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Abstract
Background: The incidence of osteoporosis is a prime concern, especially in parts of the world where the
population is aging, such as Europe or the US. Many new therapy strategies have been described to enhance
bone healing. Lumbar interbody fusion (LIF) is a surgical procedure that aims to stabilize the lumbar spine
by fusing two or more vertebrae using an interbody cage. LIF is a standard treatment for various spinal
conditions, such as degenerative disc disease, spinal stenosis, and spondylolisthesis. However, successful
fusion is challenging for patients with osteoporosis due to their reduced bone mineral density (BMD) and
increased risk of cage subsidence, which can lead to implant failure and poor clinical outcomes.

Methods: A comprehensive literature search yielded 220 articles, with 16 ultimately included. Keywords
included BMD, cage subsidence, osteoporosis, teriparatide, and lumbar interbody fusion.

Results: This review examines the relationship between BMD and LIF success, emphasizing the importance
of adequate bone quality for successful fusion. Preoperative assessment methods for BMD and the impact of
low BMD on fusion rates and patient outcomes are discussed. Additionally, techniques to improve fusion
success in patients with weakened bone density, such as biological enhancement and BMD-matched
interbody cages, are explored. However, consensus on the exact BMD threshold for a successful outcome
remains elusive.

Conclusion: While an apparent correlation between BMD and fusion rate in LIF procedures is acknowledged,
conclusive evidence regarding the precise BMD threshold indicative of an increased risk of unfavorable
outcomes remains elusive. Surgeons are advised to exercise caution in surgical planning and follow-up for
patients with lower BMD. Furthermore, future research initiatives, particularly longitudinal studies, are
encouraged to prioritize the examination of BMD as a fundamental risk factor, addressing gaps in the
literature.

Categories: Endocrinology/Diabetes/Metabolism, Neurosurgery, Orthopedics
Keywords: mineral bone metabolism, osteoporosis treatment, lumbar interbody fusion, s: osteoporosis, cage
subsidence, bone mineral density

Introduction And Background
Osteoporosis is a condition in which bone mass is reduced, bone architecture deteriorates, and ultimately
leads to an increased risk of fragility fractures. Bones become porous and brittle, resulting in a higher
susceptibility to fragility fractures. The prevalence of osteoporosis increases worldwide, resulting in 200
million osteoporotic fractures yearly [1].

Osteoporosis can affect any bone in the body. Still, the main clinical manifestations include the so-called
"osteoporotic fractures," mostly involving the spine, the proximal femur, and the distal radius. Vertebral
compression fractures are a common consequence of osteoporosis, although they can also occur due to other
factors such as trauma or certain medical conditions. They usually occur without symptoms and can be
found incidentally on imaging for other, unrelated pathologies [2]. Vertebral compression fractures refer to
the compression or collapse of a vertebral body in the spine. These fractures often affect vertebrae
characterized by reduced bone mineral density (BMD) and are associated with high rates of morbidity, height
loss, kyphosis, restrictive lung disease, chronic back pain, and, eventually, functional impairment. Although
there are very effective treatments to reduce fracture risk, it seems that only 30% of patients with fragility
fractures underwent a BMD evaluation test or examination [2].

BMD is a critical factor in diagnosing, managing, and treating osteoporosis, as it measures the amount of
minerals (mainly calcium and phosphorus) in bone tissue. BMD testing is used to diagnose osteoporosis and
assess the risk of fractures. The most commonly used method to measure BMD is dual-energy X-ray
absorptiometry (DEXA) scanning, which can detect minor bone mass and density changes. The World Health
Organization (WHO) defines osteoporosis based on BMD measurements. DEXA scores are reported as "T-
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scores" and "Z-scores." The T-score compares a person's bone density with that of a healthy 30-year-old of
the same sex. The Z-score compares a person's bone density with that of an average person of the same age
and sex. A patient with osteoporosis has a BMD T-score of -2.5 or lower, and that person is at a high risk of
fractures. A T-score of -1.0 to -2.5 indicates osteopenia, meaning below-normal bone density without full
osteoporosis [3]. BMD is also used to monitor the effectiveness of osteoporosis treatments. Osteoporosis
medications aim to increase BMD and reduce the risk of fractures, although the effects may take months or
years to become noticeable.

