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NepAndn

Elcaywyn

O otox0¢ auThG TNG SLaTtpBAG ATav va eLoayayel Thv Wéa g epappoyns LeBOSwY HNXAVLKAC
EKUABNONG KOlL VEU pWVIKWY SIKTUWV, TWV TILO TIPONYUEVWY HOVTEAWV TEXVNTAG VONHOoUVNC YLa TN
BeAtiwon Twv SLo81KACLWVY KAL TWV AMOTEAECUATWY TWV KALVIKWY SOKLLWVY KABWE KL TWV LEAETWY
Bloicoduvapiag. O okomog ATaV va XpNOLUOToINBoUV AUTEC OL UTIOAOYLOTIKEG TEXVLKEG YLA VOL VO
BeAtwBel n akpiBela kal n LoxLE TWV AVOAUCEWY OE AUTOUG TOUG ONUOVTLKOUG TOUELG TNG LATPLKAG
£€peuvag. H dtatplBr autn Eekivnoe tnv nepiodo ¢ mavdnuiag tou kopovoiol Kol ota Aaiola
auta ol mpwteC U0 €peUVNTIKEC epyaociec adopouoav tn Slepelivnon TNG KWNTIKAG TWV
gfoudeTepWTIKWV avtliowpdtwy (Nabs) xpnolpomowwvtag £€va KWNTIKO HOVTEAO, KAl OTn
Slepelivnon TWV OTOULKWY XAPOKTNPLOTLKWY TIou Ba propouacayv va ipoPAEPouv ta enineda twv
NAbs edpapuodlovroc téooeplg HEBOSOUC LNXAVIKNG EKUAONONG. ITIG EMOUEVEG TPELG EPEUVNTIKEG
epyaciec avantuxdnke pio péBodog avénong dedopévwv mou cuvdLOLE TOPAYWYLKA VEUPWVLKA
Siktua kal mpooopolwoslg Monte Carlo. H peBodoloyia autr ebapudoTnKe 0TO MAAIGLO KAWVIKWV
MEAETWVY Kol HeAsTwV  Blolocoduvopiag yia ¢ddpupaka XopnAng, peoaiog kot uPnAng

UeTABANTOTNTAG.

MéBobotL

Avadoplkd Ue TN HEAETN TNC KWNTKNAG Twv Nabs, avamtuxbnke éva povtélo Tou meplAapPave
éva Slapéplopa (OAOKANPO TO CwHA) yla va Teplypad el Ta eMineda TwWV AVILOWHUATWY UETA TOV
eUPOAlaCpO, evw TOPAAANAQ  €DAPUOCTNKAV TECCEPLS TEXVLKEG MNXOVIKAG HABNnonG.
JUYKEKPLUEVA, OVAAUCT KUPLWVY CUVIOTWOWVY KoL OVAAUGCH TIAPAYOVIWY UKTWV ETULOPACEWVY yLa
TG aAANAeTUOPAOELG PETAED TWV SLUPOPETIKWY XAPOKTNPLOTLKWY KoL TIWE aUTd ennpealouv ta
enineda twv NAbs, kat K-means kat random forest (tuxaio 6acog) ywa va opadomnoinBouv ta
ATOMA O€ SLOKPLTEG OUASEC Kal va TtoooTiKomoLnBel n enidpacr) tous. Ooov adopd Tnv eLcaywyn
™M¢ Wéag edpapuoyng MAPAYWYLKWY VEUPWVIKWV SIKTUWV yla TNV OVAYEVVNON ELKOVLKWY
g0slovtwy Kal TN Peiwon Tou amatoVUeVoU UeYEBoUC SelyaTog OTIG KAVIKEC LEAETEG KaL TIC
peAéteg Bloliooduvapiag, avamtuxdnke pia pebodoloyia mou cuvdlale mpocopolwoelg Monte
Carlo kot variational autoencoders (VAEs). Ot mpooopolwaoelg Monte Carlo xpnotlpomnotinkav yia
va pLpnBouv g akplBeic ouvOnkeg NG KAWIKAG HeAETng evw to VAE edapudotnke os éva
UTIOCUVOAO TOU apxkoU Seiypartoc, yia va Snuoupynost véa, cuvBeTika Sedopéva, Baclopéva

oTa TTPAYHATIKG Se6ouéva, Oe pia oelpd amod oevapla Kot SLadopeTIkEC CUVORKEG.
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AnoteAéopata

TNV MEPLMTWON TNG LEAETNG TNG KWVNTIKAG TWV EE0USETEPWTIKWY AVIIOWHUATWY, TO QVAITTUXOEV
MOVTEAO amokAAUPE OTL UTIAPXOUV TPELG SLAKPLTEG KIVNTIKEG GACELG Yla TOV XpOVO ToU €XEL
epAoel amno tov epBoliacuo kat otL ta NAbs g€adavilovtal oXETIKA apyd otnv apxn, oAAd n
QIOUAKPUVON TOUG yivetal mepimou 6 dopég tayxUtepa amd Tov TPITO €wG TOV £KTO HUAVA.
Evtomiotnkav mEVTe OUABEG ATOUWY HE SLAKPLTA XOPAKTNPLOTIKA VW Xpnolgomowwvtas dUo
KUPLEC OUVLOTWOEG, £€ENYNONKE To 63.4% TNG LETABANTOTNTACG KOL EVIOTILOTNKE N BETIKA CUCXETLON
peTal Twv emumédwv twv NAbs otoug 3 pvecg (M3) kat otoug 9 unveg (M9) petd tov epfoAlacpud,
To ormolo enaAnBevetal and to random forest kaBwg To M3 daivetal va ival o TILO GNUAVTLKOG
napayovtag otnv npoPAedn tou enuédou twv NAbs 9 HAVEC LETA TOV EUBOALOGUO.

‘Ooov adopd TNV edopUOYN TAPAYWYLKWY VEUPWVIKWV SIKTUWV OTLG KAVIKEG LEAETEC LLE OKOTIO TN
peilwon tou amattolpevou pey£boug Seiypartog, avantiooovtog pio npwrtotunn pebodoloyia
Kkal e€etalovrtag S1adopeg LopdEG TOU apaAywWYLKOU VEUPWVIKOU Siktuou, VAE, Snuloupynbnkayv
Selypota pe elkovikoUG €BeAOVTEG TTapOUOL HE TA TIPAYUATIKA. Ta ouvBeTika autd Sedopéva
anédwaoayv e€loou KaAd, av OxL KHAUTEPQ, LE TO TPAYHATIKA SE50UEVO AKOWN KAL OTNY TIEPLITTWON
TIOU Xpnotuomnotitnke poévo to 30-40% twv mpaypatikwy dedopuévwy. Agilel va onuelwbel otL oe
oevapla pe vPnAn petaBAntotnta, ta dedopéva mou Snuovpyndnkav amno to VAE napouciacav
UPNAOTEPN OTATLOTIKN LOXU, MELWVOVTAC QTMOTEAECUATIKA Tov “B0pufo”, evioylovtag Ttnv
aglomLoTia TWV ATOTEAECUATWV.

E€loou koAd Atav Ta supriuata Kol ot peAEteg Bloicoduvapiag. Edappolovrag tnv iSla
pebodoloyia, kol Slepeuvwvtag SLAdOPETIKEG TAPAUETPOUC yia ta VAEs kal e€etalovrag
TOAAQTIAG OevApLa, CUUMEPIANAUPBAVOUEVWY SLADOPETIKWY EMUMESWVY UETABANTOTNTAG, APXLKWY
peyebwv Seiypartog, peysbwv Seiypatog mou dnuoupyndnkav and VAE kat Stadopwv anddoaong
HETaED TwV POPUAKEUTIKWY TIPOLOVIWV TIOU ouyKpivovtal, amodeixBnke OTL XpNOLUOTOLWVTOG
TlapaywyLKou ¢ alyopibuouc, kat o cuykekpluéva VAESs, katéotn Suvato va emtteuxboulv ta idla
KOl 0€ TIOAM\EC TTEPUTTWOELG KAAUTEPA OMOTEAECUATO, UE OPKETA UIKPOTEPO SElya OO TO APYLKO,
HELWVOVTAG £TOL ONUAVTIKA TO KOOTOG KAl TOV XPOVO TIOU QTTOULTELTOL yla TV OAOKANPWGN TwV
peAetwy. Edikdtepa otnv mepimtwon twv dappdkwy e uPnAn HeTaPANTOTNTA, TA CUVOETIKG
Sebopéva, eiyav TOUAAYLOTOV TTOPOUOLA LIE TO TIPOYHATIKA, XPNOLLOTIOLWVTAC ULKPOTEPO Selypa,

OKOMN KAl 0TV N cUYKPLON YWOTaV LE Ta KALlLakoUpeva opla Bloicoduvauiag mou mpoteivovtal
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onuepa. AnAadn, n Xpnon TMOPOYWYLKWY VEUPWVIKWV SIKTUWV 8ev €XeL avaykn tnv Xpnon

KALLOKOUPEVWY oplwv 1 elSIKwV KpLtnpiwyv Kat £xel kaBoAlkn edappoyn.

ZulAtnon

ZUVOALKQ, N povtehomoinon TN KNTknAg twv NAbs €6€1E€ OTL UTTAPXOUV TPELG SLAKPLTEG KIVNTLKEG
dACELG Yyl TOV XpOVO TIOU €XEL MEPAOEL Ao Tov gUBoAlacpo kat otL ta NAbs s€adavilovral
OXETIKA apyd oTnV apxn, aAAA N amoUAKPUVON TOUG YIVETalL Tiepimou 6 popEg TaxUTEPA o TOV
TPITo €WG TOoV £KTO pAva. H avaiuon KUplwv cuvioTwowv £6€L€e TN oTevr oxéon HeTagy M3 kat
M9 koL n avaAuon UKTwY SE60UEVWVY amokAAUPE OTL N Ttaxuoapkia Kot N NAKL €Xouv apvnTIKA
enidpaon ota enineda twv NAbs, evw to U0 Sev eixe kauia emibpaocn o kapio anod TLg NEvte
SLOKPLTEG opadeg ou evtomiotnkay amod tv K-means. Ta enineda twv NAbs o §ladopeTIKEG
XPOVLIKEC TIEPLOSOUG PETA TOV EUPBOALOCUO €lval TILO ONUAVTIKA oo TV nALkia, To $UAO Kal Tov
Selktn palog owporog, yo ta enimeda twv NAbs petd amd 9 pRveg amd tov euBoAlocpo,
ocUudwva pe to random forest.

H eloaywyr g Xpriong mMopaywylkwV VEUPWVIKWY SIKTUWV OTLG KAVIKEG UEAETEG UE OKOTO TN
pelwon tou pey£Boug Selypoatog kat cuvbualovtag mpooopolwwoel Monte Carlo pe VAE,
anodeixOnke OtL ol VAE prmopouv va amoteAéoouv £va TIOAUTLUIO PYAAELO OTLG KAVIKEG SOKLUEC
Kall oTLG peAetec Bloiocoduvapiag. Xpnowpuonowwvrag ta VAE, n 6TaTIOTIKN LoV pmopel va auénBel
EVW TO OTMALTOUEVO HEYEDOG LA KAVIKAG LEAETNG, Hmopel va PelwBel €wg kat 30%, peLwvovTog
£T0L TO amaLtoVEVO HEYeBOC SElYLATOG KoL CUVETIWG HELWVOVTOC TO KOGTOG KOL TOV XPOVO, EVW

TMAPAAANAQ aVTILETWITIOUV NOKA INTAATO TTIOU OXETL{OVTOL LE TN CUUUETOXN avOpwIwV.

