suitable.

• Llama 2 presents a solid baseline with respectable performance, which is further
enhanced in its SQL-finetuned version.

• Interestingly, the 13b version of Llama 2 under-performs compared to the 7b ver-
sion. This may be due to factors like differing training data, reasoning capabilities,
or potential loss of precision during quantization. Perhaps, a different prompt, better
aligned with the 13b model’s training corpus could improve results.

• The Mistral models, along with the Falcon and Google Gemma models, performed
impressively well, consistently surpassing Llama 2.

• Llama 3, released during this study, stands as the new SOTA in many NLP tasks,
offering a clear advantage over its predecessor.

In conclusion, Llama 3 and Mistral v0.2 stand out among the rest. Furthermore, Google
Gemma 2b models appear very powerful as they both had exceptional performance con-
sidering their much smaller size. In certain cases were hardware or speed is limited,
Gemma could prove more useful. Another notable performance comes from Falcon-7b-
Instruct.
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3.3 Target Dataset Creation

Moving forward we will leverage the information we have gathered so far to build a model
for the specific task of GeoSPARQL generation against the YAGO2geo knowledge graph.
To accomplish this, we require a dataset comprising question/query pairs with URIs ex-
tracted from the target knowledge graph. Therefore, we gathered data from two distinct
sources: firstly, the GeoQuestions1089 dataset introduced by [21], and secondly, the
GeoQuestions201 dataset introduced by [33].

Upon collecting both datasets, wemerged them and filtered out three invalid question/query
pairs lacking queries. Additionally, some queries provided by the authors exhibited minor
variations in question format without introducing any semantic difference. Presumably,
this was intended to assess the models’ proficiency in understanding language even under
unconventional structures. However, considering the inherent versatility of LLMs in natural
language understanding, we opted to remove these repetitive question/query pairs from
the dataset. Their inclusion could potentially bias the models during training by presenting
redundant questions and it would make for invalid training if some queries existed on the
training and test sets.

The resulting dataset has a total of 1214 question/query pairs and will be referred to as
GeoQuestions1214.

3.4 LLM Evaluation Based On Query Similarity

After narrowing the list of potential LLM candidates down to three prominent models,
Mistral, Llama-3 and Gemma, we proceed with certifiable experiments designed to yield
quantitative and reliable results. The first set of tests will focus the evaluation on the gen-
erated queries by similarity to the target queries.

During these experiments, we will introduce new methods to enhance the models’ per-
formance, such as incorporating URI data within the prompts, prompting the models with
GeoSPARQL relations, and fine-tuning the models.

First of all, let’s review the evaluation method. For these first tests, we will need an auto-
matic evaluation metric. Since our models rarely produce valid queries, it would not be
wise to evaluate them based on the query results. For now, it’s preferable to evaluate the
models on the similarity between the generated queries and the ground truth queries from
the GeoQuestions1214 dataset.

To assess the best metric for this similarity evaluation, three metrics stand out:

• Modified Jaccard Similarity: Typically, this metric does not consider token fre-
quency or order. However, with a slight modification, it can be adapted to account
for token frequency, which is crucial for addressing issues such as models mis-
takenly repeating certain keywords. This adjustment ensures that models are not
rewarded for redundant repetitions. The metric is simple to interpret and decreases
quickly when the token sequences do not align.

• Cosine Similarity: This metric is useful for comparing the similarity of documents
based on their token vectors. For SPARQL queries, cosine similarity is less punit-
ive than other metrics, which is beneficial when the model struggles with the basic
structure of the query. Instead of receiving a very low score each time, the model is
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rewarded the more it resembles the original. However, this metric does not account
for token order.

• BLEU Score: Designed for comparing sequences of words, BLEU takes into ac-
count both the order of tokens and their frequency. It is primarily used for evaluating
machine translation tasks, which closely relates to the task of SPARQL query gen-
eration.

It is evident that the BLEU score is the most suitable metric for this task, and it has also
been used in related works. However, it would be prudent to provide both the BLEU
score and a hybrid score incorporating all three metrics for each model. Evaluating the
differences in scores can be insightful, and employing multiple metrics may help mitigate
some of BLEU’s discrepancies.

Moving forward, the two metrics provided for every model we will evaluate are BLEU and
HybridBLEU, defined as follows:

HybridBLEU = 0.20× Jaccard Similarity+ 0.20× Cosine Similarity
+ 0.05× Parsability Reward+ 0.55× BLEU Score

(3.1)

The weights in HybridBLEU were chosen empirically, based on the anticipated impact of
each metric in the final similarity score. By combining these metrics, HybridBLEU aims
to provide a comprehensive evaluation that balances different aspects of similarity and
functionality.

Due to computational limitations, we will use a random subset of the GeoQuestions1214
dataset with 200 questions. This is because we plan to evaluate each model several
times with various techniques to help improve it’s generation abilities. Presumably, 200
randomly selected questions will not cause the resulting evaluation to deviate significantly
from a test on the complete dataset. Each experiment, with a combination of different
prompting methods is listed in Table 3.4. The detailed list of prompts can be found in
Appendix A.2. In each row, the model is followed by tags representing these methods:

• 0-s: This tag means zero-shot learning. The model was not shown any examples
of what it is supposed to generate.

• URI-i: This tag means gold-standard URI-injection. We extracted the URIs from
the dataset’s ground-truth queries and supplied them in the prompt along with the
natural language question.

• Geo-i: This tag means that a GeoSPARQL ontology description was provided in the
model’s prompt. Presumably, the model isn’t familiar with GeoSPARQL. This is an
attempt at using heterogeneous data through in-context learning instead of training
which embeds the knowledge into the model’s parametric memory.

• few-s: This tag means few-shot learning. The model was shown several examples
of the queries it’s meant to generate. The number in the parentheses next to this
tag indicates the number of examples in the prompt.

The goal of these experiments is to assess the best combination of model and methods.
The two models that we will test are the two most promising models from our earlier ex-
periments on Subsection 3.2, Mistral v0.2 7b and Llama 3-8b Instruct (8 bit).
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Model and methods BLEU HybridBLEU
Mistral v0.2 7b: 0-s 0.135 0.213

Mistral v0.2 7b: 0-s, URI-i 0.175 0.303
Mistral v0.2 7b: 0-s, URI-i, Geo-i 0.111 0.260
Mistral v0.2 7b: few-s(3), URI-i 0.393 0.532
Mistral v0.2 7b: few-s(6), URI-i 0.443 0.572

Mistral v0.2 7b: few-s(3) 0.225 0.364
Llama 3 8b Instruct (8 bit): few-s(3) 0.150 0.238

Gemma 2b: few-s(3) 0.172 0.229
Table 3.4: Model and method performance based on query similarity using BLEU and our proposed

HybridBLEU metric.

The results of our experiments are presented in Table 3.4. Notably, there are significantly
more tests conducted with Mistral v0.2 compared to Llama 3-it, attributable to computa-
tional constraints. On average, Mistral required approximately 40 minutes to complete
each test, whereas Llama 3-it took over 4 hours per test. Due to this disparity in per-
formance, a direct comparison between Mistral and Llama was conducted in a few-shot
learning experiment. The results, illustrated in Table 3.4, clearly demonstrate that Mistral
outperforms Llama, particularly when considering the substantial difference in processing
time.

Despite Llama 3 being a more recent, larger, and more complex model than Mistral v0.2
, it under-performs Mistral. Presumably, this is due to the fact that:

• Mistral may have seen more SPARQL related literature in its training corpus than
Llama.

• Llama was quantized to 8 bits of precision which may have resulted in some amount
of loss in the quality of it’s predictions [14].

Llama 3 as an off-the-shelf pretrained model performs impressively in many leaderboards,
however in the huggingface open llm leader-board we can see that various models com-
pete for the top spot with several models based on Mistral and Llama 3 1. This means that
when the model is finetuned for a specific task, they perform rather similarly.

Perhaps, if one had the resources to test and fine-tune Llama 3-8b Instruct without any
loss in precision (32 or 16 bit floats) then it would outperformMistral. However, considering
our current limitations and the specificity of our task, it is wiser to proceed with Mistral as
it shows more promising results and faster compute time.

Finally, we also tested Google Gemma 2b-it on the same parameters. It is a smaller
2b-parameter instruction tuned model that performed rather impressively considering its
small size. Inference was, as expected, really fast and this model would be best utilized in
scenarios were processing power is limited. In our case we can afford the computational
cost of Mistral which offers slightly improved performance so we will continue with it as
our target model.

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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3.5 Result-based LLM Evaluation.

For the final and most practical evaluation, we will assess the models’ accuracy in gen-
erating SPARQL queries. Specifically, we will measure the percentage of queries that
the models can successfully generate and obtain valid responses from the YAGO2geo
knowledge graph.

The first step in this process is to setup an endpoint that contains the YAGO2geo know-
ledge graph. We did this by installing GraphDB [12], a Semantic Graph Database, com-
pliant with W3C Standards. GraphDB ran on a Linux server with 128GBs of RAM. We
loaded the target KG on it and successfully set up an endpoint to which we send a get re-
quest containing the GeoSPARQL query that we want to execute and receive the retrieved
results.

It is important to note that during the dataset creation process we merged two separate
datasets, the GeoQuestions1089 and GeoQuestions201. The former was designed to
work with the YAGO2geo knowledge graph, while the latter had additional dependencies
on prefixes such as OpenStreetMap, making it impossible to infer on our endpoint. Con-
sequently, we created a new dataset consisting solely of the GeoQuestions1089 dataset.
For performance reasons, the resulting dataset contains only 100 randomly selected quer-
ies. Furthermore, some queries are very slow to execute. To counteract this performance
issue, we used the GOST API 2 to materialize the SPARQL queries, thereby significantly
improving inference times from the endpoint.

The next step in completing the evaluation is to compare the results between the ground-
truth queries from our new dataset and the results from the generated queries. This com-
parison, however, is not trivial. While we can compare the results from the generated
queries to the ground-truth queries when the generated query is not invalid, we may en-
counter several types of mismatches. Firstly, variable names can differ between two valid
queries. Similarly, the order of the returned variables can vary without affecting the validity
of the answer. Finally, it is possible that the model might return more data than necessary.
This is not necessarily wrong, as questions can be vague, and some extra information
does not undermine the question-answering nature of our models.

An initial attempt to account for these discrepancies involved normalizing the variable
names by assigning specific serial names to the variables in each query. However, this
approach did not address the issues of incorrect variable order and extra returned data.
The final solution was to return the endpoint data as a CSV file. Each column in this file
represents the values of a specific variable. We compare the columns between the ground
truth and generated query while ignoring variable names altogether. If at least one column
perfectly matches between the results then the results are considered correct. This logic
is sound because our ground truth queries are concise and do not select any extra random
variables, thus typically only returning a single column of values.

3.6 Evaluation Method Comparison

By now, we have performed multiple evaluations of the models combined with various
optimization methods, each using different means of assessment. It is important to verify
the validity of these evaluations by cross-examining them. For this reason we repeated the

2https://github.com/AI-team-UoA/GoST
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Model Result-based Accuracy
Mistral v0.2 7b: 0-s 0.00

Mistral v0.2 7b: 0-s, URI-i 0.03
Mistral v0.2 7b: 0-s, URI-i, Geo-i 0.00
Mistral v0.2 7b: few-s(3), URI-i 0.22
Mistral v0.2 7b: few-s(6), URI-i 0.25

Mistral v0.2 7b: few-s(3) 0.12
Llama 3 8b Instruct (8 bit): few-s(3) 0.04

Gemma 2b: few-s(3) 0.08
Table 3.5: Result-based accuracy of the experiments from Table 3.4.

experiments of Table 3.4 only this time the evaluation metric is the result-based accuracy
of the models as proposed in the Subsection 3.5. The results of the experiments using
the same methods and prompts as Table 3.4 can be seen in Table 3.5.

