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ABSTRACT

Morley’s categoricity theorem stands as a cornerstone in model theory, with many experts
considering it the beginning of modern model theory. A complete theory T in a countable
language is κ-categorical if it has a unique (up to isomorphism) model of cardinality κ.
Morley, with his PhD thesis ”Categoricity in Power”, published in 1962, positively answered
the conjecture of Łoś stating that if T is κ-categorical for some uncountable κ, then it is κ-
categorical for any uncountable κ. This theorem is now known as the categoricity theorem.
The ideas used to prove it now play a central role in model theory and still shape the
direction of the field. We will follow a recent proof given by Lachlan and Baldwin, which
presents many ideas and definitions that are still at the forefront of research, the way it is
presented in ” Model Theory: An Introduction” by David Marker.

SUBJECT AREA: Model Theory

KEYWORDS: Uncountably Categorical Theory, Algebraic Closure, Type





ΠΕΡΙΛΗΨΗ

Το θεώρημα κατηγορικότητας του Morley αποτελεί ακρογωνιαίο λίθο στη θεωρία μοντέ-
λων, με πολλούς ειδικούς να το θεωρούν την αρχή της σύγχρονης θεωρίας μοντέλων.
Μια πλήρης θεωρία T σε μια αριθμήσιμη γλώσσα είναι κ-κατηγορική εάν έχει ένα μοναδι-
κό (προς ισομορφισμό) μοντέλο πληθικότητας κ. Ο Morley, με τη διδακτορική του διατριβή
”Categoricity in Power”, που δημοσιεύθηκε το 1962, απάντησε θετικά στην εικασία του Łoś
η οποία δήλωνε ότι αν T είναι κ-κατηγορική για κάποιο μη αριθμήσιμο πληθάριθμο κ, τότε
είναι κ-κατηγορική για οποιαδήποτε μη αριθμήσιμο πληθάριθμο κ. Αυτό το θεώρημα είναι
πλέον γνωστό ως το θεώρημα κατηγορικότητας. Οι ιδέες που χρησιμοποιήθηκαν για να
το αποδείξουν παίζουν τώρα κεντρικό ρόλο στη θεωρία μοντέλων και εξακολουθούν να
καθορίζουν τον τομέα. Θα ακολουθήσουμε μια μεταγενέστερη απόδειξη που δόθηκε από
τους Lachlan και Baldwin, η οποία παρουσιάζει πολλές ιδέες και ορισμούς που εξακολου-
θούν να είναι στην αιχμή της έρευνας, όπως παρουσιάζεται στο βιβλίο ”Model Theory: An
Introduction” του David Marker.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Θεωρία Μοντέων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Υπεραριθμήσιμη Κατηγορική Θεωρία, Αλγεβρική Κλειστότητα, Πολυ-
τύπος
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Morley’s Categoricity Theorem

1. INTRODUCTION

In order to state what Morley’s theorem is about, we need to establish the basic notation
and tools we will use. The following is a short introduction to first-order logic, covering the
basics usually taught in an undergraduate course before we can jump into more advanced
terminology at the end of this chapter.

1.1 Language, Structures, Truth

Definition 1.1.1. A first-order language L is defined as the collection of:

• a set of function symbols F and positive integers nf for each f ∈ F ;

• a set of relation symbols R and positive integers nR for each R ∈ R;

• a set of constant symbols C. The following sets are common for all first-order lan-
guages.

• a set of the logical symbols =,−→,∧,∨,¬, ∀, ∃.

• a set of variables V = {v1, . . . , vn . . .}

Notes:

1. The natural numbers nf and nR denote the arity of the functional or relational symbol.

2. Instead of using the variables names in V, we use sometimes use x, y, z for conve-
nience.

Definition 1.1.2. An L-structure M defined as the collection of:

i) a nonempty setM called the universe of M;

plus the interpretation of the non-logical symbols of L over M:

ii) a function fM :Mnf →M for each f ∈ F ;

iii) a set RM ⊆MnR for each R ∈ R;

iv) an element cM ∈M for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of the symbols f,R, and c in M, re-
spectively. The interpretation of logical symbols =,−→,∧,∨,¬, ∀, ∃ does not vary in differ-
ent structures, in fact they have the same meaning we are all used to across all structures
described in a first-order language. Lastly the interpretation of variables is a function from

15 F. Apostolou



Morley’s Categoricity Theorem

V →M but it is not fixed for a structure and we will always declare how we interpret a set
of variables.

We use combinations of the symbols of L to form terms. Their interpretation in any struc-
ture can be informally described as names for some elements ofM , in the case when no
variable is used in the combination, or when variables are used, as names of functions
fromMm →M for m ∈ N.

Definition 1.1.3. The set of L-terms is the smallest set T such that

i) c ∈ T for each constant symbol c ∈ C,

ii) each variable symbol vi ∈ T for i = 1, 2, . . .,

iii) if t1, . . . , tnf
∈ T and f ∈ F , then f(t1, . . . , tnf

) ∈ T .

Example 1.2. Let L = {+, ·, 0, 1} be the language of rings. In the structure of reals, one
can think of the term 1 + 1 as a name for the element 2, while v1 + v1 + v1 is a name for
the function x 7→ 3x.

Definition 1.2.1. We will now define a term given an interpretation of its variables, like
giving input to a function. Let t be a term, we will denote (vi1 , . . . , vim)the variables used
in t (note this might be empty), and a = (a1, . . . , am) ∈ M how we will interpret those
variables. Let s be a sub-term of t, we inductively define sM(a) as follows:

(i) If s is a constant symbol c, then sM(a) = cM.

(ii) If s is the variable vij , then sM(a) = aj.

(iii) If s is the term f(t1, . . . , tnf
), where f is a function symbol of L and t1, . . . , tnf

are
terms, then

sM(a) = fM(tM1 (a), . . . , tMnf
(a)).

Terms are a stepping stone to defining formulas and the notion of truth in a structure.

Definition 1.2.2. We say that ϕ is an atomic L-formula if ϕ is either

(i) t1 = t2, where t1 and t2 are terms, or

(ii) R(t1, . . . , tnR
), where R ∈ R and t1, . . . , tnR

are terms.

The set of L-formulas is the smallest set W containing the atomic formulas such that

(i) if ϕ ∈ W , then ¬ϕ ∈ W ,

(ii) if ϕ and ψ ∈ W , then (ϕ ∧ ψ) ∈ W and (ϕ ∨ ψ) ∈ W , and

(iii) if ϕ ∈ W , then (∃vi)(ϕ) and (∀vi)(ϕ) are in W.

F. Apostolou 16



Morley’s Categoricity Theorem

We define the scope of a quantifier (∀vi)(ϕ) as the all the variables vi found in ϕ. A variable
vi that appears in a formula ψ is bound if it is in the scope of a quantifier; otherwise, it is
considered free. A sentence is a formula that has only bounded variables.

Definition 1.2.3. Let ϕ be a formula with free variables from v = (vi1 , . . . , vim), and let
ā = (ai1 , . . . , aim) ∈Mm. We inductively define M |= ϕ(a) as follows:

(i) If ϕ is t1 = t2, then M |= ϕ(ā) if tM1 (ā) = tM2 (ā).

(ii) If ϕ is R(t1, . . . , tnR
), then M |= ϕ(ā) if (tM1 (ā), . . . , tMnR

(ā)) ∈ RM.

(iii) If ϕ is ¬ψ, then M |= ϕ(a) if M 6|= ψ(a).

(iv) If ϕ is (ψ ∧ θ), then M |= ϕ(ā) if M |= ψ(ā) and M |= θ(ā).

(v) If ϕ is (ψ ∨ θ), then M |= ϕ(a) if M |= ψ(a) or M |= θ(a).

(vi) If ϕ is ∃vjψ(v̄, vj), then M |= ϕ(ā) if there is b ∈M such that M |= ψ(a, b).

(vii) If ϕ is ∀vjψ(v, vj), then M |= ϕ(a) if M |= ψ(a, b) for all b ∈M .

Notice that if ϕ is a sentence M |= ϕ, no assignment of variables influences its truth in a
structure, so it’s either true or false. Let ϕ be a formula with free variables. We can view
the fact M |= ϕ(a) or M 6|= ϕ(a), as a property of a. Informally, we can say that if ϕ is
a sentence, it describes a property of a structure, a rule; if it has free variables, then it
describes a property of tuples ofMn.

We will use the notation ϕ(v1, . . . , vn) to denote the free variables occurring in ϕ. Also, will
might writeM |= ϕ(a) for a = (a1, . . . , am) wherem > n. In this case, we will end up using
the sub-tuple an = (a1, . . . , an). Also we will write ϕ(v1, . . . , vn) even if ϕ is a sentence,
since for any a ∈Mn, M |= ϕ(a) iff M |= ϕ.

1.3 Theories

Given L, we have a vast pool of structures to study. We usually want to consider only the
ones that follow specific rules, i.e., sentences.

Definition 1.3.1. Let L be a language. An L-theory T a set of L-sentences, the axioms.
We say that M is a model of T and write M |= T if M |= ϕ for all sentences ϕ ∈ T .

As in definition, 1.2.3 structures satisfy either ϕ(a) or ¬ϕ(a) for any ϕ and a. However, a
theory T can have both ϕ,¬ϕ ∈ T . Thus, T has no models that satisfy all its sentences
at the same time. We call a theory satisfiable (unsatisfiable) if it has at least a model (or
none).

Definition 1.3.2. Let T be an L-theory and ϕ an L-sentence. We say that ϕ is a logical
consequence of T and write T |= ϕ ifM |= ϕ wheneverM |= T , i.e., it is true for all models
of T .

17 F. Apostolou



Morley’s Categoricity Theorem

Definition 1.3.3. Let M be an L-structure. We define the the theory of M

Th(M) = {ϕ | ϕ is a sentence and M |= ϕ}.

Definition 1.3.4. An L-theory T is called complete if for any L-sentence ϕ either T |= ϕ
or T |= ¬ϕ.

By definition, a complete theory doesn’t have any contradictions. Notice, for M an L-
structure, the theory Th(M) is complete and satisfiable.

It is true that when a theory T is satisfiable, then any finite subset ∆ ⊂ T does not have a
contradiction, as any model of T is a model of∆. The converse is also true. This is known
as the Compactness theorem. We say T is finitely satisfiable if every finite subset ∆ ⊂ T
is satisfiable.

Theorem 1.3.5 (Compactness Theorem). T is satisfiable if and only if every finite subset
of T is satisfiable. Specifically, if T is a finitely satisfiable L-theory and κ is an infinite
cardinal with κ ≥ |L|, then there is a model of T of cardinality at most κ.

