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Abstract 
 

This thesis has accomplished complete research sets of machine learning approaches in 

predicting customer churn in the banking industry. Our aim is to obtain to obtain higher 

predictive evaluation rates and to attain interpretive results for the banking industry to maintain 

their consumers. The study on data preparation includes handling of categorical values, 

normalization, and handling of data imbalance. The thesis evaluates the performance of some 

supervised learning techniques including decision trees, random forest, k nearest neighbors, 

logistic regression, and support vector machines. There are some evaluation indicators that are 

utilized in the testing process such as k fold cross validation, confusion matrices, precision-

based metrics, the f measure, and receiver-operating curves. In this, great emphasis is laid on the 

pre-processing of the data to the point where quality and relevance get brought out, with depth 

in the analysis of encoding and scaling, exploring the correlations among the variables. This 

section describes how this study employed the Stratified Cross-Validation, Pruning Techniques, 

and Synthetic Minority Over-sampling Technique to improve model training and evaluation. 

Model selection is carried out through cross-validation and pruning, showing the improvement 

iterations. An analysis of consistency and reliable findings across the runs. In conclusion, the 

thesis reviews the limitations faced, which mainly concern hyperparameter tuning and the 

underlying constraints of the available data. The thesis also offers some directions on future 

work, which generally involve log transformation, customer division, and additional feature 

engineering to improve the current models. 
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Chapter 1: Introduction 
 

Throughout their history, banks have been focused on internal procedures and policies, treating 

clients as the commercial target and prioritizing their strategy on their goods and services. This 

appears to have changed quite dramatically within the industry. A source of such change is that 

the rapid entry of new, highly competitive financial products and services is being accelerated 

by improving capacity and declining costs of computers. The competition has now taken a soar 

with the drastic launch of new financial technology [30]. Now, customers are able to really 

spread their money across many banks in order to earn the maximum returns on it and safeguard 

their assets. Nowadays, maintaining customers and concentrating on the services opportunities 

for them are an important element of the survival of any bank. Many existing customers have 

migrated to non-traditional banking, due to the extensive dissemination of Internet finance, 

characterized by diverse, unique customer requirements. The term “customer churn” means a 

counter-move on the part of a client, which temporarily (for a definite time) discontinues its 

current banking interaction to another financial establishment, due to subjective or objective 

reasons [34]. Besides causing some loss in revenue, the other adverse effect in terms of 

operation to the business is the client's loss. Churn management refers to the concept of 

identifying those customers willing to move their assets to a competitor service provider [31]. 

Customer relationship management is starting to include churn management. It would be of 

interest for firms to take it into account, in the effort to build a lasting clientele relationship and 

optimize the value of the clientele [3]. 

 

1.1 Purpose 
 

This thesis concentrates on primarily predicting the intent to quit using a company’s services. 

This allows banks to determine which customers are about to quit, so before churn occurs, they 

can swoop in with targeted interventions to keep these customers’ base in their portfolio. Thus, 

this is accomplished by learning customers’ behaviors and detecting signs of dissatisfaction and 

disengagement at an early stage. [31]. The ability to predict when customers churn is a critical 

strategy that gives a bank a decisive competitive advantage. By identifying the most probable 

defections, institutions could prepare tailor-made or pinpointed retention strategies with respect 

to particular problems or issues that customers raise. This will thus help not in losing important 

customers alone but also with the enhancement of the overall customer satisfaction and loyalty 

[69]. This dissertation will focus on not only identifying who will churn but also on why the 

same is happening using a combination of statistical techniques and machine learning models. 
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In this way, an analytical approach is expected to produce actionable insights through the 

possibility of offering implications directly appropriate to real-world scenarios [9]. In summary, 

the purpose of this thesis is to improve the ability of banks to anticipate and reduce customer 

churn to ensure continuous business expansion and customer retention. This is done through an 

extensive examination of consumer information, incorporating advanced analytics to identify 

significant churn indicators and patterns. The concluding results of this study are expected to 

provide banks with a basis for forecasting, which is fully integrated into their consumer 

relationship management system to develop a proactive and client-oriented business culture 

[76]. 

 

 

1.2 Scope 
 

In this thesis, machine learning methods are utilized to forecasting customer churn in banks. The 

main goal is to carry out predictive analytics to identify patterns and signs indicating the 

likelihood that customers will terminate their own subscriptions. It encompasses data mining, 

algorithms, and validation. The principal aim for this work is to develop ML models that can 

make effective predictions of customer churn. It means that it requires supervised learning, data 

pre-processing methods, and evaluation metrics during model development. machine learning 

literature for their effectiveness in classification tasks includes algorithms such as DT, RF, 

KNN, LR, and SVM [38]. While the customer churn predictive models can be applied to 

informing marketing strategies, but that is not an inquiry line the thesis is taking with respect to 

considering in the application of these insights within the marketing frameworks like Customer 

Relationship Management (CRM) or Direct Marketing interventions. The following analytical 

techniques are designed to improve the predictive performance of churn models and are not 

meant to be used directly as guides for the execution of marketing strategies. CRM systems may 

indirectly benefit from the findings because a more profound understanding of customer 

behavior can be derived [46]. This thesis is only limited to the technical scope of the ML 

methods for churn prediction in banking and it has an objective to add academic and practical 

input into the area of machine learning and its application to big datasets within the banking 

industry for predicting customer churn.  

 

 

1.3 Thesis Structure 
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Chapter 2 is literature review of the methodological work in data preparation and KNN, LR, and 

SVM. Moreover, the chapter covers Bias-Variance Tradeoff and the different methods applied to 

test the models, including K-fold cross-validation, the confusion matrix, accuracy, the F score, 

and Receiver Operator Curve, all within the theoretical framework provided to the 

methodologies. Chapter 3 provides a presentation of the research design and methods of data 

analysis applied in this study, including preliminary data analysis, handling of categorical 

values, normalization techniques, and pruning with the application of “synthetic minority over-

sampling technique” (SMOTE) for the purpose of better model performance. The purpose of the 

chapter furthers on how the evaluation metrics are used to determine the extent to which the 

developed model applies. Chapter 4 explains how the data should first be handled and prepared 

like dealing with discrete and continuous variables, handling categorical values, scaling, and 

correlation analysis. These preprocessing are the initial steps before using the data for modeling 

purposes. Chapter 5 explains the model selection and its preparation in the context of predicting 

customer churn. The first part explains the model preparation, cross-validation, and pruning, for 

making tree like models more bias, and SMOTE for balancing the data. The models for churn 

prediction tested in chapter 6 under a number of runs, through different means of evaluation, 

show the performance and robustness of the individual models. It aims at proving the efficacy of 

the developed models in realistic settings. The thesis concludes with a summary of the results, 

the limitations faced in this study, and an overview of directions for future research. This 

chapter attempts to summarize the contributions of the thesis to the literature and its 

implications for banking sector strategies in customer retention. 
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Chapter 2: Theoretical Background 
 

2.1 Data Preparation 
 

One important step in the data analysis process is preprocessing the data, given that the task 

success is directly impacted [38]. The evaluation methods of the raw data to produce high-

quality data are referred to as data preparation. These techniques primarily include data 

collection, data combination, data normalization, data processing, data removal, and data 

transformation. [6565]. Furthermore, specific preprocessing methods, like data selection or 

elimination, may be applied repeatedly until the optimal outcomes for data analysis are achieved 

[19]. 

 

 

2.1.1 Handling Categorical Values 

 

Because the majority of machine learning algorithms are made to operate with numerical inputs, 

categorical data requires specific handling [32]. One of the most common ways is Label 

encoding, which assigns each unique category in a feature to a single integer and one-hot 

encoding transforms every categorical values into a new binary column, designed to handle 

scenarios where no ordinal relationship exists among the categories.  

 

Fig. 1. Example of Label Encoding [18] 
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Fig. 2. Example of One-Hot Encoding [18] 

 

 

2.1.2 Normalization 

 

Normalization in machine learning speeds up the learning algorithms and returns better 

outcome. This is because the process makes all the features contribute equally towards the 

result, and it avoids any model from skewing or being biased towards some features [28]. Two 

of the most common techniques are Min-Max Scaling and Robust Scaling. Min-Max Scaling is 

the simplest scaling method for making features rescaled into a fixed range by subtracting the 

minimum value of the feature and then dividing by the range of the feature. Below is the Min-

Max scaling formula: 

𝑋 − min(𝑋)

max(𝑋) −min(𝑋)
 

 

Robust scaling uses the median and interquartile range in scaling features to reduce the effect of 

outliers. The formula for Robust scaling is: 

 
𝑋 − 𝑄1(𝑋)

𝑄3(𝑋) − 𝑄1(𝑋)
 

 

 
 

 

2.1.3 Imbalance 

 

When the classes of a dataset are not equally represented, for churn prediction in particular, this 

usually means that the number of churning customers is much less than those who do not churn. 
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This implies that, most often, the class will be predicted more than the minority class, thus 

affecting the model sensitivity to pick up the minority class effectively. The resampling methods 

modify the dataset to show a more balanced distribution. These could be either oversampling 

the minority class or undersampling the majority class. Among the most successful methods of 

oversampling is “synthetic minority over-sampling technique” (SMOTE), which simulates 

between existing instances to create new ones of the minority class [45]. Using metrics that give 

a better sense of model performance when the dataset is imbalanced, such as the F-score, ROC-

AUC, which tend to focus more on the performance regarding the minority class [71]. 