Tuunepaopata

JUVOALKQ, auth n StatpiPfn £6el€e OTL N UNXOAVIKN LABNON ETUTPEMEL TV AVOYVWPLON oUVOETWY
poTiBwv Kal TAcEwvV Tou elval SUCKoOAO va avixveuBouv pe AAAOUC TPOTIOUE, OTOV TOMED TWV
KAWIKWY  pedetwy.  Xpnolgomowwviag HeBOSouc  UnNXavikng ekpadnong evtomiotnkav
oAANAemdpdoetg PeTafl TWV XAPOKTNPLOTIKWY €VOC ATOMOU Kal Twv emmédwv tTwv NAbs petd
omd 9 uAvVeC amno tov eUBoALacHO Kol TTOCOTIKOTIORONKE N emidpaocr] Toug.

To mo afloonpeiwto givat 6Tl auth n Statplpn mpoteivel yia pwtn dopd tn Xprion tTwv VAEs ue
oKkomo TNV avénon twv Sedopévwy o KAWVIKEG Kol peAéteg Bloiooduvapiag kat tn peiwon tou
anattovpevou peyéBoug Seiypartog. Edelée otL n edpappoyr) Twv VAEs o KAWVIKEG Kal UEAETEC

Bloicoduvapuiag avtimpoowneVel €va cUYXPOVO Kal XPHOLUO gpyaAseio Tou Umopel va PeLwoEL
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ONUOVTLKA TV QVAYKN YLa LEYGAO aplOpd avBpwnwy, va PHELWOEL TO KOOTOG KAl VO GUVTOMEUOEL
TOUG XpOVOUC OAOKANPWONG TWV KAWVIKWY SOKLHWY, SLoTnpwvTag 1 0KOUA Kol BeATiwvovtag Ty

TOLOTNTA KAL TNV A€LOTILOTIA TWV ATMOTEAECUATWVY.
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Abstract

Introduction

This dissertation aimed to utilize machine learning and neural networks, the forefront models in
deep learning, to enhance the processes and outcomes of clinical trials as well as bioequivalence
studies. The goal was to use these advanced computational techniques to gain deeper insights
and improve the accuracy and efficiency of the analyses in these important areas of medical
research.

To achieve that, the first two research papers focused on an analysis of the kinetics of neutralizing
antibodies (NAbs) against SARS-CoV-2 using a kinetic model and identifying their predictive factors
by utilizing four machine learning algorithms. In the subsequent three research papers, a novel
data augmentation framework was developed, which utilizes generative neural networks and
Monte Carlo simulations. The framework was applied in the context of clinical trials
bioequivalence testing of low, mid and highly variable drugs. The framework aims to reduce the

required sample size for this type of studies which brings numerous breakthrough benefits.

Methods

To investigate the kinetics of NAbs, a kinetic model was used to describe their elimination. The
optimal model included a single compartment (the whole body) and linear elimination kinetics.
To identify the individuals’ characteristics that could predict the NAbs levels, four machine learning
techniques were applied. Namely principal component analysis and factor analysis of mixed data,
K-means clustering and random forest. The first two methods revealed the interactions between
different features and how these affect the Nabs levels whereas the last two allowed us to group
the individuals into distinct groups and quantify the predictive factors of NAbs respectively.
Concerning the use of generative algorithms in clinical research, a framework was developed that
combined Monte Carlo simulations with a generative neural network, namely variational
autoencoders. The Monte Carlo simulations were utilized to replicate the exact conditions of the
clinical trial and the BE study, whereas the VAE was applied to a subsample of the original dataset,
to generate new, synthetic data, based on the real ones. Various scenarios were tested and

different hyperparameters of the VAE model were explored to achieve the optimal model.

Results
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The kinetic model identified three distinct kinetic phases on the time elapsed since vaccination
and that the NAbs disappear relatively slow at first, but that their removal becomes around six
times greater from the third to the sixth month, indicating that they are eliminated much more
quickly. K-means identified five unique groups of individuals, each one driven by unique
characteristics, whereas using two principal components, were able to explain 63.4% of the
variability and identify the positive relation between the NAbs levels at 3 months (M3) and 9
months (M9) after vaccination. This was validated by the random forest, which indicated that the
NAbs levels after 3 months is the most important feature when predicting the NAbs levels after 9
months.

To reduce the required sample size in clinical studies, an innovative methodology was used and by
utilizing various forms of VAEs, we were able to create virtual samples very similar to the real ones.
These synthetic data performed at least as well as the real data, even when only 30-40% of the
real data was used. It is worth noting that in scenarios with high variability, the data generated by
the VAE showed higher statistical power, effectively reducing “noise”, and improving the reliability
and robustness of the results. The findings in bioequivalence studies were very desired as well. By
applying the same methodology, investigating different parameters for VAEs, and testing multiple
scenarios, including different levels of variability, original sample sizes, sample sizes generated by
the VAE, and average performance differences between the pharmaceutical products being
compared, it was demonstrated that using generative algorithms, and more specifically VAEs, we
can achieve the same and in many cases better results, with a significantly smaller sample than
the original, thus significantly reducing the cost and time required to complete the studies.
Particularly in the case of high variability drugs, the synthetic data performed similarly to the real

data, using a smaller sample, even without scaling the confidence interval limits.

Discussion

Overall, the modeling of NAb kinetics showed that there are three distinct kinetic phases based
on the time since vaccination. Initially, NAbs decline relatively slowly, but their clearance rate
increases approximately sixfold from the third to the sixth month. Principal components analysis
showed the strong relationship between M3 and M9 and factor analysis of mixed data revealed
that obesity and age have a negative effect to the NAbs levels whereas gender did not have any

effect in any of the five distinct groups that were identified by K-means. Random forest indicates
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that the NAbs levels at different time periods after the vaccination, are more important than age,
gender and BMI, when predicting the NAbs levels after 9 months of the vaccination.

The optimized VAEs demonstrated superior performance than the subsampled and similar and
many times better than the original datasets, indicating that similar BE testing results, can be
achieved by using less samples.

The introduction of generative neural networks in clinical studies to reduce sample sizes,
combined with Monte Carlo simulations and VAE, demonstrated that VAEs can serve as a valuable
tool in clinical trials and bioequivalence studies. Using VAEs, statistical power can be increased
while the required size of a clinical study can be reduced by up to 30%, thereby lowering the
necessary sample size, reducing costs and time, and addressing ethical issues related to human

participation.

Conclusions

Overall, this dissertation demonstrated that machine learning enables the identification of
complex patterns and trends that are difficult to detect by other means in clinical studies. Using
machine learning methods, interactions were identified between an individual's characteristics
and NADb levels nine months after vaccination, and their impact was quantified. Most notably, this
dissertation proposes, for the first time, the use of VAEs to augment data in clinical and
bioequivalence studies and to reduce the required sample size. It showed that applying VAEs in
clinical and bioequivalence studies represents a modern and useful tool that can significantly
reduce the need for large sample sizes, lower costs, and shorten the completion times of clinical

trials, while maintaining or even enhancing the quality and reliability of results.
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Chapter A: Introduction
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Al. Artificial Intelligence

Artificial intelligence (Al) refers to the conceptualization and design of computer systems that can
handle tasks that normally require human intelligence. Al is a broad term that includes a variety
of technologies, such as machine learning, neural networks and deep learning. Al has gained
popularity the last couple of years, however the formal study of Al started in 1950, when Alan
Turing published a seminar paper titled “Computing Machinery and Intelligence” [1]. That paper
laid the groundwork for the field of Al. After some challenges in the 1970s and 1980s, Al research
continued to reach its peak in the 21 century, due to development in machine learning, neural
networks and computational power, with tons of applications in different fields [2].

In logistics, Al facilitated the automation of well-defined workflows and improve supply chain
decision making [3, 4]. In social sciences Al can build on the existing research in psychology and
cognitive science, regarding how people operate, and provide some insights [5] and assist on
human decision making [6].

The advantages of Al in healthcare and medicine have been excessively discussed and a lot of
articles provide overviews of the medial Al research [7-9]. Al can assist in providing personalized
medical diagnosis [10], assist radiologist and pathologists [11]. Al enabled a lot of companies in
the pharmaceutical sector to accelerate the process of discovering drugs [12] by streamlining the
process and reducing repeated work [13] and assists in drug repurposing [14].

Regardless its popularity Al raises ethical considerations, especially in healthcare. In the late
2010s, the funding of companies analyzing images using Al, surpassed $1.2 billion [15], though,
there are still some concerns regarding the anonymity of the patients and how this is and the bias
of the algorithms [16]. To overcome these obstacles, Al systems need to be transparent, accessible
and mitigate and detect biases following the standards of medical ethics [17].

Despite the forementioned attention points, Al is a rapidly evolving field, with the ability to
revolutionize and enhance numerous facets of human life. It is crucial for researchers, policy

makers and society to cooperate to harness its potential.
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Figure 1. The timeline of Artificial Intelligence. Adapted from [18].

A2. Machine Learning

Machine learning (ML) is a branch of Al. ML is combining statistics and information technology
[19] and focuses on the development of algorithms and statistical models. ML models have
numerous applications in finance, spacecraft engineering and computer vision, biomedical and
healthcare applications [20]. Since data have become easier to get (i.e. big-data era) ML models
have gained popularity the last few years.

These models improve automatically through experience, via a process called “learning”. During
the learning phase, the model takes as input some “data” (i.e. training data) and applies on them
a mathematical procedure (i.e. algorithm) to output the “model”. The model is a set of
mathematical rules and equations that are derived by analyzing the data [21, 22]. Finally, the
model’s performance is assessed on some new data (i.e. test data) with the use of an appropriate

evaluation metric.
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Figure 2. The process of training a Machine Learning model. The model is trained using the training data and its
performance is evaluated using new data until its performance is satisfactory. Adapted from [23].

Depending on the application, the data can come from different sources, like databases or the
world wide web. Data can be structured (e.g. xIsx files), semi-structured (e.g. XML files) or
unstructured (e.g. text and images). Data can be labeled or unlabeled, meaning that either they
are tagged with one or more labels to provide context or meaning, or not. Depending on the type
of data and the research, a suitable type of machine learning algorithm is applied. Thus, for labeled
data a supervised machine learning algorithm is used, for unlabeled data an unsupervised ML
algorithm is used.

Supervised learning is the most prevalent form of machine learning. To train a supervised machine
learning model a labeled dataset is used, where each input is paired with a corresponding output.
This allows the model to predict the output for new inputs accurately. The most common and
simplest algorithm used in supervised learning is linear regression. There are more complex
supervised ML algorithms, like support vector machines and neural networks.

Supervised machine learning use cases are split into two categories, regression and classification.
Both problems involve predicting an output based on the input, but the nature of the output is
different. Regression is when the desired output is continuous and numerical (e.g. sales numbers
or house pricing) whereas classification is when the output variable is categorical (e.g. “Yes” and

“No”, or “Red” and “Green” and “Blue”). When the output variable has two categories, then it is
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called binary classification and multi-class otherwise. The evaluation metric is different between
regression and classification problems. For the first, the mean squared error (MSE) is commonly
used whereas for the latter usually accuracy is used.

One key challenge in supervised learning problems is “overfitting”. Overfitting is when the model
captures well the patterns in the training dataset, but fails to do the same in test data. There are
commonly used techniques to prevent overfitting, such as cross-validation and regularization.
During cross-validation, the dataset is split into multiple subsets. The model is trained on each
subset to ensure it generalizes well. On the other hand, regularization favors simpler models by
penalizing the more complex models, to avoid fitting in the noise in the data.