The importance of this theorem cannot be understated as almost exclusively every time
we want to know if a theory is satisfiable, we resort to it. Also, the proof of the theorem,
which the reader can find in [1], constructs a model for T of size at most κ. This is used
to create small models for a theory. Using the 1.3.5, we can also create arbitrarily large
models of T .

Theorem 1.3.6. Let T be an L-theory with infinite models. If κ is an infinite cardinal and
κ ≥ |L|, then there is a model of T of cardinality κ.

In the following section, we present a refinement of the 1.3.6.

1.4 Embeddings

Now that we have focused on models of an L-theory instead of all the L-structures. It is
time to introduce another crucial way to organize and group L-structures.

Definition 1.4.1. If M is an L-structure and ϕ(v1, . . . , vn) is an L-formula, we let ϕ(M) =
{x ∈Mn |M |= ϕ(x)}. We say thatX ⊆Mn is definable if and only if there is an L-formula
ϕ(v1, . . . , vn) that ϕ(M) = X.

Definition 1.4.2. Suppose that M and N are L-structures with universes M and N , re-
spectively. An L-embedding η : M → N is a one-to-one map η :M → N :

(i) η(fM(a1, . . . , anf
)) = fN (η(a1), . . . , η(anf

)) for all f ∈ F and a1, . . . , anf
∈M ;

(ii) (a1, . . . , amR
) ∈ RM if and only if (η(a1), . . . , η(amR

)) ∈ RN for all R ∈ R
and a1, . . . , amR

∈M ;

F. Apostolou 18



Morley’s Categoricity Theorem

(iii) η(cM) = cN for c ∈ C.

If M ⊆ N and the inclusion map1 is an L-embedding, we say that M is a substructure
of Nor N is an extension of M. We sometimes say M is a substructure of N without
M ⊆ N . We mean that under η : M → N as described above, η(M) is a substructure of
N .

The following theorem shows that not only the interpretation of L-symbols is retained in
N 2under η, but it also retains the interpretation of some weak formulas.

Theorem 1.4.3. Suppose that M is a substructure of N , a ∈ M , and ϕ(v) is a quantifier-
free formula. Then, M |= ϕ(a) iff N |= ϕ(a). In other words, the properties of a that are
quantifier-free formulas are preserved.

This result can be viewed from the perspective of the definable sets of the structures. Let
ϕ be a quantifier-free formula, then ϕ(M) = ϕ(N ) ∩M , that if there are new elements b
satisfying ϕ(b), then b ∈ N \M .

An L-embedding that is also onto is called an L-isomorphism; in other words, the two
structures are the same under the function η and consequently preserve all properties of
a ∈M .

Theorem 1.4.4. If η is an onto L-embedding then M |= ϕ(a1, . . . , an) if and only if N |=
ϕ(η(a1), . . . , η(an)) for all formulas ϕ, not only quantifier-free ones.

Definition 1.4.5. An embedding j :M → N between twoL-structures is called elementary
if for every L-formula φ(x1, . . . , xn) and any a1, . . . , an ∈M ,

M |= φ(a1, . . . , an) ⇐⇒ N |= φ(j(a1), . . . , j(an)).

In other words, j preserves all the properties of elements of M to N . We write M ≺ N
when the inclusion map is elementary and say that N is an elementary extension of M.
We sometimes say M ≺ N without M ⊆ N . We mean that under j : M → N as
described above, j(M) is an elementary substructure of N .

Notice that M and N have the same theory as sentences are L-formulas.

Corollary 1.4.6. Suppose that j : M → N is an isomorphism. Then j is elementary.
Also, M and N have the same theory.

Definition 1.4.7. Suppose that (I, <) is a linear order. Suppose thatMi is an L-structure
for i ∈ I. We say that (Mi : i ∈ I) is a chain of L-structures if Mi ⊆ Mj for i < j. If
Mi ≺ Mj for i < j, we call (Mi : i ∈ I) an elementary chain.

Theorem 1.4.8. Suppose that (I, <) is a linear order and (Mi : i ∈ I) is an elementary
chain. Then, M =

∪
i∈I Mi is an elementary extension of each Mi.

1the injection f : M → N defined by f(m) = m for all m ∈ M .
2RM = RN ∩M and fM = fN ∩Mnf+1

19 F. Apostolou
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1.5 Parameters

Definition 1.5.1. Suppose that M is an L-structure and A ⊆ M . Let LA = L ∪ {cα | a ∈
A}, we say that A is a set of parameters; that is, we deal with A as constants. Under
the interpretation of cα 7→ α M is an LA-structure. Let ThA(M) be the set of all LA-
sentences true in M. We also have new definable subsets under the parameters A. We
call X ⊆ Mn an A-definable set or definable over A if there is a formula ψ and b ∈ Am

such that X = {a : ψ(a, b)} defines X.

Note, if N |= ThA(M), the interpretation of cα must satisfy the same formulas ϕ(v) as
a ∈M . This generalizes to any tuple of parameters.

Definition 1.5.2. Suppose that M is an L-structure. We call ThM(M) the elementary
diagram of M, and we write Diagel(M), which is the following set in the language LM :

{ϕ(m1, . . . ,mn) : M |= ϕ(m1, . . . ,mn), ϕ an L-formula}.

We can see the elementary diagram Diagel(M) as the full description of the model M
because all the elements inM are now in the expanded language LM and so they can be
referenced in sentences.

Theorem 1.5.3. If N |= Diagel(M), M ≺ N .

Proof. Let j : M → N be j(m) = cNm , i.e., maps the interpretation of cm in M, which is m
to the interpretation of cm in N . Notice j is an embedding. If m1,m2 two distinct elements
of M , then cm1 6= cm2 ∈ Diagel(M) then j(m1) 6= j(m2). Using a similar argument, we
can show that j is a function. Assume that j is not elementary, then M |= ϕ(m) and
N |= ¬ϕ(j(m)) for m ∈ Mn and an L-formula ϕ. Let cm = (cm1 , . . . , cmn), then ϕ(cm) ∈
Diagel(M), so N |= ϕ(cm), a contradiction to the assumption.

In the following sections, when a ∈ M is a parameter we will use a as a constant symbol
instead of ca as we did above.

Theorem 1.5.4 (Tarski-Vaught Test). Suppose that M is a substructure of N . Then, M
is an elementary substructure of N if and only if, for any tuple of elements a ∈ Mn and
every ϕ(v, w) such that N |= ∃vϕ(v, a), then M |= ∃vϕ(v, a).

So, an easy way to check if an L-embedding is elementary is to check if all existential
properties of any tuple of elements are preserved in the substructure. In other words, the
substructure contains all the witnesses of existential formulas.

With enough symbols in the language, we can force all substructures of models of T to
contain the witnesses to existential formulas, whatever the size of the model.

F. Apostolou 20



Morley’s Categoricity Theorem

Definition 1.5.5. We say that an L-theory T has built-in Skolem functions if for all L-
formulas ϕ(v, w1, . . . , wn), there is a function symbol f such that

T |= ∀w ((∃v ϕ(v, w)) → ϕ(f(w), w)).

In other words, the language has enough function symbols to witness all existential state-
ments.

Theorem 1.5.6. Let T be an L-theory. There are L∗ ⊇ L and T ∗ ⊇ T an L∗-theory such
that T ∗ has built-in Skolem functions, we call T ∗ a Skolemization of T . The following
properties hold for T ∗ and L∗:

• If M |= T , then we can expand M to M∗ |= T ∗. The opposite is also true.

• |L∗| = |L|+ ℵ0.

• Let M be a substructure of N |= T ∗ thenM ≺ N .

Using 1.5.3, 1.3.6, and 1.5.4 1.5.6 we get the following theorems about elementary exten-
sions and elementary substructures.

Theorem 1.5.7 (Upward Löwenheim-Skolem ). LetM be an infinite L-structure and κ be
an infinite cardinal such that κ ≥ |M|+ |L|. Then, there is an L-structure N of cardinality
κ and an elementary embedding j : M → N .

Theorem 1.5.8 (Downward Löwenheim-Skolem). Suppose that M is an L-structure and
X ⊆ M . There is an elementary submodel N of M such that X ⊆ N and |N | ≤ |X| +
|L|+ ℵ0.

1.6 Types

Definition 1.6.1. From now on, assume thatL is a countable language and T is a complete
theory. LetM |= T and a set of parameters A ⊆M . Let p be a set of LA-formulas all in the
same variables v1, . . . , vn. We call p an n-type if p∪ThA(M) is satisfiable. What we mean
for the set ofLA formulas to be satisfiable is there isN |= ThA(M) and a ∈ Nn that satisfies
all ϕ ∈ p. We can also view p ∪ ThA(M) as a theory in an expanded language with new
constant symbols ci , 0 < i ≤ n, and the new theory being {ϕ(c) | for all ϕ ∈ p} ∪ ThA(M).

Definition 1.6.2. We say that p is a complete n-type if ϕ ∈ p or ¬ϕ ∈ p for all LA-formulas
ϕ with free variables from v1, . . . , vn, otherwise we call p incomplete.

We let SM
n (A) be the set of all complete n-types of the model M over the parameters A.

Each tuple of elements a ∈Mn has a complete type over parameters A denoted

tpM(a/A) = {ϕ(v1, . . . , vn) ∈ LA : M |= ϕ(a1, . . . , an)}.

If p is an n-type over A, we say that a ∈Mn realizes p if M |= ϕ(a) for all ϕ ∈ p. If p is not
realized in M, we say that M omits p.
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By definition, a set p of LA formulas is a type if there is a model of ThA(M) that is realized.
We can make this more specific so the model is an elementary extension of M.

Definition 1.6.3. We define [ϕ] = {p ∈ SM
n (A) | ϕ ∈ p}, which is all the types that contain

the formula ϕ.

Theorem 1.6.4. LetM be an L-structure, A ⊆M , and p an n-type over A. There is N an
elementary extension of M such that p is realized in N .

It is often hard to provide isomorphisms and elementary embeddings between structures;
partial elementary embeddings are used to express partial isomorphism between subsets
of the models. These are important as they can be expanded to full embeddings later.

Definition 1.6.5. If M and N are L-structures and B ⊆ M , we say that the one-to-one
f : B → N is a partial elementary map if

M |= ϕ(b) ⇔ N |= ϕ(f(b))

for all L-formulas ϕ and all finite sequences b̄ from B. Note that ϕ can be a sentence, so
M and N share the same theory.

There is a connection between theories with parameters and partial elementary embed-
dings.

Theorem 1.6.6. Let M and N be models of T .

1. If N |= ThA(M) for A ⊆M , there is a partial elementary map f : A→ N .

2. If there is partial elementary embedding between M and N , f : A → B where
A ⊆M and B ⊆ N , then N |= ThA(M) and M |= ThB(N ).

Proof.