 

2.2 Supervised learning 
 

When an algorithm is trained on a labeled dataset, one in which every input data point has a 

corresponding output label, it is referred to as supervised learning. Using the patterns found in 

the training data, supervised learning aims to learn a function from inputs to outputs, based on 

the patterns found in this training data, and by that the algorithm can forecast or decide on 

previously unknown data [4343]. 

 

2.2.1 Decision tree 

 

The decision tree is a tool that helps in analytical decisions by displaying potential outcomes in 

a structure like a tree. This tree-like graph shows relationships between different events. 

Decision-tree analysis is used to build a predictive model based on input variables. These 

variables are represented by each leaf node on the decision tree. Every leaf node contains inputs 

from the dependent variables [56], while at various levels, those nodes symbolizing different 

criteria [12]. Decision trees are systematic models that incorporate a series of simple 

evaluations, where each evaluation compares a numerical attribute to a predetermined threshold 

or a categorical characteristic to a predetermined range of values. [5858]. In modeling’s tasks 

like customer churn analysis, where customers are classified as either churn or no-churn. 

Decision-tree models are typically built from the top down, following a divide-and-conquer 

strategy, where the construction process begins with the selection of the root node and then 

proceeds to divide the data into subsets based on specific attributes or conditions, forming nodes 

at each stage of the tree. The choice of the root node involves comparing the information gain of 

possible root nodes and selecting the one with the most information. Afterward, the same 

information-based approach is applied when selecting branches emanating from the root node. 

This process continues until all instances belong to the same class, resulting in 100% accuracy 

[4]. 
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Fig. 3. Decision Tree Example [43] 

 

Tree pruning, if deemed necessary, is the next stage and involves removing branches that may 

introduce errors. Pruning a tree can enhance the performance of a classifier and simplify the 

model for easier understanding and knowledge extraction. It's crucial to ensure that the pruning 

process doesn't remove essential predictive elements of the classifier [73]. 

 

 

2.2.2 Radom Forest 

 

An approach to machine learning known as ensemble learning involves training a number of 

models, also called "weak learners," to answer a single problem. On the wide scale of 

principles, ensemble learning is based on the assumption that multiple weak learners combine 

into a strong one, thus from there, achieving an overall better model with respect to its accuracy 

[4949]. Every single tree (weak learners) is created from a sample derive from replacement of 

the training set. In addition, when constructing the tree, during the node splitting, rather than 

selecting the optimal split from all the features, the best split is determined by randomly 

selecting a subset of the features. This introduces randomness that makes the model more robust 

and avoids it being prone to overfitting [8]. 
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Fig. 4. Ensemble Learning Architecture [74] 

 

Finally, pruning is a method of minimizing the final size of model by eliminating sub-sections 

that have minimal power in calculating the target variables. This is another way to mitigate 

overfitting and promote the simplicity of the model. The stability of random forests is very high 

when it comes to the number of the tree estimators. In particular, this indicates that random 

forests asymptotically approach the true mean of the distribution. In conclusion, this implies that 

the actual accuracy of random forests is not too vulnerable to the number of trees within the 

model. Therefore, restricting to low maximal depth may reduce overfitting as it will retain high 

or increase predictive [35]. 

 

2.2.3 K-nearest neighbor 

 

The K-nearest neighbor algorithm, also known as KNN, is a well-known non-parametric 

method in ML, primarily used for solving classification problems. The algorithm processes a 

dataset containing objects with known labels and also handles unknown objects, to determine 

their classification—much like processing training and test samples. KNN calculates the 

distances between an object and a new query object. Furthermore, the algorithm evaluates at 

least one neighbor of the query, previously labeled, to determine the most likely class based on 

existing data. KNN is characterized as lazy because the function that specifies the class is 

delayed until the computational interface is needed for evaluation. [5]. The distance metric 

refers to the level at which two data points in the feature space are alike or different. In the K-

Nearest Neighbors algorithm, the distance metric helps in understanding how two instances can 
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be considered ‘close” or “far” from each other. Hence, the distance measure selection has an 

impact on the KNN algorithm's outcomes and usually depends on the type of data and problem 

being solved. Meanwhile, the most frequently used types of distance in K-nearest neighbor are 

as follows: Euclidean Distance, Manhattan Distance, Minkowski Distance, Cosine Similarity 

and Chi-square [55]. The value of k is a hyperparameter that needs to be specified. The selection 

of k can significantly impact the performance of the algorithm. A smaller value of k makes the 

algorithm more sensitive to noise, while a larger value of k may lead to the smoothing of 

decision boundaries [37]. Weighting the neighbors based on their distance. Closer neighbors 

may have a higher influence on the decision than those that are farther away. 

 

2.2.4 Logistic regression 

 

In nearly every field, logistic regression has emerged as the conventional approach for modeling 

a binary outcome. Logistic regression can handle nearly all the tasks achievable with linear 

regression, but it is tailored for situations involving binary outcomes, and it offers a high degree 

of flexibility for various extensions and adaptations [50]. In binary classification establishing a 

connection between one or more independent variables—which could be qualitative or 

quantitative—and a categorical dependent variable. This problem also has multivariate 

counterparts. When the relationship between the dependent and independent variables follows 

the functional form of a logistic distribution, it is commonly known as logistic regression. The 

mathematical representation of the logistic regression model typically involves connecting the 

probability of an event, denoted as E, occurring given a set of explanatory variables represented 

by vector x. This relationship is established using the logistic cumulative distribution function 

(logistic Cumulative Distribution Function) as follows: 

 

𝑝(𝑥) = Pr(𝐸|𝑥) =
1

[1 + exp{−(α + β′x)}]
 

 

 

In this equation, the probability p(x) is determined by the values of the parameters α and β, 

along with the explanatory variables vector x [59]. The most common method for estimating 

these coefficients in logistic regression is the maximum likelihood estimator. The goal of the 

maximum likelihood estimator is to identify the values of the parameters that maximize the 

likelihood function, which calculates the likelihood that the supplied data will be observed 

under the logistic regression model. These parameter estimates are often found using 



10 
 

optimization algorithms, such as gradient descent, to iteratively refine the estimates until they 

converge to the maximum likelihood values [1]. Using the logistic function, sometimes referred 

to as the sigmoid function, one can convert any real number into a value between 0 and 1, which 

indicates the likelihood that the dependent variable would fall into a specific class [20]. 

 

 

Fig. 5. Sigmoid Curve [77] 

 

2.2.5 Support vector machine 

 

Similar to linear classifiers, support vector machines estimate a linear decision function, but 

they have the unique feature of potentially requiring a prior transformation of the data into a 

higher-dimensional feature space. This transformation is defined by selecting a set of functions 

referred to as kernels [25]. Using labeled training data, the SVM aims to find a hyperplane that 

optimizes the margin between two classes. The selected hyperplane is utilized as the decision 

border, and it is designed to reduce future misclassification when predicting the category of 

fresh instances. The working principle is maximizing the margin that is finding the hyperplane 

that maximizes the distance to the closest data point of any class. This principle is to enable the 

SVM to separate the classes using a hyperplane such that future classification will be optimal on 

unseen data [72]. Kernels project input data into high-dimensional feature spaces where linear 

separation is feasible, allowing SVM to handle nonlinear classification problems. Also, the 

transformation is never explicitly computed, as it utilizes the kernel function to determine inner 

products of unique in the feature space [61]. 
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Fig. 6. Two Linear Decision Function for SVM [36] 

 

2.2.6 Bias-Variance Tradeoff 

 

Bias is the inaccurate result of approximating a real-world problem with a simplified model. 

When a model has a large bias, it is making strong assumptions about the shape of the 

underlying data distribution, which can cause underfitting. To put it another way, the model is 

too basic to adequately represent the complexity of the data. Conversely, variance quantifies 

how inconsistently the model predicts an input. A high variance suggests that the training data 

may cause overfitting because the model is sensitive to even minute variations. An overfitted 

model begins to detect noise or random fluctuations in the training set rather than the underlying 

patterns [10]. 

 

Fig. 7. The Bias-Variance Tradeoff [64] 
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2.3 Model Evaluations 
 

2.3.1 Cross-validation 

 

The initial sample is split into 𝑘 equal-sized sections for K-fold cross-validation. The remaining 

𝑘−1 subsets are utilized as training data, while one subset is kept as validation data to test the 

model. Then, the process is repeated 𝑘 times, with each of the 𝑘 subsets used exactly once as the 

validation data [20]. Generalization is the capacity of a model to predict well on new data that 

was not used during model training. It is, therefore, a measure of how much the model learns 

concepts of feature-response relationship inherent in the training data expresses in the external 

data. In other words, a well-generalized model is one that is able to make accurate predictions 

across all cases and not just a small similar example given during input training [51]. K-fold 

cross-validation is mostly used to determine the degree to which the findings of a statistical 

analysis generalize to a separate set of data. The technique is particularly pertinent in cases 

where the objective is to forecast a model’s performance on a new, unseen data set [57]. One of 

the benefits of K-fold cross-validation is that it helps reduce generalization errors or issues of 

underfitting and overfitting. Overfitting occurs when the model is too complex and tries to fit 

not only the trend in data but also the noise. Conversely, underfitting happens when the model is 

too basic to identify the underlying pattern in the data. K-fold cross-validation enables one to 

strike a balance between bias and variance [68]. Being useful in model selection, K-fold cross-

validation is majorly used to compare diverse models with each other when wanting to 

generalize responsive selections or in selecting hyperparameters within the same algorithm. The 

models’ performance averages over the trials to give an overall result. 