Straight away we notice a few things: the models all struggle to generate valid queries
that return correct results. Specifically, two of our tests fail completely in the test set of
100 questions. Only one model is separated from the rest and that is Mistral v0.2 7b as
we will explore in more detail shortly. When we supply this model with a few examples
(3 and 6 in our experiments) and if we also provide the necessary gold-standard URIs for
the model to create the queries then the model generates GeoSPARQL queries with 25%
accuracy. In other words, one out of every four questions supplied to this pipeline leads
to correct results returned from the knowledge graph.

These results clearly demonstrate that the models possess limited knowledge of SPARQL
and the YAGO2Geo Knowledge Graph. Additionally, it’s reasonable to assume they also
lack familiarity with GeoSPARQL relations, given that GeoSPARQL and stSPARQL are
an extension of SPARQL. Consequently, generating GeoSPARQL queries against the
YAGO2Geo KG is beyond the initial capabilities of these models. However, by incorporat-
ing few-shot learning and heterogeneous data such as URIs in the prompts, we observe
a notable improvement in accuracy. This improvement can be attributed to the models’
reasoning abilities, where they correctly answer questions based on the provided context
rather than relying solely on their pre-trained knowledge.

We can see an example of this behaviour in Figure 3.1. Even when provided with a 3-shot
prompt that includes examples using the YAGO2Geo ontology, along with explicit instruc-
tions to follow that format, themodel still opts to useWikidata to answer the given question.
This suggests that despite guidance, the model defaults to familiar data sources, possibly
due to its pre-trained bias or stronger associations with Wikidata over YAGO2Geo.These
tendencies are only bypassed when the model is explicitly provided with the necessary
URIs, as it lacks the confidence or ability to infer them independently. By supplying the
relevant URIs, the model can correctly generate the desired queries without defaulting to
alternative knowledge sources.

In the experiments conducted in Table 3.5 we only have one direct comparison of all mod-
els and that is on the 3-shot learning prompt in which Mistral seems to be superior. In order
to verify these finding we also compare the models on the best performing parameters,
which are, 6 examples in the prompt and the URIs of the query supplied.

The findings presented in Table 3.6 reveal a significant disparity between Mistral and the
other two language models, verifying the direct comparison results shown in Table 3.5 for
plain 3-shot learning. These observations clearly demonstrate that Mistral is the most suit-
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Figure 3.1: Example of a question answered correctly with URI-injection.

Model Result-based Accuracy
Mistral v0.2 7b 0.25

Llama 3 8b Instruct (8 bit) 0.17
Gemma 2b 0.11

Table 3.6: Result-based accuracy of each model under best performing methods.
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Model Alternative Model Accu. Alt. Accu.
Mistral v0.2 7b: few-s(6), URI-i Mistral v0.2 7b it: few-s(6), URI-i 0.25 0.09

Llama 3 8b it (8 bit): few-s(6), URI-i Llama 3 8b (8 bit): few-s(6), URI-i 0.17 0.05
Table 3.7: Alternative versions of the best performing models that show poor performance.

able model for our GeoSPARQL generation tasks using data from the YAGO2geo know-
ledge graph. This superior performance can likely be attributed to a possibly greater extent
of SPARQL knowledge embedded in Mistral’s training corpus.

An important distinction is that some of the examined models are instruction-tuned while
others are base versions. This selection was not made at random; we chose these models
based on the results presented in Table 3.2 of Subsection 3.2. However, since that eval-
uation was empirical and aimed at quickly narrowing down the contending models, it is
prudent to compare the selected models with their alternatives, including both instruction-
tuned and base versions to verify our initial findings. In our context, ”alternative models”
refers to their instruction-tuned or base counterparts. For example, the instruction-tuned
version of a baseline model is considered its alternative, and vice versa.

Indeed, Table 3.7 clearly demonstrates that our quickly selected models outperform their
alternative versions. The performance difference is substantial, indicating that despite
being based on the same model, they exhibit markedly different capabilities in SPARQL
generation. Notably, the best-performing version of Llama 3 is the instruction-tuned vari-
ant, while Mistral’s base version surpasses its instruction-tuned counterpart. For the
instruction-tuned models simple prompting isn’t optimal, thus for these models we used
the chat-completionsmethod of supplying system and user prompts. This finding suggests
that for some tasks involving the execution of complex instructions, an instruction-tuned
model is not necessarily the optimal choice.

By now, it is evident that none of our small-scale LLMs are performing well on this task.
Therefore, we will also document the performance of the current state-of-the-art GPT-
4o model and its smaller version, GPT-4o-mini. Table 3.8 presents the models and their
respective result-based accuracy. We tested GPT-4o-mini using both the gold-standard
URI-injection method and the plain few-shot method, while GPT-4o was tested only with
the latter to evaluate the best-performing unassisted accuracy of any model. We will refer
to the gold-standard URI-injection as ’assisted’ URI-injection throughout this work, em-
phasizing that it relies on knowledge of the ground-truth query and is not fully autonom-
ous. As anticipated, GPT-4o performs slightly better, though this comes with a significantly
higher cost compared to the mini version. For each test, the similarity-based scores are
also reported and these will be utilized in subsequent analyses within this subsection.

Our assisted URI-injection method provides the model with the ground-truth URIs in the
exact order they appear in the target query, which may lead the model to simply ”fill in” the
necessary SPARQL components without truly engaging in the task. In subsequent tests in
this study we will test URI-injection methods that don’t rely on the ground-truth data. Those
systems will generate URIs that will not necessarily follow the order or structure of the
target query. Consequently, it’s crucial to demonstrate that assisted URI-injection remains
effective evenwhen the providedURIs are unordered. This test aims to disprove the notion
that the model may understand reasoning patterns from ordered URI-injections from the
structure of the given URI triples, something that will not be available in an autonomous
system.

To test this, we shuffled the URIs before passing them to the GPT 4o mini model. The
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Model Result-based Accuracy BLEU HybridBLEU
GPT 4o mini: few-s(6), URI-i 0.59 0.512 0.634

GPT 4o mini: few-s(6), shuffled URI-i 0.62 - -
GPT 4o mini: few-s(3) 0.27 0.258 0.406
GPT 4o: few-s(3) 0.29 0.338 0.475

Table 3.8: Performance of SOTA GPT models based on query similarity and query results.

Figure 3.2: Pearson and Spearman correlation coefficient between the result-based metric and the
similarity-based metrics.

results, as shown in Table 3.8, are labeled ”shuffled URI-i.” For this test, string similar-
ity scores were excluded. Interestingly, shuffling the URIs slightly improved the model’s
performance, raising its accuracy by 3%, from 59% to 62%. This improvement may be
due to GPT 4o mini’s non-deterministic nature. Another hypothesis is that the shuffled
URIs prompt the model to rely more on reasoning, as opposed to simply completing the
SPARQL components when given ordered examples.

These results affirm the robustness of the URI-injection method, showing that when a
model is provided with the correct URI, regardless of order, it performs substantially better.

To complete our cross-examination of evaluation methods, we will directly compare the
results of Table 3.5 with those of Table 3.4. Specifically, we will calculate the Pearson cor-
relation coefficient between the result-based metric in Table 3.5 and each of the similarity-
based metrics in Table 3.4. We will also include the evaluation scores of the GPT models
to better calculate the correlation coefficient between our metrics. The Pearson correl-
ation coefficient, which ranges from -1 to 1, quantifies the strength and direction of the
linear relationship between two quantitative variables. We suspect a linear correlation
between these metrics, however, since our sample size is small we cannot draw any
conclusions. Therefore, we will also compute the Spearman rank correlation. This non-
parametric measure assesses the monotonic relationship between two variables.

The results presented in Figure 3.2 demonstrate the correlation between our threemetrics,
alongside the Pearson and Spearman correlation coefficients. Notably, when excluding
the GPT models, the Pearson correlation coefficient rises to 0.97, indicating a very strong
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linear correlation. However, the inclusion of the GPT models, which exhibit significantly
better accuracy but only moderately improved similarity scores, reduces the linear relation-
ship and thus decreases the Pearson correlation coefficient. Despite this, we still observe
two very strong positive linear correlations between the result-basedmetric and each of the
similarity-based metrics. The Spearman correlation scores show the same strong relation
between the metrics. This validation confirms the effectiveness of our similarity metrics,
as their outcomes align with the actual accuracy of the models. Both similarity scores,
BLEU and HybridBLEU, perform similarly, with BLEU being slightly more accurate. This
suggests that HybridBLEU or other variants may not be necessary, and the most appro-
priate measure of query similarity for assessing a model’s generation capabilities is the
BLEU score. A potential improvement to HybridBLEU could involve fine-tuning its weights
by framing the task as a regression problem. However, at present, this approach does
not offer significant advantages and will not be pursued further.

3.7 Instructions For Optimal Llama 3 Usage

Llama 3 being a new model with SOTA performance in various NLP tasks is of great
importance despite it’s inferior performance in our specific task. This sections studies
how to best utilize this model. During testing we noticed a peculiarity in the generation of
queries with this model. All tested LLMs return the prompt provided to them followed by
the generated answer. Thus, to acquire the generated query we first delete the prompt by
removing a number of characters equal to the length of the prompt. However, for llama 3
this did not work because the model was not perfectly replicating the given prompt. Upon
closer inspection, we discovered that Llama 3 does not allow spacing before punctuation,
specifically periods and question marks, which are frequently used in SPARQL queries.
This behavior likely stems from the model’s training on natural language, where proper
syntax dictates that no spaces should precede punctuation marks. Consequently, the
model has learned to avoid leaving blank spaces before such punctuation.

Presumably, this issue can bemitigated with proper fine-tuning, however a simpler solution
to this problem was comparing the prompt to the generated text character-by-character
while ignoring spaces, thus finding the exact point at which the model generated the query.
To find the exact query (and not include any possible explanations that the models peri-
odically adds) we instruct all models to return the generated query within a code block
denoted by triple back-ticks. On a zero shot learning prompt it would be possible to skip
the entire prompt-removing process and simply get the code within the triple back-ticks
but in our case we use examples that include code blocks, and the model itself might re-
turn multiple code blocks. That is why it’s adamant that we properly remove the prompt
to acquire the query. Finally, to resolve syntax errors caused by the lack of proper spa-
cing within the generated SPARQL query we simply insert a space character before each
period and question mark generated as long as they aren’t part of a URI.

3.8 Summary

In this section, we evaluated several open-source LLMs using various methodologies. Ini-
tially, we conducted empirical assessments using a set of hand-crafted metrics designed
to measure the models’ ability to generate SPARQL queries. These preliminary findings
helped us narrow down the list of models, enabling the subsequent automated evaluations.
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To facilitate these tests, we combined theGeoQuestions1089 andGeoQuestions201 data-
sets, creating an appropriate benchmark for evaluation. We began by grading each model
based on the string similarity between the generated queries and the ground truth. Fol-
lowing this, we assessed model accuracy by calculating how many correct queries were
generated. This final evaluation compared the results of both generated and ground-truth
queries to determine their correctness. Ultimately, we validated our evaluation methods
by demonstrating their alignment and offered guidance for the optimal use of Llama 3.
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4. PROMPT ENGINEERING FOR IMPROVED REASONING

The capabilities of large language models are significantly influenced by the prompts
provided to them. By utilizing prompt engineering techniques, it is possible to enhance
various aspects of these models, including reasoning, logic, truthfulness, optimization,
and knowledge-based reasoning, without requiring extensive additional training [39]. We
have already experimented with several prompt-engineering techniques, such as zero-
shot and few-shot learning, yielding varying degrees of success. In this section, we will
shift our focus towards prompt-engineering methods specifically designed to enhance the
model’s reasoning capabilities.