1. We can take the interpretation of the set parameters A in N , in the language LA, as
the partial elementary map.

2. To prove N |= ThA(M) we can interpret the the parameters A as the elements B as
they are matched in f . This way an LA-sentence M |= ψ(a) iff N |= ψ(b) because
f is elementary.

This way, we can view A and B as isomorphic copies and we can identify them as just A.
The following corollary says that if two models have the same theory with parameters (if
any), they have the same set of types.

Corollary 1.6.7. Assume ThA(M) = ThA(N ). Then SM
n (A) = SN

n (A).
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All models of the same theory (with parameters or not) share the same fixed number of
types. The maximum number of types is 2|LA|, in the case without parameters 2ℵ0.

Types influence how many different models a theory can have for a given cardinality. We
can think of different models realizing different types or in different quantities (ℵ0,ℵ1, . . .
realizations for p).

The main focus of this exposition is to count the non-isomorphic models of cardinality κ
for specific theories.
Definition 1.6.8. A complete theory T in a countable language L is κ-categorical if it has
a unique (up to isomorphism) model of cardinality κ.
Theorem 1.6.9. Let |L| ≤ κ, then the maximum number of models of cardinality κ a theory
can have is 2κ.

Under normal conditions, we cannot use language to refer to an element with a specific
type as it would an infinite sentence with all ϕ ∈ p. However, if the type is isolated, we can
reference it with a single formula.
Definition 1.6.10. We say p ∈ SM

n (A) is isolated if there is an LA-formula ϕ(v) ∈ p such
that for all LA-formulas ψ(v)

ψ(v) ∈ p⇔ ThA(M) |= ϕ(v) → ψ(v).

In other words, the property ϕ determines all the other properties of p; no other type has
the property ϕ.
Lemma 1.6.11. Suppose that A ⊆ B ⊆ M |= T and every b̄ ∈ Bm realizes an isolated
type in SM

m (A). Suppose that ā ∈ Mn realizes an isolated type in SM
n (B). Then, ā realizes

an isolated type in SM
n (A).

We are ready to state the main theorem we are aiming for, which was proven by Morley.
Theorem 1.6.12. Let T be a complete theory in a countable language with infinite models
and κ ≥ ℵ1. T is κ-categorical iff T is λ-categorical for any λ ≥ ℵ1.

We will prove 1.6.12 through the characterization of κ-categorical theories given by Bald-
win and Lachlan[2]. We encourage the reader to see the original proof by Morley in [2].

We now state the Baldwin-Lachlan characterization, although we have not defined the two
properties, ω-stability and Vaughtian pairs.
Theorem 1.6.13. Let κ ≥ ℵ1 and T a complete theory in a countable L. T is κ-categorical
iff T has no Vaughtian pairs and is ω-stable.

Proof. This immediately implies Morley’s theorem, as the second part of the characteri-
zation does not depend on κ.

In the following sections, we will focus our attention on defining the prerequisites for 1.6.13
and proving both directions of the theorem. We start at the next chapter with ω-stability.
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1.7 Prime and Homogeneous Models, Stable Theories

Definition 1.7.1. We say that M |= T is a prime model of T if for all such that N |= T ,
M ≺ N holds.

The same definition can be adjusted with parameters.

Definition 1.7.2. Let M |= T and A ⊆ M ; we say M0 |= ThA(M) is prime over A if for
every N |= ThA(M), M0 ≺ N holds. Equivalently using 1.6.6, we have that M0 |= T is
prime over A ⊆ M0 if whenever N |= T and f : A → N is a partial elementary function,
there is an elementary f ∗ :M0 → N extending f .

To summarize the above definitions, a prime model of T over a set of parameters A can
be embedded in every model with a copy of A and the same theory, T .

Definition 1.7.3. Let M |= T be a first-order theory and A ⊆ M . We say that isolated
types are dense in SM

n (A) if for all LA-formulas ϕ exist an isolated type p ∈ SM
n (A) such

that p ∈ [ϕ].

Not all theories have prime models or prime models over parameters. The following T
theories, known as κ-stable, have a special connection with prime models.

Definition 1.7.4. Let T be a complete theory in a countable language, and let κ be an
infinite cardinal. We say that T is κ-stable if wheneverM |= T , A ⊆M , and |A| = κ, then
|SM
n (A)| = κ.

Intuitively, the number of parameters |A| dictates the number of types a theory would have
over them. Each parameter a ∈ A adds one unique type, isolated by the formula v = a, so
having |A| as parameters always yields at least |A| ≤ |SM

n (A)| complete types. So, stable
theories yield the least possible types for a |A| = κ. We traditionally use ω-stable instead
of ℵ0-stable theories. We give a case of a theory that is not ω-stable.

Example 1.8. Take (Q, <) to be the rationals with the ordering relation in the language
L = {<}, Th(Q) is not ω-stable. Take Q as the set of parameters. However |SQ

1 (Q)| = 2ℵ0

because for each Dedekind cut (L,U), there is a type {q < v | q ∈ L} ∪ {v < q | q ∈ U}
that expresses a real number.

Theorem 1.8.1. Let T be a complete theory in a countable language. If T is ω-stable, then
T is κ-stable for all infinite cardinals κ.

Proof. For the sake of contradiction, assume that T is ω-stable but not κ-stable for some
specific cardinal κ. Since T is not κ-stable there exists a modelM and A a set of param-
eters with |A| = κ such that |SM

n (A)| > κ for some n.

1. Notice there are κ LA-formulas. If every formula ϕ is in at most κ many types, then
there are |SM

n (A)| = κ. Thus, there is a LA-formula ϕ∅, which is in more than κmany
types. Recall [ϕ] = {p ∈ SM

n (A) | ϕ ∈ p}. So |[ϕ∅]| > κ
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2. Assume we have any LA formula |[ϕ]| > κ. Assume for the sake of contradiction
there is no ψ formula that can divide [ϕ] into |[ϕ ∧ ψ]| > κ and |[ϕ ∧ ¬ψ]| > κ. So
always, one of the two sets is bigger than κ and the other less or equal to κ. Let
B0 = [ϕ] andBα+1 = Bα∩[ψα+1]with ψi belonging to a well-ordering of allLA formulas
such |[ϕ ∧ ψi]| > κ and let p = {ψi} denote that set. Notice that p is a complete set
of LA formulas because of our assumption. If |Bα| > κ then |Bα+1| > κ . If β ≤ κ
is a limit ordinal, then

∩
α<β Bα 6= ∅, because every finite subset of {ϕ, ψ1, . . . ψβ} is

satisfiable. Also, for β < κ, |Bβ| > κ otherwise |[ϕ]| ≤ κ,

[ϕ] =
∪
i<β

[ϕ ∧ ¬ψi] ∪ Bβ

3. So because Bκ is non-empty set of types, but all types in Bκ are complete, as noted
above so p is the only one. However this is a contradiction because

[ϕ] =
∪
ψi∈p

[ϕ ∧ ¬ψi] ∪ {p}

so the cardinality of |[ϕ]| = κ · κ + 1, a contradiction. So we have that any ϕ with
|[ϕ]| > κ can be divided by some ψ to |[ϕ ∩ ψ]| > κ and |[ϕ ∩ ¬ψ]| > κ.

4. We will build a binary tree of formulas (φσ : σ ∈ 2<ω) such that:

i) if σ ⊂ τ then φτ |= φσ;
ii) φσ,i |= ¬φσ,1−i;
iii) ‖φσ‖ > ℵ0.

We start by letting φ∅ be the formula we found on the first part, such that |[ϕ∅]| > κ.
Given φσ where [φσ]| > κ, by the third part we can find ψ such that |[φσ ∧ ψ]| > κ
and |[φσ ∧ ¬ψ]| > κ.
Let φσ,0 = φσ ∧ψ and φσ,1 = φσ ∧¬ψ. This is a complete binary tree. We now argue
that for each infinite branch f ∈ 2ω there is a countable type associated

pf ∈
∞∩
m=0

[
φf |m

]
,

where f |m is f restricted to the first m bits. We need to show pf is a type. We
know that for any m, [ϕf |m] 6= ∅, so by the compactness theorem we have that∩∞
m=0

[
φf |m

]
6= ∅. Notice that if f 6= g then pf 6= pg. Assume f and g split at the

n-step, i.e. for some ψ, ψ ∈ pf and ¬ψ ∈ pg . However the number of branches are
2ℵ0 so there are at least that many types using the parameters A, because in the tree
we used only countably many formulas each using finitely many parameters. So let
A0 ⊂ A be the parameters used by the formulas of the tree, we have |A0| = ℵ0 and
|Sn(A0)| = 2ℵ0, this is a contradiction to ω-stability.
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Lemma 1.8.2. Let T be a complete theory in a countable language. If T is ω-stable, then
for all M |= T and A ⊆M , the isolated types in SM

n (A) are dense.

Proof. If the isolated types in SM
n (A) are not dense, this means that there exists an LA-

formula ϕ such that [ϕ] contains no isolated types. Notice that if |[ϕ]| ∈ N \ {0}, then all
p ∈ [ϕ] are isolated, so it has to be infinite. Because of that we can find a LA-formula ψ
such that |[ϕ ∧ ψ]| ≥ ℵ0 and |[ϕ ∧ ¬ψ]| ≥ ℵ0; each one has no isolated types, so we can
apply again the same idea. This allows us to build a complete binary tree. Having that
tree we can complete the proof as the one in 1.8.1.

Theorem 1.8.3. Suppose that T is ω-stable. Let M |= T and A ⊆M . There is M0 ≺ M,
a prime model overA. Moreover, we can chooseM0 so that every element ofM0 realizes
an isolated type over A.

Proof. To build the elementary submodel of M, which is prime over A, we need to start
investigating the substructures of M that contain A. We will find an ordinal δ and build a
sequence of sets (Aα : α < δ) where Aα ⊆M and

i) A0 = A;

ii) if α is a limit ordinal, then Aα =
∪
β<αAβ;

iii) if no element of M \ Aα realizes an isolated type over Aα, then let δ = α this is
our universe, which are elements realizing isolated types. Otherwise, include any
aα realizing an isolated type over Aα, and let Aα+1 = Aα ∪ {aα}. Let M0 be the
substructure of M with universe Aδ.

We will now prove that the substructure M0 ≺ M. To prove this, we use the 1.5.4.
Suppose that M |= φ(v, a), where a ∈ Aδ. By 1.8.2, the isolated types in SM(Aδ) are
dense. Thus, if there is b ∈ M such that M |= φ(b, a) there is a c ∈ M with M |= ϕ(c, a)
and tpM(c/Aδ) is isolated. By choice of δ, c ∈ Aδ. Thus, M0 ≺ M. Now, we need to
show that M0 is a prime model over A. Suppose that N |= T and f : A → N is partial
elementary. We will construct a sequence of functions f = f0 ⊆ · · · ⊆ fα ⊆ · · · ⊆ fδ,
where fα : Aα → N is elementary, and ultimately extending the domain of f to Aδ.