2.3.2 Confusion matrix 

 

In machine learning, a table called the confusion matrix is used for evaluating and visualizing 

on how well models perform in supervised classification scenariosIt is a square matrix where 

the columns represent the cases' expected categories and the rows represent the instances' actual 

categories. The table that is 2 × 2 consist records true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) in the context of binary classification [47]. The outcome 

of this table contains four components [14]: 

 True Positives are the instances in which the model predicts the positive class 

accurately. Stated differently, these represent the occurrences that were both positively 

impacted and predicted by the model. 
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 True Negatives are instances in which the negative class is accurately predicted by the 

model. These are the cases where the model anticipated a negative outcome even if the 

actual outcome was negative. 

 False Positives occur when the model forecasts the positive class incorrectly. Although 

the model expected these cases to be positive, they were in fact negative. 

 False Negatives occur where the negative class is predicted by the model inaccurately. 

These are examples where the model projected bad outcomes even though the events 

were positive. 

 

Fig. 8. Confusion Matrix Example [60] 

 

2.3.3 Accuracy 

 

One of the most important performance metrics for models connected to categorization in the 

context of machine learning and statistics is accuracy. It represents the proportion of true results, 

including both true positives and true negatives, in the total number of cases examined. 

Accuracy is defined as the ratio of correctly predicted observations to the total observations 

[40]. It is expressed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
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2.3.4 F score 

 

The ratio of real positive forecasts to all positive predictions made is known as precision and it 

is described by the following equation [26]: 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall is a metric that indicates the percentage of real positives that the model properly 

identifies; it is sometimes referred to as sensitivity or the true positive rate and it is shown by 

the following equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Ideally, the outcome from both Precision and Recall would be close to 1. A low precision 

implies a relatively high proportion of false positives, which shows that the predictions are 

strongly conservative. When the recall values are low, it states that a sizable proportion of false 

negatives are not being properly classified as faulty [7070]. Precision is commonly used in 

combination with recall, which assesses a model’s ability to identify all pertinent examples 

within a dataset. In many domains, there is a fundamental tension between precision and recall, 

as boosting precision usually lowers recall and vice versa [15]. This trade-off is captured in 

performance measures such as the F1 score, which is the balance between these two metrics 

shown by the following equation: 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
(𝛽2 + 1) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F-score is evenly balanced when β = 1 and it known as F1-score. When β > 1 the measure 

emphasizes on precision, and when β < 1 it emphasizes on recall [41]. 

 

2.3.5 Receiver Operator Curve  

 

A visual representation of a binary classifier's diagnostic capability when its discrimination 

threshold is changed is called the Receiver Operator Curve. It is created when the combinations 

of recall, also referred to as true positive rate or sensitivity, and false positive rate, sometimes 

referred to as 1-specificity, for a set of experiments are plotted. The area under the curve (AUC) 

is typically reported as a number between 0 and 1, where 1 is the optimum value. It is not 

possible to calculate the confusion matrix from the AUC or vice versa because the AUC 
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represents the outcome of several tests in which the meta-parameters are changed [14]. The 

scalar value, that AUC provides, evaluates the model's overall capacity to distinguish between 

the positive and negative classes across all possible threshold values [52]. 

 

Fig. 9. The ROC of Different Methods in Simulation Experiments [21] 
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Chapter 3: Research Methodology 
 

This chapter outlines the techniques used to examine the phenomena of bank customer churn. 

The different sections of the chapter are devoted to the measures associated with each step of 

the research. The first such step is the preliminary data analysis, which is the measure for data 

evaluation and readies it for further processing. Different methods from pruning to handling 

categorical variables, normalizing data distribution to stratified cross-validation are used. 

Moreover, this chapter focuses on the methods utilized for refining the machine learning 

models, using the subset of the dataset and SMOTE. The effectiveness of these measures would 

be measured using a specific set of metrics which are used to analyze this research’s predictive 

models’ performance. This chapter would also highlight the Python libraries and tools that 

already existed to facilitate the use of these measures. Therefore, this methodical plan would 

ensure that the research enabling is deferred from the data science measures and one which 

would provide meaningful and useful data to appreciate the banking-industry-mediated 

phenomenon of churn. 

 

3.1 Preliminary Data Analysis 
 

Exploratory data analysis is an examination of data sets summarizing characteristics of interest. 

This stage of analysis is very vital since it brings forth an overview of the structures and 

essentially summarizes insights residing in the data before any activity of modeling. It prepares 

data for further predictive analysis and informs the strategy that should be applied in modeling 

[6]. Descriptive analysis is a comprehensive approach to data science, which enables us to grasp 

the distribution, behavior, and importance of every variable on the dataset level. An analysis of 

the distribution allows choosing the best ways to record the range, central tendency, and spread 

of data points based on each attribute. Outliers have a high impact on the output of a predictive 

model. As emerging on every feature individually, it is possible to detect outliers, which denote 

either data entry errors or genuine anomalies. An observation is considered an outlier if it 

drastically deviates from other observations and raises suspicion to be generated by another 

mechanism. Relationships between the features show potential redundancy in the dataset [33]. 

Both statistical and visual approaches are covered in the work in order to investigate correlation 

and select the features to input into a model in avoiding multicollinearity [11].  

 

 



17 
 

3.2 Handling Categorical Values 
 

Among different techniques that could handle categorical variables, there are two simple 

techniques Label Encoding and One-Hot Encoding. Label encoding is converting each value in 

a categorical column into a unique integer. It is straightforward technique but may introduce a 

notion of ordinality where none exists. Conversely, One-hot encoding creates a new categorical 

column for each category value and gives those columns a binary value of either 1 or 0. Each 

integer represents the presence (1) or absence (0) of the attribute. This method eliminates the 

issue of ordinality and is particularly useful for non-ordinal categories where no relationship 

exists between categories [32]. The issues arise when perfuming one hot encoding on a binary 

variable that creates two independent variables in a dataset are highly correlated, it often 

indicates that they convey similar information. This scenario is known as multicollinearity. If 

one variable can be almost accurately predicted from the other, it means they are covering 

similar aspects of the information, leading to redundancy. Multicollinearity makes interpretation 

more challenging. It's hard to tell how each variable impacts the dependent variable (like churn 

likelihood). With multicollinearity, small changes can hugely shift coefficients. This means 

coefficients become unreliable for explaining variable relationships. Multicollinearity 

sometimes causes overfitting good training data performance, but poor unseen data results [29]. 

F. Dormann et al.  (2013) in their work the present a threshold of highly correlated variables to 

(|r|>= 0.7). The threshold is commonly used to identify highly correlated variables and will be 

used for this analysis. However, the specific threshold can indeed vary depending on the context 

of the study and the nature of the data being analyzed. 

 

3.3 Normalization 
 

The decision of using Min-Max scaling and other scaling techniques such as Standardization or 

Robust Scaling should also be depends on the distribution of data and if the dataset contains 

outliers, and all scaling techniques have their advantages and disadvantages for different types 

of variables and machine learning models. While Min-Max scaling is perfect to keep the 

original distribution of data, Standardization fit the data to the Gaussian Distribution and Robust 

Scaling is exceptional to reduce the effect of outliers [42]. In “A Two-Step Data Normalization 

Approach for Improving Classification Accuracy in the Medical Diagnosis Domain” 

normalization techniques designed to take into account both the relationships among features 

within a dataset and considering the magnitude of the features without regard to their sign. The 

authors utilized two different scaling techniques, the Min-Max Scaler and the Standard Scaler, 

to preprocess the data before applying the classifier [22]. 
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3.4 Model Selection 
 

Some of the most common ML models to use in classification problems are KNN, DT, RF, 

SVM [38] and LR which it is widely used as binary classifier [20]. 

 

3.5 Stratified Cross-Validation 
 

As Author stated “when we randomly divide a labeled dataset into training and test sets, we 

violate the assumption of statistical independence”. In the worst-case situation, the test set might 

contain no instances of a minority class at all after the train - test split in cross validation. As a 

result, it is advised to split the dataset into several categories. To put it another way, 

stratification is a method to preserve the original class proportion in the resultant subsets. In this 

case, stratification simply means that a dataset is split at random the training and the test set so 

that each class is accurately represented in the ensuing subsets [63]. When there is a significant 

overlap between the predicted values and the true observed values in the training data, 

overfitting occurs. When a ML model learns both the structured and noisy components of the 

training data to a disturbing effect on the model’s capability to predict new data samples. 

Overfitting means that a particular ML model has overly high adaptability regarding the noise 

density. Conversely, when a model has few predictors, an underfitted event happens. This 

problem also arises when the training data collection is too small or not representative of the 

population data. An underfitted model is one that fits the training data poorly, which makes it 

less likely to predict new data points making it week to unseen data points [48]. 