Unsupervised learning leverages unlabeled data. The model finds patterns and relationships
within the data without any guidance on what the output should be. This type of learning is often
used for clustering. Clustering algorithms, such as k-means and hierarchical clustering, group
similar data points together by identifying relationships between the variables of the dataset.
More advanced algorithms include Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Gaussian Mixture Models (GMM).

Another challenge that both supervised and unsupervised applications have, is the features
selection, that is the choice of appropriate features to be included model. Before using the
appropriate, usually new features need to be created, modified and selected from the raw data.
This procedure is called “feature engineering” and is an important step of machine learning which
significantly improves the model's performance. Techniques such as normalization,
standardization, and dimensionality reduction are usually included in that step. Normalization
scales the features to a specific range, while standardization transforms them to follow a standard
Gaussian distribution. Dimensionality reduction methods’ goal is to reduce the number of features
while preserving as much information as possible. The most common are principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) [24].

In semi-supervised machine learning labeled data are combined with unlabeled. Usually, the size
of labeled data is smaller. This approach is extremely useful when labeling data is either labor-
intensive or costly [25]. Image recognition, natural language processing, and are applications
where semi-supervised is used.

Lastly, reinforcement learning is a type of machine learning where an algorithm learns to make
decisions by experimenting and learning from its mistakes. The computer is either rewarded or

penalized through feedback, which leverages for its future decisions. This approach is particularly
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effective in scenarios where the optimal solution is not known and must be discovered through
interaction, such as in game playing, robotics, and autonomous driving [26].

Machine learning is applied in a wide range of industries. In healthcare, there are numerous
applications, like diagnosing diseases and creating treatment plans that are personalized. For
example, brain tumors can be classified by analyzing medical images and leveraging machine
learning models [27] or in general analyze medical images [28]. In finance, machine learning
algorithms are employed for fraud detection [29, 30], algorithmic trading [31], and credit scoring
[32]. These models can identify suspicious transactions, optimize trading strategies, and assess
the creditworthiness of individuals and businesses.

In the entertainment industry, companies like Netflix, Spotify and YouTube, use machine learning
to create recommendation systems that suggest movies, music, and other content based on user
preferences [33, 34]. In the car industry, Tesla leverages machine learning to build self-driving cars,
able to understand the environment they are into, empower them to decide, and navigate safely
[35].

Machine learning is widely used, and despite its many successes, it should take into consideration
ethical, safety and social concerns. One major issue is bias in machine learning models. The model
will be unable to generalize properly in case the dataset is biased, which will lead into undesirable
results. For example, facial recognition algorithms tend have higher error rates for certain
demographic groups [36, 37], in 2016 a “designer error” in Autopilot may have led to a tragic
incident [38]. To account for this, researchers and machine learning practitioners are developing
methods to detect and mitigate bias in machine learning models, such as fairness-aware
algorithms and diverse training datasets.

Another concern is the interpretability of machine learning models. Many critical applications,
especially in healthcare and finance require an understanding of the rationale of a decision before
this is made. Thus, the need for explainable machine models, becomes imperative. A lot of efforts
have been made on this topic [39, 40] to promote machine learning models that are transparent
with respect to their decision-making mechanism [41].

In summary, the field of machine learning is undergoing rapid evolution, significantly impacting
various industries and demonstrating substantial potential for future advancements. Leveraging
statistical algorithms based on data and continuously enhance their performance new
opportunities for automation and decision making will arise. Nevertheless, it also brings forth

challenges and ethical concerns that require careful consideration to ensure its fair and equitable
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application. As ongoing research and development continue to progress, machine learning is going

to be a cornerstone in determining the future.

Labelled data Unlabeled data Labelled and Trial and error
Unlabeled data

2 (O ®@@

Supervised Unsupervised Semi-supervised Reinforcement
Machine Learning Machine Learning Machine Learning Machine Learning

Figure 3. Types of Machine Learning. Each type of Machine Learning model is used for different types of data.

A3. Deep learning and neural networks

Neural networks (NNs), a branch of machine learning, form the core of deep learning algorithms.
Their design and function are modeled after the human brain, imitating the way biological neurons
communicate through neural connections [42, 43].

The structure of the NN can highly differ from one application to another. Some neural networks
are more complex (i.e. deep) and have more connections (i.e. fully connected) than others (i.e.
sparsely connected). NNs are used in both supervised (regression and classification) and
unsupervised tasks. Even though for simpler regression tasks, such as predicting house prices
simpler ML algorithms are commonly used, for more complex tasks like time series prediction and
language modelling NNs are sometimes preferred. Thus, there are different structures of NNs,
depending on the use case.

For regression problems, like time series prediction and language modelling recurrent neural
networks (RNNs) are the most common, with some variants of them like long short-term memory
networks (LSTMs) and gated recurrent units (GRUs). For classification tasks and for handling grid-
like data, such as images, convolutional neural networks (CNNs) are designed. CNNs are very
popularin use cases such as image recognition, object detection, and other computer vision tasks.
Unsupervised neural networks, like all unsupervised ML algorithms, are trained using unlabeled

data, trying to discover hidden patterns or representations. Autoencoders (AEs) are a form of
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unsupervised NN. Autoencoders can be leveraged for dimensionality reduction, feature and
representation learning [44, 45, 46]. AEs have a varied structure with respect to the application.
An autoencoder can learn a more concise depiction of the training data (i.e. incomplete
autoencoder) or an overly detailed representation of the data (i.e. overcomplete autoencoder). A
probabilistic extension of AEs, is the variational autoencoders (VAEs), which are typically used for
data augmentation [47-50]. Other NNs that are commonly used for image synthesis are the
generative adversarial networks (GANs) [51, 52].

To summarize, neural networks are cutting edge models and are highly effective in modeling
complex data patterns. Their architecture can range from shallow to deep, and from fully
connected to sparsely connected, tailored to specific tasks. Recurrent Neural Networks and
Convolutional Neural Networks are specialized for sequential and grid-like data, respectively.
Supervised neural networks are employed for tasks such as regression and classification, while
unsupervised neural networks, including autoencoders, variational autoencoders, and generative

adversarial networks, are utilized for uncovering hidden patterns and generating new data.

Artificial Intelligence (Al)

Replication of human intelligence in machines
and computer systems

Machine Learning (ML)

Algorithms that allow computers to learn and
improve from data

v

Artificial Intelligence

Neural Networks (NN)

Subset of ML algorithms which mimic the
structure of human brain

Natural Language

Processing and Large

Language Models Deep Learning (DL)
State of the art ML models used to solve the
most complex problems

Natural Language Processing (NLP) and Large
Language Models (LLM)

Models that process text and audio to create
talking agents

v

Figure 4. Comparison between Artificial intelligence, Machine learning, Neural networks, Deep learning, Natural
Language Processing and Large Language Models.
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A4. Sample size estimation in clinical trials and bioequivalence studies

Sample size estimation is a crucial component of clinical trials since the latter serves as the
cornerstone for ensuring safety and efficacy [53]. A representative sample of an adequate size can
provide insights into a given population. However, the collection of substantial amounts of data
may prove challenging, costly, and time intensive. It is imperative that each clinical trial be carefully
organized through the development of a protocol that outlines the study’s objectives, primary and
secondary endpoints, data collection methodology, sample selection criteria, data handling
procedures, statistical methods and assumptions, and, on top of that, a scientifically justified
sample size [53].

The determination of sample size can vary significantly based on the study design, outcome type,
and hypothesis test specified by the investigator [54]. The estimation of appropriate sample size
is based on the given statistical hypotheses and several study design parameters. The
aforementioned factors encompass the minimal detectable difference that holds meaning,
estimated variability in measurement, desired level of statistical power, and level of significance
[54]. Achieving an optimal balance between an insufficient or excessive number of participants in
the sample is imperative [55]. Insufficient statistical power resulting from a small sample size may
lead to a failure to detect a true difference, thereby rendering significant variations among study
groups statistically insignificant. The utilization of an excessively large sample size can be deemed
unethical, result in the wasteful use of resources, and potentially impede the feasibility of a given
study. Furthermore, there is a growing expectation from funding agencies, ethics committees, and
scientific journals for the justification of sample size. In certain scenarios, such as the evaluation
of highly variable drugs in bioequivalence assessment, it is imperative to utilize large sample sizes
as specified by regulatory bodies such as the EMA in 2010 and the FDA [56, 57, 58]. Regardless of
the underlying cause, when variability increases, demonstrating bioequivalence becomes more
challenging, despite its existence. In general, as the degree of variability increases, it becomes
increasingly challenging to prove what is sought unless a larger sample size is employed.

As with any clinical trial, similar concerns apply to bioequivalence (BE) studies, especially in cases
where a generic pharmaceutical product (i.e., Test, T) is compared against the reference product
(R) [57,58]. Two pharmaceutical products are deemed bioequivalent if they contain the same
active substance at the same molar dose, and their equivalence is demonstrated through

comparative pharmacokinetic studies, i.e., bioequivalence trials. If bioequivalence is established
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in the comparative pharmacokinetic trial, the two products can be considered therapeutically
equivalent [57,58].

In the context of BE testing, various approaches have been proposed to address the need of
recruiting a large number of volunteers, particularly for highly variable drugs [57,58]. In recent
years, the emergence of in silico methods has led to the adoption of computational alternatives
[56]. These computational methods are utilized for virtually increasing the sample size, a process
known as data augmentation. Artificial intelligence, particularly deep learning, has proven
advantageous in its several aspects of clinical studies [59]. Considering the importance of data
accessibility in data-oriented and personalized healthcare, the use of Al becomes imperative.
Training Al models has demonstrated considerable benefits, accelerating and simplifying every
step within drug research [60,61].

The core of BE assessment lies in comparing the pharmacokinetic properties of the two drug
products. This involves a detailed statistical analysis, including calculating a 90% confidence
interval (Cl). BE is typically declared if this 90% CI falls within the established range of 80-125%
[62,63].

While this standard method, known as average BE, is widely accepted, it is not suitable for highly
variable drugs or drug products. The expression “highly variable drugs” refers to those with a
within-subject coefficient of variation of 30% or more, whether due to the drug substance or its
formulation [56]. In BE studies, this variability refers to the residual variability that comes from the
ANOVA analysis after excluding all other known factors. In the case of a 2 x 2 crossover design,
residual variability is estimated after subtracting from the total data variability the variability
attributed to subjects, periods, sequences, and the administered pharmaceutical product.
Variability can arise from factors such as the drug characteristics or physiological conditions in
patients. However, as within-subject variability increases, demonstrating BE becomes more
challenging without increasing the sample size [56]. To address this issue, various methods have
been proposed. Both the EMA and the U.S. FDA currently recommend using scaled BE limits
[62,63]. This approach adjusts the BE limits based on the within-subject variability of the reference
product. In this context, the EMA and FDA’s recommended reference-scaled procedures require
full-replicate or semi-replicate study designs. In these designs, the reference product is
administered at least twice to each subject, allowing for accurate estimation of within-subject

variability [62,63].
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A5. Scope of the thesis

The aim of this thesis was to apply machine learning methods to analyze clinical data on
neutralizing antibodies after COVID-19 vaccination in order to uncover any hidden relationships.
Secondly, and most importantly, this thesis introduces the idea of using generative Al algorithms
in clinical research. Specifically, these Al algorithms, with a particular focus on variational
autoencoders, were utilized as data augmentation tools, first within clinical studies and

subsequently in bioequivalence studies.
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Chapter B: Materials & Methods
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B1. Machine Learning

In this section, a brief introduction will be provided to cover the fundamental concepts of machine
learning and deep learning algorithms. This will include an overview of key principles,
methodologies, and distinctions between these two fields, highlighting how machine learning
focuses on using algorithms to enable systems to learn from data, and deep learning further builds
on this by using neural networks to model complex patterns and representations.