Lumbar interbody fusion (LIF) is a surgical procedure that aims to stabilize the lumbar spine by fusing two or
more vertebrae using an interbody cage. LIF is a standard treatment for various spinal conditions, such as
trauma, degenerative disc disease, spinal stenosis, spondylodiscitis, and spondylolisthesis. However,
successful fusion is challenging in patients with osteoporosis, as BMD has been associated with
postoperative complications such as cage subsidence [4-10], pedicle screw loosening [11,12], and subsequent
adjacent fractures [13,14].

LIF surgical techniques’ ability to restore disc height, indirectly decompress the nerves, and preserve the
anterior and posterior stabilizing elements are the main reasons why the preference among spine surgeons
is growing worldwide. Five main LIF approaches are described in the literature: anterior lumbar interbody
fusion (ALIF), posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF or MI-
TLIF), lateral lumbar interbody fusion (LLIF), and oblique lumbar interbody fusion/anterior to the psoas
(OLIF/ATP) [15].

This study aims to review the literature and investigate the effect of BMD on the success of LIF in
osteoporotic patients. The association between BMD and perioperative and postoperative complications will
be examined. The findings of this study can contribute to the development of evidence-based guidelines for
the management of osteoporotic patients undergoing LIF and ultimately improve their clinical outcomes.

Review
Search methodology
An extensive search was conducted in Web of Science (WoS), PubMed, Scopus, and Cochrane from 1979 to
2024 to investigate the role of BMD in a successful LIF in osteoporotic patients. The keywords mineral bone
metabolism, osteoporosis treatment, lumbar interbody fusion, osteoporosis, and cage subsidence were used
after an initial screening yielded 225 studies; 52 that met our inclusion criteria were identified and included.

A total of 225 potentially relevant studies were identified during the database search, of which 70 were
duplicates and removed. Of the remaining 155 studies, 87 were excluded because they dealt with irrelevant
aspects of the correlation between BMD and LIF. Out of the 68 articles selected for reading, only 52 met the
criteria of this literature review.

Case reports, case series, systematic reviews, and meta-analyses concerning patients with osteoporosis
diagnosed and treated with LIF procedures, as well as research on LIF enhancement techniques and
pharmaceutical, biological, and biomechanical enhancement of low BMD, met the inclusion criteria.

The exclusion criteria were surgical techniques, animal studies, lack of direct relevance to osteoporosis or
BMD, and studies with insufficient, incomplete, or irrelevant data.

Data analysis
A summary of the included studies is seen in Table 1 [4,12,16-65]. The included studies were divided based
on the success of spinal fusion and its relationship with BMD and pharmacological and biomechanical
enhancement.
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Focus of Study Summary Studies

 

BMD

Significance in

LIF

In this section, the significance of bone mineral density (BMD) in lumbar interbody fusion (LIF) is

discussed. It explores how fusion is facilitated by adequate BMD, along with the preoperative assessment

methods and the implications of low BMD on fusion rates and clinical outcomes.

Cho et al. [4], Halvorson et al. [12], Oh et al. [16], Falowski et al. [17], Au et al. [18,26], Pennington et al.

[19], Reitman et al. [20], Coe et al. [21], Bjerke et al. [22], Matsukawa et al. [23], Carter et al. [24], Marshall

et al. [25], Hsu et al. [27], Choy et al. [28], Collino et al. [29], Murr et al. [60], Rezvani et al. [61] 

Pharmacological

and Biological

Enhancement in

LIF

In this part, various biological enhancement strategies aimed at improving BMD in patients undergoing LIF

are examined. Interventions such as bisphosphonates, teriparatide therapy, and biologics are discussed,

along with their role in optimizing fusion success in individuals with compromised BMD.  

Bisphosphonates [31,32,36–41], Teriparatide [32–34,42–46], Vitamin D [35,47], Denosumab [22,32,48–

51], Romosozumab [52–54]

Biomechanical

Enhancement in

LIF

Here, the focus is placed on biomechanical enhancement techniques employed to tackle BMD-related

challenges in LIF. The use of BMD-matched interbody cages, surgical approaches, and other

biomechanical considerations aimed at improving fusion outcomes in patients with reduced BMD are

explored.  