 

3.6 Pruning 
 

Pruning is technique that reduces the complexity of a model, prevents overfitting and enhancing 

the model's capacity for generalization by removing redundant branches or subtrees in decision 

tree-based models. Pruning on the DT model can lead to faster inference times and better 

scalability. Pruning can improve its ability to generalize making less likely to memorize noise or 

irrelevant details from the training data and is more likely to capture the underlying patterns that 

are applicable to unseen instances [24]. 
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3.7 SMOTE 
 

In his article Chawla et al. stated “We propose an over-sampling approach in which the minority 

class is over-sampled by creating “synthetic” examples rather than by over-sampling with 

replacement”. An approach to provide extra training-data is also used for increasing minority 

class representation but not to directly manipulate samples in the data set. It is an operation in 

“feature space” that changes raw data with visual transformations in feature space, such as 

rotation and skew. More precisely, by creating artificial examples along the line segments 

connecting members of the minority class with their closest neighbors, it oversamples the 

minority class.. 

This involves the following steps: 

 In the feature space, look for each sample from the minority class's k-nearest neighbors. 

 Randomly pick some, in regard to the level of oversampling, of those neighbors. 

 For each such neighbor, develop the vector difference between the neighbor’s feature 

vector and the sample from the minority class. 

 Select a scalar, chosen at random between 0 and 1 and multiply the difference with this 

scalar and then; from which the point is such that it connects the chosen neighbor. 

 Include that point to the original feature vector, and that produces in essence, a new 

synthetic sample. 

The new synthetic instances are close to the original samples, resulting in a more robust and 

generalized decision region for the minority class. In order to assure variation in the synthetic 

samples and to imitate a natural diversity within the minority class, random picking of points 

along the paths connecting two points in a multidimensional space is employed [45]. 

 

3.8 Evaluation Metrics 
 

The model's overall correctness is measured by its accuracy. However, it can be misleading due 

to the crucial issue related to the imbalanced datasets. Firstly, such an issue arises where the 

accuracy can show the values close to the large class. In this regard, as Davide Chicco and 

Giuseppe Jurman claim in their article, accuracy is rarely the best choice for this setting and 

should not be the primary metric, and if it is used, it should be complemented with other 

measures which will attach more importance to the small class. A well-fitted model has almost 

the same level of accuracy on the training and testing sets, meaning it can generalize new data 

relatively well. On the other hand, an overfitted model has a high level of accuracy on the 

training set but a significantly lower level of accuracy on the testing set. The mentioned 
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difference suggests the overfitted model used the training data too close, following and 

extracting diverse noise and anomalies, which can perform ineffectively when applying to the 

unseen one [48]. In the study by Amgad Muneer et al. (2022), the use of SMOTE and its 

variants was designed to work on increase the recall of the minority class. By balancing the 

class distribution, the models were able to detect a higher proportion of actual churners, hence 

resulting in increased recall and increased F1 score. Although recall improved, this approach 

can also increase the number of majority class instances misclassified as the minority class, 

leading to more false positives and consequently a decrease in precision [27]. Such a trade-off is 

typical for cases in which the heightened detection for more cases of an event leads to more 

false positives. However, the presented F1-score improvement means that the trade-off was 

overall appropriate, meaning that the ratio between identifying churners and not sacrificing too 

much accuracy became better. The use of balanced techniques, in most cases, allowed for proper 

increase of F1-scores, meaning that the presented techniques stood the challenges of the true 

nature of churn datasets [74]. Another study which examined the performance of a classifier 

over a number of imbalanced datasets reported that AUC remains relatively stable, while other 

metrics such as accuracy and precision can change significantly with variations in class 

distribution. This stability was attributed to AUC focusing on the ranking of the prediction 

probabilities, rather than their absolute classification. The present study demonstrated that AUC 

had good utility for the class distributions and is not overly sensitive to changes in class 

proportion [7]. In exploring different sampling techniques in tackling class imbalance in 

datasets using SMOTE found that even after considerable changes in the class ratios, the 

differences in AUC changes were marginal for different resampling strategies. It was observed 

through the research that AUC, via such a summary of the model's ability to discriminate 

between classes at various threshold levels, gives a consistent measure of model efficacy 

regardless of how the class balance is manipulated [45]. 
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Chapter 4: Data Preprocess 
 

4.1 Preliminary Data Analysis 
 

The dataset refers to the ABC Multinational Bank as an open source from Kaggle repository. 

The dataset contains 10000 rows and 12 columns, that include account and general information 

(such as geographic location, gender, etc.) about its clients. The main objective is to use this 

data to predict client attrition, which is essential to every bank's sustainable future. In the Table 

1 will be given a data description as well as the data types that those features hold.  

Table 1. Variables Description 

Variable Description Data types 

customer_id A unique identifier for each customer Unique 

credit_score The credit score of the customer Continuous - Integer 

country The country of residence of the customer Categorical - Text 

gender The gender of the customer Categorical - Text 

age The age of the customer Continuous - Integer 

tenure The number of years the customer has been with 

the bank 

Continuous – Integer 

(from 0 to 10) 

balance The bank account balance of the customer Continuous - Float 

products_number The number of products the customer has with 

the bank 

Categorical - Integer 

(from 1 to 4) 

credit_card Indicates whether the customer has a credit card 

(1) or not (0) 

Binary - Integer (0, 1) 

active_member Indicates whether the customer is an active 

member (1) or not (0) 

Binary - Integer (0, 1) 

estimated_salary The estimated salary of the customer Continuous - Float 

churn Indicates whether the customer has exited (1) or 

stayed (0) with the bank 

Binary - Integer (0, 1) 

 

 

Since the data set is relatively small and contains only ten inputs, techniques that include 

dimensionality reduction would not be used. It is worth to mention that customer_id is simply a 

label assigned to distinguish one customer from another. Therefore, it will not be included for 

this analysis. 
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4.1.1 Discrete Variable 

 

a) Churn 

The target variable in the prediction models for this thesis will be churn. The main objective is 

to forecast a client's likelihood of leaving the bank based on a variety of factors, including 

product consumption trends, customer behavior, and demographics. 

 

Fig. 10. Churn Values 

 

In Fig. 10, “No” values show a substantial majority of customers, nearly four out of every five, 

that have remained with the bank. This suggests that the bank has a high rate of customer 

retention. High retention rates are often an indication of competitive offerings, satisfied 

consumers, and effective customer service protocols. In general, the bank has been successful in 

maintaining a steady clientele base. However, in the context of data mining, class imbalance has 

become common issue in real world scenarios [23]. Because there is more data for the machine 

learning model to learn from the majority class (in this case, the consumers who stayed), the 

models may become biased in favor of this group. This can result in poor performance when it 

comes to effectively anticipating the minority class (the customers who churned), which 

normally is more important to predict in churn analysis. Performance metrics, such as accuracy, 

can be misleading in imbalanced datasets. For example, take a model predicting each customer 

to stay (majority class). Though it would yield a great accuracy, it would justly fail in the 

prediction of churned customers, which forms an important class to predict in churn analysis 

[16]. 
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b) Active Member  

 

Fig. 11. Active Member Values 

 

Active Member indicates whether the customer is currently considered active by the bank's 

standards. If the bank can distinguish between simply "active" and "satisfied" customers, they 

might address the reasons that active customers still choose to churn. According to the results, 

44.6% of the members are inactive and 55.4% of them are active. Almost the half of the clients 

actively participate in or use the bank's services, indicating a moderately engaged customer 

base, according to this balance. The second graph shows that the churn rates for active and 

inactive members differ. First, one may see that 1302 members out of 3547 inactive members 

had churned, which is quite a large share of the inactive group. This implies that a higher chance 

of leaving the bank is closely correlated with inactivity. However, just 735 of the 4,416 active 

members have churned (Fig. 11). The notably reduced attrition rate amongst active members 

emphasizes how crucial it is to keep up consumer involvement as a retention tactic. Active 

membership by churn gives insight about nodes in tree-based models when looking to evaluate 

the impurity reduction brought by a feature. Although it does not compute impurity or reduce it 
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like a DT model does, it may assist in comprehending how well a feature may be able to classify 

data, which is a fundamental concept behind the impurity measures [39]. 

 

c) Credit Card 

 

Fig. 12. Credit Card Values 

 

Having a credit card might increase engagement with the bank’s services but also introduces 

factors like credit card fees or rewards that could influence satisfaction. The total values for 

customers who has credit card are 7055 and for those who do not are 2945. For credit card 

owners 1,424 of these customers have churned, meaning they've closed or transferred their 

accounts away from the bank, while the remaining 5,631 customers have chosen to stay with the 

bank, continuing their banking relationship. The group of customers who do not own credit card 

613 have churned, while 2,332 stay with the bank. The churn rates for these groups are 20.18% 

and 20.81% correspondingly, meaning that the likelihood of a customer churning is not 

significantly affected by the presence of a credit card. The conclusion that other factors can have 

a greater impact on customer attrition is supported by the close churn rates between credit card-

holding and non-card-holding consumers (Fig. 12). 
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d) Gender 

 

 

Fig. 13. Gender Values 

 

Understanding how products and services align with gender-specific preferences or needs might 

help in designing more effective customer retention strategies. The results given from Fig.13 

showing that males customers represent 54.57% of the bank accounts, while female accounts 

represent the 45.43%. The male accounts are slightly prevalent than females accounts. 