In this context, machine learning consists of a set of algorithms that analyze and find patterns

within a dataset. There are two types of algorithms, supervised and unsupervised.

B1.1. Supervised

The supervised algorithms’ main objective is to quantify (i.e. model) the effect of a set of
independent variables X = {xq,x,,...,x,}, on the dependent (or target) variable y and later
predict the value of y, ¥, for new unseen data. This procedure is referred as “training the
model/algorithm” and it requires as input the “training data”, which is a subset of the original
data. Once the model is trained, its performance is evaluated on unseen data, referred as “test
data”. The ratio between the training and test subsets is usually 2:1. When evaluation the model,
an appropriate metrics is chosen depending on the problem and the algorithm. Some algorithms
require an extra step, which is called “hyper parameter tuning”. At this step appropriate values for
the algorithm-specific parameters must be chosen. This is achieved using the “validation data”,
which is also part of the original dataset. The ratio between training, validation and test data is

usually 2:1:1.
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Figure 5. Process of training a supervised machine learning model. The original dataset is split into two or three parts
depending on the use case. The training dataset is used to train the model, the validation dataset is used to tune the

Evaluation of model performance

hyperparameters of the model (if any) and the test dataset is used to evaluate the model.

There are cases where the dataset does not allow for a decent validation dataset. In those cases,
“k cross-validation” can be used. The training data are split into k subsets (i.e. fold). All folds have
the same size. In practice, usually 5-fold cross-validation is used. Thus, the dataset L, is randomly
split into 5 folds L, = {L4,L,, ..., L} where each L,k = 1,2, ..., 5 contains 20% of the training
data. Later, the model is trained five times, each time using four out of five subsets for training
and the remaining one of validation. That is model f;, will be trained using {L,, ...

validation, model f;, will be trained using {L4, L3, ..., Ls} and L,, for validation and so on. In the

end the models’ performance are averaged to get the final model performance [64].
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Figure 6. Cross validation for k=5 folds. The dataset is divided into five equal parts. The model is then trained and
validated five times. Each time, one of the five parts is used as the validation set, while the remaining four parts are
used for training. This process is repeated five times, ensuring that each part of the dataset is used exactly once as the
validation set. After all iterations, the performance metrics from each of the five runs are averaged to give a final
performance estimate. Adapted from [65].

The goal of all supervised machine learning algorithms is to be as accurate as possible when
predicting. We can evaluate the predictions by assessing the magnitude of the error term,
error = y — J . Anissue that often arises is “overfitting”. When a model is too complex it captures
the noise and details when been trained, which affects negatively its performance on new unseen
data. Thus, the model predicts well (i.e. low training error) in the training data, but poorly (i.e.

high-test error) in the test data.
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Figure 7. Overfitting model showcase. The error in the training dataset will always decrease whereas the error in the
test data will start to increase while the model become more and more complex. The optimal model complexity is
when the error in the test dataset just begins to increase.

B1.1.1. Regression

Regression in supervised machine learning refers to use cases where the target variable y is
continuous. Predicting the value of bitcoin, the energy consumption of a house, the sales of a
brand or the election results are regression problems. In all regression machine learning problems,
we have a collection of labelled examples {(x;, ¥;)},, where N is the number of observations
(i.e. examples) in the dataset, x;, is a vector of features of dimension D, of example i =
1,...,N,y; € Ris the target variable and xij eER,j=1,..,D.

Mean squared error and mean absolute error (MAE) are the most common metrics used to

evaluate the result of a supervised regression ML algorithm. Consider

Y, being the prediction of y;, for the i-th example MSE and MAE are defined as %Ziﬂ,_",,\,(yi -

~ 1 ~ .
9% and ~ %y, v [y — 5 respectively.
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B1.1.1.1. Linear regression (and Polynomial and Ridge Regression)
An algorithm that learns a model by combining the input features in a linear manner is linear
regression. Thus, linear regression can be expressed as the model f:
fup() = wx + b ®

where w is a D-dimensional vector usually referred to as “weights” and b € R, usually referred to
as “bias” term. The model f, is parametrized by the (w, b), and is used to make predictions of the
y (i.e. §). Different parametrized values (w, b), will produce different predictions. Finding the
optimal (w, b) (i.e. (w*, b™)), which will make the predictions most accurate, is the goal.
Let the ¥,, be the prediction for Y on the i-th example. Then the e; = y; — 3 = y; — f(x}),
represents the i-th residual. We define the residual sum of squares (RSS) as:

RSS = e? + -+ e} (2)
and the loss function as:

i — f(x))? (3)

The goal is to find the optimal (w*, b*), that minimize the average loss function. Thus,

w,b

1
min > (i = fx)) 3)
i=1,..,.N

The optimal (w*, b*), can be analytically computed and it is shown to be [66]

ZIiV=1(xi - 92)(3’1’ - }7)
* = 4
N > (= %) @

b* =y —wx (5)

where y, X are the means of the target variable and the input features respectively.
Linear regression can be extended in multiple ways. One can extend the relationship between x
and y to be a polynomial of n degree.
The polynomial regression equation is:

y =wy+wix + wyx? + wpx™ (6)
where wg, wy, ..., W, are the coefficients of the polynomial. The polynomial regression allows for
more complex relationships, whereas linear regression is a simple case of polynomial regression

wheren = 1 [66].
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Another extension of linear regression is “ridge regression”, which addresses multicollinearity
(when independent variables are highly correlated) and overfitting. It adds a regularization term
to the cost function to penalize large coefficients.

The ridge regression equation is:

N D
1
Jub) =5 > = (i +B)? +2 ) w? @
i=1 j=1

where A is called “regularization” parameter, that controls the amount of shrinkage applied to the

coefficients [66]. Ridge regression, also known as Tikhonov regularization.
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Figure 8. Line fitted to data using linear regression. The “b” is the intercept of the line with the y-axis and “w” is the
slope of the line. The distance of each datapoint to the line, is the “error” for this datapoint.

B1.1.1.2. Decision Trees and Random Forest

Decision tree is a directed graph which includes nodes that signify decisions, branches that depict
decisions’ outcomes, and leaf nodes that represent the final outcomes or predictions. The flow
has a top-down approach, starting from the root node which represents the full dataset, passing
through the internal nodes that correspond to the decisions and ending in the leaf nodes that

represent the final outcomes.

Thus, given training feature x; € R™,i = 1, ..., and a target vector y € R! a decision tree divides

the feature space recursively, grouping samples with similar target values together.
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Let Q,,, be the data at node m with n,, samples. For each candidate split s = (i, p,,) consisting of
a feature i and threshold p,,, partition the data into Q!¢t(s) and Qrlg (s) subsets:

Qift(s) = (x,y)/x; < Pm (8)

P (s) = Qm QIEt(s) (9)

The “goodness of split” of node m is then computed:

nleft rlght
—__m left right
6(Qns) =7 H (05 ) + = —H (0" (9) (10)
H is a loss function which depends on the task being solved.
The goal is to minimize the impurity:
s* = argmingG (Q,,, S) (11

ht : . : .
Qlft(s*) and Qrlg (s*) are recursed, until n,, < Minggmpies OF Ny = 1 (i.e. maximum depth
allowed is reached).

For regression problems it is common to minimize MSE:

1
Ym = Z y (12)
mZVEQm
1
H@w =— ) =) (13)
mZVEQm

as shown in [68].
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Figure 9. A decision tree (left) corresponding to the partition of the 2D space (right).

Random forest combines multiple decision trees, thus is an ensemble method. This is done in a
“bagging” way. In bagging, the machine learning algorithm, combines the predictions of multiple
weak learners (in this case, decision trees) trained on different subsets of training data.
This achieves reducing the correlation between trees [64].
Random forest pseudo-algorithm as presented in [69]

1. Fork=1toK:

a. Generate a random bootstrapped sample of size N from the training dataset.
b. Create a tree Ty, using the data from step (a) by repeating:
i. Randomly choose m out of the d variables.
ii. Choose the optimal split from the m.
iii. Split the parent node into 2 nodes.
iv. Repeat steps i, i, iii until the minimum node size minggmp,es is reached.
2. Output the ensemble of trees Tkllle.

To make a prediction at a new point x for regression:

K
— 1
R = Ekz_l Te (@) (14)

Where K is the total number of trees.
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Input Data

Decision tree 1 Decision tree 2 Decision tree 3

Average

Figure 10. Random forest averaging the result of multiple decision trees for prediction in regression use cases.

B1.1.1.3. Gradient Boosting Machines
Boosting involves repeatedly creating multiple models from the original training data using a weak
learner. Each successive model is designed to correct the errors of its predecessor. The ultimate
ensemble model is formed by iteratively combining several weak models in a specific manner [64].
The most common boosting algorithm is gradient boosting machine (GBM).
Mathematically, the model at iteration t, can be described as follows [69]:

Fe(x) = F_q(x) + 1 - he(x) (15)
where F;(x) is the model at iteration t , 7 is the learning rate, and h;(x) is the new tree fitted to
the pseudo-residuals.

For regression tasks, the following loss function is being minimized:

1
Ly F@) = 5 (y = F)’ (16)

Which is known as MSE.
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The sum of the predictions from all the trees is the final prediction:

§= ) ful0) (17)
m=1

There are various alternatives of GBM, such as extreme gradient boosting (XGBoost) and light
gradient boosting (LightGBM). The first is an optimized implementation of GBM for speed and
performance, which includes also regularization to prevent overfitting [70], whereas the latter is

optimized for handling large datasets with low memory usage [71].

Data Set: (X, Y)

F(X) F(X) Fy (X)

Tree 1 Tree 2 Tree

Compute / 1 / 1 /C‘]mpme

Residuals Residuals Residuals Residuals

(r1) (r2) (ri) (Tm)

l l l |
i

U

Ensemble Prediction

Figure 11. A gradient boosting model combining multiple weaker learners (decision trees) to make as accurate
prediction as possible. Adapted from [72].

B1.1.1.4. Support Vector Regression

The core concept of Support Vector Regression (SVR) is to identify a function that closely estimates
the relationship between the input variables and the target variable. This function aims to predict
values within a specified margin of tolerance (€), ensuring that the predictions are as accurate as
possible while allowing for some flexibility [73].

In other words, SVR is finding a function f(x) that is flat as possible and is at maximum e-far from
the actual target values y; for all training data. The function f(x) is typically a linear function

within the feature space, represented as:
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f(x)=(w,x)+b (18)
where (w, x) is the dot product of the weight vector w and the input vector x, and b is the bias
term.

As explained in [73], SVR is minimizing the following cost function:

1 n
S Wl + cz Ly f(x) (19)

where |w|? ensures that the function is flat, C is a regularization parameter that regulates the
balance between the smoothness of the function and the extent to which deviations larger than

€ are tolerated, and L(y;, f (x;)) is the e-insensitive loss function defined as:

Le(yi f(x)) = max(0, ly; — f(xp)| — ©) (20)

This loss function means that errors less than € are ignored, and only errors greater than €
contribute to the cost.