4.1 Chain-of-Thought Prompting

Chain-of-Thought (CoT), as introduced by [46], is an effective technique for eliciting reas-
oning capabilities in large languagemodels (LLMs) without necessitating costly fine-tuning.
CoT enhances LLMs’ capacity to engage in complex reasoning and logical processes by
generating a series of intermediate reasoning steps, commonly referred to as a ”chain-of-
thought.”

There are two primary approaches to implementing CoT prompting. The first is a zero-
shot method where the model is instructed with a ”Let’s think step by step...” prompt.
This approach encourages the model to deconstruct the main problem into smaller, more
manageable sub-problems. By addressing each sub-problem individually, the model can
ultimately arrive at a solution to the original task. This method mirrors human cognitive
processes, where it is more intuitive to consider incremental logical steps rather than at-
tempting to generate an immediate solution.

The second way to utilize CoT is to supply the model with a few examples much like few-
shot learning. These examples contain the reasoning chains that are required to solve
them. By examining these examples, the model gains a clearer understanding of how
to perform step-by-step reasoning and can use these examples as a guide to formulate
solutions for new problems.

In Figure 4.1 we can see how the model yields a correct answer only after it is prompted
with the CoT method, and it formulates reasonable steps that lead to a correct SPARQL
query. It’s also noteworthy that the model closely follows the thought format that it was
provided. Perhaps a general reasoning chain will perform best since it will apply to most
questions from the task at hand.

4.2 Results and Analysis of CoT Prompting

We applied this few-shot Chain-of-Thought approach to the current pipeline, powered by
the best-performingmodel, Mistral v0.2 7b, according to our previous tests. The goal of the
following experiment is to examine how the model’s performance changes from a basic
3-shot prompt and a 3-shot Chain-of-Thought prompt that contains 3 reasoning chains,
one for each example.

In the first tests, we noticed a peculiar issue. The basic 3-shot prompt performed according
to previous tests with an accuracy of 0.12 as seen in Table 3.5. However, the 3-shot
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Figure 4.1: Example of a question that failed to be translated to SPARQL with standard prompting
but succeeded with CoT.

Model Few-Shot Learning Chain-of-Thought Prompting
Mistral v0.2 7b 0.10 0.14

Table 4.1: Chain-of-Thought vs plain few-shot learning accuracy.

CoT prompt caused the model to generate only select queries, presumably because all
instructions mentioned select queries so the CoT model would always create a select
query as the first step of it’s reasoning chain. To counteract this issue we simply substituted
a random select query from the prompted examples for an ask query. For consistency we
applied this change to both the CoT prompt and the basic prompt.

This led to a decrease in the base 3-shot accuracy to 0.10, which, while notable, is not
unexpected. It is well-documented that altering an LLM’s prompt can significantly affect
its performance [40]. In this case, the simpler ”ask” query likely provided less context
about the Knowledge Graph (KG) and GeoSPARQL compared to the more detailed ”se-
lect” query, giving the model less information to work with. However, this variation in per-
formance is not necessarily a flaw in the study; rather, it highlights how sensitive models
are to the prompt’s structure and the examples provided.

In fact, the reduced performance underlines a key aspect of our research: the goal is
not merely to supply more examples to improve accuracy but to explore how different
intelligent methods, such as prompt engineering or URI-injection, can enhance model
performance. This underscores that the temporary performance decline is not a setback
but rather a new baseline for the performance of our models with this given prompt. The
CoT model with the new examples delivered a 0.14 accuracy as seen in Table 4.1. This
impressive 40% increase in performance is a result of the model’s improved reasoning
capabilities.
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5. INFORMATION AUGMENTED GENERATION

A significant challenge in our LLM-based system stems from the inherently limited scope
of knowledge contained within the model’s parametric memory. This limitation is particu-
larly evident in the model’s insufficient understanding of GeoSPARQL and the YAGO2geo
knowledge graph (KG). Consequently, this lack of knowledge leads to errors such as the
generation of hallucinated URIs and the application of incorrect or non-existent relations,
resulting in incorrect results.

To address this issue, we will explore two primary strategies for enhancing the model’s
knowledge base. The first strategy involves supplying the model with relevant information
through prompting, which it can then utilize via ”in-context learning.” The second strategy
focuses on fine-tuning the model using our existing dataset, thereby directly enriching its
parametric memory.

We have already experimented with the first strategy of prompting the model with relevant
URIs. As demonstrated in subsections 3.5 and 3.6 we performed this method of prompting
the models with the necessary URIs to generate each query, referred to as URI-injection.
We also proved that it significantly improved the performance of the system. The results
indicate that LLMs effectively leverage the supplied URIs, not only by selecting the correct
URIs but also by gaining a deeper understanding of the problem and generating valid query
structures.

However, all previous attempts at URI-injection have been based on the ground-truth quer-
ies in our dataset. As a result, these experiments were heavily guided by the ground-truth
data and do not accurately represent the system’s performance when faced with novel
questions.

This section focuses on generating valid URIs that are relevant to a given natural-language
question, which will then be provided to the model through URI-injection. Our objective is
to harness the established capabilities of URI-injection and implement them within a fully
autonomous system by utilizing URIs that are generated without any external assistance.

5.1 Named Entity Recognition and Disambiguation

Named Entity Recognition (NER) and Named Entity Disambiguation (NED) are critical
tasks in Natural Language Processing (NLP) that involve identifying and accurately inter-
preting named entities within text. These entities can belong to various categories, such
as names of people, organizations, locations, and more. For our task of generating Geo-
SPARQL queries based on geographic questions, our primary focus is on identifying the
names of locations and places, known as toponyms. After identifying these toponyms, we
perform entity linking or disambiguation, which involves associating each toponym with its
corresponding URI.

In Figure 5.1 we illustrate an example of a NER and NED system in action. The NER
component effectively identifies toponyms within a sentence. However, since these top-
onyms can often correspond to multiple URIs, the NED component is crucial for linking
each toponym to a specific URI. The NED system achieves this by utilizing the context
provided by the original sentence to make accurate associations.
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Figure 5.1: Example function of NER and NED systems.
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5.2 Previous Work on YAGO2geo Entity Linking

The only two prominent question answering systems based on the YAGO2 knowledge
graph are GeoQA2 [34] and the [13] GeoSPARQL translation system. This study builds
on the GeoQA2 system and seeks to enhance its performance. GeoQA2 comprises mul-
tiple components, each serving distinct functions to gather the necessary information and
form a valid query. One of these components is responsible for performing NER and en-
tity linking for toponyms in the input question. We will closely examine this method and
establish it as a baseline for improving entity linking performance with several alternative
systems that we will propose later.

GeoQA2 handles recognition and disambiguation within a component known as the ”In-
stance Identifier.” This component identifies the features (instances) present in the input
question, such as ”Corfu island” or ”country Mayo.” The process begins with a dependency
parse tree generator that performs part-of-speech tagging and generates a dependency
parse tree for the given question using the Stanford CoreNLP toolkit. The instances within
the input question are identified by elements tagged as (NN, NNS, NNP) by the depend-
ency parse tree generator. These elements are then mapped to YAGO2geo resources
using TagMeDisambiguate, an entity recognition and disambiguation tool.

One important distinction to note is that while replicating GeoQA2’s code, we used WAT
instead of TagMe. WAT is an entity linker hosted by the same API as TagMe, but it is
preferred due to its comparable runtime performance and improved accuracy. [31]

5.3 LLM-powered NER and NED.

Large Language Models (LLMs) hold significant potential in advancing various areas of
natural language processing, particularly in tasks such as NER. Leveraging this poten-
tial, we will explore several approaches, including methods that rely solely on LLMs and
hybrid approaches that integrate WAT. Our goal is to evaluate these different methods to
determine which one offers the best performance. The LLM we utilize is Mistral v0.2 7b In-
struct, chosen due to its superior performance in our previous SPARQL query generation
experiments. We opted for the Instruct version because it aligns well with the ”instruc-
tion” format required for tasks like named entity recognition and disambiguation, where
the model needs to follow specific instructions closely. Unlike previous experiments, NER
is a fairly straightforward task, best suited for an instruction-tuned model.

Our proposed LLM-powered entity linking systems are:

• Naive popular URI selection (P-URI): Using few-shot learning, we prompt our
model to extract all toponyms from the input question. Once identified, we query
the knowledge graph (KG) for each extracted toponym to retrieve all URI entities
that contain the toponym in their name. This step is crucial because toponyms often
do not perfectly match the KG’s entity names. Additionally, multiple URIs may share
the same name but refer to different locations, such as Athens, Greece, and Athens,
Georgia. The query returns all relevant URIs, their corresponding names, and the
count of their occurrences in the knowledge graph. The P-URI method is straight-
forward: for each toponym recognized by the LLM, we run the query and select the
most popular URI from the results, which is the entity with the highest occurrence
count in the knowledge graph.
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• LLM-powered disambiguation for URI selection (LLM-ED): This method builds
on some of the functionality of P-URI. Like in P-URI, we use our LLM to extract
toponyms from the input question and subsequently query the knowledge graph
(KG) for each toponym to compile a list of relevant URIs, along with their names and
appearance counts. However, unlike P-URI, this approach does not directly select
the most popular URI. Instead, we sort the entities by popularity and select the top
three results. We then prompt the model again, using one-shot learning, to perform
disambiguation and identify the specific URI referenced in the input question. In this
step, the model is required to demonstrate reasoning skills to accurately select the
relevant URI based on the context of the question. It is worth noting that some initial
experiments with this method yielded poor results because we prompted the model
during the disambiguation step with all the possible URIs and asked it to return the
correct one. This approach was highly prone to hallucinations. To address this issue,
we revised the method by listing the URIs (ranked 1 to 3) and asked the model to
return the ID of the correct URI. This adjustment significantly reduced the occurrence
of hallucinations.

• Large Language Model - Instance URI Generation (LLM-IUG): This method in-
troduces a different approach to collecting the target URIs by directly generating
them from a prompted LLM. This is achieved by fine-tuning our LLM for the task of
instance URI generation. Specifically, we applied fine-tuning to the Mistral v0.2 7b
model after performing 4-bit quantization. The QLoRA fine-tuning technique, which
we employed, will be discussed in depth in Section 6.2. To implement this, we first
created training, validation, and test splits of our dataset, following the approach de-
scribed in Chapter 6. We trained the model by supplying each question alongside
the corresponding ground-truth instance URIs. For evaluation, we utilized simple
zero-shot prompting to maintain consistency with the format the model was fine-
tuned on.

Some useful systems used in GeoQA2:

• Instance Identifier with the WAT entity linker (IE-WAT): The function of the In-
stance identifier and the selection of the WAT entity linker have been analyzed in
Section5.2. Specifically, we identify the parts of the input that are tagged as ”in-
stances” by the parse tree generator. These instances are then processed by the
WAT linker to obtain a corresponding Wikipedia link. We extract the title of the link
and apply it to the Yago prefix, as this is the format used by the knowledge graph.
To verify the existence of the URI, we perform a simple query against the KG, and
if the URI is found, it is added to the list of relevant URIs for the question. Finally, if
the prefix does not exist, we follow the same approach as in the P-URI method. We
query our knowledge graph (KG) for entities that contain the toponym in their name
and simply select the most popular one based on the occurrence count.

Other solutions for entity linking:

• Instance Identifier with the WAT entity linker without Dependency Parse Tree
(WAT-II): This system operates similarly to IE-WAT but excludes the use of the De-
pendency Parse Tree (DPT) generator. By omitting the DPT, this approach allows
for an evaluation of WAT’s inherent linking capabilities without the influence of the
DPT, which could otherwise prevent certain instances from being linked. The goal
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is to assess whether the absence of the DPT improves or hinders entity linking per-
formance.