Considering the churn rates, for females, the churn rate is roughly 25.07%, whereas for males,  

it's roughly 16.46%. Given that females are more likely than males to churn, this difference may 

increase the possibility that gender may be a factor in churn prediction. 
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e) Country 

 

Fig. 14. Country Values 

 

The bank's customers include three countries France, Spain, and Germany. From that order of 

number, evidently, France takes the lead by the highest total of customers, which is 5014, then 

Spain follows with 2477, while Germany has a total of 2509. The market penetration in France 

is quite significant, which means that the banks services are more aligned with the preferences 

or financial needs of the French population. The second plot highlights the percentage churn 

rate of those countries. Germany ranks at the top, at the highest of about 32.44%, then an 

average for Spain at 16.67%, and finally France at the least with a percentage of 16.15% (Fig. 

14). 
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f) Number of Products 

 

Fig. 15. Number of Products Values 

 

Products Number is an indicator of the extent of the relationship between the customer and the 

bank. In Fig.15, a significant portion of the bank's clientele of total 5,084 customers, hold a 

single banking product. This group contain almost the half costumers from this dataset with 

churn rate of approximately 27.71%. The second largest group, comprising 4,590 customers, 

engages with two of the bank's products. Costumers with two products have a substantially 

lower churn rate of 7.58%, indicating the highest-level engagement with the bank's services. A 

much smaller segment of 266 customers engages with three products. This group's churn rate 

escalates to 82.71%. Even the group of customers who holds the third products is significantly 

smaller than the others a large proportion of them chooses to churn. The smallest group, with 

only 60 customers holding four products, exhibits a churn rate of 100%. This shows that all 

customers with four products associating with the banks have churned. The quantity of products 
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owned and customer retention have a nonlinear connection. First, clients who use a second 

product are far more likely to stay with the bank. This may be explained by the happiness or 

perceived value that comes from using a wider range of services, potentially improving the 

banking experience or offering financial incentives that exceed the advantages of engaging with 

a single product. 

 

4.1.2 Continuous Variables 

 

a) Tenure 

 

Fig. 16. Tenure Values 

Longer tenure usually correlate with lower churn as customers with a long relationship are 

likely to have high satisfaction levels. In Fig. 16 shows a fairly constant spread across different 

tenure values with peaks around 0-1 years and 9-10 years. The second plot, comparing tenure 

with churn, indicates most of the tenure lengths are not much different. On the other end, the 0-1 

and the 9-10 groups of tenure customers seem to display slightly diverse patterns compared to 

other groups. Even though the tenure can take values both 0 and 10, treating tenure as a 

continuous variable would be reasonable, and it would enable it to capture some trends or 

patterns. Otherwise, treating it as a discrete variable would make it lose information [20]. 
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b) Age 

 

Fig. 17. Age Values 

 

A customer's age is a demographic factor, which influences their banking demands and habits. 

The age has values from 18 to 92 with mean around 38 and standard deviation approximately 

10,5. With median value 37 (very close to the mean), the first plot show that age distribution 

among the customers is relatively symmetrical with slightly skewed to the right. The presence 

of outliers towards the right end of the range is indicated by the skewness value, which is 

approximately 1.01 (>1). The outliers are revealed more clearly by the box plot at the right end 

of the adjacent values where the age values are greater than 61 [54] (Fig. 17). 

 

c) Credit Score 

 

Fig. 18. Credit Score Values 

 

A numerical expression based that represents the creditworthiness of an individual. It could 

influence a customer’s eligibility for better offers or rates and might indirectly affect their 
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satisfaction. The Credit Score has a range of 350 to 850, with a standard deviation of roughly 

96.7 and a mean value of roughly 650.5. The distribution of Credit Score among customers is 

reasonably symmetrical, because the median value of 652 close to the mean. The histogram 

visually supports the symmetrical distribution with a very slight skew to the left, due to the 

values of skewness that are around -0.07, closer to zero. Given the maximum score is 850, 

which is within the calculated upper bound, which is visually illustrated by the box blot, there 

are no extreme outliers on the higher end. However, the presence of a minimum score 350 

below the lower outlier threshold indicates the presence of outliers outside the margins of the 

adjacent values (Fig. 18). 

 

d) Estimated Salary 

 

Fig. 19. Estimated Salary Values 

 

The estimated salary could be inferred or based on direct reporting and indicates economic 

power. It has the mean and median really close to each other around 100,090 and 100,194, 

respectively. The range of the values starts from 11.58 to 199,992.48, which indicates the wide 

array of income levels for customers. This high standard deviation of 57,510.49 can also explain 

the wide spread of the values. Hence, it is important to have an understanding of the 

significance of variance in the salaries (Fig. 19). The very close to zero value of 0.0021 for the 

skewness of the distribution only buttresses the earlier observation of a symmetric distribution 

about the mean. With those results, the probabilities of almost a similar number of salary values 

falling almost equally on either side of the mean value and having high or low values are not 

skewed. With a kurtosis value of -1.1815, the distribution is platykurtic. This indicates a small 

number of outliers with a flatter peak when compared to a normal distribution and there is a 

much broader, more even spread of values with less clear peaks [2]. 

e) Balance 
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Fig. 20. Balance Values 

The balance indicates the depth of the customer’s financial relationship with the bank. Fig. 20 

illustrates a good share of clients has a balance of zero, meaning that not every customer 

consistently maintains a positive balance. The range of balances is $0 to about $250,898 and 

with large standard deviation of $62,397.41 indicates that balance amounts are widely dispersed 

over a wide range. The median balance is higher than the mean ($97,198.54 vs. $76,485.89), 

pointing to a right-skewed distribution where the mean is elevated by outliers, suggesting that 

while most clients hold lower balances, a few have very high balances [77]. Having many zero 

balances and some very high values, the Robust Scaler can more effectively standardize balance 

amounts by utilizing the median and IQR, effectively reducing the impact of both zeroes. 

 

 

4.2 Data Preparation 
 

After first being gathered from ABC Bank, the data is delivered as a CSV file. The data is of 

great quality as it has received some processing and data cleaning before being uploaded to 

Kaggle as an open source. The data include float and integer numbers as well as object types. 

Classification models, such as LR, DT, RF, SVM, KNN that will be used for this analysis, are 

designed to handle both types of numeric data. It is common in datasets, that represent groups of 

people, features like age, gender, and country to be frequently repeat. In EDA analysis 

mentioned, that customer_id is a unique identifier for each customer and doesn't contain any 
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inherent predictive information regarding their behavior. However, it can be used as a catalyst 

for identifying duplicates, due to the fact that customer_id was typically designed to be unique 

for each customer. After the step is done it will be removed from this analysis. 

 

4.3 Encoding  
 

Label encoding may not be the best method when working with categorical variables that lack a 

natural order due to the false numerical order it creates [32]. On the other hand, if one hot 

encoding is performing on Gender values, where it has 2 distinct values, the features it creates 

(Males - Females) will be negative correlated (-1). If one variable can be almost accurately 

predicted from the other, it means they are covering similar aspects of the information, leading 

to redundancy [29]. The most efficient approach is to utilize the outcome of the EDA analysis to 

apply label encoding. Since there are slightly more males in this dataset than females, and 

because females have greater churn rates than males, males will be ranked with the number one, 

and females with number zero. Unlike gender, however, performing one-hot encoding on 

country with three discrete values (France, Germany, Spain) transforms it into a binary matrix, 

preventing the model from assuming a natural ordering. For algorithms that rely on numerical 

input because it treats each country as an independent feature, ensuring accurate representation 

and interpretation of categorical data without introducing ordinal bias. 

 

4.4 Scaling 
 

From EDA the continues features balance have values of zero and non-zero balances. While 

non-zero form a segment of balance that follows normal distribution, zero values could be 

considered as outlies. Age has outliers at right ends particularly to the older customers. For 

Estimated salary the peak is less pronounced, than in the distribution resulting in a broader more 

even spread with fewer outliers and for Credit Score there are some outliers on the lower end.  

Robust scaling uses the median and the interquartile range (IQR) for scaling, both of which are 

less sensitive to outliers than the mean and standard deviation. This means that extreme values 

have less influence on the scaling transformation, leading to a more uniform distribution of 

scaled features. While minimizing the impact of outliers, robust scaling preserves the relative 

rankings and distances of the original data points [28]. Although it is stated in the preliminary 

data analysis that tenure has 10 discrete values, scaling tenure relatively brings it in line with 

other continuous variables. Scaling ensures that all features have an equal contribution to the 

decision-making process, preventing features with large numerical ranges from overwhelming 
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those with smaller numerical ranges. Despite its discrete character and limited range, it seems 

that tenure benefits from this equal-footing rule in the sense that its variations are more 

meaningful within the models. The numerical range of values in estimated salary is much larger 

than tenure. If the distribution would be as it is now Min-Max scaling would work where a 

specific range of input features from 0 to 1 can be given. 

 

4.5 Correlation 
 

 

Fig. 21. Pearson Correlation 

 

Given that the correlation, from fig. 21, of each feature is not accessed a standard threshold the 

extreme values of correlation threshold (|r|>= 0.7), the information in the correlation matrix 

table above indicates that there is no significant concern regarding [11]. Each variable might 

contribute unique insights without redundancy since variables exhibit low interdependencies. 