• If α is a limit ordinal, we let fα =
∪
β<α fβ.

• Assume that fα : Aα → N partial elementary, we know because of the way we con-
structed M0 we know that there exists a formula φ(v, a), that isolates tpM0(aα/Aα).
Because fα is partial elementary, we have thatφ(v, fα(a)) isolates tpN (fα(aα)/fα(Aα)).
Also, because fα is partial elementary, there is b ∈ N with N |= φ(b, fα(a)). Thus,
fα+1 = fα ∪ {(aα, b)} is elementary.

So the last union will be fδ : M0 → N and elementary, proving that M0 is prime over A.
We have that every a ∈ M0 realizes an isolated type over M = Aδ. However, we want

F. Apostolou 26



Morley’s Categoricity Theorem

every element a ∈ M to be isolated in A. Here, an argument of just removing too many
parameters does not work because we can actually remove parameters that define the
isolating formula. We can prove that using ordinal induction and 1.6.11.

The last property we will explore in this section is homogeneity, which is a model’s property
to extend local similarities.

Definition 1.8.4. Let κ be an infinite cardinal. We say that M |= T is κ-homogeneous if
whenever A ⊂ M with |A| < κ, f : A → M is a partial elementary map, and a ∈ M , there
is f ∗ ⊇ f such that f ∗ : A∪ {a} →M is partial elementary. We sayM is homogeneous if
it is |M |-homogeneous.

Note that |A ∪ {a}| < κ still, so we can repeat the process using ordinals until we get
f ∗ : B → M , where |B| = κ and cannot be extended. If M is homogeneous, then with
the ordering ofM , we have B =M .

The next theorem will play an important role by having an easy, sufficient condition for
countable models to be isomorphic. Here, homogeneity is a key property in constructing
the isomorphism by using a method called back-and-forth.

Theorem 1.8.5. Let T be a complete theory in a countable language. Suppose that M
and N are countable homogeneous models of T and M, and N realize the same types
in Sn(T ) for n ≥ 1. Then M ∼= N .

Proof. To construct an isomorphism f : M → N , we define a sequence of partial elemen-
tary maps f0 ⊂ f1 ⊂ · · ·, each with a finite domain each strictly larger than the previous.
A chain of finite subsets, the domains, and ranges of those functions, does not guarantee
that the limit of this sequence f =

∪∞
i=0 fi will be a bijection, so we must carefully con-

struct this chain to include all elements of M and N . Let a0, a1, . . . be an enumeration
of elements in M, and b0, b1, . . . be an enumeration of elements in N . We will ensure
that ai belongs to dom(f2i+1) and bi belongs to img(f2i+2). In this way, we establish that
dom(f) = M and that f is a surjective elementary map from M onto N .

• s = 0: Let f0 = ∅. Because T is complete f0 is partial elementary.

We inductively assume that fs is partial elementary. Let a be the domain of fs and b = fs(a).

• If s + 1 = 2i + 1: We want to extend the domain of fs+1 by adding ai to it. If we
have already add that element we proceed with no change to our function. Let p =
tpM(a, ai). BecauseM andN realize the same types, we can find c, d ∈ N such that
tpN (c, d) = p. Also tpN (c) = tpM(a), as any ϕ(v) ∈ tpM(a, ai) is in tpM(c, d). Because
fs is partial elementary, we have that tpM(a) = tpN (b). Thus, tpN (c) = tpN (b).
Because N is homogeneous, there is e ∈ N such that tpN (b, e) = tpN (c, d) = p.
Thus, fs+1 = fs ∪ {(ai, e)} is partial elementary with ai in the domain.
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• If s + 1 = 2i + 2: We want to extend the range of the function by adding bi to it.
Because fs is elementary, we can apply everything we did in the previous step for
the partial elementary function f−1

s .
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2. VAUGHTIAN PAIRS

In this chapter, we will prove the forward direction of Baldwin’s and Lahlan’s characteriza-
tion of unaccountably categorical theories. Specifically, the following theorem:

Theorem 2.0.1. Let T be a complete theory in a countable language with infinite models.
If κ ≥ ℵ1 and T is κ-categorical, then T has no Vaughtian pairs and is ω-stable.

2.1 Vaught’s Two Cardinal Theorem

We begin by finding an obstruction for categoricity for a specific uncountable cardinality κ.
If such obstruction is found, we show how it is encountered in every uncountable cardinality
under the condition of ω-stability.

We remind φ(M) = {x̄ ∈Mn |M |= φ(x̄)}.

Definition 2.1.1. Let κ > λ ≥ ℵ0. We say that an L-theory and T has a (κ, λ)-model if
there is M |= T and ϕ(v̄) an L-formula such that |M | = κ and |ϕ(M)| = λ.

The following theorem states that a (κ, λ)-model obstructs κ-categoricity.

Lemma 2.1.2. Let κ > ℵ0. If T is κ-categorical, then it has no (κ, λ)-model.

Proof. For the sake of contradiction, we assume there is a (κ, λ)-model N . Using N and
the compactness theorem, we get a model M such that |M| = κ and every definable set
also has cardinality κ. Thus, M and N are not isomorphic, a contradiction.

To demonstrate how we buildM: We expand L by adding constants {cϕi | i < κ} for each
formula ϕ that has infinite realizations in N . We construct a new theory T ∗ = Diagel(N ) ∪∪
ϕ{ϕ(ci)ϕ | i < κ}∪ {cϕi 6= cψj | i 6= j or ϕ 6= ψ}, which is satisfiable using the compactness

theorem, as each finite∆ ⊂ T ∗ hasN as a model by interpreting the constants as different
elements of N with the property ϕ(v). Let M be any model of this theory of cardinality κ.
Any ∅-definable set of M has κ realizations.

Definition 2.1.3. We say that (N , M) is a Vaughtian pair of models of T if M ≺ N ,
M 6= N , and there is an LM -formula φ such that φ(M) is infinite and φ(N ) = φ(M).

Vaughtian pairs are an obstruction to ℵ1-categoricity. The following chain of theorems
demonstrates that if T has a (κ, λ)-model for any κ > ℵ0, then it has a Vaughtian pair
of models, a countable Vaughtian pair, a countable Vaughtian pair of isomorphic models,
and finally a (ℵ1,ℵ0)-model obstructing ℵ1-categoricity.

Lemma 2.1.4. If T has a (κ, λ)-model with κ > λ ≥ ℵ0, then there exists a Vaughtian pair
(N , M) of models of T .
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Proof. Let N be a (κ, λ)-model of T and X = Φ(N ) be the definable set of cardinality λ.
By the downward Löwenheim-Skolem theorem, we can take an elementary submodelM
of N that contains X and |M| ≤ |X|+ |L|+ ℵ0 < |N |, so it is a proper submodel.

Now that we know that T has a Vaughtian pair, we want to make a theory T ∗ to capture
exactly all the Vaughtian pairs of T . To do that, we need to alter our language so every
model of T ∗ is actually a pair of models of T with the second being a proper subset of the
first.

Definition 2.1.5. Let L∗ = L ∪ {U}, where U is a unary predicate symbol. If M ⊆ N are
L-structures, we write an L∗-structure (N ,M) to designate that U is interpreted asM.

We need some work to ensureM is an elementary submodel ofN . We already know that
if an element in N has a quantifier-free property, it is preserved under substructure. From
the Tarksi-Vaught theorem, we know that all existential properties are preserved under a
substructure iff it is an elementary substructure. We want a way to express in our language
that a property holds for M.

If ϕ(v1, . . . , vn) is an L-formula, we define ϕU(v) in the new L∗, the restriction of ϕ to U ,
inductively as follows:

1. If ϕ is atomic, then ϕU is U(v1) ∧ . . . ∧ U(vn) ∧ ϕ;

2. If ϕ is ¬ψ, then ϕU is ¬ψU ;

3. If ϕ is ψ ∧ θ, then ϕU is ψU ∧ θU ;

4. If ϕ is ∃v ψ, then ϕU is ∃v U(v) ∧ ψU .

Notice that by 4, if ϕU is true in N , then a witness for ϕ must exist inside M , the interpre-
tation of U .

Claim 2.1.6. The properties of elements of the submodelM can be expressed inside N ,
i.e., N |=”M |= ϕ(a)”. If (N ,M) is an L∗-structure and a ∈Mk, thenM |= ϕ(a) if and only
if (N ,M) |= ϕU(a).

With our extended language, we want to capture exactly those pairs of models that U is
interpreted as a substructure of N , specifically an elementary one. Thus, we need to add
some axioms.

Lemma 2.1.7. If (N , M) is a Vaughtian pair for T , then there is a countable Vaughtian
pair, i.e. a pair (N0, M0) where N0 is countable.

Proof. The following axioms together with T ensure that its models are Vaughtian pairs of
T. Let ϕ be a fixed LM formula such that ϕ(M) = ϕ(N ) with parameters m0 ∈ M.

1. m0 are new constants.
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2. UN is a substructure of N . For each function symbol f ∈ L, ∀v U(v) → U(f(v)).

3. UN is an elementary substructure of N . ∀v
((∧k

i=1 U(vi) ∧ ψ(v)
)
→ ψU(v)

)
, for any

L-formula ψ. The important detail here to distinguish the antecedent and conse-
quent is that both state that U(v), but the second one states that the witnesses of its
existential properties are in U as well.

4. ϕ(N ) is an infinite set. So we add each k the sentences,

∃v1 . . . ∃vk

(∧
i<j

vi 6= vj ∧
k∧
i=1

ϕ(vi)

)
.

5. ϕ(N ) is a proper subset of N . ∀v(ϕ(v) →
∧
U(vi)) , ∃x¬U(x).

This new theory is satisfiable by (N ,M) and the language L∗ is countable, so by the
downward Löwenheim-Skolem, there is a countable elementary submodel (N0,M0) that
contains m0. The two models N0, M0 form a Vaughtian pair because of the axioms re-
garding ϕ.

Lemma 2.1.8. Suppose that M0 ≺ N0 are countable models of T . Now consider the
model (N0,M0) in L ∪ {U} defined in 2.1.5, we can find an elementary extension of it
(N0,M0) ≺ (N ,M) such that N and M are countable, homogeneous, and realize the
same types in Sn(T ). By 1.8.5,M ∼= N . Specifically, if (N0,M0) is a Vaughtian pair, so is
(N ,M).

Proof. We start with the countable pair (N0,M0) and build an elementary chain of count-
able models working toward obtaining the homogeneous property and realizing the same
types. Our chain consists of 3 sub-steps:

Claim 2.1.9. If ā ∈ M0 and p ∈ Sn(ā) is realized in N0, then there is (N0,M0) ≺ (N ′,M′)
such that p is realized in M′.