Falowski et al. [17], Weng et al. [55], Kivell et al. [56], Wang et al. [57], Deligianni et al. [58], Liu et al. [59],

Rezvani et al. [61], Tabarestani et al. [62], Mahmoodkhani et al. [63], Mo et al. [64], Tavares et al. [65]

TABLE 1: Summary of the studies included
Source: References [4,12,16–65]

BMD importance in lumbar interbody fusion
LIF is a surgical procedure in which an intervertebral disc is removed and replaced with a bone graft or
interbody device to promote spinal fusion. For the fusion to be successful, there must be adequate bone
quality and quantity to support the implanted graft or device, and BMD plays a critical role in this process.

In the context of LIF, BMD is significant for several reasons. BMD is currently the most accurate proxy for
bone strength. One of the primary reasons BMD is significant in LIF is its impact on implant success. A
screw's purchase, instrumentation failure, and the likelihood of developing pseudoarthrosis, adjacent
segment disease, or junctional kyphosis are all significantly influenced by bone density during an
instrumented fusion procedure [19]. Implants used in LIF surgeries, such as cages, bone grafts, or interbody
devices, rely on the surrounding bone tissue for support and stability. Underlying low BMD has been
associated with severe post-operative, device-related complications such as cage subsidence, pedicle screw
loosening, subsequent adjacent-level fractures, and the necessity of revision surgery [17]. Studies conducted
in vitro have shown a linear correlation between screw pullout force and DXA-measured BMD [12,20,21]. In
patients with lower BMD, the bone tissue may be weaker and unable to support the implant, increasing the
risk of implant failure, such as subsidence or migration [22,23]. In addition, lower BMD can result in a
decreased fusion rate, as the bone may be unable to integrate with the implanted graft or device.
Compressive bone strength and trabecular bone density are highly correlated [24] and DXA-measured spine
BMD has been shown in clinical studies to be negatively correlated with the risk of compression fractures
[25]. This can result in pseudarthrosis (failure of bone to fuse) and persistent pain or instability. Bioactive or
biokinetic implants are currently being designed and produced to reduce the complications due to low BMD
[17,18,26,27]. Particularly, lattice-designed cages that mimic the web-like structure of native cancellous
bone have shown excellent resistance to post-operative cage subsidence [28,29,60]. Conversely, a recent
investigation conducted by Rezvani et al. [61] revealed that in spondylodiscitis instrumented fusion,
autologous bone graft mixtures exhibited a superior fusion rate alongside a lower mortality rate when
compared to the use of titanium cages.

BMD is also significant in guiding surgical techniques and approaches. In patients with lower BMD, a
posterior approach may be preferred over an anterior one as it can provide more support and stability to the
spine, as described above. Even though cage subsidence is relevant to BMD, that subsidence does not apply
to clinical deterioration, so PLIF remains a safe option for treating lumbar degenerative diseases in
osteoporotic patients [16]. A larger or more robust implant may also improve fusion rates and decrease the
risk of implant failure [4]. BMD scores can also help to guide the choice of bone graft material used in LIF
surgeries. In osteoporotic patients, bone substitutes, such as demineralized bone matrix, may be preferred
over autograft, which may be osteoporotic as well. BMD can also be used to predict outcomes and potential
complications of LIF. The risk of non-union or adjacent segment disease may be higher in patients with
lower BMD. Non-union occurs when the bone fails to fuse with the implanted graft or device, resulting in
persistent pain and instability. Adjacent segment disease refers to the degeneration of spinal segments
adjacent to the site of the LIF surgery. It can occur due to altered biomechanics or increased stress on the
adjacent segments. Closer monitoring and follow-up may be necessary in patients with lower BMD to detect
and manage these potential complications [4].

BMD can also impact postoperative management and rehabilitation. Patients with lower BMD may require
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extended periods of immobilization and activity restriction to allow for adequate bone healing and
integration of the implanted graft or device. Physical therapy and exercise programs may also need to be
modified to account for decreased bone strength and increased fracture risk.

Pharmacological enhancement of LIF
BMD is an essential factor in the success of LIF procedures. Low BMD, as described before, can increase the
risk of complications such as implant failure, non-union, and postoperative fracture. Therefore, managing
BMD before the procedure is essential to reduce the risk of these complications.

Osteoporosis is widely recognized for its impact on bone quality, primarily due to adverse bone
remodeling. Reduced bone quality, assessed through BMD, diminishes the pull-out strength of pedicle
screws, and adverse bone remodeling leads to delayed bone fusion [30,31]. Therefore, spine surgeons should
consider osteoporosis pharmacological management before performing a LIF procedure. Certain medications
such as bisphosphonates, denosumab, romozumab, and parathyroid hormone (PTH) analogs like teriparatide
can help improve BMD. These medications work by slowing down bone loss or promoting bone growth.