Since variables are not tightly coupled, they provide unique insights into the model, especially 

for understanding the outcome variable (churn) without the need for additional feature selection 

methods [22]. 
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Chapter 5: Model Selection and Preparation 
 

The machine learning models are evaluated to address the classification problem are  

 DT 

 KNN 

 RF 

 LR 

 SVM 

Each model is incorporated into a pipeline with the scaling preprocessing step to ensure a 

consistent approach to data preparation. The Logistic Regression model's max_iter parameter is 

specifically increased to ensure convergence given the complexity of the dataset. 

 

5.1 Model’s Preparation 
 

The step involves selecting continuous features from the dataset for scaling, based on their 

range and distribution. The features for scaling include 'credit_score', 'age', 'tenure', 'balance', 

and 'estimated_salary'. The methodology accounts for how the original data values are 

distributed and their relative sizes to each other, ensuring that the normalization process 

appropriately scales the data without distorting its original structure [22]. To scale these 

features, a Robust Scaler and a Mix-Max Scaler from the scikit-learn library is utilized within a 

preprocessing pipeline. The Robust Scaler is chosen for its ability to handle outliers on 

'credit_score', 'age', 'balance', while Mix-Max Scaler has been applied on 'tenure', 

'estimated_salary' so that the value’s range are between zero and one given that most of the 

discrete features are binaries. By choosing Robust Scaling for features likely affected by outliers 

and Min-Max Scaling for others, the preprocessing is tailored to the data’s nature, promoting 

better model training and validation practices. Those scalers are applied only to the specified 

features, while the remainder of the discrete features in the dataset are left unscaled [42]. 

 

5.2 Stratified Cross-Validation 
 

A five-split stratified K-fold cross-validation approach is used to accurately evaluate each 

model's performance. Stratified sampling ensures that the percentage of samples of each target 

class in each fold is about equal to that of the entire set. This not only helps in evaluating the 
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model more fairly but also in training more robust models as each fold resembles the complete 

dataset in terms of class distribution. This approach ensures that each fold used in the cross-

validation process is a valuable representative of the whole dataset, especially in terms of the 

distribution of the target classes. Cross-validation scores are calculated based on accuracy, 

providing a straightforward metric to compare the models' performance [63]. The use of a 

Pipeline in Scikit-Learn is critical in preventing data leakage during the preprocessing steps. 

When data from the test or validation set is unintentionally used to inform the model training 

process, it is known as data leakage and can result in unduly optimistic performance predictions. 

In the pipeline, preprocessing (like scaling) and the model training happen within each fold of 

the cross-validation. This means that scaling is applied separately to each training fold, and then 

the same scaling parameters are used on the validation fold. This prevents information from the 

validation data from being used to scale the training data, thereby avoiding leakage [62] 

 

Table 2. First Model Evaluation 

ML models Mean Accuracy 

DT 0.79 

KNN 0.84 

RF 0.87 

LR 0.81 

SVM 0.86 

 

In Table 2, even after the Stratified K-Fold cross-validation, the high scores from the Mean 

Accuracy are proof that imbalanced cause the models to favor the majority class. This is 

because accuracy measures the proportion of total correct predictions (including true negatives, 

which are high in imbalanced datasets), but it does not specifically reflect how well the model 

predicts the minority class [16]. Following those findings, the next phase is to measure accuracy 

by assigning distinct scores to the training and testing stages of cross-validation. This is done to 

determent whether ML models have learnt the training data set so well that they perform poorly 

on test data set. [48]. 
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Table 3. Second Model Evaluation 

ML models Accuracy of train set Accuracy of test set  

DT 1.000 0.789 

KNN 0.877 0.839 

RF 1.000 0.862 

LR 0.811 0.810 

SVM 0.863 0.858 

 

The results of using cross-validation by separating train and test folds helped in selecting a 

model that not only fits the training data well but also performs consistently on unseen data, 

with LR and SVM showing the most balanced performance. KNN demonstrates good 

performance and a decent compromise between fitting the training data and generalizing 

effectively to unseen data. The relatively small gap between the training and testing scores 

suggests that the model is not severely overfitting, which is a positive sign of its robustness. 

This indicates that KNN is effectively capturing the underlying patterns in the data without 

tailoring too specifically to the noise in the training set. On the other hand, both DT and RF 

have perfect training accuracy showing signs of overfitting (Table 3). One way to address 

overfitting for these models is to apply pruning to enhance their generalization capabilities on 

unseen data. Pruning deploys by removing parts of the tree that do not provide significant 

meaning in predicting the target variable, thus making the model simpler and more robust [24]. 

The following code shows the formulation of the process: 

5.3 Enhanced Pruning 
 

models_pruned = { 

    "Pruned Decision Tree": DecisionTreeClassifier(max_depth=10, min_samples_split=50, 
min_samples_leaf=25, random_state=42), 

    "Pruned Random Forest": RandomForestClassifier(max_depth=5, min_samples_split=50, 

min_samples_leaf=25, max_samples=0.8, random_state=42) 

} 

Restricting the depth of the DT and RF to 10 limiting the maximum depth it prevents the models 

from becoming overly deep and complex. When setting parameter min_samples_split=50 it 

determines the minimum number of samples a node (or tree in case of RF) must have before it 

can split. This helps prevent the model from learning overly specific patterns. Setting 

min_samples_leaf=25 defines the minimum number of samples that a leaf node (or tree) must 

have and further ensures that the leaf nodes (or trees) are not too specific, improving the 

generalizability of the model. Additionally, pruned Random Forest with an extra parameter 

max_samples=0.8 implies that every tree in the forest is created using a random selection of 

80% of the samples available. Randomly choosing the data with which to build the trees adds 
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another layer of randomness to the model but is intended to make the model more robust. 

Finally, setting a seed value random_state= 42 to ensure that the results are reproducible.  

 

Table 4. Third Model Evaluation 

ML models Accuracy of train set Accuracy of test set 

Pruned DT 0.8627 0.8608 

Pruned RF 0.8628 0.8565 

 

Pruning the DT results in the removal of branches with low importance, which could be due to 

low information gain. The results in a simplified tree that has a better chance of generalizing to 

unseen data. In a random forest, pruning each individual tree prevent the ensemble from 

becoming overly complex (Table 4). Even though random forests are much less sensitive to 

overfitting than single DT because they are an ensemble of them, pruning may help effectively 

reduce such a vulnerability by controlling how deep each of its trees may expand [35]. 

Generally, this method seems to be doing a very good job of its intention, which is minimizing 

overfitting, with consistent performance from training to testing. That suggests the models are 

quite able to generalize and will have good performance on new, unseen data without having 

"learned the noise" from our training dataset. 

 

 

5.4 SMOTE 
 

Inspired by pseudo-code from paper “SMOTE: Synthetic Minority Over-sampling Technique” 

in 2002 (page 329) a code is implemented to follow similar logic and create synthetic samples 

for the minority class. To ensure the integrity of the results the code will be interpreted piece by 

piece. 

 

class SMOTETransformer(BaseEstimator, TransformerMixin): 

    def __init__(self, imbalance_ratio=0.0, k=5): 

        self.imbalance_ratio = imbalance_ratio 

        self.k = k 

 

The following line declares a new class called SMOTETransformer from BaseEstimator and 

TransformerMixin. These are base classes allow the transformer to integrate seamlessly with 

scikit-learn pipelines and functionalities. Then imbalance_ratio determines how much the 
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minority class should be oversampled relative to its original size, and k is the number of nearest 

neighbors to use when generating synthetic examples. By default, imbalance_ratio is set to 0.0 

so that no synthetic samples will be created during the first evaluations.  

 

    def fit(self, X, y=None): 

        return self 
    def transform(self, X, y=None): 

        if y is not None: 

            minority_sample = X[y == 1] 
        else: 

            minority_sample = X 

 

Scikit-learn's transformer and estimator design, a fit method is used to learn something from the 

data. For SMOTE, the actual transformation doesn't involve fitting on the data, but fit must still 

be defined to maintain compatibility with scikit-learn's functionality (like pipelines). This 

method simply returns the instance (self). This is a placeholder that allows the transformer to be 

used in scikit-learn pipelines and similar constructs that expect a fit () method. If the target array 

y is provided. If y is provided, it selects the minority class samples (y == 1). If not provided, it 

assumes all of X are the samples to be oversampled. To identify and separate the minority class 

samples which are to be augmented via synthetic sample generation. 

 

 

        T, num_attrs = minority_sample.shape 
        num_synthetic_samples = int(len(minority_sample) * self.imbalance_ratio) 

        synthetic = np.zeros((num_synthetic_samples, num_attrs)) 

        new_index = 0 

        nbrs = NearestNeighbors(n_neighbors=self.k + 1).fit(minority_sample) 

 

This line retrieves the number of minority samples (T) and the number of features (num_attrs). 

Calculates the number of synthetic samples to generate based on the imbalance ratio. A numpy 

array synthetic is to store the synthetic samples. new_index is used to track the insertion point in 

the synthetic array and fits a nearest neighbors’ model to the minority samples. self.k + 1 

neighbors are considered because the nearest (the first one) will be the point itself. 