• Instance Identifier with theREL entity linker (REL-II): This system functions identic-
ally to WAT-II, with the sole exception being the use of the REL[43] entity linker in
place of WAT. This allows for a direct comparison between the two entity linking
solutions, enabling an evaluation of their respective performances under identical
conditions.

Based on these systems we propose the following hybrid method:

• LLM-powered entity recognition with theWAT entity linker (LLM-WAT-ED): This
approach combines elements from our LLM-ED and IE-WAT systems. Instead of
relying on a parse tree generator to identify instances in a sentence, we use our
LLM for toponym recognition. Once the toponyms are identified, we employ the
WAT entity linker to obtain relevant Wikipedia links for these entities, rather than
querying for similarly named entities across the entire knowledge graph (KG). By
leveraging the strengths of both systems, this method benefits from the enhanced
accuracy of LLM-based NER and the consistent linking provided by the WAT linker.

Another useful system derived from GeoQA2 is the Concept Identifier (CoID). This com-
ponent is relatively straightforward, relying on two manually curated lists of classes and
corresponding labels from the Yago and YAGO2geo ontologies. Each list includes all
the concepts from these knowledge bases, along with descriptive names (e.g. the class
YAGO2geoo:OSM bay is tagged ”Bay”). The CoID module utilizes the same dependency
parse tree as the Instance Identifier component. It maps any word or sequence of words
identified by the POS tags (NN, NNS, NNP, NNPS) to the ontology classes using n-grams.

The concept identifier works by iterating through the two lists of class labels from the
ontology, generating n-grams (where n corresponds to the number of words in each class
label), and comparing the n-grams to the respective class labels. For n-grams containing
more than one word, the Jaro-Winkler string similarity measure is applied; for single-word
n-grams, the Levenshtein distance is used instead.

After thorough testing, we discovered that one of the lists containing YAGO concepts
was negatively impacting system performance. The issue arises from the overlap in label
names between YAGO concepts and YAGO2geo concepts, even though YAGO concepts
are rarely used in our dataset. As a result, the system sometimes incorrectly prefers
YAGO concepts over their YAGO2geo counterparts, leading to an increase in false pos-
itives and a corresponding decrease in true positives. For this reason, CoID and other
concept identifier systems will only work based on the YAGO2geo concept list.

We also evaluated the performance of the Concept Identifier without relying on the de-
pendency parse tree, which we refer to as Plain-CoID. This system operates similarly to
the original CoID but omits the use of POS tags. Instead, it directly employs n-grams to
measure similarity between YAGO2geo concept labels and the input question. This ap-
proach simplifies the process by bypassing syntactic parsing while still aiming to identify
relevant concepts through string similarity.
Based on the CoID system from GeoQA2, we propose LLM-CoID: An LLM-powered
Concept Identifier. This system utilizes the same list of class labels from the YAGO2geo
ontology. However, instead of selecting URIs based on string similarity through n-grams,
we leverage our LLM to identify relevant concepts. We prompt the model with the entire
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lists of class labels and instruct it to find all pertinent concepts in the input question using
in-context learning. To enhance accuracy, we also employ few-shot learning.
As an alternative approach, we will attempt to generate concept URIs directly, without re-
lying on a predefined list of class labels. This will be accomplished through fine-tuning,
and we will refer to this system as LLM-CUG (Large Language Model - Concept URI Gen-
eration), building on the LLM-IUG framework. The system follows the same procedure,
with the key difference being that it is trained to generate concept URIs instead of instance
URIs.

Note that, CoID, Plain-CoID, LLM-CoID and LLM-CUG do not perform Named Entity Dis-
ambiguation (NED) as they target predefined concepts rather than instances. As a result,
these systems can be effectively combined with any other NER method to enhance the
overall URI generation capability of our system.

5.4 Results and Evaluation of the URI-Generating Methods

In Tables 5.1 and 5.2, we present the results of all the previously proposed methods. The
results are expressed as percentages, representing the True Positive (TP) and False Pos-
itive (FP) counts for each model, ensuring a consistent scale for comparison. Alongside
these metrics we also supply the precision of each method which can be viewed as the its
ultimate performance metric. The TP and FP rates are supplied to explore in more detail
the capabilities of each system. These percentages are calculated by measuring the total
counts of Instance URIs and Concept URIs within our test set. This approach allows for
a clear evaluation of each method’s performance relative to the total number of relevant
URIs in the test set.

It is important to clarify that the percentages for True Positives (TP) and False Positives
(FP) are calculated relative to the total number of concept URIs in the test set. For in-
stance, consider a question with 5 concept URIs, and the system generates 7 URIs, 4 of
which are correct and 3 incorrect. In this case, the TP rate would be 80%, while the FP
rate would be 60%. Since our systems are not restricted in the number of URIs they can
generate, these percentages can exceed 100%. This happens when, for example, a low
threshold for string similarity or a poorly prompted LLM generates a surplus of incorrect
URIs.

Including both the True Positive and False Positive metrics is crucial for determining the
optimal strategy for URI generation. Each method involves a trade-off between accuracy
and precision, meaning that as TP increases, FP may also rise. Finding the right balance
between these two metrics is essential. Additionally, since these URIs will be input into our
LLM for SPARQL query generation in the final pipeline, we prioritize a low False Positive
rate. A high False Positive rate could lead to the LLM using incorrect URIs, potentially
causing hallucinations and ultimately degrading performance, possibly even performing
worse than if no URI-injection was performed at all.

The results presented in Table 5.1 demonstrate that the P-URI method performs reas-
onably well, as the most frequently used URI in the knowledge graph is often the cor-
rect choice. However, the data also reveals that when LLM-ED is introduced, utilizing
in-context reasoning, there is a slight reduction in the TP rate by 1%, but a more substan-
tial decline in the FP rate by 10%. This suggests that the LLM Disambiguation method
holds significant potential and could eventually replace the IE-WAT entity linking method.

The LLM-IUG approach, which relies solely on a large language model for URI gener-
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Method True Positives False Positives Precision
P-URI 36% 54% 0.40
LLM-ED 35% 44% 0.44
LLM-IUG 63% 41% 0.61
REL-II 68% 48% 0.59
WAT-II 69% 56% 0.55
IE-WAT 69% 53% 0.57

LLM-WAT-ED 67% 40% 0.63
Table 5.1: Entity linking methods alongside their true positive and false positive percentages.

Method True Positives False Positives Precision
CoID 84% 30% 0.74

Plain-CoID 87% 34% 0.72
LLM-CoID 45% 50% 0.47
LLM-CUG 79% 69% 0.53

Table 5.2: Concept Identifiers and their respective TP and FP percentages.

Figure 5.2: LLM-IUG learning curves.
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ation, delivers impressive results by nearly doubling the true positive (TP) rate of basic
LLM-based named entity recognition (NER) methods, while simultaneously reducing the
false positive (FP) rate and delivering the second-best precision among all tests. This
demonstrates that the model has effectively adapted to the task and learned key patterns
from the underlying knowledge graph (KG). We can also verify that the model is conver-
ging well and no overfitting has occurred by examining Figure 5.2. This system is an
optimal solution in scenarios where access to the KG is limited or unavailable, or when
working with custom or unknown KGs for which standard entity linkers, such as REL or
WAT, would not be effective. As long as we have an appropriate dataset for the related
KG. Despite these constraints, the LLM-IUG system offers performance close to that of
our best-performing method.

Nevertheless, at present, IE-WAT and WAT-II outperform other methods, achieving the
highest observed True Positive rate of 69%, albeit with a relatively high False Positive rate
of 53% and 56% respectively. REL-II offers a better balance with 0.59 precision indicating
that REL might be better than WAT if used alone. Nevertheless, the hybrid approach,
LLM-WAT-ED, which employs our LLM for the entity recognition phase, demonstrates a
notable improvement by increasing the precision to 0.63. This suggests that LLM-WAT-ED
offers the most effective balance between accuracy and precision, making it the optimal
solution for our system. The LLM consistently performs accurate named entity recognition,
while the WAT entity linker proves to be more robust for entity linking than relying on LLM
disambiguation, which involves searching for names similar to the recognized toponyms
across the entire knowledge graph. As a result, LLM-WAT-ED will be employed in our final
implementation.

In addition to our NER methods, we also evaluated four Concept Identifier systems, with
the results detailed in Table 5.2. This evaluation was based on the premise that concept
URIs could play a crucial role during the URI-injection phase. Initially, the CoID system
by GeoQA2 displayed an 84% True Positive rate and a 30% False Positive rate. These
results are promising and suggest that providing the concept URIs alongside the instances
will improve our query generation capability.

We tested a variant system, Plain-CoID, which operates without the Dependency Parse
Tree (DPT), aiming to increase the True Positive (TP) rate. The underlying assumption
was that DPT reduced the number of string similarity checks, thereby limiting opportunities
to capture TPs. Plain-CoID achieved an 87% TP rate, the highest among all concept
identifier methods, along with a 34% False Positive (FP) rate. As expected, both TPs and
FPs increased, since the systemwas no longer restricted to wordsmost likely representing
concepts. However, the net improvement in TPs was only 3%, while the FPs increased
by 4%. This trade-off made Plain-CoID less effective than the original CoID.

We introduced LLM-CoID to address discrepancies that will be discussed in subsection 5.5.
However, this new system underperformed compared to the string similarity-based meth-
ods, achieving a True Positive (TP) rate of 45% and a False Positive (FP) rate of 50%.
While these results might seem discouraging, there is potential in leveraging an LLM for
this task, as it can utilize reasoning to make selections that string similarity methods can-
not. For now, however, CoID remains the more effective approach.

The LLM-CUG approach showed improvement over LLM-CoID, achieving a true positive
(TP) rate of 79%, comparable to the string similarity methods. However, this system also
produced the highest false positive (FP) rate of 69% across all concept URI generation
tests, making it unsuitable for this particular scenario despite its gains in TP accuracy.
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5.5 System Limitations and Error Analysis

Upon closer inspection of the system outputs, we identified some characteristic faults
specific to each system:

NER systems powered by LLMs:

• Some errors stem from the inherent nature of the entities themselves. Many entities
in the knowledge graph have confusing or misleading names. For example, the
correct URI for ”Dublin” is labeled as ”DUBLIN CITY COUNCIL” while another URI
simply labeled ”Dublin” exists, which also has a higher occurrence count. However,
this latter URI refers to a different entity and is therefore incorrect. This type of
mistake is one that even a human might make, indicating that the issue may lie
more with the imperfections of the knowledge graph than with the model itself.

• It is evident that the P-URI system is prone to errors because the most popular URI
is not always the correct one. However, the LLM-ED system also exhibits a signi-
ficant number of errors, primarily due to its insufficient disambiguation capabilities.
The model often fails to apply proper reasoning, leading to obvious mistakes. En-
hancing the model’s performance in disambiguation could potentially be achieved
through improved prompting techniques, such as Chain-of-Thought prompting, or
by employing a larger and more capable model.

GeoQA2’s Instance Identifier:

• The primary issue with this system lies in the fact that WAT is a general-purpose
entity linker, not specifically optimized for toponyms. This problem is compounded
by the dependency parse tree approach, which identifies instances based on broad
POS tags. As a result, words that are not toponyms often get passed to the en-
tity linker. Since WAT is designed to handle a wide range of entities, it frequently
links these non-toponym words to irrelevant URIs, leading to a high number of False
Positive results.