Bisphosphonates

Bisphosphonates are pyrophosphate analogs that exhibit a strong binding affinity for hydroxyapatite.
Studies have demonstrated their ability to decrease biomarkers associated with bone resorption and
turnover, such as bone alkaline phosphatase (BAP), beta-C-terminal telopeptide (β-CTX), and N-terminal
telopeptide (NTX), elevate BMD and avert fragility fractures [36-38]. Bisphosphonate therapy promotes the
apoptosis of osteoclasts and exhibits favorable outcomes compared to control groups, including a reduction
in vertebral compression fractures, reduced rate of screw loosening and increased fusion rates [31,39,40].

The studies conducted on bisphosphonate therapy have demonstrated a positive impact. However, Buerba et
al. [41] did not find any significant differences in fusion rates and screw loosening between patients who
received bisphosphonates and those who did not. It is important to note that the evidence supporting
bisphosphonate therapy for spinal fusion is limited, and more research is required to establish its
effectiveness.

Teriparatide

Teriparatide is an anabolic recombinant parathyroid hormone (rhPTH-34) that improves BMD and reduces
fracture risk [42]. It is a medication that is officially approved for treating osteoporosis in postmenopausal
women and men at a higher risk of bone fracture. It is also used to treat osteoporotic patients who have been
receiving prolonged and systemic glucocorticoid therapy. In addition, it is prescribed to patients who are
under treatment with bisphosphonates, but are suffering from osteoporotic fractures, fragility fractures or
have a decreasing BMD [43,44]. Off-label use of teriparatide has been shown to enhance osteoblastic bone
formation when administered as a daily subcutaneous injection [45]. Research indicates that administering
weekly subcutaneous teriparatide in older women undergoing TLIF/PLIF for lumbar degenerative spine
diseases can improve interbody fusion. This results in higher fusion rates when compared to a control group
[33]. Weekly teriparatide use was shown to be a predictive factor of intervertebral union six months after
PLIF in another study [34]. Although most of the above studies indicate positive results, the literature
consists primarily of case reports or case series, which presents a clear risk of bias. It is essential to note that
teriparatide is not typically used as a standalone treatment for LIF, and the optimal dosage and
administration regimen for clinical application is yet to be determined [46].

Vitamin D

Vitamin D, a hormone essential for calcium absorption and bone mineralization, is positively associated
with BMD [47]. A solitary randomized controlled trial exclusively investigating vitamin D3 was identified as
well. The findings from this study indicated that vitamin D alone might be effective in enhancing fusion
rates among patients undergoing TLIF. However, these rates declined at the 12- and 24-month follow-ups
compared to control groups [35].

Denosumab

Denosumab is a human anti-receptor activator of nuclear factor kappa beta (RANKL) monoclonal antibody
and has been recently used for its effect on the increase in BMD and the treatment of postmenopausal
osteoporosis [48-50]. Ide et al. [22] suggested that combining denosumab with teriparatide may accelerate
spinal fusion in patients undergoing PLIF compared to those receiving teriparatide alone. However,
denosumab has its own set of adverse effects including hypocalcemia, osteonecrosis of the jaw and atypical
femoral fractures [51], limiting its use to each patient’s tolerability. Further research is needed to clarify
whether denosumab could have a positive impact on spinal fusion.

Romosozumab
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Romosozumab is a humanized monoclonal antibody that binds and inhibits sclerostin, with a dual effect of
increasing bone formation and decreasing bone resorption [52,53]. Only one study by Cosman et al. [54]
indicates that treating postmenopausal women with osteoporosis with romosozumab for one year reduces
the risk of vertebral and clinical fractures compared to a placebo. Although data is limited, romosozumab is
expected to effectively promote vertebrae healing due to its proven efficacy in treating osteoporosis.

While it might be rational for a spine surgeon to consider using bisphosphonates, teriparatide offers superior
outcomes in enhancing fusion and preventing complications. Therefore, if pharmacological therapy is
initiated, it is advisable to prioritize teriparatide over bisphosphonate therapy unless the patient is already
undergoing bisphosphonate treatment. Considering the rare side effects of vitamin D3, it could be
administered to all osteoporotic patients, especially those undergoing LIF, as many patients are either
deficient or already under treatment. It is of utmost importance that patients on antiosteoporotic treatment
are encouraged to maintain postoperatively their current therapeutic regimen, as evidence indicates
potential benefits with minimal harm or drawbacks [32]. The decision to support LIF techniques with
pharmacological enhancement will depend on several factors, including the patient's comorbidities, the
severity of their osteoporosis or other bone-related conditions, and the specific details of their surgical
procedure. A proposed decision algorithm is provided in Figure 1 [32].