SVM regression conducts linear regression in the high-dimensional feature space using the e-
insensitive loss function and while also simplifies the model by minimizing |w/|?. This is equivalent

by minimizing the following function:
1 n
SIW+C ) (G +§) (21)
i=1

subject to:

yi — flx) < e +§
flx) —y < e+ 22)
&6 = 0,i=1,...,n

where &;, & are slack variables that allow some errors in predictions.

As described in [73], to solve the optimization problem, SVR uses Lagrange multipliers and the

dual formulation, similar to SVM. The dual problem is given by:

n n n
1
maxy =5 Z (o — o) (o — Olf)K(xi,xj) - EZ(ai + o) + z yi(a; — af) (23)
' i=1 i=1

ij=1
subject to the constraints:
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Yici(op =) =0 (24)
0<o0 <C (25)

where a; and ojare the Lagrange multipliers, and K(xl-,xj) is the kernel function. In the simpler
case of the linear kernel K (x;, x;) = (x;, x).

In this case the final regression formula is:

D@ = ap) xx)+ b (26)
i=1

Original space Kernel space

Figure 12. Support vector regression with kernel. The original space (left) is mapped to the Kernel space (right) using a
kernel function “K”. The fitted line (black) is then transformed from a curve to linear.

B1.1.2. Classification

The difference between regression and classification is the nature of the target vector Y. In
classification y; is categorical, meaning that it has a fixed amount of possible values. If the amount
of possible values equals to 2, then the classification is called “binary” classification, otherwise it
is called “multi-class”. Examples of binary classification are predicting if an image is a cat or a dog,
or if a person will develop cancer or not, whereas an example of multi-class classification is

predicting which country will win the most medals in Olympic games.
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The most common method for evaluating the performance of a supervised classification machine
learning algorithm is the confusion matrix. For classes C = {C}X_,, the confusion matrix is a
KxK table, where each row represents the instances in actual class and each column the instances
in the predicted class, thus the element C; ; represents the instances that belong to class i but
were predicted to be in class j.

The diagonal components of the confusion matrix, C; ; are called true positives (TP) and represent
the number of instances that were predicted correctly as class i. The off diagonal elements in the
column j, without the diagonal, represent the instances that were incorrectly predicted as class j
and are called false positives (FP). The off diagonal elements in the row i, without the diagonal,
represent the instances that were incorrectly predicted as not being in the class i and are called
false positives (FN). Lastly the true negatives (TN) are the instances correctly predicted as not

being in particular class.

Predicted Class
G G .G, G Cog e Cg

=
|.]

-
k-] =

. )

Actual Class

Figure 13. Confusion matrix for K classes.

From the confusion matrix there are a lot metrics that can be calculated to evaluate the

performance of the model for each class i. The most common are:

TP,
Precision; = m (27)
TP,
Recally = ————— 28
CC = e+ RN, (28)
~ TP, + TN,
Accuracy; = (29)

TP, + TN; + FN; + FP,
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F1s _, Precision; x Recall; (30)
cora = Precision; + Recall;

Each of the above metrics is used depending on the use case. Accuracy is used when the classes
are balanced, that is the number of examples at each class is similar, precision is used when the

costs of false positives is high whereas recall is used when the cost of false negatives is high.

B1.1.2.1. Logistic regression
Logistic regression is a classification algorithm. It aims to model the posterior probabilities of the
K classes as a linear function of x;, while preserving the probabilities properties that they sum to
1 and their range is in [0,1].
The model for the K classes is:

1

1+ Z{i—ll eWwx+b

Pr(G=K|X=x) = (31)

Notice that YX_, Pr(G = K|X = x) = 1 and with the simple binary classification case, where K =

2, (26) equals the sigmoid function.

0.8

Figure 14. The sigmoid function fitted to binary data.

Similarly to logistic regression we are looking for the optimal parameters (w*, b*). In the simply
binary case, the optimal parameters are obtained by maximizing the likelihood function:
MaxXy, pLy b, (32)

where

Lup & [ | fupC0?i1 = fup ()@= (33)
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Unlike to linear regression, there is no analytical solution for (29), and the most common

optimization procedure to solve (29) is gradient decent [64].

B1.1.2.2. Decision Trees and Random Forest

Decision trees is a non-parametric algorithm that can be used for classification, meaning it does
not make any assumption regarding the underlying distribution of the data. The trees are built
recursively, splitting the dataset based on the feature that provides the “best” split. The best split
is defined by an impurity measure.

One common impurity measure is the Gini impurity index:
Gini=1— Z(p(ﬂt))z (34)
j

where p(j|t) is the relative frequency of class j at node t. Gini ranges from 0, when all records
belong to one class, implying most interesting information, to 1 - 1/K, when records are equally
distributed among all classes (K number of classes) implying least interesting information [73].

Another common impurity measure is entropy:

Entropy = - ) p(jl) loga(p(10) (35)
i=1

where p(j|t) is the relative frequency of class j at node t. Entropy measures the homogeneity of
a node. Its values range from 0, when all records belong to one class, implying most information,
tolog, K, when records are equally distributed among all classes implying least information [73].

Another common measure is Information Gain:

k
n.
GAIN = Entropy(p) — Z #Entropy(i) (36)
i=1

where parent node p, is split into k partitions and n; is the number of records in partition i.
Information Gain measures the reduction in entropy achieved because of the split. Chooses the
split that achieves most reduction [73].

A common loss function is the cross-entropy, which measures the difference between the

predicted probabilities and the actual class labels:

K
Z Virlog(pix) (37)

k=1

2|~

Crossentropy = —

N
=1

43



where N is the number of examples, K is the number of classes, y; ; is binary, indicating if k is the
correct class label for the example I, and p; j is the predicted probability of example i belonging
in class k.
In some cases, where overfitting is observed, “pruning” is used. Pruning is a technique that
reduces the size of a tree by removing branches that have little importance and do not provide a
lot of improvement in terms of accuracy.
Same as linear regression, a lot of decision trees combined, they form a random forest.
Like in regression, the pseudo-algorithm as presented in [69]:
1. Fork=1toK:
a. Generate a random bootstrapped sample of size N from the training dataset.
b. Create a tree Ty, using the data from step (a) by repeating:
i. Randomly choose m out of the d variables.
ii. Choose the optimal split from the m.
iii. Split the parent node into 2 nodes.
iv. Repeat steps i, ii, iii until the minimum node size Minggmp,es is reached.
2. Output the ensemble of trees Tkllle.

To make a prediction at a new point x for regression: Let C, (x) be the class prediction of the

k-th random-forest tree. Then Er}?f(x) = majority vote { C,,(x)}X.

Input Data

Decision tree 1 Decision tree 2 Decision tree 3

Majority

Figure 15. Random forest combining multiple decision trees for classification using the majority rule.
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B1.1.2.3. Gradient Boosting Machines
GBM in classification problems is very similar with GBM in the regression. The difference lays in

the loss function used. The logistic loss is used for binary classification:
N

1
Ly, F(x)) = —EZD&' log(F(x)) + (1 =y)log(1 —F(x))] (38)

i=1

Whereas for multiclass classification the softmax is often used:

N K
LOF@) == =2 yilog(F () (39)

i=1k=1

In binary classification the prediction is done by using a threshold:

M

0 otherwise

where o is the sigmoid function, whereas in the multiclass by taking the argmax of the summed

probabilities:

M
9 = argmax( ) fuc(x) (41)
m=1

where fi, (x) is the prediction of class k from the m tree.

B1.1.2.4. Support Vector Machines

Support vector machines (SVM) aims to find a hyperplane that separates the data into different
classes as good as possible, meaning that the distance of the boarders of the classes is as big as
possible. There are cases where the data are not linearly separable. Figure 16, shows non-linearly
separable data points of 2 classes in 2 dimensions (left), but if we transform these data into 3

dimensions then they become linearly separable (right).
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x3

x2 xl

Figure 16. Non-linearly separable data of 2 classes in 2D (left) which become linearly separable when they are
transformed into 3D (right).

The above technique is commonly referred as the “kernel trick”. As shown in Figure 17, there can

be multiple hyperplanes that separate the data.

Figure 17. Possible ways to linearly separate the data of the 2 classes in 2D.

The optimal hyperplane that SVM is searching for, is the one that maximizes the margin, as shown

in Figure 18.
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Figure 18. Optimal hyperplane that maximizes the margin between the 2 classes.

As shown in [73] the objective function for SVM is:

1 n
o 2
Inin > lwl +CZEL
=
{ subject to (42)
yL(le + b) =>1- gl
and

\ =20

Where w is the weight vector, b is the bias term, x, are the feature variables, C is the
regularization parameter, y, are the class labels and &, are “slack variables” for the i-th observation

which allows some flexibility, especially when the data are not linearly separable [73].

B1.1.2.5. K-nearest neighbors

Another supervised machine learning algorithm is k-Nearest Neighbors (kNN). One main
difference with the rest ML algorithms, is that kNN does not disregard the training data once
trained. The training data are saved in memory, and are utilized by kNN to find the k closest
examples of a new, previously unseen example, using a D-dimensional distance measure, and for
the classification it returns the majority class of the k examples.

The most common distance measures used in kNN are the Euclidean distance:
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d®,q) =V (1 — q)? + (02 = 42)* + -+ (Pp — qp)? (43)
where p, g are two points in D-dimensional space.

Another common distance metric is the cosine similarity:

p-q Y1 Pl
Ipllgl
Zz lpl Zl lql

where p, q are two points in D-dimensional space, p = (p1, P2, ---,Pp) and q = (1,92, ---,qp)-

cos(p,q) = (44)

The pseudo algorithm of kNN when the Euclidean distance is used as distance metric, is as follows:
1. Input the dataset (split by training and test).
2. Use the optimal k* (this needs to be predefined by the researcher).
3. For each point in test data:
i. Find the Euclidean distance with respect to all training data
points.
ii. Choose the first k* points.
iii. Assign to the test data point, the majority class.
In the aforementioned pseudo algorithm, it is evident that the researcher needs to find the
optimal k (k™). This is usually achieved with a brute force approach. Assuming that the set of
candidate k is k.gnaidate = {1,2,3,. .- Kmax}, then for each k € k.gnaidate , the aforementioned
algorithm is ran, and the accuracy is calculated.
Following the Occam’s razor also knows as principle of parsimony, which suggests that the simplest
explanation is usually the correct one, k* is the minimum k for which a desirable performance is
achieved.
The choice of k*, has a significant role in the performance of the algorithm. Figure 19 shows that
the new data point (green), will be assigned to the red class if k = 3 whereas if k = 5 it will be

assigned to the blue class.
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Figure 19. K-nearest-neighbors example. The new data point (circle) will be assigned to the dark blue class if k=3 whereas
if k=5 it will be assigned to the light blue class.

B1.1.3. Feature importance

Feature importance in classification refers to techniques used to determine which feature has the
most influence on the outcome. All the classification algorithms except KNN, have their own
feature importance technique.

In linear models, like logistic regression and SVM, the feature importance is defined
as:

Importance(x;) =| f; | (45)

where f3; is the coefficient of variable x;.
In models that are tree-based, like decision trees and random forests the importance is measured
using GINI importance, which measures the total decrease in node impurity brought by a feature

across all trees in the forest (i.e. mean decrease in impurity):

T

Gini Importance = Z Z Al(n, f) (46)

t=1n€ N,

where T is the total number of trees, N; is the set of nodes in tree t, and 41 (n, f) is the decrease
in impurity at node n due to feature f [69].

Lastly for boosting methods, like GBM, the importance feature is similar to (46):
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T
Importance =
t=

z AL(n, f) (47)

1n€Nt

where AL(n, f) is the decrease in loss at node n due to feature f [69].