LLM-WAT-ED:

• This system effectively combines the complementary strengths of the other two ap-
proaches, leveraging the enhanced toponym-recognition capabilities of the LLMwith
the superior entity-linking accuracy of the WAT linker. This integration yields the
best overall results. Remaining errors can largely be attributed to the inherent lim-
itations of the current models. Future improvements, such as advanced prompting
techniques and the use of a larger, more capable LLM, could potentially lead to
significant enhancements in performance.

String Similarity-based Concept Identifiers:

• These systems, despite outperforming their LLM-based counterpart, exhibit notable
shortcomings. With the inclusion of both YAGO2geo and YAGO classes, their per-
formance actually falls behind that of the LLM-based approach. This issue arises
due to a significant overlap between the labels in the two class lists. Fortunately, be-
cause YAGO concepts are rarely used in our dataset, this problem can be mitigated
by excluding the YAGO class list entirely.
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Figure 5.3: Incorrect concept identification due to the concept being part of an instance.

Figure 5.4: Incorrect concept identification due to lack of ontology knowledge and reasoning.
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Additionally, several other issues are evident. For instance, in Figure 5.3, two words
in the sentence match labels from our list perfectly, but only one refers to an actual
concept, while the other is part of a toponym. Similarly, in Figure 5.4, the word
”county” appears in the question and it is matched to a concept with the same exact
label, but the required URI to answer the query has the label ”county council.” Lastly,
there are cases where a URI label might be present in the input but isn’t necessary
for answering the query.
These mistakes stem from the nuances of natural language. Even when a concept
is critical to the question, its label might not appear directly in the input. These chal-
lenges require a level of reasoning that includes identifying whether a label is truly
a concept or part of another entity, determining if additional URIs are needed, and
recognizing when a URI, though not explicitly mentioned, is essential for construct-
ing a valid query. Based on this newfound reasoning requirement the LLM-powered
Concept Identifier was proposed.

LLM-powered Concept Identifiers:

• Although the LLM-CoID approach demonstrated the weakest results among the four
tests, it still managed to identify nearly half of the required concepts. Interestingly,
some of the desired reasoning capabilities were successfully adopted by the model.
For example, if a county name appears in a question without explicitly mentioning the
word ”county,” the model might still return the relevant ”county” URI concept. This
occurs because the model recognizes the relevance of the concept, even when it’s
not explicitly stated in the input. However, while the model successfully includes
relevant URIs they are not always necessary. The model needs to posses a strong
understanding of SPARQL and the underlying KG in order to successfully include
only the needed URIs for the query generation phase. Clearly, this model does not
have this capacity, therefore some of the related URIs that it generates end up as
False Positives.

• When the model was fine-tuned on a relevant training corpus in experiment LLM-
CUG, we observed a significant improvement in the true positive (TP) rate, bringing it
closer to the performance of string similarity-based systems. However, this improve-
ment was accompanied by a high rate of false positive (FP) URIs. While the model’s
performance was inferior to the string similarity methods, it still showed noticeable
gains over the LLM-CoID approach. This indicates the potential for LLM-power
concept identifiers. Presumably, with further fine-tuning and enhanced prompt en-
gineering we can surpass these scores.
Furthermore, due to the small scale of the LLM, both systems struggled with hal-
lucinations and imperfect reasoning, which contributed to their inferior performance
and higher False Positive rates. Despite these shortcomings, the logical complexity
of the task makes it clear that these methods represent the future of concept iden-
tification. With the utilization of a larger model, improved prompting techniques, or
fine-tuning, these approaches could potentially surpass traditional string similarity-
based methods.
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5.6 Evaluation of SPARQL query generation with URI injection.

Following our in-depth analysis of various URI generation methods, we now turn to evalu-
ating their impact on the performance of the SPARQL query generation system. Previous
experiments demonstrated that supplying the model with the correct URIs for each ques-
tion, a process known as URI-injection, significantly enhanced the system’s accuracy.
However, those tests were conducted under controlled conditions, relying on ground truth
data to assist the model, which does not accurately represent the system’s independent
capabilities.

In this section, we evaluate the effectiveness of unassisted URI generation methods that
we developed, which are designed to autonomously produce relevant URIs for each input
question. By refining these approaches, we aim to assess whether the automatically gen-
erated URIs can genuinely enhance the performance of our SPARQL query generation
system.

We will conduct three distinct experiments to evaluate the effectiveness of the generated
URIs in enhancing SPARQL query generation.

1. Instance-Only Experiment: In the first experiment, we will focus solely on instances
generated by a Named Entity Disambiguation (NED) model. Specifically, we will util-
ize the hybrid LLM-WAT-ED method, which delivered the most promising results in
our previous tests. This experiment will help us assess howwell the system performs
when relying exclusively on instance URIs provided by the LLM-WAT-ED approach.

2. Concept-Only Experiment: Similarly to the instance-only test we will assess the
importance of concept URIs for the model during SPARQL query generation. This
is done by the inclusion of concept URIs identified by the GeoQA2 concept identifier
(CoID), which proved to be have the best balance between TP and FP scores.

3. Instance and Concept Experiment: The final experiment will build upon the previ-
ous two by incorporating concepts alongside the instances. This combined approach
will allow us to evaluate whether the inclusion of both types of URIs can further en-
hance the accuracy and effectiveness of the SPARQL query generation system or
hinder it.

For this new test, we introduce a few-shot prompt containing six examples. These ex-
amples include instances with both missing and incorrect URIs, enabling the model to bet-
ter adapt to the imperfections commonly found in our automatically extracted URIs. Sur-
prisingly, this straightforward prompt also achieves a new record for unassisted SPARQL
generation with Mistral, with an accuracy of 19%. This improvement can be attributed to
the inclusion of six examples in the prompt, over the three previously used. While adding
more examples could potentially lead to further gains, this approach lacks scientific rigor
and does not provide meaningful benefits, so we will not pursue it further.

In Table 5.3 we present the results of SPARQL query generation accuracy, augmented
by three URI-injection experiments as previously outlined. For comparison, we include a
test on the same prompt without the addition of URI-injection. The results indicate that the
model equipped with URIs performs slightly better than the baseline model, apart from the
Concept URI test which actually performed worse than before.

To further validate our findings, we will replicate the same tests using the GPT-4o mini
model. The results of these experiments are summarized in Table 5.4. Both Mistral and
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Method Accuracy
Mistral v0.2 7b with few-s(6) 0.19

Mistral v0.2 7b with Instance URI-i and few-s(6) 0.22
Mistral v0.2 7b with Concept URI-i and few-s(6) 0.14

Mistral v0.2 7b with Instance + Concept URI-i and few-s(6) 0.20
Table 5.3: SPARQL generation accuracy with the current best performing method and automatic

URI injection methods.

GPT-4o mini appear to benefit from the inclusion of our URI-injection system. Notably, all
but one of our tests demonstrated improvements over the baseline method. However, the
models exhibit differing behaviors, which can be attributed to their varying capabilities. In
this section, we will analyze these results in greater detail.

Mistral significantly improved its performance when only Instances were provided, with a
slight improvement noted when both Instances and Concepts were supplied. Interestingly,
when only Concepts were given, there was a substantial 5% drop in performance. This
decline can be attributed to two key issues:

• Imperfect prompt: It’s likely that additional prompt attempts could bring the res-
ults closer to the baseline. The examples in the current prompt may not sufficiently
emphasize that the supplied concepts are not necessarily correct.

• Low concept confidence: Concept URIs tend to be more cryptic than Instances,
leading to uncertainty in selecting the correct URI and increasing the risk of False
Positive URI selection. For example, if the question is ”Is Athens north of Thes-
saloniki?” and the model is given the URIs ”Athens, London,” it can easily discard
the False Positive. However, if supplied with URIs like ”townland, ward, district,
county” for a different question, it would struggle to determine whether a necessary
URI is missing or if a False Positive is present.

GPT-4omini did not show any improvement when only Instances were supplied. However,
a slight improvement was observed when concepts were provided, and most notably, the
model’s accuracy increased by 5%, from 31% to 36%, when both instances and concepts
were introduced together.

These results may initially appear contradictory. However, when considering GPT’s su-
perior reasoning capabilities, the lack of improvement in the Instance-only experiment is
likely due to the model’s ability to recognize common patterns in toponym URIs, allowing
it to infer them independently.

Moreover, the improvement observed when concepts are supplied supports the notion that
Mistral struggles to distinguish between valid and invalid concept URIs, whereas a more
advanced model like GPT can make this distinction effectively. Ultimately, both models
show notable improvements when supplied with a combination of Instance and Concept
URIs.

In general, these results confirm that URI-injection, contributes positively to the overall
goal of SPARQL query generation. Given that the assisted URI-injection previously led
to even greater performance gains, we can expect even better performance as our URI
extracting modules improve.
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Method Accuracy
GPT 4o-mini with few-s(6) 0.31

GPT 4o-mini with Instance URI-i and few-s(6) 0.31
GPT 4o-mini with Concept URI-i and few-s(6) 0.32

GPT 4o-mini with Instance + Concept URI-i and few-s(6) 0.36
Table 5.4: SPARQL generation accuracy with GPT 4o-mini and URI-injection methods.

5.7 Conclusion

These results demonstrate the potential of the URI-injection method. Our efforts have
initiated a hybrid system that combines GeoQA2’s rule-based modules with the advanced
reasoning capabilities of LLMs. Additionally, we have successfully developed an LLM-
based instance identifier that surpasses the existing system in GeoQA2 by significantly
reducing false positive rates. Moreover, we proposed and developed two LLM-based
concept identifiers which under-perform existing string similarity methods but exhibit theor-
etical promise. Finally, our experiments confirmed that assisted URI injection substantially
enhances the system’s SPARQL query generation capabilities. This finding suggests that
with further refinements to the URI-generation components, we can expect even greater
improvements in the overall performance of SPARQL query generation, moving us closer
to a more robust and accurate system.
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6. FINE-TUNING THE SPARQL QUERY GENERATION MODEL

Fine-tuning is a critical step in machine learning, particularly in the context of transfer
learning, where a pre-trained model is adapted to a specific task. Unlike training a model
from scratch, which requires vast amounts of data and computational resources, fine-
tuning leverages the knowledge already embedded in a pre-trained model. This process
involves adjusting the model’s weights slightly by training it on a smaller, task-specific
dataset. By doing so, the model can specialize in the new task while retaining the gener-
alized knowledge it gained during its initial training.

In the context of large language models (LLMs) like, our best-performing model, Mistral,
fine-tuning allows the model to be adapted to domain-specific tasks, such as generating
GeoSPARQL queries. The pre-trained model has already learned a wide range of lin-
guistic patterns, knowledge, and reasoning abilities. Fine-tuning hones these capabilities
to better suit the nuances and requirements of the specific domain.

6.1 Data Preparation

To maintain uniformity in our test results, we will use the same test set that was utilized
in the previous accuracy measurements. This test set comprises approximately 10% of
the entire dataset. The remaining 90% will be divided into an 80% training set and a 10%
validation set, adhering to the 80-10-10 split commonly used for optimal model training.

6.2 Parameter-Efficient Fine-Tuning (PEFT) Techniques

Parameter-Efficient Fine-Tuning (PEFT) techniques are a set of methods designed to ad-
apt large pre-trained models to specific tasks while minimizing the number of trainable
parameters. The main idea behind PEFT is to reduce the computational and memory
requirements of fine-tuning, making it feasible to adapt large models even in resource-
constrained environments. PEFT techniques focus on fine-tuning only a small subset of
the model’s parameters, which can lead to faster training and lower risk of overfitting, es-
pecially when dealing with small datasets.

PEFT can be broken down to these fundamental categories [47]:

• Additive Fine-Tuning: This approach of fine-tuning involves introducing new ex-
tra trainable parameters for task-specific fine-tuning. Some methods that belong to
this category include incorporating trainable adapter modules into the transformer,
allowing for fine-tuning without modifying the pretrained parameters. Other tech-
niques include soft prompts or prefix vectors appended to the input embeddings or
hidden states during fine-tuning.