Proof. Let Γ(v) = {ϕU(v, a) : ϕ(v, a) ∈ p}∪Diagel(N0,M0) be the type ”I am like p, but my-
self and my properties are contained in U ” in the extended language L∗. Any finite subset
of Γ(v) is satisfiable by (N0,M0). Let ϕ1, . . . , ϕm ∈ p, N0 |= ∃v

∧
ϕi(v, a) because it real-

izes the type. As a resultM0 |= ∃v
∧
ϕi(v, a) since it is an elementary submodel. We can

express that sentence in the extended language L∗ satisfied by (N0,M0) |= ∃v
∧
ϕUi (v, a).

Let (N ′,M′) be a countable elementary extension realizing Γ by the Löwenheim-Skolem
Theorem.

Claim 2.1.10. If b̄ ∈ N0 and p ∈ Sn(b̄), then there is (N0,M0) ≺ (N ′,M′) such that p is
realized in N ′.

1. By iterating 2.1.9 for all p ∈ Sn(T ) that are realized in N3i, we get a new pair such
that M3i+1 realizes the same types as N3i; (ω-steps)
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2. We enumerate all (a, b, c) ∈ M3i+1 with the property tpM3i+1(a) = tpM3i+1(b). For
any such tuple, we can find an elementary extension with d ∈ M3i+2 such that
tpM3i+2(a, c) = tpM3i+2(b, d). Because we want to realize the type Γ(v) = {ϕ(b, v) :
ϕ(z, v) ∈ tpM3i+1(a, c)} can do this using 2.1.9 as Γ(v) ∈ S1(ā); (ω-steps)

3. We enumerate all (a, b, c) ∈ N3i+2 with the property tpN3i+2(a) = tpN3i+2(b), and fol-
lowing the same method, we can find an elementary extension with a d ∈ N3i+3 by
2.1.10, such that tpN3i+3(a, c) = tpN3i+3(b, d) . (ω-steps)

Let (N ,M) =
∪
i<ω(Ni,Mi). Then, (N ,M) is a countable Vaughtian pair. By i),M andN

realize the same types. By ii) and iii),M and N are homogeneous and hence isomorphic
by 1.8.5. A note here is that we cannot skip step two or three because homogeneity for
M does not imply homogeneity for N and vice versa.

We know that a theory like T ∗ has models of any cardinality, so for any cardinal κ there
is (N ,M) with |N | = κ. However, |M| could be any cardinality. We are interested in
creating a Vaughtian pair of models with |N | = ℵ1 and |M | = ℵ0 so that we can have a
(ℵ1,ℵ0) model for T .

Theorem 2.1.11. If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then T has an (ℵ1,ℵ0)-model.

Proof. Using the previous lemmas, we have a countable Vaughtian pair of isomorphic
models (N ,M) as in 2.1.8 and ϕ be the formula as in the definition of Vaughtian pair. We
want to build an elementary chain (Nα : α < ω1) such that Nα+1 \Nα contains no elements
satisfying ϕ. This is true as (Nα+1,Nα) has the same theory as (N ,M), so because
∀v(ϕ(v) →

∧
U(vi)) is an axiom and Nα’s are elementary extensions of M. Hence, the

only elements that have the ϕ property are inside M. Lastly having Nα
∼= N ∼= M for

every α helps us extend to Nα+1.

Let N0 = N ; we want two properties for our chain of models.

1. Nα
∼= N

2. (Nα+1,Nα) ∼= (N ,M)

• For α a limit ordinal, letNα =
∪
β<αNβ. BecauseNα is a union of models isomorphic

to N , every Nα is homogeneous and realizes the same types as N . Notice that Nα

is homogeneous because if you take any partial elementary function f : A→ B with
A,B ⊂ Nα and finite A,B, then for any a ∈ Nα, there is β < α such that A,B ⊂ Nβ

and a ∈ Nβ. So using the homogeneity ofNβ we can extend the function. The same
argument can be used for the types in Sn(T ), so Nα is countable and homogeneous
realizing the same types as N , so Nα

∼= N by 1.8.5.
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• For a successor ordinal, given Nα
∼= N ∼= M we have an isomorphism f : M → Nα

we can extend Nα to Nα+1 as we would extend M to N . The extension of f is an
isomorphism (N ,M) ∼= (Nα+1,Nα) in L∗, so we have Nα+1

∼= N in the L.

Because for every β, Nβ+1 \Nβ has no elements with the property ϕ, Nβ doesn’t have any
other such elements than the elements of M.

Finally, the limit of the chainN ∗ =
∪
α<ω1

Nα has cardinality |N∗| = ℵ1 the only realizations
of ϕ are inM , which is countable, so N ∗ is an (ℵ1,ℵ0)-model.

Corollary 2.1.12. If T is ℵ1-categorical, then T has no Vaughtian pairs and hence no (κ, λ)
models for κ > λ ≥ ℵ0.

The first chain of theorems showed us a ”descent” from a (κ, λ) to a (ℵ1,ℵ0)-model. How-
ever, if we add the conditions of ω-stability, then we can increase ℵ1 to any κ > ℵ1, ob-
structing all of the uncountable categoricity with (κ,ℵ0)-models.

2.2 Omitting Types on ω-stable Theories

The following Lemma describes a model extension that has the same omitted types.

Lemma 2.2.1. Suppose T is ω-stable, M |= T , and |M | ≥ ℵ1. There is a proper elemen-
tary extension N of M such that if Γ(w̄) is a countable type over M realized in N , then
Γ(w̄) is realized in M. By the contrapositive, if Γ(w̄) is omitted in M, then its is omitted in
N .

Proof. 1. There is an LM -formula ϕ(v) such that |[ϕ(v)]| ≥ ℵ1 and for all ψ(v) ∈ LM
either |[ϕ(v) ∧ ψ(v)]| ≤ ℵ0 or |[ϕ(v) ∧ ¬ψ(v)]| ≤ ℵ0. Suppose not. Then, for each
LM -formula ϕ(v) with [ϕ(v)] being uncountable, we can find a formula ψ(v) such that
[ϕ(v) ∧ ψ(v)] and [ϕ(v) ∧ ¬ψ(v)] are both uncountable. Using this fact repeatedly,
we can build an infinite countable tree of formulas (ϕσ : σ ∈ 2<ω) such that for all
σ ∈ 2<ω :

• |[ϕσ] | ≥ ℵ1;
• [ϕσ,0] ∩ [ϕσ,1] = ∅.

were each branch is a unique countable type, and since we used only countable
formulas, each having only finitely many elements of M as parameters, we have a
countable A ⊂ M . However |SM1 (A)| = 2ℵ0 since we built a complete infinite binary
tree, contradicting ω-stability.

2. With ϕ as above, we consider the type p = {ψ(v) : ψ an LM -formula and |[ϕ(v) ∧
ψ(v)]| ≥ ℵ1} that is the type that its properties have uncountable many realizations
in conjunction with ϕ.
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• This is a type because it is finitely satisfiable. Take ψ1, . . . , ψm ∈ p then M |=∧m
i=1 ψi(v), because only countable elements inside [ϕ] lack a property ψi, so

|[ϕ(v) ∧
∨
¬ψi(v)]| ≤ ℵ0. Thus γ(v) = ϕ(v) ∧

∧m
i=1 ψi(v) must have uncountable

many elements, being the complement of
∨
¬ψi(v) inside [ϕ].

• It is also a complete type. Take any ψ 6∈ p then |[ϕ(v) ∧ ψ(v)]| ≤ ℵ0 so [ϕ(v) ∧
¬ψ(v)]| ≥ ℵ1 and ¬ψ ∈ p, assuming otherwise we get that [ϕ] has countable
realizations.

3. Let M′ be an elementary extension of M containing c, a realization of p. By 1.8.3,
there is N ≺ M′ prime overM ∪{c} such that every a ∈ N realizes an isolated type
overM ∪ {c}.

4. Let Γ(v) be any countable type over M realized by b ∈ N ; this is important as
these formulas can be defined in M. The type Γ(v) is not complete as there are
uncountably many formulas with parameters from M , so Γ(v) ⊂ tpN (b/M ∪ {c}).
Let LM formula θ(w, c) be the one that isolates tpN (b/M ∪ {c}). Notice the following
LM∪{c}sentences hold:

• N |= ∃wθ(w, c)
• N |= ∀w(θ(w, c) → γ(w)), for all γ(w) ∈ Γ.

these can be viewed as properties of c. Let∆ = {∃wθ(w, v)}∪{∀w(θ(w, v) → γ(w)) :
γ ∈ Γ} which is a countable subset of p. We hope to find a realization of ∆ inM as
this will force Γ(v) to be realized.

5. Let δ0(v), δ1(v) . . . enumerate ∆ ⊂ p, each has only countable non-realizations in ϕ
i.e. |[ϕ ∧ ¬δi]| ≤ ℵ0. The set

∪
i<ω[ϕ ∧ ¬δi] is a countable union of countable sets

and so its complement under [ϕ] must be uncountable. This implies that there exist
many realizations for ∆ in M.

Theorem 2.2.2. Suppose that T is ω-stable and there is an (ℵ1,ℵ0)-model of T . If κ > ℵ1,
then there is a (κ,ℵ0)-model of T.

Proof. Let M |= T with |M | ≥ ℵ1 such that |ϕ(M)| = ℵ0 and let M ≺ N be as in 2.2.1.
The type Γ(v) = {ϕ(v)} ∪ {v 6= m : m ∈ M and M |= ϕ(m)} is a countable type omitted
in M and hence in N . So no elements are added in the extension, ϕ(N ) = ϕ(M). We
can also find such an extension forN since the previous lemma applies to all uncountable
cardinalities. We build an elementary chain (Mα : α < κ) such that M0 = M, Mα+1 6=
Mα and for all α, ϕ(Mα) = ϕ(M0). If N =

∪
α<κMα, then N is a (κ,ℵ0)-model of T .

2.3 Sequences of Indiscernibles and Skolem Hull

We have proved that if T is κ-categorical for some κ ≥ ℵ1 and ω-stable, then it has no
Vaughtian pair. In the following part, we will prove that every such T is ω-stable. To prove
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this, we will focus on tuples of elements indistinguishable from each other, i.e., any such
tuple satisfies the same formulas.

Definition 2.3.1. Let (I, <) be an ordered set, and let (xi : i ∈ I) be a sequence of distinct
elements of M. We say that X = (xi : i ∈ I) is a sequence of order indiscernibles if
whenever i1 < i2 < . . . < im and j1 < . . . < jm are two increasing sequences from I, then
M |= ϕ(xi1 , . . . , xim) ↔ ϕ(xj1 , . . . , xjm). We frequently identify X and I.