 

        def populate(N: int, i: int, nnarray: np.array): 

            nonlocal new_index 

            while N != 0: 
                nn = randrange(1, self.k + 1)  # Pick one of k neighbors 

                for attr in range(num_attrs): 
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                    dif = minority_sample.iloc[nnarray[nn]][attr] - minority_sample.iloc[i][attr] 

                    gap = uniform(0, 1) 

                    synthetic[new_index][attr] = minority_sample.iloc[i][attr] + gap * dif 
                new_index += 1 

                N -= 1 

 

A nested function that generates synthetic samples. It iteratively interpolates between a minority 

sample and one of its k-nearest neighbors to create a new sample. It loops ntil N synthetic 

samples have been created. Randomly selects one of the k neighbors and interpolates between 

the attributes. 

 

        for i in range(T): 

            nnarray = nbrs.kneighbors(minority_sample.iloc[[i]], return_distance=False)[0] 
            populate(num_synthetic_samples // T, i, nnarray) 

        synthetic_df = pd.DataFrame(synthetic, columns=X.columns) 

        synthetic_df['churn'] = 1 

 

For each minority sample, retrieves its nearest neighbors, and calls populate to generate the 

corresponding number of synthetic samples, distributed roughly evenly among all minority 

samples and then converts the synthetic samples array into a DataFrame and assigns the label 

for the minority class. Here, 'churn' is assumed to be the label field, indicating the samples are 

of the minority class. 

   

        binary_cols = ['credit_card', 'active_member', 'gender_encoded', 'country_France', 

'country_Germany', 'country_Spain', 'products_number'] 
        synthetic_df[binary_cols] = synthetic_df[binary_cols].round() 

        return synthetic_df 

 

Before return the DataFrame that containing the synthetic samples, it rounds discrete features to 

ensure the meaningful transformation remain after interpolation. 

 

    def fit_resample(self, X, y): 

        synthetic_df = self.transform(X, y) 
        X_resampled = synthetic_df.drop('churn', axis=1) 

        y_resampled = synthetic_df['churn'] 

        return X_resampled, y_resampled 
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This method combines transform with the resampling process, returning the resampled dataset 

with features (X_resampled) and target values (y_resampled). This allows it to be used directly 

in a pipeline. 

 

smote_transformer = SMOTETransformer(imbalance_ratio=0.0) 

synthetic_df = smote_transformer.transform(X, y) 

 

The final snippet creates an instance of SMOTETransformer, setting the imbalance_ratio to 0.0. 

This ratio typically dictates how many synthetic samples to generate relative to the number of 

samples in the minority class. By adjusting the ration to 1.0, 2.0 and 3.0, the minority class will 

by increased by 100%, 200% and 300% respectively, ignoring the default settings. After that, 

the smote_transformer generate a DataFrame (synthetic_df) containing synthetic samples and 

applies SMOTE to the features (X) and the target (y) to create these samples for review.  
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Chapter 6: Assessing Model Performance Across Classes-

Evaluation metrics 
 

In the section evaluation metrics such accuracy mean, F1 – Score and AUC-ROC used on 

machine learning models to determine how they perform under different levels of class 

imbalance and how they benefit from the application of SMOTE.  The default parameters have 

been used for each model so the results are rounded with two decimals. The main objective is to 

enhance our understanding of each model's capability to handle imbalanced datasets and to find 

the most effective strategy for improving their performance through artificial balancing of the 

class distribution [45]. In this analysis, four distinct datasets are evaluated to determine the 

impact of class balance on model performance as seen from the Table 5. 

 

Table 5. Oversampling 

Churn Original Class 

Minority Class 

Doubled 

(100%) 

Minority Class 

Tripled (200%) 

Minority Class 

Quadrupled 

(300%) 

0 7963 7963 7963 7963 

1 2037 4074 6111 8148 

 

 
 

    

 

The final models that will be used for evaluation are: 

 Pruned DT 

 KNN 

 Pruned RF 

 LR 

 SVM 

 

Like before, StratifiedKFold is applied to ensure that each fold retains the same proportion of 

class labels as the original dataset (Sebastian Raschka, 2020). The dataset is split into training 

and testing subsets for each fold, while SMOTE is applied to only the training data to avoid 
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information leakage and to ensure the model learns to generalize from a balanced representation 

of classes [45]. A ColumnTransformer is set up to apply different scaling strategies to specified 

groups of features. The preprocessing steps and the actual model are encapsulated within a 

Pipeline to ensure that all preprocessing steps are fitted only on training data and consistently 

applied to both training and test data [62]. And finally, each run will calculate mean training and 

testing accuracies across all folds and computes whether the model is overfitting or underfitting 

after the input of the synthetic data to the training set [48].  

 

6.1 Original Dataset  
 

The summary of model performances of the classes distribution, where the minority class 

(churned) has only 2,037 instances compared to 7,963 for the majority class (Not Churned). 

 

Table 6. First Run Accuracies 

 
Pruned 

DT 
KNN Pruned RF LR SVM 

Train Accuracy 0.86 0.88 0.86 0.81 0.86 

Test Accuracy 0.85 0.84 0.85 0.81 0.86 

Overfitting-

Underfitting 

Indicator 

0.01 0.04 0.01 0.00 0.00 

 

 

Since no synthetic data has been added to the training set the results are the same from Model 

Selection and Evaluation chapter with none of the models showing significant signs of 

overfitting (Table 6). 
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Table 7. First Run Evaluations 

 Pruned DT KNN Pruned RF LR SVM 

Mean 

Accuracy 
0.85 0.84 0.85 0.81 0.86 

F1-score 0.53 0.52 0.47 0.31 0.53 

AUC 0.84 0.78 0.85 0.77 0.82 

 

The Pruned RF has the greatest score of AUC, showing strong classification ability, but 

struggles with the F1-score, which could be due to a focus on the majority class. Logistic 

Regression appears to be the weakest model concerning handling class imbalance, as both F1-

score and AUC have the lowest values compare to the other models. In terms of performance, 

both SVM and Pruned DT have the highest scores, making them potentially more reliable for 

consistent performance (Table 7). 

 

6.2 Minority Class Doubled 
 

The following run includes of model performances of the classes distribution, where SMOTE is 

applied to increase the minority class representation by 100%, resulting in a new class 

distribution where 'Churned' has 4074 instances compared to 'Not Churn' with the same number 

of instances. 

Table 8. Second Run Accuracies 

 Pruned DT KNN Pruned RF LR SVM 

Mean Train 

Accuracy 
0.80 0.85 0.80 0.74 0.82 

Mean Test 

Accuracy 
0.83 0.81 0.85 0.79 0.86 

Overfitting-

Underfitting 

Indicator 

-0.03 0.04 -0.05 -0.05 -0.04 
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After the synthetic data have been added all models expect KNN appear to have better 

generalization as training accuracy decreased. Due to its immediate neighborhood of data 

points, which may be negatively impacted by the properties of the synthetic data, KNN's 

performance may have been affected (Table 8). 

 

Table 9. Second Run Evaluations 

 Pruned DT KNN Pruned RF LR SVM 

Mean 

Accuracy 
0.83 0.81 0.85 0.79 0.86 

F1-score 0.59 0.55 0.58 0.47 0.61 

AUC 0.83 0.79 0.84 0.77 0.85 

 

After SMOTE, SVM shows the best balance between precision and recall, along with high class 

separation skills, making it the top performer. As starting to receive new data from the minority 

class, Pruned RF is managing balanced datasets, because it exhibits notable gains and keeps up 

high performance across all measures. While Pruned DT and KNN demonstrate some progress, 

their AUC and F1-score results suggest that they may not be fully capable of capturing subtler 

differences in the data or complex class relationships. Even yet, Logistic Regression exhibits the 

least amount of adaptation to the balanced dataset (Table 9). 

 

6.3 Minority Class Tripled 
 

The following run includes model performances of the classes distribution, where SMOTE is 

applied to increase the minority class representation by 200%, resulting in a new class 

distribution where 'Churned' has 6111 instances compared to 'Not Churn' with the same number 

of instances. 
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Table 10. Third Run Accuracies 

 Pruned DT KNN Pruned RF LR SVM 

Train Accuracy 0.77 0.85 0.79 0.72 0.82 

Test Accuracy 0.80 0.79 0.81 0.76 0.84 

Overfitting-

Underfitting 

Indicator 

-0.03 0.06 -0.02 -0.04 -0.02 

 

Even if the accuracies score for both training and test are slightly decreased compere to the 

previous result, the generalization has been improved. KNN's performance, however is starting 

to show signs of overfitting, another proof that it is affected by SMOTE technique due to the 

fact that they follow the same logic (Table 10). 

 

 

Table 11. Third Run Evaluations 

 Pruned DT KNN Pruned RF LR SVM 

Mean 

Accuracy 
0.81 0.79 0.82 0.76 0.84 

F1-score 0.58 0.56 0.59 0.50 0.62 

AUC 0.83 0.80 0.84 0.77 0.85 

 

The model that performs the best in this scenario is again the SVM, which demonstrates 

adaptability to the class balance while maintaining high performance in terms of accuracy, F1-

score, and AUC. Because of its resilience, it is ideal for use in situations where balanced class 

representation and forecast accuracy are critical. Pruned RF is a good option where robust 

classification is more crucial over a balanced dataset because of its strong performance, 

particularly in terms of AUC. While they exhibit some adaptation to the balanced data, Pruned 

DT, K-Nearest Neighbors, and Logistic Regression continue to be less effective than SVM and 

Random Forest (Table 11). 
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6.4 Minority Class Quadrupled 
 

In the fourth and final run of the model, where SMOTE is applied to increase the minority class 

representation by 300% made the dataset almost balanced, resulting in a new class distribution 

where 'Churned' has 8148 instances slight excessing the majority class of 'Not Churn' which 

remains with the same number of instances. 