B1.2. Unsupervised

Unsupervised machine learning is a type of ML where the model is trained using data that don’t
have labels. The goal of this type of ML algorithms is to find hidden patterns or structures in the
input data. Unsupervised machine learning encompasses dimensionality reduction and clustering
techniques.

During clustering data points are grouped into segments based on a similarity metric, whereas in
dimensionality reduction, the original number of features is reduced, by creating new features
from the existing ones while at the same time preserving as much information as possible.

The advantage of this type of algorithms is that the unlabeled data are more accessible, though
the absence of labels makes it hard to evaluate the outcome of the model thus making the results

less interpretable.

B1.2.1. K-means

A common method for clustering involves defining a cost function over a set of possible clusterings
with parameters. The optimal partitioning is the one that minimizes the cost [76]. K-means is one
of the most common machine learning algorithms used for clustering that follows this principle to
partition the dataset into k distinct, non-overlapping clusters.

K-means partitions the dataset into disjoin sets Cy, C5, ..., C, Wwhere to each C; corresponds a y;,
which is called centroid. Each datapoint in C; belongs to X;, which is a metric space and y; lives in
that space. The k-means objective function measures the squared distance between each point g;

that belongs in C;, from its corresponding centroid ;. The centroid y; is defined as:

w(C) = argmin ) d(x, 1)’ (48)
X€EC;
thus k-means objective is:
k
min Z Z d(x, 1;)? (49)
H’lnu2r'"ll‘lkEX -
i=1 x€C;

The k-means algorithm as described in [76] is as follows:

50



1. Having asinput the space X © R™ and the number of the desired clusters k.
2. Initialize random k centroidsuy, iy, ..., ti-
3. Repeat until convergence:
a. Vi€lk|setC,=x€X:i= argminj”x — yj”.
. 1
b. Vi€ |k|update u; = el Yxec; X

The afore mentioned procedure is shown in Figure 20:

.
x X e o
X ..-.". 5 X
(a) (b) (c)
. .. ..: - .’ “: . ..;:
® ow . * .i" . ® et o
o./". s o.r". : ' d

(d) (e) (f)
No changes in datapoint assignment

Figure 20. K-means algorithm example for k=2. The dots are the data points, and the x are the centroids. (a) shows the
original dataset, (b) the random initialization of the centroids, (c-f) the k-means iterations until convergence is achieved.

Determining the ideal number of clusters, k is usually achieved via the elbow method. The elbow
method performs k-means clustering across a spectrum of values of k, usually 1 to 10. Then for
value of k, the sum of squared distances between data points and their corresponding cluster
centroids is calculated. This is also known as the within-cluster sum of squares (WCSS). Finally, a
plot is created where the x-axis is the value of k and the y-axis is the corresponding WCSS, and the

elbow point is chosen, as shown in Figure 21.
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Elbow Point

WCSS

Figure 21. The elbow plot and elbow point for k-means iterations with k ranging from 1 to 9. On the y-axis is the within
clusters sum of squares (WCSS) and on the x-axis is the possible k. The larger the k the smallest the WCSS. The elbow
point, is where the rate of decrease of the WCSS flattens, resembling an elbow shape.

B1.2.2. Hierarchical Clustering

The outcome of the K-means algorithm is significantly influenced by the predefined number of
clusters as well as the initial positioning of data points. These factors play a crucial role in
determining the convergence and final configuration of clusters, as variations in either can lead to
differing partitioning results. Consequently, it is necessary to predefine the desired number of
clusters and establish the initial positions from which the clustering process will commence.
Hierarchical clustering operates in a distinct manner, as it does not require pre-specification of the
number of clusters. Instead, it necessitates the definition of a dissimilarity metric between groups
of observations. This metric is derived from the pairwise dissimilarities among observations within
the groups under comparison, allowing for the formation of a nested clustering structure without
a predefined cluster count. Hierarchical clustering builds a hierarchy of clusters. At each level of
this hierarchy, clusters are formed by merging smaller clusters from the level below. Initially, at the
lowest level, each cluster consists of just one observation. Up the hierarchy, clusters are
progressively merged until, at the highest level, all observations are clustered into one group.
Hierarchical clustering is split into two categories. Agglomerative, where at the beginning each
cluster contains a single data point, and later the closest pairs are merged together until only one
cluster is left, commonly referred as “bottom-up” approach, and divisive, usually referred as “top-

down”, begins with a single cluster which contains all data, and is later split into smaller groups
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until all groups contain a single datapoint [69]. The result of hierarchical cluster is a dendrogram

as shown in Figure 22.

Figure 22. Agglomerative hierarchical clustering on human tumor microarray data. At the beginning each datapoint

belongs to a single cluster and at each step, the closest datapoints are merged together.

During agglomerative clustering of N data points, at each N — 1 steps a metric of dissimilarity

between two groups (clusters) must be defined. Assuming two of these groups, A and B, the

dissimilarity d(4, B) is calculated from the set of pairwise dissimilarities of the observations d;;,

where i € A and j € B, where d;; can be defined as (43) or (44). There are different ways

defining d(4, B). Single linkage takes the smallest distance between a pair:

ds.(4,B) = ieA%lglj €B dij

where complete linkage takes the maximum distance:

de(4,B) = i€ Aglnadxj €B dij

Average linkage considers the average distance between all pairs of points in clusters:

dAL (A, B) =

min d;;
NyNgieAandjeB y
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1
du A B) === > > dy (52)

i€EAjEB
where | A |,| B | are the numbers of points in cluster A and B respectively.
Divisive cluster has not been explored in that extend yet. The simplest approach to apply divisive

clustering could be to recursively apply the k-means method with K = 2 at each step [69].

B1.2.3. Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based clustering
algorithm. Firstly, two key concepts need to be defined. Let d(p, q) be the distance two points
D, q- A point p is density-reachable if there exists a sequence of n points p4,p,,..., P, and each
point in the sequence is within a specified distance from the next point, thus d(p;, p;) < &.Two
points p and g are density-connected if there exists a point o such that both p and g are density-
reachable from o.

Instead of defining how many clusters are needed, DBSCAN requires two hypermeters to be
defined €, n, where ¢ is the maximum distance between two points to be considered in the same
“neighborhood”, and the minimum number of points (i.e. MinPts), which is the minimum number
of points required to form a dense region.

Having the above concepts set, a formal characterization of the points can be implemented. Core
point is point if it has at least a MinPts points within its e-neighborhood. Border point a point
which is within the g-neighborhood of a core point but is not a core point. Lastly noise point is

neither a core point nor a border point. The above definitions are shown in Figure 23.
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Figure 23. Definitions of “core”, “border” and “noise” points in Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm, for a fixed € when MinPts equal to 4. The core point has at least 4 points e-close to it, the
border points is exactly at the e-border and the noise point is neither core point nor border point.

The DBSCAN pseudo-algorithm is as follows:
a) Choose randomly a point p.
b) With respect to p, retrieve all points that are density-reachable taking into account € and
MinPts.
c) Form a cluster if p is a core point.
d) If pisa border point, no points are density-reachable from p, and DBSCAN visits the next
point of the dataset.
e) Repeat steps a-d for all points.
The determination of MinPts usually comes from domain knowledge or a rule of thumb is used,
where MinPts = D + 1, where D, is the dimensionality of the data. A popular method for
choosing € is the “k-distance graph”, where distance of each point to its k-th neighbor is plotted,

where k is typically set as MinPts — 1. A k-distance graph is shown in Figure 24:
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Figure 24. k-th distance graph with € identified as the elbow point. The sorted k-th distances on the y-axis and the data
points on the x-axis (sorted by their k-th distance).

B1.2.4. Principal Components Analysis and Factor Analysis of Mixed Data
Principal components analysis is a dimensionality reduction technique. Assuming that have m
vectors, X1, X5,..., Xy, iN R%, the goal is to apply a linear transformation and map these m vectors
in space R"™, where n < d, while keeping as much information as possible (i.e. maximizing the
variance). The result of PCA is the principal components (PC) which are linear combinations of the
input features and they are uncorrelated to each other. PCs are ordered by the amount of
variability they capture from the original data.
The first PC is the linear combination:

Zy = 911X + @21 X0+ + o1 X (53)
where Z;'n:1 (p]zl =1 and @j; are the “loadings” of the fist principal component and ¢, =
(011 P21 .- Pm1)T is the principal component loading vector of the 1° principal component.
The constraint Z}’;l (p]zl = 1 is necessary, since setting these elements arbitrarily large will result
in arbitrarily large variance.
To compute the principal components the data need to standardized, that is subtracting the mean

and dividing by the standard deviation:

Xeent =X — X (54)
Xcent
Xstandardized = ;en (55)
x
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And compute the covariance matrix:

1
— T
2= XstandardizedXstandardized (56)

n—1
Y can be decomposed as follows:
XV =vA (57)
where V = (v; v,...1,)T, v are the eigenvectors, and A is the diagonal matrix with the
eigenvalues A in its diagonal. Z = XiqndardizeaV corresponds to the matrix with the principal

components, where Z = (z;2,...2,)".

Each principal component explains a proportion of the variance of the original data. The variance

Aic

T A

explain of the kth principal component is given by Figure 25 illustrates 2 principal

components in a 3-dimensional space.

ra

e Original Data
—— First Principal Component
—— Second Principal Component

Figure 25. Two principal components in a 3-dimensional space. The two principal components are orthogonal to each
other.

A graphical tool that is often used in PCA, is biplot. Using biplot the relationship between variables
and observations in a reduced-dimensional space can be visualized. This is achieved by
transforming using (50), the coordinates of the original datapoints into the coordinates of the
reduced dimensional space (i.e. scores) and plotting them together with the loadings, as shown in

Figure 26:
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Figure 26. Biplot after applying PCA with two principal components. In the x-axis is the first principal component and in
the y-axis is the second principal component. The datapoints are transformed from the original space to the reduced
space and are shown as dots whereas the vectors are the loadings of each feature from the original space to the reduced
space.

The number of principal components chosen, varies, depending on the use case. Often two or
three principal components are chosen, because it is possible to visualize, but sometimes a scree
plot used, where, the eigenvalue is plotted against the principal components, and the number of

optimal principal components is decided using the elbow rule, as shown in Figure 27.
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Figure 27. Scree plot example to choose the optimal number of principal components using the elbow rule. The optimal
number of principal components is 3.
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Even though PCA works very well in continuous data, it works poorly for mixed type of data, that
is including both continuous and categorical data. Factor Analysis of Mixed Data (FAMD) is an
extension of PCA, that handles mixed type of data. FAMD applies “one-hot-encoding” in the
categorical data, and later combines the standardized quantitative variables (52) and the one-hot-
encoded into a single matrix and performs Singular Value Decomposition (SVD):

X=UxyT (58)

where the factor scores are calculated as U2 and the loadings are calculated as V2.

B2. Deep learning

Deep learning is a specialized subset of machine learning that has garnered considerable attention
with recent advancements in computational power. Its primary focus is on utilizing neural
networks to model and interpret complex patterns within data. The structure and functionality of
these neural networks are inspired by the human brain, enabling deep learning models to perform

sophisticated pattern recognition and decision-making tasks.

B2.1. Neural networks

Neural networks are the cutting-edge models of artificial intelligence and machine learning. They
consist of interconnected units called neurons, arranged in layers. There are three types of layers,
input, hidden and output. The number of hidden layers can vary, depending on the use case. Each
neuron in a layer connects to neurons in the next layer through weighted edges. An overview of a

typical structure of a neural network is shown in Figure 28.
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Figure 28. A typical architecture of a fully connected Neural Network. All nodes from the input layer are connected with
all the nodes of the first hidden layer and all the nodes from the first hidden layer are connected with all the nodes of
the second hidden layer.