An important note is that the order (I, <) is not necessarily defined inside a model by a
formula ϕ.

Theorem 2.3.2. Let T be a theory with infinite models. For every infinite linear order (I, <),
there exists a model M |= T such that it contains an infinite set of order indiscernibles
(xi : i ∈ I).

Proof. 1. We expand our vocabulary by adding constants corresponding to the ele-
ments of the order L′ = L∪{ci : i ∈ I}. We also increase our theory to Γ = T ∪{ci 6=
cj : i 6= j ∈ I} ∪ {ϕ(ci1 , . . . , cim) → ϕ(cj1 , . . . , cjm)}, for all L-formulas ϕ(v), where
i1 < · · · < im and j1 < · · · < jm are increasing sequences from I. Notice that in the
last set of axioms, the inverse implication is also included as an axiom; this ensures
the indiscernibility between every ordered tuple of size m.

2. If we find a model of Γ, the interpretations of {ci : i ∈ I} are the order indiscernibles
we want. Let ∆ ⊂ Γ be a finite set. Let I0 be the finite subset of I such that if ci
occurs in ∆, then i ∈ I0 and {ϕi| i = 1, 2, . . . ,m} be all the formulas appearing in a
L′-sentence, ϕi(ci1 , . . . , cim) → ϕi(cj1 , . . . , cjm) ∈ ∆. We take the∆′ ⊃ ∆ to include all
sentences that ensure indiscernibility for all tuples of constants ci, i ∈ I0 with respect
to {ϕi| i = 1, 2, . . . ,m} Finally, take v1, . . . , vn as the free variables in all ϕi formulas,
any model of ∆′ is a model of ∆.

3. To find a model of ∆′ we take a model M |= T and a < linear order of its ele-
ments. In ∆′, we guarantee that {ci : i ∈ I0} are satisfying the same formulas
from {ϕi| i = 1, 2, . . . ,m}, but we haven’t specified which. We will define a par-
tition F : [M ]n → P({1, . . . ,m}) that represents all the possible satisfying formu-
las an ordered tuple can have. If A = {a1, . . . , an} where a1 < . . . < an, then
F (A) = {i : M |= ϕi(a1, . . . , an)}. Because F partitions [M ]n into at most 2m sets,
we can find an infinite X ⊆ M homogeneous for F , using Ramsey’s theorem. Let
η ⊆ {1, . . . ,m} such that F (A) = η for A ∈ [X]n. So X is an infinite set indiscernible
to {ϕi| i = 1, 2, . . . ,m} for the order <. From this set, we can find interpretations for
ci, i ∈ I0 that satisfy ∆′ and hence ∆. The fact that X is infinite makes this proof
work for every finite I0.

Definition 2.3.3. In a sequence of order indiscernibles X = (xi : i ∈ I) in M, every
ordered n-tuple has the same complete n-type. The set of all those n-types we call type
of the indiscernibles X and write as tp(X).
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Theorem 2.3.4. Let T be an L-theory. Suppose that X = (xi : i ∈ I) is an infinite
sequence of order indiscernibles inM |= T . If (J,<) is any infinite ordered set, we can find
N |= T containing a sequence of order indiscernibles Y = (yj : j ∈ J) and tp(X) = tp(Y ).

Proof. We expand the vocabulary to L∗ adding constant symbols, cj for j ∈ J ; their in-
terpretation will establish the new sequence of order indiscernibles. We also expand our
theory as we did in the previous theorem, but this time we specify the formulas ordered
tuples agree on.

Γ = T ∪{ci 6= cj : i, j ∈ J, i 6= j}∪{ϕ(ci1 , . . . , cim) → ϕ(cj1 , . . . , cjm)}∪{ϕ(ci1 , . . . , cim) : i1 <
. . . < im ∈ J and ϕ ∈ tp(X)}.

We will use X as a witness for our ∆ finite sub-theories of Γ in a straightforward way.
Thus, Γ is satisfiable if N |= Γ then (yj : j ∈ J) is the desired sequence.

Definition 2.3.5. Let T ∗ be a theory with Skolem functions 1.5.6 and a subset A ⊆M with
M |= T ∗. We define H(A) or the Skolem hull of A to be the substructure generated from
A.

Theorem 2.3.6. Let L be countable, and T be an L-theory with infinite models. For all
κ ≥ ℵ0, there isM |= T with |M | = κ such that if A ⊆M , thenM realizes at most |A|+ℵ0

types in SM
n (A).

Proof. Wewill explore only the case of n = 1. We consider L∗ and T ∗ the Skolemization of
T. Take a modelN |= T ∗ with a sequence of order indiscernibles I of order type (κ,<) and
takeM to be the Skolem hull of I. Since L∗ has countable many functions and constants,
the substructure that arises has cardinality at most the cardinality of the finite subsets of
N , i.e. equal to κ. To prove this is the desired model, we take A ⊆ M to be the set of
parameters. Notice, however, that all the elements of M are terms generated from I,
so each a in A, there is a term ta and xa, a sequence from I such that a = ta(xa). Let
X = {x ∈ I : x occurs in some xa} be the subset of indiscernibles that generate the
parameters. |A| ≤ |X| ≤ |A|+ℵ0 since every a ∈ A yields xa which consists of finite many
elements. The main idea that follows is that we can reduce any property ϕ(v, a) ofm ∈M
with parameters from a ∈ A to a property ϕ′(v′) about an ordered tuple of indiscernibles.

For y1 < . . . < yn and z1 < . . . < zn tuples of order indiscernibles, we define y ∼X z as
follows: for each x ∈ X and each i ∈ {1, . . . , n}, yi < x iff zi < x and yi = x iff zi = x,
which translates as y, z are in the same positions relative to X.

Another element of our analysis is the symmetric formulas of ϕ(v1, . . . , vn). Let σ be a per-
mutation of the set {1, . . . , n}. We consider ϕσ to be the formula ϕwhere every appearance
of the free variable vi is substituted by vσ(i), i.e.,ϕσ(v1, . . . , vn) = ϕ(vσ(1), . . . , vσ(n)). The fol-
lowing holds for any σ:

M |= ϕ(a) iffM |= ϕσ(aσ(1), . . . , aσ(n))

Claim 2.3.7. Any elements generated by the same Skolem termm1 = t(y), m2 = t(z) ∈M
realize the same type in SM

1 (A) if y ∼X z.
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Let ψ(v, v1, . . . , vm) = ϕ(t(v), ta1(v1), . . . , tam(vm)) and let [y, xa1 , . . . , xam ]σ be the ordered
tuple of these elements with respect to < and σ the appropriate permutation.

M |= ϕ(t(y), a1, . . . , am) ⇔ M |= ϕ(t(y), ta1(xa1), . . . , tam(xam)) (1)
⇔ M |= ψ(y, xa1 , . . . , xam) (2)
⇔ M |= ψσ([y, xa1 , . . . , xam ]σ) (3)
⇔ M |= ψσ([z, xa1 , . . . , xam ]σ) (4)
⇔ M |= ψ(z, xa1 , . . . , xam) (5)
⇔ M |= ϕ(t(z), ta1(xa1), . . . , tam(xam)) (6)
⇔ M |= ϕ(t(z), a1, . . . , am). (7)

From (2) ⇔ (3), we use the observation above to order both tuples with the same per-
mutation since they have the same order with respect to X, and for (3) ⇔ (4), we used
indiscernibility.

Now∼X is an equivalence relationship on the elements ofMn as they are termsmade from
elements of I, so the maximum number of equivalence classes is, at most, the number of
the different placements of n elements relative to X.

We define an upper cut and a lower for y ∈ I with respect to X to be Uy = {x ∈ X | x > y}
and Ly = {x ∈ X | x < y} and we say y ∼X z iff Uy = Uz and Ly = Lz. There are a total of
2|X|+ 1 possible cuts including, y = x, x ∈ X, so for any y there are (2|X|+ 1)n ≤ |X| ≤
|A|+ ℵ0 different placements.

Theorem 2.3.8. Let T be a complete theory in a countable language with infinite models,
and let κ ≥ ℵ1. If T is κ-categorical, then T is ω-stable.

Proof. For the sake of contradiction, assume that T is not ω-stable, so there isM |= T and
subsetA ⊆M with |A| = ℵ0 and SM

n (A) > ℵ0. We use the Löwenheim-SkolemwithX = A
to get a countable elementary submodelM1 withA included. We know that only countably
many types are realized in M1. Using compactness, we can realize uncountably many
types of SM1

n (A) in an elementary extension N1 and |N1| = κ. To construct the second
model N2 with |N2| = κ, we use the 2.3.6. For each countable B ⊂ N2, N2 realizes only
countably many types. Let f : N1 → N2 an L-isomorphism due to κ-categoricity and
B = f(A) the image of A. Thus, we can compare the two models using the same set of
parameters. Let c ∈ N1 to realize a type SN1

n (A) not realized in N2. So c has a different
type than f(c) over A and f(A), i.e. N1 |= ϕ(c, a) and i.e. N2 6|= ϕ(f(c), f(a)) for some ϕ.
This means that f is not an isomorphism, and hence T is not κ-categorical.
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3. STRONGLY MINIMAL SETS

Moving on to the last part of our proof, it is important to take a look back. For the first part,
we relied heavily on indiscernibles to prove the first part to the Baldwin-Lachlan charac-
terization 1.6.13. To prove the converse, when our theory has no Vaughtian pairs and is
ω-stable, our methods will uncover hidden algebraic structure within every model. This
structure will be the point of reference for any model. For any two models, finding a partial
isomorphism between these algebraic structures yields an isomorphism between them.
Conveniently, these algebraic structures can only be distinguished by cardinal size.

Theorem 3.0.1. If T is ω-stable and has no Vaughtian pairs, then it is κ-categorical any
κ ≥ ℵ1.

3.1 Finding a Strongly Minimal Formula

Definition 3.1.1. If M is an L-structure and ϕ(v) is an LM -formula, we will let ϕ(M) de-
note the elements of M that satisfy ϕ. From now on, ”definable” means ”definable with
parameters” unless specified. Let D ⊆ Mn be a definable set with parameters. We are
concerned with two notions of minimality:

1. We say that D is minimal in M if, for any definable Y ⊆ D, either Y is finite or
D \Y is finite. If ϕ(v, a) is the formula that defines D, then we also say that ϕ(v, a) is
minimal. Also, any minimal formula inM is minimal in any elementary substructure
that shares the parameters of ϕ.

2. We say that D and ϕ are strongly minimal if ϕ is minimal in any elementary exten-
sion N of M.

Strongly minimal formulas are important because they appear in every model of such T .

Lemma 3.1.2. Let T be ω-stable and M |= T , then there is a minimal formula in M.