• Partial Fine-Tuning: These methods aim to reduce the number of fine-tuned para-
meters by selecting a subset of pre-trained parameters that are critical to down-
stream tasks while discarding unimportant ones.

• Reparameterized Fine-Tuning: Reparameterized fine-tuning methods utilize low-
rank transformation to reduce the number of trainable parameters while allowing op-
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erating with high-dimensional matrices (e.g., pretrained weights). These methods
include LoRA, a low-rank adaptation method designed to adjust large pre-trained
models to specific tasks by reducing the number of parameters that need to be fine-
tuned. The main idea behind LoRA is to introduce trainable, low-rank matrices into
the model’s architecture, allowing for efficient task-specific adaptation without modi-
fying the majority of the model’s parameters.

A neural network contains many dense layers which perform matrix multiplication.
The weight matrices in these layers typically have full rank. When adapting to a
specific task, [1] shows that the pre-trained language models have a low ”intrinsic
dimension” and can still learn efficiently despite a random projection to a smaller
subspace. Inspired by this, [16] hypothesized and proved that the updates to the
weights also have a low ”intrinsic rank” during adaptation. For a pre-trained weight
matrixW0 ∈ Rd×k, they constrain its update by representing the latter with a low-rank
decomposition W0 +∆W = W0 +BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪
min(d, k). During training,W0 is frozen and does not receive gradient updates, while
A and B contain trainable parameters. Note both W0 and ∆W = BA are multiplied
with the same input, and their respective output vectors are summed coordinate-
wise. This is the foundation of the LoRA fine-tuning system. Apart from providing
very fast training due to the small amount of trainable parameters, this method has no
inference latency, unlike many adapter methods, and can be combined with methods
such as prefix-tuning.

• Hybrid Fine-Tuning: This approach aims to combine various PEFT methods, such
as adapter, prefix-tuning and LoRA, to leverage the strengths of each method and
mitigate their weaknesses. By integrating different features of PEFTmethods, hybrid
fine-tuning achieves improved overall performance compared to individual PEFT
approaches.

• Unified Fine-Tuning: This category of fine-tuningmethods presents a unified frame-
work, which streamlines the incorporation of diverse fine-tuning methods into a co-
hesive architecture, ensuring consistency and efficiency across the adaptation and
optimization of models. Unlike hybrid fine-tuning methods, this approach typically
utilizes a single PEFT rather than a combination of multiple methods. As an ex-
ample let us consider SparseAdapter. This method utilizes network pruning tech-
niques to construct a unified framework in which various PEFT methods, including
the adapters family and LoRA, can be further pruned to improve parameter effi-
ciency. Specifically, SparseAdapter sets a target sparsity, denoted as s, and as-
signs a score, denoted as z, to all parameters of adapters and LoRA. Parameters
with scores bellow the threshold zs (corresponding to the s-th lowest percentile of z)
are considered redundant and removed.

6.3 Experiments

We conducted several experiments using finetuned weights, all of which employed the
QLoRA [7] approach for efficient and effective fine-tuning. QLoRA is a variant of LoRA
specifically designed for quantized LLMs, enabling fine-tuning of large language models
while reducing memory and computational requirements through quantization.For these
tests, we fine-tuned the Mistral v0.2 7b model, as it has consistently demonstrated strong
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performance for this task. Due to hardware constraints, we quantized the model to 4-bits,
allowing us to train the model within our available 16 GBs of VRAM.

We fine-tuned themodel on the training set and evaluated its performance on the validation
set, as outlined in subsection 6.1. To ensure consistency and comparability in our results,
we measured the performance of all fine-tuned weights on the same test set that was used
in our previous experiments. Some of our experiments were also tested on a subset of
the test set which does not include particular ontologies.

We utilized supervised fine-tuning (SFT) to retrain our model. SFT relies on labeled data,
making it an ideal approach for our task, which involves question/query pairs. During this
process, the model learns to associate specific inputs with the correct outputs based on
the examples in the training set. This method helps the model adapt to more specialized
tasks, reinforcing patterns from the labeled dataset, and improving its overall performance
for query generation.

Here is the experiment list along with the motivation behind each design choice:

• Plain-4: This experiment was designed to evaluate the model’s baseline perform-
ance when trained on the entire training corpus for 4 epochs without applying any
pre-processing to the training data. The goal was to understand how well the model
could generalize from the raw data without any intervention or optimization.

• Norm-4: This experiment, like Plain-4, trains the model for 4 epochs on the entire
dataset. However, in this case, we applied pre-processing to normalize the variable
names within the queries. Each variable was renamed with numerical order (e.g.,
var0, var1, var2) to prevent the model from being penalized for incorrectly predicting
variable names, which are not crucial for generating valid SPARQL queries. This
approach aimed to improve themodel’s ability to focus on the structural and semantic
aspects of query generation, rather than irrelevant details like variable naming.

• Norm-Simple-5: This experiment follows the same procedure as Norm-4 but ex-
tends the training to 5 epochs. Additionally, the ”Simple” designation indicates that
questions that originate from YAGO2 were excluded from the training set. These
questions typically use the rdfs vocabulary in their queries. RDFS or Resource De-
scription Framework Schema is a set of classes with certain properties using the
RDF extensible knowledge representation data model, providing basic elements for
the description of ontologies. The rationale behind this decision was to allow the
model to better focus on the more straightforward YAGO2geo SPARQL queries,
which form the bulk of the dataset. Queries with the rdfs vocabulary were more
complex and relatively rare, which likely led to confusion during training. Experi-
ments tagged with ”Simple” will be evaluated both on the full test set and on a subset
without any rdfs vocabulary queries.

• Norm-Simple-Trunc-5: In this experiment, additional pre-processing is applied to
the training corpus. The training set contains queries with mixed representations
of URIs, some using the full URI, while others use the prefix form. This inconsist-
ency can confuse the model, which does not need to learn the full URI when the
prefix form suffices. Moreover, penalizing the model for using the ”wrong” URI form
(even though both forms result in valid SPARQL queries) can negatively impact per-
formance. To resolve this, we truncated all full URI links to their prefix form (e.g.,
"http://yago-knowledge.org/resource/Sfakia" becomes "yago:Sfakia").
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Method Test Set Accuracy Simple Set Accuracy
Plain-4 0.13 -
Norm-4 0.20 -

Norm-Simple-5 0.19 0.21
Norm-Simple-Trunc-5 0.31 0.33
Norm-Simple-Trunc-8 0.39 0.43

Table 6.1: Resulting accuracy of fine-tuned Mistral models on the full test set and a simpler subset
lacking rdfs ontologies.

• Norm-Simple-Trunc-8: This final experiment is the same as Norm-Simple-Trunc-5
with an extended training of 8 epochs.

6.4 Results

The results of the previously analyzed experiments are documented in Table 6.1. In the
”Test Set Accuracy” column, we present the accuracy of each model on the full test set,
which is a randomly selected subset of GeoQuestions1089 and reflects the models’ over-
all capabilities on the dataset. The ”Simple Set Accuracy” column lists the accuracy of
the ’Simple’ designated models on a specific subset of the test set that excludes queries
containing the rdfs ontology.

Initially, we observed a 13% accuracy from the Plain-4 method. This notable result demon-
strates that fine-tuning is effective, as the same pre-trained model performed with 0% ac-
curacy when evaluated with the same zero-shot prompt. This improvement confirms that
the model has adapted to the task through fine-tuning.

The Norm-4method further refines this approach. Our intuition that the variable names are
unnecessary during training is validated by a significant 7% increase in accuracy, raising
the system’s performance to 20%. This improvement demonstrates the effectiveness of
normalizing variable names, as it helps the model focus on more relevant aspects of the
SPARQL query generation task.

The Norm-Simple-5 method did not exhibit any improvement over Norm-4. While it seems
plausible that the presence of a few complex ontology examples in the training set could
confuse the model, omitting these examples did not result in performance gains. This
suggests that the model may not have been heavily impacted by the complexity of these
queries, or that removing them did not provide the anticipated clarity in understanding the
simpler YAGO2geo SPARQL queries.

The introduction of truncation in the training set led to significant performance improve-
ments in the Norm-Simple-Trunc-5 experiment. The accuracy increased to 31% on the
entire test set and 33% on YAGO2geo-specific questions. This suggests that simplifying
the URI format helped the model focus on more critical aspects of the task. Furthermore,
extending the training to 8 epochs in the Norm-Simple-Trunc-8 experiment further en-
hanced the model’s capabilities, achieving 39% accuracy on the entire test set and 43%
on the simple set, demonstrating the benefits of prolonged fine-tuning and consistent pre-
processing. It is important to note that we limit ourselves to 8 epochs of training in this
work due to computational and time constraints.

These results are extremely promising as they even surpass the performance of GPT-4o
mini with the URI-injection method which results in only 36% accuracy.
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Figure 6.1: Learning Curves for the Norm-Simple-Trunc-8 model.

In Figure 6.1, we observe the learning curves of the Norm-Simple-Trunc-8 model. Both
training and validation losses decrease rapidly during the initial steps and then gradu-
ally stabilize, indicating that the model is converging well. The small and consistent gap
between the losses suggests that overfitting has not occurred. Interestingly, while the
validation loss between 5 epochs ( 250 steps) and 8 epochs appears almost unchanged,
the accuracy improvement with 8 epochs is substantial. This suggests that the loss val-
ues might not be the most reliable metric for evaluating the system’s performance, and
continued training could further refine the model’s weights for even better outcomes.

We also attempted to apply the same six-example few-shot approach that previously yiel-
ded promising results, along with URI-injection, on our fine-tuned model. However, these
attempts resulted in lower accuracies than the zero-shot question prompts and, thus, are
not documented. This outcome was anticipated, as the model no longer needs to rely on
in-context learning for SPARQL generation; it was trained on a significantly larger corpus.
In fact, the more extensive prompts, which included these few-shot examples, increased
the complexity of the questions and did not align with the format the model was trained
on, ultimately leading to confusion and a decrease in accuracy.

Another idea was to test the model with URI-injection without the extensive few-shot ex-
amples. This approach would keep the prompt’s complexity similar to the zero-shot set-
tings and maintain a format close to what the model was trained on. However, perform-
ance still dropped, likely because the absence of examples led the model to overlook the
possibility that the injected URIs could be false or missing. In previous experiments, this
issue was mitigated by including multiple examples that highlighted these characteristics.

Another possible explanation is that the fine-tunedmodel has encounteredmany URIs and
can independently infer them better than our URI-injection methods. This suggests the
potential for amore powerful URI-injection system based on a fine-tuned LLM. In summary,
while the URI-injection method has proven effective as a prompt engineering strategy for
pre-trained models, fine-tuned models are specifically calibrated for a task, making them
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Figure 6.2: Example of the question-answering capabilities of the Mi-F8 model.

Figure 6.3: Comparison of generated and ground-truth ASK query for a given question.

less responsive to fluctuations in the prompt that do not enhance their efficiency.

In Figures 6.2, 6.3, 6.4 we present various examples of questions successfully answered
by our best finetuned model, Norm-Simple-Trunc-8, referred to as ”Mi-F8”, along with
their respective results extracted from the Knowledge Graph. In Figure 6.3 we note the
difference between the generated and the ground-truth ASK query. While both are valid,
there are some minor differences in their structure and the variable naming conventions,
which is to be expected from normalization applied to the variable names during finetuning.
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Figure 6.4: Example of the question-answering capabilities of the Mi-F8 model.
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7. CONCLUSIONS AND FUTURE WORK

We present how our systems compare with GeoQA2. Furthermore, we will provide a con-
cise summary focusing on the key outcomes of this work, while also highlighting potential
avenues for future research and development.