FIGURE 1: Decision algorithm of pharmacological agents for patients
undergoing lumbar interbody fusion (LIF)
This figure is a creation of the authors based on Soldozy et al. [32]

Biomechanical enhancement in LIF
Biomechanical enhancement in LIF refers to the utilization of various techniques and technologies aimed at
improving the mechanical stability and long-term success of the fusion procedure. As previously mentioned,
reduced vertebral BMD can make it challenging to perform surgical interbody fusion as the weak bone
structure can increase the risk of implant-related complications such as cage subsidence after the procedure.
Fusion construct length, selection of screws, choice of bone grafts, preparation methods, utilization of
intervertebral prostheses (IVPs), extent and type of neural decompression, and management of neural
damage, while considering extraspinal trauma and existing comorbidities, represent significant
considerations in lumbar fusion [62,63].

Several strategies are employed to achieve biomechanical enhancement in LIF. Advanced, lattice-designed
cages resembling the web-like structure of the native cancellous bone have shown resistance to post-
operative subsidence and can be a promising solution [17,55-57]. These implants have an open, porous
structure that supports osseointegration and vascularization. They are designed to maximize contact with
the apophyseal ring while being optimized for size. They feature a textured surface modification which
allows new bone matrix to interdigitate within the crevices and asperities on the roughened surface [17,58].
As a result, a secure bond at the bone-implant interface is formed [59].

Moreover, interbody cage devices can be tailored to match a patient’s BMD T-score by modulating the
density and compactness of the pore structure, ensuring optimal load distribution and minimizing stress
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concentration at the implant-bone interface. These cages are available to support patients across the BMD
spectrum, including those with osteoporosis. Three designs are available, each reflecting low-, mid-, and
high-density BMD T-scores as classified by DXA. Falowski et al. [17] have developed an interbody fusion
device that has a distinct biomechanical profile, which is specific to bone density. This device could be
particularly useful in patients who suffer from osteoporosis and need LIF. Further research is recommended
to evaluate the clinical efficacy of these design features.

Mo et al. conducted a study comparing the safety and efficacy of cement-augmented pedicle screws to
traditional pedicle screw techniques in patients with osteoporotic spines and lumbar degenerative diseases
[64]. They observed that the cement-augmented pedicle screw technique proved effective and safe in this
population, demonstrating superior fusion rates and fewer instances of pedicle screw loosening. Notably,
while no significant differences were observed in fusion rates and pedicle screw loosening rates between the
two groups in single-segment patients, the cement-augmented pedicle screw group exhibited improved
fusion rates and lower pedicle screw loosening rates in patients with double or multiple segments affected.

In a compelling meta-analysis investigating bone graft selection in instrumented spinal surgery, Tavares et
al. discovered that local bone grafts yielded superior overall functional and radiological outcomes compared
to alternative bone substitutes [65]. Rezvani et al. also observed that utilizing an autologous bone graft
mixture, as opposed to titanium cages, can lead to a notable increase in fusion rates coupled with a lower
mortality rate. However, they noted that clinical outcomes may be adversely impacted by neurological
symptoms present upon admission, comorbidities, and advanced age [61].

Conclusions
This review highlights the crucial yet controversial role of BMD in the success of LIF surgery. The available
evidence consistently demonstrates that low BMD is a significant risk factor for fusion failure and is
associated with an increased risk of complications such as implant migration, implant subsidence, and
pseudoarthrosis. Osteoporotic or osteopenic individuals may necessitate additional interventions or
extended recovery periods, underscoring the imperative of BMD assessment before LIF surgery. While the
efficacy of bisphosphonate therapy remains uncertain for osteoporotic patients undergoing LIF, teriparatide
emerges as a preferable pharmacological option. Moreover, the synergistic administration of teriparatide
and denosumab holds promise for further augmenting spinal fusion outcomes. The advent of BMD-specific
interbody cages presents a potential avenue for enhancing fusion success in spinal surgery, albeit warranting
further investigation for comprehensive clinical integration. 
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