Proof. Suppose not, without loss of generality, we build a tree of formulas with one variable
(ϕσ : σ ∈ 2<ω) such that:

• if σ ⊂ τ , then ϕτ |= ϕσ;

• ϕσ,i |= ¬ϕσ,1−i;

• ϕσ(M) is infinite.

Let ϕ∅ be the starting formula v = v. Suppose we have a formula ϕσ such that ϕσ(M)
is infinite. Because ϕσ is not minimal, we can find a formula ψ such that divides ϕσ(M)
into two infinite sets. We do this iteratively until we get a complete binary tree where
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each branch defines a unique countable yet partial type in SM
1 (A) where A is the set of all

parameters in the formulas in the tree, which is countable. Here, we have a contradiction
as the cardinality of the branches is 2ℵ0 < |SM

1 (A)| is while |A| = ℵ0.

Following, we prove that if T has no Vaughtian pairs, any minimal formula is strongly min-
imal. This is because when we have Vaughan pairs, we can express ”there are infinitely
many realizations of ϕ(v, a) for any set of parameters.”
Lemma 3.1.3. Suppose that T is an L-theory with no Vaughtian pairs. Let M |= T , and
let ϕ(v1, . . . , vk, w1, . . . , wm) be a formula with parameters from M . There is a number n
such that for each a ∈M and |ϕ(M, a)| > n, then ϕ(M, a) is infinite.

Proof. For the sake of contradiction we have M |= T that does not have this property
for ϕ, so assume there is no such n ∈ N. This means that for each n, there is an in M
that |ϕ(M, an)| > n and not infinite, i.e., there is no maximum size for definable finite sets
ϕ(M, a) for all a ∈M .

We will use the L∗ = L ∪ {U} and T ∗ we used in 2.1.7. We can briefly describe T ∗ as
T in addition to axioms that say for any model A of T ∗ the interpretation UA is a proper
elementary substructure ofA. We use the notation (A,B) for these models to withA being
the model of T ∗ and B the interpretation of UA. Let N be an elementary extension of M,
(N ,M) is a model of T ∗. Let Γ(w) be the following set; we will prove it is a type in L∗.

1. U(w);

2. ∃v1 . . . vn(
∧
i ̸=j vi 6= vj ∧

∧
i≤n ϕ(vi, w)) for each n ∈ N;

3. ∀vϕ(v, w) → U(v);

For each finite subset ∆ ⊂ T ∗ ∪ Γ(w), we have that all sentences of T ∗ are satisfied by
(N ,M), and the finite subset of formulas from Γ(w), describes an element w with U(w)
and that all the solutions of ϕ(v, w) are in U and are at least k, for some k ∈ N. For every
such k ∈ N there is a ak ∈ M such that |ϕ(M, ak)| > k, so |ϕ((N ,M), ak)| > k, which
satisfy the first two properties of ∆ ⊂ Γ(w). For the last property, let b ∈ (N ,M) such that
ϕ(b, ak), then b ∈ M. If assumed otherwise then |ϕ((N ,M), ak)| > |ϕ(M, ak)| which is a
contradiction because M is an elementary substructure, thus (N ,M) |= ψ(ak) ⇔ M |=
ψ(ak). So ak ∈ (N ,M) witnesses∆. By compactness Γ(w) is a type, so it is realized in an
elementary extension of (N ,M) ≺ (N ′,M′). Let a ∈ (N ′,M′) be the element realizing
Γ(w), then ϕ((N ′,M′), a) ⊂ M′ ⊂ N ′. Because ϕ((N ′,M′), a) is infinite, we have that
(N ′,M′) is a Vaughtian pair for T .

Notice that the n in the previous lemmaworks for definable sets ϕ(v, b) for b later introduced
in some elementary extension because of the sentences ∀w|ϕ(v, w)| 6= k, k > n; We now
can express in one sentence whether a definable set is finite or not, rather than having an
infinite collection of sentences, more importantly strongly minimal can be expressed as a
sentence.
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Theorem 3.1.4. If T has no Vaughtian pairs, then any minimal formula is strongly minimal.

Proof. Let M |= T and the minimal a formula ϕ(v) over M , and denote D as the cor-
responding minimal set. Assume that it is not strongly minimal, which means in an el-
ementary extension N , there is a new definable set A such that A ∩ D and Ā ∩ D are
infinite. To this be the case, the A has to be with parameters form b ∈ N defined by
ψ(v, b). Due to 3.1.3 and because inM, ϕ is minimal, we get the following sentence in T :
M |= ∀w ( |ψ(M, w) ∩ ϕ(M)| ≤ n1 ∨ |¬ψ(M, w) ∩ ϕ(M)| ≤ n2) ⇒
N |= ∀w ( |ψ(N , w) ∩ ϕ(N )| ≤ n1 ∨ |¬ψ(N , w) ∩ ϕ(N )| ≤ n2). This is a contradiction be-
cause b ∈ N and

(
|ψ(N , b) ∩ ϕ(N )| > n1 ∧ |¬ψ(N , b) ∩ ϕ(N )| > n2

)
.

Corollary 3.1.5. If T is ω-stable and has no Vaughtian pairs, then for any M |= T , there
is a strongly minimal formula over M. Since T is ω-stable we have a prime model M0 ≺
M, take ϕ to be the strongly minimal formula in M0, defined with parameters m0 ⊂ M0.
Consequently, we can always find a strongly minimal formula with parameters from the
prime model of T .

3.2 Algebraic Closure

Now that we have established that every model of T , a theory that is ω-stable and without
Vaughtian pairs, has a strongly minimal formula with parameters fromM0, the primemodel
of T , we will focus on the properties of strongly minimal sets.

Definition 3.2.1. We say an element b is algebraic overA (a set of parameters) if there is a
formula ψ(x, a) with a ∈ A such that ψ(M, a) is finite and ψ(b, a). We also call ψ algebraic
formula and tpM1 (b/A) algebraic type. Let M be an L-structure, D ⊆ M be a strongly
minimal set, and ϕ(v) the corresponding formula (possibly defined with parameters). From
now on, we will consider algebraic elements only inside D:

aclD(A) = {b ∈ D : b is algebraic over A}

=
∪

{ϕ(M) ∧ ψ(M, a) : |ϕ(M) ∧ ψ(M, a)| < ℵ0}

=
∪

{A ⊂ D : A is definable and finite}.

To give some intuition, will also write b is generated by a set of parameters, meaning that
b is algebraic over that set.

Lemma 3.2.2. The following properties hold for any strongly minimal D and A,B ⊆ D.
We write acl(A, b) for acl(A ∪ {b}).

i) acl(acl(A)) = acl(A) ⊇ A. (enlargement)

ii) If A ⊆ B, then acl(A) ⊆ acl(B). (containment)

iii) If a ∈ acl(A), then a ∈ acl(A0) for some finite A0 ⊆ A. (finite character)
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iv) If a ∈ acl(A, b) \ acl(A), then b ∈ acl(A, a). (exchange property)

Proof.

iv) So we assume that a ∈ acl(Ab) \ acl(A), so this means that a is one of the finite many
solutions to a formula that contains b as a parameter, ϕ(x, b). There is a sentence that
expresses the number of solutions for ϕ. Let ψ(b) be the following sentence

|ϕ(x, b)| = n

We now consider ψ(v), where v is a free variable (x is not free). So, the previous sentence
(ψ(b)) asserts that the number of solutions for ϕ with b as a parameter is n. If there are
finitely many solutions for ψ(v), assume m, there would be a contradiction because b ∈
acl(A), and then the following formula has a as a solution and only uses parameters from
A:

∃vϕ(x, v) ∧ ψ(v)

We will prove that ϕ(a, v) ∧ ψ(v) defines a finite subset of D and so b ∈ acl(A). We
assume it is not, so G = ϕ(a,M) ∧ ψ(M) is cofinitely. We will call this set the set of
proper generators of a that generate exactly n elements (one of them is a). So there are
finitely many non-proper generators for a, either non-generators or not generating exactly
n elements. Without loss of generality, assume the number of non-generators of a is
|Ḡ| = l. We can see |Ḡ| = l as a property of the element a,

|¬ϕ(a,M) ∨ ¬ψ(M)| = l.

If there are finitely many elements like awith this property, then a ∈ acl(Aa). So there must
be cofinitely many. Take n + 1 of them a1, . . . , an+1, each one of them has l non-proper
generators denoted as Ḡai , 1 ≤ i ≤ n + 1. So the

∪
Ḡai is finite, take g 6∈

∪
Ḡai this is a

proper generator for all n+ 1 ai’s. This is a contradiction as it is non-proper because ψ(g)
is false.

Because of the sentence M |= |ϕ(M) ∧ ψ(M, a)| = n, there are no new elements sat-
isfying ϕ(v) ∧ ψ(v, a) in any elementary expansion over A ⊇ a. This has the following
consequences.

Lemma 3.2.3. If p is algebraic over A, then it is isolated.

Proof. Let ψ be the algebraic formula and n be the number of its solutions. If we assume
that there are m > n different types that include ψ, then there is an elementary extension
N realizing m solutions to ψ. Contradiction. So there are at most n different types that
include ψ. For any of those types, if q 6= p, we have that there is a formula that ψi ∈ p and
ψi 6∈ q. Then the formula ψ ∧

∧
ψi isolates p.

We will define the notion of independence, which generalizes the algebraic independence
in algebraically closed fields.
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Definition 3.2.4. We say that A ⊆ D is independent if a 6∈ acl(A \ {a}) for all a ∈ A. If
C ⊂ D, we say that A is independent over a set of parameters C if a 6∈ acl(C∪(A\{a}))
for all a ∈ A.

Definition 3.2.5. We say that A is a basis for Y ⊆ D if A ⊆ Y is independent and acl(A) =
acl(Y ). Here, independence might also mean over a set of parameters.

Lemma 3.2.6. If A and B are bases for Y ⊆ D, then |A| = |B|.

Proof. We will first prove the following claim.

Claim 3.2.7. (Swapping base elements) Suppose A0 ⊆ A and B0 ⊆ B are subsets such
thatA0∪B0 is a basis forD. Then if a ∈ A\A0, there is some b ∈ B0 so thatA0∪{a}∪B0\{b}
is a basis for D.