 

 

Table 12. Fourth Run Accuracies 

 Pruned DT KNN Pruned RF LR SVM 

Mean Train 

Accuracy 
0.76 0.86 0.78 0.72 0.82 

Mean Test 

Accuracy 
0.77 0.78 0.77 0.71 0.81 

Overfitting-

Underfitting 

Indicator 

-0.01 0.08 0.01 0.01 0.01 

 

The interpretation holds the same logic as now it seems, that the models are starting to have 

positive values between the differences of train and test, meaning that they are starting to adapt 

on the patterns (Table 12). 

 

Table 13. Fourth Run Evaluation 

 Pruned DT KNN Pruned RF LR SVM 

Mean 

Accuracy 
0.78 0.77 0.77 0.71 0.81 

F1-score 0.55 0.55 0.56 0.50 0.60 

AUC 0.82 0.80 0.84 0.77 0.85 
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Now that the classes are slightly balanced, with churns surpassing the non-churns with some 

observations, the metrics are starting to deteriorate. However, the evaluations seem to yield 

better results compared to the “First Run” where the classes were imbalanced. Measurements 

here show that Support Vector Machine (SVM) performs better than the others. Because of its 

robustness, it is ideal for deployment in situations with a balanced class distribution, 

guaranteeing accurate and fair predictions. While pruned DT and pruned RF exhibit some 

robustness, they are unable to match SVM's overall performance. In every run, KNN and LR 

seem less appropriate handle this task than the others (Table 13). 

 

 

Fig. 22. Roc Curves for Every Run 

 

The optimal model for all runs is SVM which is yields the dominant curve, which is also the 

curve with the biggest area, if one ROC curve dominates all others. The AUC metric, 

particularly in the context of ROC (Receiver Operating Characteristic) AUC, is less sensitive to 

class imbalance compared to other metrics like accuracy or precision [66]. Generally, as the 

SMOTE level increases (from the original dataset to 300% increase), the AUC scores for most 

models do not change significantly (Fig. 22). 
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Chapter 7: Conclusions 
 

This chapter presents a synthesis of the findings of the study and wider implications, given a 

focus on applying machine learning methods to predict customer churn in a banking context. 

The following sections, which discuss the proposed methodology, suggest the limitations met 

during the study's implementation and provide ways for future research development in that 

direction. The prediction of customer churn with the different machine learning models applied 

in the project, therefore, demonstrated that it is indeed feasible to reach a relatively good level 

of performance and accuracy in such prediction with the set of features given. Of the tested 

models, only the Support Vector Machine (SVM) was robust to all tested scenarios and, in fact, 

more robust than all models compared, taking into account changes in the class distribution 

adjusted by SMOTE. The SVM still keeps very high accuracy and exhibits superiority in F1-

scores and AUC metrics, pointing to its ability in balancing precision vs. recall effectively and 

very good capacity for class separation. The use of SMOTE for addressing class imbalance 

proved instrumental in enhancing the predictive accuracy of models, especially for the less 

represented classes. Such an approach helped balance out the representation of instances of the 

minority class and could, therefore, provide subtler insights into the reasons for customer churn. 

 

6.1 Research Overview 
 

This analysis was focused on conducting an extensive assessment of multiple machine learning 

models that would allow for checking their performance under different conditions of class 

imbalance and for assessing the extent to which the SMOTE can provide valuable performance 

improvement. Our intention was to gather more information on the ability of these models to 

work with imbalanced data and determine the best approach to enhancing their performance that 

would involve artificial balancing of the class distribution. Our beginning involved evaluating 

models on a dataset with a substantial class imbalance. Specifically, we examined models such 

as the Pruned DT, KNN, Pruned RF, LR, and SVM performance and obtained baseline metrics 

for accuracy, F1-score, and the Area Under the Curve. This first assessment allowed us to 

acknowledge the fundamental limitations associated with the skewed class distribution. 

Followed by incrementally increasing the representation of the minority class, it was used with 

SMOTE at four different levels: original 100%, 200%, and 300%, in order to generate synthetic 

samples of the minority class, thus balancing the dataset artificially. The same set of models was 

rerun with each level of adjustment to observe the resulting difference in model performance 

metrics. This approach helped us test how improving class balance would affect the model, its 

accuracy, precision, and recall, and, naturally, the general power to separate classes of 
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outcomes. This was only possible due to the comparison of results between various scenarios, 

with pinpoint accuracy on which level of SMOTE optimization brought out the most benefit for 

models. The implementation of a machine learning model for customer churn prediction has 

shown that a high level of performance and accuracy can be reached with the provided dataset. 

The Support Vector Machine was the most stable and performed well in all settings and was 

significantly better even compared with its performance increased by SMOTE adjustments of 

different class distribution. While some minor losses in accuracy were present, both F1-scores 

and AUC metrics have shown better discriminative ability of SVM classes. In the original 

dataset, the highest accuracy was 0.86, which suggests that SVM was quite effective even with 

the imbalanced data. As SMOTE is introduced, the f1-score improves, showing better balance 

between precision and recall due to the balanced dataset. The best F1 score of 0.62 was realized 

with 200% increases in the minority class. The AUC score fluctuated but remained high, at 0.85, 

meaning that SVM has high capability in distinguishing between classes even under balanced 

conditions. Notably, the dataset with a 200% increase in the minority class outperformed other 

alternatives in all aspects. In practical terms, this means that such a dataset achieves the most 

reasonable balance between the precision and recall of the identified outcomes. The slight 

decrease in accuracy in the 300% increase scenario shows that too large of an increase in the 

number of the minority class may have diminishing returns. 

 

6.2 Limitations 
 

6.2.1 Hyperparameter Tuning 

 

Hyperparameter tuning is the process of optimal configuration selection for hyperparameters, 

which are not learned when the data are trained. Several parameters control the model’s 

training, while hyperparameters are set before the training process starts. It is necessary to 

remember that a machine learning practitioner should set hyperparameters, as they are not 

learned from the data. Hyperparameter tuning aims is to find the optimal mixing of these 

settings that allows the model to perform at its best, which is usually determined by its accuracy, 

precision, or any other reliable indicator on unseen data. An effective hyperparameter tuning can 

be essential for ensuring that a model generalizes well in practice, i.e., on real-world data 

different from the used training dataset. [74]. There was a drawback of the computational cost 

that hyperparameter search methods are computationally expensive and time-consuming. This is 

caused by the pros of exhaustive testing of multiple combinations of parameters, thus, the 

higher is the search space of potential variants the more computational effort is demanded. 

These expenses also increase with the complexity of the model and the amount of the dataset. 
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6.2.2 Data Limitations 

 

The unavailability of data sources is one of the limitations encountered in the study. 

Conformably, data sources limitation frequently occurs due to privacy challenges, proprietary 

data policies, or simply an absence of data collected on certain variables of interest. The 

unavailability of more detailed and relevant data sources, thus, may limit more extensive 

research and introduce bias, as the model ends up being trained for incomplete views of 

customer behavior [53]. 

 

6.3 Future Work 
 

6.3.1 Log Transformation 

 

The log transformation is a proven technique to normalize the observed data obtained during an 

experiment to better meet the assumptions of some statistical analyses. One of these claims is 

that the variability of the value of the response factor must be constant. When the degree of 

variability, measured by the standard deviation on the differential scale, can be roughly equated 

to a mean measured on the same scale, a log transformation can be used to standardize these 

degrees. More technically, the variance is stabilized. Log transformation can also provide a 

normal distribution of real observations. Alternatively, an even more frequently realized normal 

distribution of sample means is achievable, which is useful for many stages of inference [17]. 

 

Fig. 23. Log Transformation Example for Age 

 

6.3.2 Segmentation 
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Segmentation is the process of treating different subsets of the data separately [13]. This could 

entail treating accounts with zero balances differently from those with non-zero balances, 

considering the balance feature (Fig. 24). 

 

Fig. 24. Quantile-Quantile Example for Balance 

 

Quantile-Quantile (QQ) plots are graphical aids used in the determination of whether a given 

data set could sensibly have arisen from another data set with a distribution, presumably in 

theory. Except for the case, all the data points lie in a straight line on the plot, usually at an 

angle of 45 degrees, in this case, the data is modeled by a normal distribution accurately. 

Discrepancies from this line reveal normality problems, and the form of the discrepancies might 

indicate skewness or the presence of outliers [67]. One way is creating a binary feature 

indicating whether the balance is zero (0) and non-zero (1), but that will lead to loss of 

information. However, filtering out zero balances and focusing only on non-zero balances is a 

form of data segmentation. The practice of splitting the data into subsets according to particular 

criteria to allow for more focused analysis. 

6.3.3 Feature Engineering 

 

Feature creation is a process during which new features are created from existing data attributes 

to enrich the predictive ability of ML models. The procedure intends to discover more insights 

from the existing data that could not be obtained from the unique features only. Polynomial 

features and interactions between variables, which allow to capture more complex relationships 

in data; they make models more flexible [20]. 
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