The data enter the neural network from the input layer, where each neuron corresponds to a
feature of the input data. The data then moves through the hidden layers, where the actual
computation and learning occur. The hidden layers can vary in number and size, and each neuron
in these layers applies a transformation to the input it receives. This transformation is governed
by an activation function, which introduces non-linearity into the model, enabling it to learn

complex patterns. Common activation functions include the sigmoid function:

1

oW =T

(59)

Which maps input values to [0,1], which is usually used for binary classification tasks. Another

common activation function is the hyperbolic tangent (tanh) function:

X _p=X

tanh(x) = (60)

which maps the input values to [-1,1]. Lastly the rectified linear unit (ReLU) function is commonly
used:

ReLU(x) = max(0, x) (61)
The model is learning through forward propagation. During this process, data enter the network

through the input layer, passed through the network to finally generate an output. The input of
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each neuron in any layer is the output of the ones in the preceding layers after the activation

function is applied. Mathematically, the output of a neuron can be expressed as:

o _ (-1 (-1) O]
a; —f(ZWU a; +b]- ) (62)

i
®

where a; is the activation of the j-th neuron in layer [, Wl-(jl

U is the weight of the connection

between the i-th neuron in layer Il — 1 and the j-th neuron in layer [, ai(l_l) is the activation of the

i-th neuronin layer [ — 1, bj(l) is the bias term for the j-th neuron in layer [ and f is the activation

function, as shown in [79]. The bias term allows the activation function to be shifted, providing

additional flexibility in the learning process [79].

The learning from forward propagation, is later optimized (i.e. improved) through backward
propagation. During this mechanism the model learns from its errors. Following forward
propagation, the network’s output is evaluated using a loss function, which quantifies the
discrepancy between the forecasted and observed values. Similarly to machine learning, loss

functions that are commonly used are the MSE for regression tasks:

n
MSE =~ > (- 9)? (63)
i=1
where y; is the actual value and ¥, is the predicted value and cross-entropy loss for classification
tasks:
1 n
Cross-Entropy = = [y;10g(®) + (1 — ) log(1 — )] (64)
i=1

where y; is the actual label and ¥, is the predicted probability.

Once the loss is computed, backward propagation is used to update the weights and biases in the
network to minimize this loss. This is done by calculating the gradient of the loss function in
reference to each weight and bias, and then adjusting the weights and biases in the opposite

direction of the gradient. This process is known as gradient descent. Mathematically, calculating

the gradient concerning weight Wl-(jl) is given by:

oL oL aaf) 64”

O30 5.0 3.0
awl.j aaj azj awij

(65)
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where L is the loss function, a]@ is the activation of the j-th neuron in layer [, and zj(l) is the

weighted sum of inputs to the j-th neuron in layer [. The chain rule is used to compute these partial
derivatives, allowing the gradients to be propagated backward through the network. This

procedure is presented in Figure 29:
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. loss function is
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Figure 29. lllustration of forward propagation and backward propagation. During forward propagation the input data
are passed through each layer of the Neural Network, weights are calculated and finally a prediction is outputted. The
loss score is calculated using the prediction and the true value, with respect to the chosen loss function. Finally, the
weights are updated, with the aim to reduce the loss score, during backward propagation.

The learning rate, a hyperparameter that controls the size of the weight updates, plays a crucial
role in the training process. If the learning rate is too high, the network may converge too quickly
to a suboptimal solution or even diverge. If the learning rate is too low, the training process may
be excessively slow and may get stuck in local minima. Techniques such as learning rate schedules
and adaptive learning rate methods, like Adam and RMSprop, are often used to address these

issues [79].

B2.1.1. Autoencoders
A neural network with a special structure that is used in unsupervised use cases, is autoencoders.
Autoencoders are designed to learn efficient representation (i.e. encoding) of the input data. They

consist of two main components, the encoder and the decoder, where one is a mirrored image of
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the other. The process of encoding involves the mapping of the input information into a fixed-
point representation in a latent space. If the dimensionality of the latent space is lower than that
of the input data, the encoder will acquire a more parsimonious representation of the input data,
resulting in an incomplete autoencoder, namely, the number of neurons in the bottleneck layer
will be smaller than the number of neurons in the input and output layers. On the other hand, if
the latent dimension exceeds the input dimension, the autoencoder acquires a superfluous
depiction of the input data, resulting in an overcomplete autoencoder, namely, the number of
neurons in the bottleneck layer will be larger than the number of neurons in the input and output
layers. Since the goal of autoencoders is to reconstruct the input, a common choice of loss

function, L,g, is the mean squared error:
n
1 232
Lpe = EZ(xi — %) (66)
i=1

where X;, represents the input data, X;, the reconstructed data and n the total number of
observations.

The architecture of autoencoders is presented in Figure 30.
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Figure 30. Visual representation of an autoencoder. The input data are compressed through the encoder while the
decoder later decompresses them and tries to reproduce the input as closely as possible.
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B2.2. Generative Neural Networks

A special category of neural networks is generative neural networks, which generate new,
synthetic data, with the use of real ones. These models are particularly effective in fields such as
image synthesis, text generation, and music composition. The main goal of generative models is
to understand the underlying distribution of the training data, allowing them to generate new,

similar data points.

B2.2.1. Variational Autoencoders

An extension of autoencoders, which is used for generative purposes, is variational autoencoders,
which impose a probabilistic structure on the latent space. Instead of mapping input data to a
single point in the latent space, VAEs map it to a distribution, typically a Gaussian distribution. This
allows VAEs to generate new data samples by sampling from this distribution. Similarly to AEs,
VAEs consist of an encoder and a decoder, though when minimizing the reconstruction error, a
regularization terms ensures that the latent space follows a standard normal distribution, thus loss

function of VAEs can be written as:
n
1 ~
Ly = ) [MSEGr, 2) + KU(q(2 1 %) 1 ()] (67)
i=1
where KL, is the Kullback—Leibler divergence:
1 d
KL(q(z [x) Il p(z)) = _Ez(l +lo g(ajz) —,ujz — ajz) (68)
j=1

where and u; and g; are the mean and variance of the latent variable z of the j-th dimension [82].

A visual representation of VAEs is presented in Figure 31.

Encoder plz]x) Decoder

z~p(z|x)

Input layer

Figure 31. VAEs architecture. The data goes from the input layer to the encoder, where they are mapped to the latent
space. Finally, the data are decoded from the decoder to get the output.
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B2.2.2. Generative Adversarial Networks

Generative Adversarial Networks is a neural network, mainly used to generate new data that is
like a given dataset. GANs are made up of two competing neural networks: a generator and a
discriminator. These two networks engage in a dynamic game, where they optimize opposing
objectives.

The generator, denoted as G, generates synthetic data by transforming random noise, typically
sampled from a prior distribution p,(z) (such as Gaussian or uniform), into data points resembling
the real data. The discriminator, represented by D, classifies input data as either real (from the
actual dataset) or fake (produced by the generator). The generator’s goal is to generate data, that
can deceive the discriminator into classifying it as real, while the discriminator strives to correctly
identify the fake data. This adversarial relationship is the key feature of GANs.

The objective of the GAN framework can be expressed as a minimax optimization problem, where
G aims to minimize the probability that D correctly identifies its outputs as fake, while the D
attempts to maximize its ability to differentiate real data from fake data. As shown in [83],

mathematically, this can be written as:

mGin mgle (D,G) = Expy10gD ()] + E,p ) [log (1 - D(G(z)))] (69)

In EQ. 69, Pgata(x) is the distribution of the real data, and D (x) is the discriminator's assessment
of whether x is real. The term G (z) represents the data generated by the generator from noise
input z, and D (G (2)) is the discriminator’s prediction on the generated data. The discriminator is
trained to maximize D(x) on real samples and minimize D(G(z)) on fake samples, while the
generator works to maximize D (G (z)), effectively trying to fool the discriminator [83].

GAN training alternates between updating the discriminator and the generator. The discriminator
is trained to better identify real data, and the generator is designed to create data that more
convincingly imitates the real distribution. Ideally, this leads to a balance where the generator
produces data so realistic that the discriminator can no longer reliably differentiate between real

and generated samples.
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B3. Natural Language Processing and Large Language Models

Natural Language Processing (NLP) is a specialized area within artificial intelligence that focuses
on enabling computers to interact with humans using natural language. The primary aim of NLP is
to allow machines to understand, interpret, and generate human language in a way that is both
meaningful and useful. This involves a variety of tasks such as speech recognition, language
translation, sentiment analysis, and text summarization. NLP combines computational linguistics,
which models human language using rules and algorithms, with machine learning, which allows
systems that leverage data and enhance over time.

One of the significant challenges in NLP is managing the ambiguity and variability inherent in
human language. Words can have multiple meanings depending on the context, and the same
concept can be expressed in numerous ways. To tackle these challenges, NLP systems often rely
on extensive datasets and sophisticated algorithms to analyze and understand language patterns.
These systems employ techniques such as tokenization, which breaks down text into individual
words or phrases, and parsing, which examines the grammatical structure of a sentence.

In recent years, the development of large language models (LLMs) has significantly propelled the
field of NLP forward. LLMs are Al models that used vast amounts of text data to understand and
generate human language. These models utilize deep learning techniques, particularly neural
networks, to learn the statistical properties of language. One of the most renowned LLMs is GPT-
3, developed by OpenAl which uses 175 billion parameters, which makes it extremely powerful. It
can perform a wide array of language tasks, from writing essays and poems to answering questions
and generating code.

The training process for LLMs involves feeding the model with extensive text data and adjusting
the model's parameters to produce predictions as close as possible to the real text. This process,
known as supervised learning, enables the model to learn the patterns and structures of language.
Once trained, the model can generate text that is coherent and contextually relevant. However,
training LLMs requires substantial computational resources and large datasets, which can be a
barrier for many organizations.

LLMs have a broad range of applications across various industries. In customer service, they can
be used to develop chatbots that handle customer inquiries and provide support. In healthcare,
they can assist in diagnosing diseases by analyzing medical records and literature. In finance, they

can be used to analyze market trends and generate investment recommendations. LLMs can also
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be utilized in creative fields, such as writing and music composition, to generate new content and
ideas.

Despite their impressive capabilities, LLMs also present limitations and challenges. One of the
primary concerns is the potential for bias in the models. Since LLMs are trained on large datasets
that may contain biased or unrepresentative data, they can inadvertently learn and propagate
these biases. This can lead to unfair or discriminatory outcomes, particularly in sensitive
applications such as hiring or lending. To address this issue, researchers are developing techniques
to detect and mitigate bias in LLMs, such as using more diverse and representative training data
and implementing fairness constraints in the training process.

Another challenge is the interpretability of LLMs. Due to their complexity and large number of
parameters, it can be difficult to understand how these models make decisions and generate text.
This lack of transparency can be a barrier to their adoption in certain applications, particularly
those that require a high level of trust and accountability. Researchers are working on developing
methods to improve the interpretability of LLMs, such as using attention mechanisms to highlight
the parts of the input text that the model is focusing on.