7.1 EVALUATION OF OUR SYSTEMS

In Table 7.1 we present a comparison between GeoQA2 and two of our approaches using
the GeoQuestions1089 dataset. It’s important to clarify that GeoQA2 was evaluated on
the complete dataset, whereas our methods were assessed only on a randomly sampled
subset due to training constraints. However, since this test set consists of 10% of the entire
dataset, randomly selected, the accuracy results for our system should closely reflect its
overall performance. Specifically, we will be comparing GeoQA2 with our URI-injection
prompting approach used with GPT-4o mini which includes both concept and instance
URIs. This approach will be denoted as ”Ui-GPT”. The second approach that we compare
is our best performing fine-tuned Mistral v0.2 7b model which was trained for 8 epochs on
our carefully pre-processed training set. This model will be denoted as ”Mi-F8”.
We observe that Ui-GPT achieves performance levels comparable to GeoQA2, making it
an excellent option for easy implementation. As LLMs continue to advance and improve
their reasoning abilities and understanding of SPARQL, this method could deliver even
better results, especially with a more sophisticated URI-generation system, all without the
need for costly fine-tuning. This adaptability allows its performance to be applied across
various tasks and ontologies.

More significantly, our Mi-F8 model matches GeoQA2’s performance while being a com-
pact 7 billion parameter model, quantized to 4-bit precision. This low resource require-
ment means it is not hardware or computation-intensive, making it a viable replacement
for GeoQA2. Additionally, with further training or a larger dataset, this model has the
potential to achieve even more impressive results.

7.2 SUMMARY AND FUTURE WORK

The key outcomes of this work are:

• A thorough evaluation and comparison of various LLMs on the task of GeoSPARQL
query generation.

• The development of the URI-injection prompt engineering method, which offers sig-
nificant performance improvements on pre-trained models, proving to be powerful
and require no expensive training.

Method Accuracy
GeoQA2 38.54%
Ui-GPT 36%
Mi-F8 39%

Table 7.1: Comparison of accuracy scores between GeoQA2 and our methods.
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• The creation of Mi-F8, a fine-tuned LLM based on Mistral, that matches state-of-
the-art performance in GeoSPARQL query generation on the GeoQuestions1089
dataset. The model is quantized to 4-bit precision, making it lightweight for fast
inference on standard computers.

Some promising directions for future improvements of this work are:

• The creation of a unified benchmark for accurate GeoSPARQL query similarity,
which could better capture nuances missed by the BLEU similarity metric, especially
in cases where evaluating based on query results is not feasible.

• Developingmore advancedURI-generation systems for URI-injection could enhance
performance. Fine-tuned LLMs capable of generating all necessary URIs for a
query, not limited to instances or concepts, could outperform current approaches.

• Fine-tuning larger versions of the Mistral v0.2 model on the same dataset may lead
to improved performance. Further training of the Mi-F8 model could also yield better
results, as no overfitting was observed, though training was limited to 8 epochs due
to computational constraints.

• Mi-F8 was fine-tuned with zero-shot examples, and as a result, it performs best
when given zero-shot examples during inference. In fact, when provided with few-
shot examples, its performance declines, as it is not optimized for that format. A
potential future direction to improve the system would be to fine-tune the model with
differently formatted training corpora, such as zero-shot chain-of-thought or few-shot
prompting. This would allow it to handle those formats during inference, potentially
leading to better results.

As LLMs continue to enhance their understanding of SPARQL, improve in reasoning abil-
ities, and become more efficient, they are poised to revolutionize the functioning of Ques-
tion Answering systems, delivering unprecedented results. Additionally, as GeoSPARQL
datasets based on YAGO2geo evolve, these advancements will further amplify the impact
of these systems, enabling even more accurate and insightful answers.
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ABBREVIATIONS - ACRONYMS

LLM Large Language Model

NLP Natural Language Processing

SPARQL SPARQL Protocol and RDF Query Language

GeoSPARQL Extension of SPARQL that includes geospatial relations

YAGO Yet Another Great Ontology - Database

CoT Chain-of-Thought (prompting technique)

KG Knowledge Graph

URI Uniform Resource Identifier

PEFT Parameter-Efficient Fine-Tuning

LoRA Low Rank Adaptation

QLoRA Quantized Low-Rank Adaptation

GeoQA2 Geospatial Question Answering system by NKUA

SOTA State-of-the-art

POS Part-of-speech tagging

WAT Entity linker tool

NED Named-Entity Disambiguation

NER Named-Entity Recognition

TP/FP True Positives/False Positives

W3C World Wide Web Consortium

NMT Neural Machine Translation

LSTM Long short-term memory - type of recurrent neural network

it Instruction-tuned (in the context of specific LLMS)

RDF Resource Description Framework

POI Points of Interest

OSGen Overall SPARQL Generation

InUK Inherent URI Knowledge

BLEU Bilingual Evaluation Understudy

0-s Zero-shot learning(prompting technique)

URI-i URI-injection (prompting technique)
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Geo-i GeoSPARQL ontology-injection (prompting technique)

few-s Few-shot learning (prompting technique)

P-URI Naive Popular-URI selection

LLM-ED LLM-powered disambiguation for URI selection

LLM-IUG Large Language Model - Instance URI Generation

IE-WAT Instance Identifier with WAT and DPT

WAT-II Instance Identifier with WAT

DPT Dependency Parse Tree

REL-II Instance Identifier with REL

LLM-WAT-ED LLM-powered entity recognition with WAT entity linking

CoID Concept Identifier

Plain-CoID Plain-Concept Identifier

LLM-CoID LLM-powered Concept Identifier

LLM-CUG Large Language Model-Concept URI Generation

Plain-4 no preprocessing and 4 epochs training

Norm-4 normalized variable names and 4 epochs training

Norm-Simple-5 Normalized variable names, limited training examples

and 5 epochs training

Norm-Simple-Trunc-5/8 Normalized variable names, limited training examples

and truncated URIs for 5 or 8 epochs respectively

Ui-GPT URI-injection used with GPT-4o mini

Mi-F8 Mistral-Finetuned for 8 epochs (Norm-Simple-Trunc-8)
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APPENDIX A. PROMPTS USED IN THIS WORK

A.1 PROMPTS USED DURING EMPIRICAL EVALUATION

Zero-shot prompts with simple instructions:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question.
Human: ”Where is the Dorset county located?”
Generator:”

• ”Generator creates valid SPARQL queries.The user will provide a question and the
generator will convert it into an equivalent SPARQL query that answers the user’s
question.
Human: ”What is the population of Aegina ?”
Generator:”

Same simple zero-shot prompt but we specify that the query should target the YAGO
KG:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question. The query will be based on the YAGO knowledge graph.
Human: ”Where is the Dorset county located?”
Generator:”

One-shot prompt with the same simple instructions for SPARQL query generation:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question.
Human: ”Where is Oxfordshire located?”
Generator: ”SELECT ?WKT WHERE yago:Oxfordshire geo:hasGeometry ?o. ?o
geo:asWKT ?WKT. ”
Human: ”What is the total area of County Galway?”
Generator:”

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question. The query will be based on the YAGO knowledge graph.
Human: ”What is the total area of Glengarra Wood forest?”
Generator: ”select distinct (strdf:area(?geoWKT) as ?area) where <http://yago-
knowledge.org/resource/geoentity _Glengarra_Wood_3300941> geo:hasGeometry
?o. ?o geo:asWKT ?geoWKT. ”
Human: ”What is the population of Piraeus?”
Generator:”

Same approach with three-shot prompting:
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• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question.
Human: ”Where is Oxfordshire located?”
Generator: ”SELECT ?WKT WHERE yago:Oxfordshire geo:hasGeometry ?o. ?o
geo:asWKT ?WKT. ”
Human: ”What is Dublin’s administrative type?”
Generator: ”select ?e where yago:Dublin rdf:type ?e ”
Human: ”What population does Icaria have?”
Generator: ”SELECT ?populationWHERE yago:Icaria y2geoo:hasGAG_Population
?population . ”
Human: ”Where is Scotland located?”
Generator:”

More complex examples with three-shot prompting:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question.
Human: ”Which localities are located east of forests in County Wicklow?”
Generator: ”SELECTDISTINCT ?aWHERE yago:County_Wicklow geo:hasGeometry
?o . ?o geo:asWKT ?geoWKT . ?a rdf:type y2geoo:OSM_locality; geo:hasGeometry
?o1 . ?o1 geo:asWKT ?geoWKT1 . ?b rdf:type y2geoo:OSM_forest; geo:hasGeometry
?o2 . ?o2 geo:asWKT ?geoWKT2 . FILTER (strdf:within(?geoWKT1, ?geoWKT) &&
strdf:within(?geoWKT2, ?geoWKT) && strdf:right(?geoWKT1, ?geoWKT2)) ”
Human: ”Is there a stream located east of a lake in Corfu?”
Generator: ”ASK yago:Corfu geo:hasGeometry ?o2 . ?o2 geo:asWKT ?xWKT2 .
?x2 rdf:type y2geoo:OSM_stream . ?x2 geo:hasGeometry ?x2Geom. ?x2Geom
geo:asWKT ?iWKT2. ?x1 rdf:type y2geoo:OSM_lake . ?x1 geo: hasGeometry
?x1Geom. ?x1Geomgeo:asWKT ?iWKT1. FILTER(geof: sfWithin (?iWKT1, ?xWKT2)
&& geof: sfWithin(?iWKT2,?xWKT2) && strdf:right(?iWKT2,?iWKT1)) ”
Human: ”Which region of Greece has the most inhabitants?”
Generator: ”SELECTDISTINCT ?regionWHERE ?region rdf:type y2geoo:GAG_Region
. ?region y2geoo:hasGAG_Population ?population ORDER BY DESC (?popula-
tion) LIMIT 1”
Human: ”Which county in the British Isles is the smallest by area?”
Generator:”

Same complex three-shot prompting approach with explicit instructions to target
the YAGO KG:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question. The query will be based on the YAGO knowledge graph.
Human: ”Which are the 2 newest bridges of Ireland?”
Generator: ”SELECTDISTINCT ?bridgeWHERE ?type rdfs:subClassOf+ yago:wordnet
_bridge _102898711. ?bridge a ?type .?bridge yago:isLocatedIn+ yago:California.?bridge
yago: wasCreatedOnDate ?date. ORDER BY DESC(?date) LIMIT 2”
Human: ”Is there a stream located east of a lake in Corfu?”
Generator: ”ASK yago:Corfu geo:hasGeometry ?o2 . ?o2 geo:asWKT ?xWKT2
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. ?x2 rdf:type y2geoo:OSM_stream . ?x2 geo:hasGeometry ?x2Geom. ?x2Geom
geo:asWKT ?iWKT2. ?x1 rdf:type y2geoo:OSM_lake . ?x1 geo:hasGeometry ?x1Geom.
?x1Geom geo:asWKT ?iWKT1. FILTER(geof:sfWithin(?iWKT1, ?xWKT2) && geof:
sfWithin (?iWKT2,?xWKT2) && strdf:right(?iWKT2,?iWKT1)) ”
Human: ”Which region of Greece has the most inhabitants?”
Generator: ”SELECTDISTINCT ?regionWHERE ?region rdf:type y2geoo:GAG_Region
. ?region y2geoo:hasGAG_Population ?population ORDER BY DESC (?popula-
tion) LIMIT 1”
Human: ”Is Leitrim the least populated county in the Republic of Ireland?”
Generator:”

A.2 PROMPTS USED DURING STRING SIMILARITY AND RESULTS-BASED EVAL-
UATION

Zero-shot prompt (0-s):