Let B1 ⊆ B0 be of minimal cardinality such that a ∈ acl(A0 ∪ B1). Let b ∈ B1, because
of the minimality of B1, a ∈ acl(A0 ∪ B1) \ acl(A0 ∪ B1 \ {b}), because b is essential in
constructing the algebraic formula a satisfies. By the exchange principle, we have b ∈
acl(A0 ∪ {a} ∪ (B1 \ {b})). We can increase B1 \ {b} back to B0 \ {b} and have b ∈
acl(A0∪{a}∪(B0\{b})) because all the elements used to create the formula b is a solution
are in (A0 ∪ {a} ∪ (B0 \ {b}). Since acl(Y ) = acl(acl(Y )) and b ∈ acl(A0 ∪ {a} ∪ (B0 \ {b}))
it means that acl(A0 ∪ {a} ∪ (B0 \ {b})) = acl(A0 ∪B0) = D because A0 ∪B0 is a basis for
D.
We now need to check the independence of A0 ∪ {a} ∪ (B0 \ {b}). We only need to
check the independence of a as all other elements are in the basis A0 ∪ B0. For the
sake of contradiction, suppose that a ∈ acl(A0 ∪ (B0 \ {b})) then acl(A0 ∪ (B0 \ {b})) =
acl(A0 ∪ {a} ∪ (B0 \ {b})) and b ∈ acl(A0 ∪ (B0 \ {b})), because A0 ∪ {a} ∪ (B0 \ {b})
generates b.

We distinguish two cases:

• if B is finite assuming the following, |B| < |A|, we will end in a contradiction. Let
|B| = n and a1, . . . , an+1 are all distinct elements of A. Let A0 = ∅ and B0 = B
we can apply the claim above n times to get that {a1 . . . , an} ∪ (B \ {b1. . . . , bn}) =
{a1 . . . , an} has the same span asB, so is a basis forD. But this is a contradiction as
an+1 ∈ acl(B), so an+1 ∈ acl({a1, . . . , an}) contradiction because A is independent.
Swap the roles of A and B to get |A| = |B|.

• if B is infinite then we can see B as the union of all of its finite subsets B0 ⊂ B which
are |B| is total. Notice that acl(B0) is finite and any d ∈ acl(B) holds that d ∈ acl(B0)
for some B0, so

∪
B0⊂Bfinite acl(B0) = acl(B) = D and A ⊆ D.

|A| ≤ |
∪

B0⊂Bfinite

acl(B0)|.

This leads to |A| ≤ |B|, because |
∪
B0⊂Bfinite | = |B|. We can then apply the same

proof technique to A to get |A| = |B|.
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Definition 3.2.8. If Y ⊆ D, then the dimension of Y is the cardinality of a basis for Y ,
denoted dim(Y ).

Lemma 3.2.9. If D is uncountable and L is countable, then dim(D) = |D|.

Proof. First, note that dim(D) cannot be more than |D| because any base is a subset of
D. Let A be a basis for D and dim(D) < |D| since the language is countable and the
finite subsets of A are |A| for each ϕ(v, w) formula we can make |A| formulas by inserting
constants in the variables w. So each of the |A|, LA-formulas contributes a finite number
of elements to the algebraic closure alc(A)=|A| ·n = |A| < |D|, so it is not a basis ofD.

Lemma 3.2.10. Let M,N |= T , and ϕ(v) be a strongly minimal formula with parameters
from A0, where A0 ⊆ M0 where M0 |= T,M0 ≺ M, and M0 ≺ N . If n ∈ N and
a1, . . . , an ∈ ϕ(M) are independent over A0 and b1, . . . , bn ∈ ϕ(N ) are independent over
A0, then tpM(a/A0) = tpN (b/A0).

Proof. We will use induction over n, which is the number of independent elements. For
n = 1, a1, b1 6∈ acl(A0), they both realize the same 1-type. Indeed, takeM |= ψ(a1)∧ϕ(a1),
we know that ψ∧ϕ has infinite solutions, so ¬ψ∧ϕ has finite many. IfM |= ¬ψ(b1)∧ϕ(b1),
then b1 ∈ acl(A0), a contradiction.

Assume tpM(a1, . . . , an/A0) = tpN (b1, . . . , bn/A0) is true for n, we will show that it is also
true for a1, . . . , an, an+1 and b1, . . . , bn, bn+1. Let a = (a1, . . . , an) and take M |= ψ(a, an+1).
We can view ψ as a formula with parameters from a∪A0; we will denote it as ψa. Because
an+1 6∈ acl(A0, a), ψa(v) ∧ ϕ(v) has infinite many realizations hence ¬ψa(v) ∧ ϕ(v) is finite.
M |= |¬ψa(v) ∧ ϕ(v)| = k for some k ∈ N is a property of the elements a over A0, so
we can use the inductive hypothesis that tpM(a/A0) = tpN (b/A0) and get N |= |¬ψb(v) ∧
ϕ(v)| = k as a property of b. Because ϕ is strongly minimal ψb(v) ∧ ϕ(v) is infinite. If N |=
¬ψb(bn+1) ∧ ϕ(bn+1) then bn+1 ∈ acl(A0, b) a contradiction. So N |= ψb(bn+1) ∧ ϕ(bn+1) ⇒
N |= ψ(b, bn+1).

3.3 Extending Partial Isomorphism of Strongly Minimal Sets

Corollary 3.3.1. Let B and C be independent subsets over A0 of ϕ(M) and ϕ(N ), re-
spectively, with the same cardinality. Any bijection f : B ∪ A0 → C ∪ A0 that fixes A0 is
elementary.

Proof. For the sake of contradiction, assume that b1, . . . , bn ∈ B∪A0 and c1, . . . , cn ∈ C∪A0

their respective image under f , such that

M |= ψ(b1, . . . , bn) and N 6|= ψ(c1, . . . , cn).

Let I ⊆ {1, . . . , n} be such that for each i ∈ I, bi ∈ A0. But we can view bi’s as parameters
and get

M |= ψA0(b) and N 6|= ψA0(c)
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with ψA0 being a formula with parameters from A0. This is a contradiction since b and c
are indiscernible1 over A0 because of 3.2.10.

The next theoremwill extend an elementary function of the transcendental basis of strongly
minimal sets to f : ϕ(M) → ϕ(N ) to only later be extended to f̂ : M → N .

Theorem 3.3.2. Let M,N |= T , and ϕ(v) be a strongly minimal formula with parameters
from A0, where A0 ⊆ M0 where M0 |= T,M0 ≺ M, and M0 ≺ N . If dim(ϕ(M)) =
dim(ϕ(N)), then there is a bijective partial elementary map g : ϕ(M) → ϕ(N ).

Proof. Take a B basis for the transcendental subset of ϕ(M) and C as a basis for the
transcendental subset of ϕ(N ). These are also bases for ϕ(M) and ϕ(N ) together with
A0, i.e., acl(B ∪ A0) = ϕ(M) and the same for C. We can deduce that |B| = |C| since
the dimensions of ϕ(M) and ϕ(N ) are equal. Then take f : B ∪ {A0} → C ∪ {A0} be any
bijection that fixes A0. Because of 3.3.1, f is a partial elementary function. We will extend
f from the bases to the whole strongly minimal sets.

Let

I = {g : B′ → C ′ :

B ∪ A0 ⊆ B′ ⊆ ϕ(M), C ∪ A0 ⊆ C ′ ⊆ ϕ(N ), f ⊆ g partial elementary}.

By Zorn’s Lemma, there is a maximal g : B′ → C ′.We will show that B′ = ϕ(M). Suppose
there is b ∈ ϕ(M) \ B′, that b is algebraic over B ∪ A0, since it is a basis. Let ψ(v, d)
isolating tpM(b/B′) because of 3.2.3 we will find a way to extend the function g by find a
pair for b. Notice, because g is elementary, that M |= ∃vψ(v, d) and so N |= ∃vψ(v, g(d)),
so there exists an element ∈ N that satisfies ψ. Let c ∈ N denote that element. It is true
that tpM(b/B′) = tpN (c/g(B′)) so ψ(v, g(d̄)), is isolating tpM(c/g(B′)). Then c ∈ ϕ(N ),
as this is one of the properties of b. We can now extend g by sending b → c. This is
a contradiction because g is maximal. Thus, we are concluding that B′ = ϕ(M). The
same argument works for C ′ = ϕ(N ), because g is one-to-one. So g : ϕ(M) → ϕ(N ) is a
bijective partial elementary function.

Now we are ready to prove the second direction of the 1.6.13. We will use the bijective
partial elementary function from the previous theorem for any two models of the same
cardinality. This function connects their strongly minimal sets; we extend this to a total
bijective elementary function between the models using prime models and the lack of
Vaughtian pairs.

Theorem 3.3.3. If T is a complete theory in a countable L, which is ω-stable and has no
Vaughtian pairs, then it is κ-categorical, for κ ≥ ℵ1.

1Here we use the more general notion of indiscernibles rather than order indiscernibles, we want M |=
ϕ(a) ↔ ϕ(b) for all a, b ∈ X

45 F. Apostolou



Morley’s Categoricity Theorem

Proof. Let ϕ(v) be the strongly minimal formula with parameters A0 from M0, the prime
model of T , as in 3.1.5. Let M and N be models of T of the same cardinality κ ≥ ℵ1,
due to M0 being prime M0 ≺ M and M0 ≺ N . Assume that |ϕ(M)| < κ then we
have a (κ, λ)-model and a Vaughtian pair. So |ϕ(M)| = κ and as explained in 3.2.9
dim(ϕ(M)) = dim(ϕ(N )) = κ. By 3.3.2, we can find a partial elementary map f : ϕ(M) →
ϕ(N ). Our goal is to extend this to a total elementary map. If we take X = ϕ(M) as
our parameters, then every model of ThX(M) contains X. From 1.8.3 let M′ be prime
over X. If M ′ ⊂ M , then because X = ϕ(M) is definable and contained in M ′ there is
a Vaughtian pair (M′,M). So M ′ = M , i.e., M is the prime model over X. Notice that
N |= ThX(M) as there is the elementary map f between the parameters X = ϕ(M)
and ϕ(N ) and we can extend to an elementary f ′ : M → N because M is prime. This
embedding is surjective. Assume otherwise, then f ′(M) ⊂ N and ϕ(N ) is contained in
f ′(M), so (N , f ′(M)) is a Vaughtian pair, a contradiction.

This theorem marked an important milestone in the development of Model Theory and
was the start of exciting new directions for the subject. Saharon Shelah built on Morley’s
work by developing Stability Theory to classify theories based on how tame they are. The
reader is advised to look into [3] to expand their knowledge of the results that sprouted af-
ter Morley’s Theorem. One of the most famous open problems in Model theory is Vaught’s
Conjecture, which states that any first-order theory in a countable language has finite, ℵ0

or 2ℵ0 countable models. Much of Shelah’s work has revolved around counting the models
of a theory per cardinality. The closest attempt to prove this conjecture in its full general-
ity is actually a theorem of Morley proving that the number of countable models is finite,
ℵ0, ℵ1, 2ℵ0 which significantly narrows it down to excluding only ℵ1 when the Continuum
Hypothesis fails. However, narrowing it down to specific classes has proven true in many
cases [4], [5]. In closing, to this day, we don’t know the absoluteness of Vaught’s Conjec-
ture, meaning it could be independent of set theory, just like the Continuum Hypothesis
was.
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