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used
to answer the question. The query will be based on the DBpedia knowledge graph.
The query should be enclosed by three backticks on new lines, denoting that it is a
code block.
Human: [DATASET QUESTION]
Generator: “‘”

Zero-shot prompt with URI-injection (0-s, URI-i):

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used
to answer the question. The query will be based on the DBpedia knowledge graph.
The query should be enclosed by three backticks on new lines, denoting that it is a
code block.
Human: [DATASET QUESTION]
The generator must use these URIs to answer the question: [GOLD STANDARD
URIS]
Generator: “‘”

Zero-shot prompt with URI-injection and GeoSPARQL description(0-s, URI-i, Geo-i):

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used
to answer the question. The query will be based on the DBpedia knowledge graph.
The query should be enclosed by three backticks on new lines, denoting that it is a
code block.
The resulting query may have to be in GeoSPARQL. The GeoSPARQL ontology is
defined by: URI: http://www.opengis.net/ont/geosparql Classes: Feature, Feature
Collection, Geometry, Geometry Collection, Spatial Object, Spatial Object Collec-
tion
Object Properties: default geometry, contains, covered by, covers, disjoint, equals,
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inside, meet, overlap, has area, has bounding box, has centroid, has default geo-
metry, has geometry, has length, has perimeter length, has size, has spatial accur-
acy, has spatial resolution, has volume, disconnected, externally connected, equals,
non-tangential proper part, non-tangential proper part inverse, partially overlapping,
tangential proper part, tangential proper part inverse, contains, crosses, disjoint,
equals, intersects, overlaps, touches, within
Datatype Properties: as DGGS, as GML, as GeoJSON, as KML, as WKT, coordin-
ate dimension, dimension, has area in square meters, has length in meters, has
perimeter length in meters, has metric size, has spatial accuracy in meters, has
spatial resolution in meters, has volume in cubic meters, has serialization, is empty,
is simple, spatial dimension
Human: [DATASET QUESTION]
The generator must use these URIs to answer the question: [GOLD STANDARD
URIS]
Generator: “‘”

Few-shot prompt (3 examples) with URI-injection (few-s(3), URI-i):

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used
to answer the question. The query will be based on the DBpedia knowledge graph.
The query should be enclosed by three backticks on new lines, denoting that it is a
code block.
Human: In Breckland district, which forests are south of streams?
The generatormust use theseURIs to answer the question: [’yago:Breckland_District’,
’geo: hasGeometry’, ’geo:asWKT’, ’rdf:type’, ’y2geoo:OSM_forest’, ’geo: hasGeo-
metry’, ’geo:asWKT’, ’rdf:type’, ’y2geoo:OSM_stream’, ’geo:hasGeometry’, ’geo:asWKT’,
’strdf:within’, ’strdf:within’, ’strdf:below’]
Generator: “‘SELECT DISTINCT ?forest WHERE yago:Breckland _District geo:
hasGeometry ?o1 . ?o1 geo:asWKT ?geoWKT1 . ?forest rdf:type y2geoo:OSM_forest
. ?forest geo: hasGeometry ?o2 . ?o2 geo:asWKT ?geoWKT2 . ?stream rdf:type
y2geoo: OSM_stream . ?stream geo: hasGeometry ?o3 . ?o3 geo:asWKT ?geoWKT3
. FILTER (strdf:within (?geoWKT2, ?geoWKT1) && strdf:within (?geoWKT3, ?geoWKT1)
&& strdf:below (?geoWKT2, ?geoWKT3)) “‘
Human: How many streams intersect with lakes?
The generator must use these URIs to answer the question: [’rdf:type’, ’y2geoo:
OSM_stream’, ’geo:hasGeometry’, ’geo:asWKT’, ’rdf:type’, ’y2geoo:OSM_lake’, ’geo:
hasGeometry’, ’geo:asWKT’, ’geof:sfIntersects’]
Generator: “‘SELECT (COUNT (DISTINCT ?p1) as ?streams) WHERE ?p1 rdf:type
y2geoo:OSM_stream; geo:hasGeometry ?p1geo. ?p1geo geo:asWKT ?p1WKT.
?p2 rdf:type y2geoo:OSM_lake; geo:hasGeometry ?p2geo. ?p2geo geo:asWKT
?p2WKT. FILTER(geof:sfIntersects(?p1WKT, ?p2WKT)) “‘
Human: Which Municipalities are on Thessaly’s border?
The generator must use these URIs to answer the question: [’yago: Thessaly’, ’geo:
hasGeometry’, ’geo:asWKT’, ’rdf:type’, ’y2geoo: GAG_Municipality’, ’geo: hasGeo-
metry’, ’geo: asWKT’, ’strdf:touches’] Generator: “‘SELECT distinct ?rg where yago:
Thessaly geo: hasGeometry ?tgeo . ?tgeo geo:asWKT ?tgWKT . ?rg rdf:type y2geoo:
GAG _Municipality . ?rg geo: hasGeometry ?rggeo . ?rggeo geo:asWKT ?rgWKT .
FILTER (strdf: touches (?tgWKT,?rgWKT)) . “‘
Human: [DATASET QUESTION]
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The generator must use these URIs to answer the question: [GOLD STANDARD
URIS]
Generator: “‘”

A.3 CHAIN-OF-THOUGH PROMPTS USED

CoT prompt with 3 examples:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question. The query should be enclosed by three backticks on new lines,
denoting that it is a code block. The generator is logical and creates each query by
first explaining its thought process step-by-step.
Human: Where is Swansea located?
Generator: Let’s think step by step. First, we want to find the location of Swansea, so
we start with select ?geoWKT to specify that we need the geographic data. Next, we
need to identify how Swansea’s location is stored in the knowledge graph. We use
yago:Swansea geo:hasGeometry ?o. to find the geometric data related to Swansea.
Then, we need to extract the specific coordinates. We do this with ?o geo:asWKT
?geoWKT. to get the Well-Known Text (WKT) representation of Swansea’s geo-
metry. Finally, we wrap these patterns in a where clause to structure our query prop-
erly. The final result: “‘select ?geoWKTwhere yago:Swansea geo:hasGeometry ?o.
?o geo:asWKT ?geoWKT. “‘
Human: Which Greek regions have between 500000 and 1000000 inhabitants?
Generator: Let’s think step by step. First, we want to find Greek regions with a pop-
ulation between 500,000 and 1,000,000, so we start with select ?region to specify
that we need the region names. Next, we need to identify which entities are Greek
regions. We use ?region a y2geoo:GAG_Region to find entities classified as Greek
regions. Then, we need to get the population of these regions. We do this with ?re-
gion y2geoo:hasGAG_Population ?pop to find the population data associated with
each region. After that, we need to filter the results to only include regions with pop-
ulations between 500,000 and 1,000,000. We use filter(?pop < 1000000) to exclude
regions with more than 1,000,000 inhabitants and filter(?pop > 500000) to exclude
regions with fewer than 500,000 inhabitants. Finally, we wrap these patterns in a
where clause to structure our query properly. The final result: “‘select ?region where
?region a y2geoo: GAG_Region . ?region y2geoo: hasGAG_Population ?pop. fil-
ter(?pop < 1000000). filter(?pop > 500000). “‘
Human: Is Doolin to the south of Dublin?
Generator: Let’s think step by step. Question asks for yes/no answer: Use ASK
query Need to compare locations: Retrieve geometric data for both geo:hasGeometry
and geo:asWKT predicates for Doolin and Dublin Check if one is south of the other:
Use geospatial comparison function FILTER with strdf:below function Steps to build
query: a. Get Doolin’s geometry: http:// yago-knowledge.org/ resource/ Doolin b.
Get Dublin’s geometry: http:// yago-knowledge.org/ resource/ Dublin c. Compare
using FILTER and strdf:below Resulting query: “‘ASK <http:// yago-knowledge.org/
resource/ Doolin> geo: hasGeometry ?o. ?o geo:asWKT ?geoWKT. <http:// yago-
knowledge.org/ resource/ Dublin> geo: hasGeometry ?o1. ?o1 geo:asWKT ?geoWKT1.
FILTER(strdf:below(?geoWKT,?geoWKT1)) “‘
Human: [DATASET QUESTION]
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Generator: Let’s think step by step.”

CoT prompt with 3 examples designed for automatic URI-injection:

• ”Generator is an expert SPARQL query generator. For each question that the user
supplies, the generator will convert it into a valid SPARQL query that can be used to
answer the question. The generator may be provided with a list of URIs. Some of
these URIs are relevant, while others are not. The generator must carefully identify
and use only the correct URIs when they are provided. If the correct URIs are not
available, the generator will rely on its understanding to construct the appropriate
query. The query should be enclosed by three backticks on new lines, denoting that
it is a code block. The generator is logical and creates each query by first explaining
its thought process step-by-step.

Human: Where is Swansea located?
Provided URIs: yago:Swansea,y2geoo:OS_UnitaryAuthority
Generator: Let’s think step by step. First, we want to find the location of Swansea, so
we start with select ?geoWKT to specify that we need the geographic data. Next, we
need to identify how Swansea’s location is stored in the knowledge graph. We use
yago:Swansea geo:hasGeometry ?o. to find the geometric data related to Swansea.
Then, we need to extract the specific coordinates. We do this with ?o geo:asWKT
?geoWKT. to get the Well-Known Text (WKT) representation of Swansea’s geo-
metry. Finally, we wrap these patterns in a where clause to structure our query prop-
erly. The final result: “‘select ?geoWKTwhere yago:Swansea geo:hasGeometry ?o.
?o geo:asWKT ?geoWKT. “‘

Human: Which Greek regions have between 500000 and 1000000 inhabitants?
Provided URIs: yago:Greece
Generator: Let’s think step by step. First, we want to find Greek regions with a pop-
ulation between 500,000 and 1,000,000, so we start with select ?region to specify
that we need the region names. Next, we need to identify which entities are Greek
regions. We use ?region a y2geoo:GAG_Region to find entities classified as Greek
regions. We do not need the provided URI of Greece. Then, we need to get the pop-
ulation of these regions. We do this with ?region y2geoo:hasGAG_Population ?pop
to find the population data associated with each region. After that, we need to filter
the results to only include regions with populations between 500,000 and 1,000,000.
We use filter(?pop < 1000000) to exclude regions with more than 1,000,000 inhab-
itants and filter(?pop > 500000) to exclude regions with fewer than 500,000 inhab-
itants. Finally, we wrap these patterns in a where clause to structure our query
properly. The final result: “‘select ?region where ?region a y2geoo:GAG_Region
. ?region y2geoo:hasGAG_Population ?pop. filter(?pop < 1000000). filter(?pop >
500000). “‘

Human: Is Doolin to the south of Dublin?
Provided URIs: yago:Doolin,yago:Dublin
Generator: Let’s think step by step. Question asks for yes/no answer: Use ASK
query Need to compare locations: Retrieve geometric data for both geo:hasGeometry
and geo:asWKT predicates for Doolin and Dublin Check if one is south of the other:
Use geospatial comparison function FILTER with strdf:below function Steps to build
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query: a. Get Doolin’s and Dublin’s geometry from the provided URIs: yago:Doolin
and yago:Dublin b. Compare using FILTER and strdf:below The final result: “‘ASK
<http://yago-knowledge.org/resource/Doolin> geo:hasGeometry ?o. ?o geo:asWKT
?geoWKT. <http://yago-knowledge.org/resource/Dublin> geo:hasGeometry ?o1. ?o1
geo:asWKT ?geoWKT1. FILTER(strdf:below(?geoWKT,?geoWKT1)) “‘

Human: [DATASET QUESTION]
Provided URIs: [GENERATED URIS]
Generator: Let’s think step by step.”
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