In addition to these challenges, there are also ethical considerations related to the use of LLMs.
For example, the ability of LLMs to generate realistic and coherent text raises concerns about the
potential for misuse, such as generating fake news or deepfake content. There are also concerns
about the environmental impact of training large models, which requires significant
computational resources and energy consumption. To address these issues, researchers and
policymakers are developing guidelines and regulations to ensure the responsible and ethical use

of LLMs.
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Chapter C: Results
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C1. Machine Learning for Identifying Key Factors Influencing Neutralizing Antibody
Levels After SARS-CoV-2 Vaccination

C1.1. Introduction

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a worldwide
epidemic and has become a serious global public health threat [84,85]. The coronavirus genome
encodes four different major structural proteins: spike, envelope, membrane, and nucleocapsid.
ACE2 receptors are typically found on epithelial cells of the oral mucosa and alveolar lung cells Il
but can also be found in other human organs [86]. The virus enters the body via the viral S protein
and binds to ACE2 receptors [86]. COVID-19 is a systemic disease that causes both short- and long-
term symptoms [87,88,89]. According to the literature, the vast majority of affected individuals
have mild to moderate symptoms, with 5% to 10% having a severe or life-threatening course of
disease. Worldwide, the development of effective and safe vaccines and drugs, as well as new
diagnostics and therapies, is a top priority.

Vaccination against SARS-CoV-2 with BNT162b2 mRNA vaccine is playing a critical role in most
countries [90,91,92]. After immunization, healthy individuals exhibit significant levels of IgG
antibodies and neutralizing antibodies directed against the spike receptor binding domain of SARS-
CoV-2, as well as a protracted B-cell response in the germinal center [93,94]. It is worth noting
that NAbs content has been associated with clinically significant immune protection against
COVID-19 [95,96].

Although BNT162b2 is highly effective against COVID-19, a time-dependent decrease in antibody
levels against SARS-CoV-2 was observed in vaccinated individuals [97-101]. Even one month after
the second BNT162b2 injection, there was a modest decline in antibody titers, and the time since
the second vaccine dose was associated with decreased neutralizing antibody activity against
SARS-CoV-2 variants and attenuated protection against COVID-19 [97-101]. Although new SARS-
CoV-2 variants threaten the high level of immune protection achieved through vaccination, [99,
102] a booster vaccine dose combined with transmission-reducing behaviors remains effective in
preventing COVID-19 [103, 104]. Moreover, the persistence of the cellular response to SARS-CoV-
2 after vaccination could influence both the humoral response and the overall protection against

COVID-19 [101, 105-107].
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This study had two goals. The first one was to investigate the kinetics of NAbs and anti-S-RBD IgGs
against SARS-CoV-2 after full vaccination with the BNT162b2 mRNA vaccine for up to 9 months in
healthy individuals. The second goal was the identification of characteristics of individuals that
may act as predictive factors for neutralizing antibody levels long after vaccination.

A useful tool to answer the latter is the application of machine learning techniques, a subfield of
artificial intelligence [108,109,110]. The goal of ML is generally to understand the structure of data
and to fit that data into models that can be understood and used by humans. ML techniques allow
data to be trained and then statistical analysis applied to produce values that fall within a certain
range [109,110]. Thus, ML enables the development of models from sample data to automate
decision-making processes based on data inputs. Based on how the system learns or receives
feedback on what it learns, ML tasks are generally classified into broad groups. The two most
commonly used ML methods are “supervised learning,” in which algorithms are trained based on
labeled input and output data, and “unsupervised learning,” in which the algorithm is not provided
labeled data to discover structure in the input data [109,110].

To identify factors responsible for NAbs levels nine months after vaccination with BNT162b2, four
popular ML methods were applied on the data from the to unveil hidden relationships between
subject characteristics and NAbs that are difficult or impossible to find using classical statistical
approaches. To take advantage of both supervised and unsupervised methods, a combination of
both methods was used in this analysis. In addition, three unsupervised methods were used,

which complement each other.

C1.2. Materials and Methods

C1.2.1. Data acquirement and description

The data used in this study were leveraged from a clinical study that was designed to determine
the kinetics of anti-SARS-CoV-2 antibodies after COVID-19 immunization with the BNT162b2
MRNA vaccine (NCT04743388). The ethics committee of the General Hospital Alexandra approved
the study protocol (Ref No. 15/23 December 2020). The study was carried out in accordance with
the Declaration of Helsinki and the International Conference on Harmonization for Good Clinical
Practice standards of care. All participants provided written informed consent at study entry.

The dataset included 309 patients’ demographic information, medical history, and prescriptions
were collected during an interview at study entry. Weight and height were used to compute the

individual’s body mass index (BMI). All of the individuals were assigned to 1 of 3 groups based on
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their BMI: BMI ranges from 18.5 to 24.9 for those who are underweight; 25 to 29.9 for those who
are overweight; and 30 or more for those who are obese. The afore mentioned characteristics of

the dataset are displayed in Table 1:

Table 1. Characteristics of the Participants in the Study.

Participant Characteristic Value*

Sample size 309
Gender

Men 107 (34.6%)

Women 202 (65.4%)
Age (median) 48.0
Body mass index (median) 24.8

Underweight (n, %) 15 (4.85%)

Normal weight (n, %) 148 (47.90%)

Overweight (n, %) 102 (33.01%)

Obese (n, %) 44 (14.24%)

*Values in parentheses refer to percentages

C1.2.2. Population modeling and simulations

Individual longitudinal percent inhibition values were explored in terms of population kinetic
analysis, utilizing the stochastic approximation expectation maximization methodology for
nonlinear mixed effects, followed by importance sampling approaches. Because the goal of this
study was to determine the pace at which NAbs was eliminated from the body, only the dropping
portion of the NAbs levels was modeled. As a result, data from 2 weeks after the second
immunization up to 9 months after the second vaccine were used.

A number of structural models, including 1- and 2-compartment designs, were evaluated. Single
exponential or linear functions, as well as piecewise linear functions, were used to represent the
kinetics of NAbs elimination. The NAbs levels were classified as normal or log-normal, and a variety
of residual error models were examined (e.g., constant, proportional, and combined). Following
the construction of the final optimal structural model, the impact of the individuals’ characteristics
(e.g., age, gender, BMI) on the model parameters was investigated. The Wald test was performed
to examine whether or not variables could be utilized to explain variation in the parameters. This
was accomplished entirely by writing the appropriate code in Monolix 2020R1 Mixtran language
(Lixoft, Orsay, France). To predict NAbs concentration levels at 12, 15, and 18 months after

vaccination, simulations were conducted assuming that the kinetic parameters remained
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unaltered after the ninth month following the construction of the population model. A number of
1000 individuals were simulated using resampling from the same individual pool with
replacement. A sample size of 1000 individuals were used for the simulations, and the individual
model parameter values were randomly drawn to allow for robust prediction. However, since the
simulated sample size is much larger than the original one, the individual parameter values were
drawn from the original set with replacement, that is, each subject can be used more than once.

The simulations were carried out using Simulx (Lixoft, Orsay, France).

C1.2.3. Machine Learning

ML algorithms were used to analyze the percent inhibition thresholds (i.e., NAbs) with respect to
all data from the above subjects. In ML, tasks are divided into two categories: supervised learning
and unsupervised learning. In supervised learning, the computer is fed examples of inputs labeled
with expected outputs. The goal of this method is for the algorithm to “learn” by comparing its
real outputs to the “learned” outputs to detect errors and adjust the model accordingly. The
supervised learning algorithm used in this study was Random Forest.

Since the data is not labeled in unsupervised learning, it is left to the learning algorithm to discover
commonalities between the input data. Unsupervised learning can have the simple purpose of
detecting hidden patterns in a data set, but it can also have the goal of feature learning, which
allows the computational engine to automatically discover the representations needed to classify
the raw data. In this work, k-means cluster analysis and two-dimension reduction approaches
(principal component analysis and factor analysis of mixed data) were used.

Before applying the ML approaches, the data were tested for multi-collinearity, i.e., the
characteristics of the independent participants were examined to see if they correlated with each
other. Multi-collinearity has a significant impact on the variance associated with the problem and
may also affect model interpretation by undermining the statistical significance of the
independent variables. For all pairs of variables, Spearman’s correlation coefficient (i.e., r) was

used to estimate correlation.

C1.2.4. Principal Component Analysis
Principal component analysis is a popular approach to transform a high-dimensional set of
features into a low-dimensional set of features [62, 111]. The goal of PCA is to find the lowest

dimensional representation of the data while capturing as much information/variance as possible.
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PCA transforms the original space formed from the original dataset into a new space that is a linear
combination of the dimensions of the dataset. Each additional dimension that is developed is
called a principal component. The new coordinates of the data are called “scores”.

PCA is a technique for reducing the dimensions of a data matrix in an attempt to capture as much
variability as possible. Each PC explains a portion of the variance in the original data set. The
direction of the first principal component is the direction in which the data varies the most. The
contribution of each original dimension to the new dimension is quantified by various factors
called “loadings.” Each principal component is the normalized linear combination of the original
features, where normalized means that the squared sum of the loadings of each principal
component equals one. The closer the loading value is to +1 (or 1), the more positive (or negative)
the contribution of that feature to PC.

The best way to visualize the loadings and scores together is to use the “biplot”. The biplot is a
two-dimensional scatter plot where the two axes represent the two most important PCs in terms
of variance explained. The data points are plotted in this two-dimensional coordinate system,
using the scores as coordinates, and the loadings of the first two PCs of each trait are plotted over
the data points.

Scree plots were used to determine the least number of principal components needed to
accurately represent the original data. The main purpose of a scree plot is to show the results of
the component analysis and to locate the apparent change in slope (elbow). In a scree plot, the
eigenvalue is plotted against the principal components. The eigenvalue of a component divided
by the sum of the eigenvalues is the proportion of the variance explained by that component. The
first component usually explains a large portion of the variability, the next components explain a

moderate portion, and the last components explain only a small portion of the total variability.

C1.2.5. Factor Analysis of Mixed Data

While PCA works well on continuous data, it is ineffective on categorical data because the resulting
PCs aim to maximize the variability of the underlying data set in the new, transformed, lower-
dimensional space. This is because categorical features require “one-hot coding” that transforms
them into binary features. The concept of variability is consistent with binary features, as is the
use of PCA.

Factor analysis of mixed data is a technique that combines PCA with multiple correspondence

analysis to analyze numerical and categorical variables [111]. By considering both continuous and
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categorical data, FAMD also leads to a low-dimensional space. The results can be summarized in a
biplot as in PCA, as mentioned above. In addition, as with PCA, scree plots were created to

determine the required number of principal components.

C1.2.6. K-Means Cluster Analysis

When the data is unlabeled, another popular unsupervised learning technique is k-means cluster
analysis, which creates groups (clusters) of variables from the original dataset [111]. K-means
partitions a p-dimensional space into k groups (where p is the number of variables in the dataset).
Each of the k clusters is defined by a centroid, which, as the name implies, is located at the center
of the cluster. Each point in the dataset is assigned to the cluster with the closest centroid. A
meaningful interpretation of the clusters is possible by looking at the coordinates of the centroid.
To determine the optimal number of clusters, the “elbow” approach (scree plot) was used. For
different values of k, the sum of squared distances between each point and the centroid in a
cluster (Within-Cluster Sum of Squares, WCSS) is determined. A line plot is then created with the
squared distances on the y-axis and the different k values on the x-axis. The ideal k is the point at
which the line plot forms an “elbow” (i.e., an angle).

In addition, the silhouette score and Davies-Bouldin index were calculated to determine the
optimal number of clusters. The silhouette score is used to evaluate the quality of clusters created
using clustering methods, i.e., to assess how well samples cluster with other samples that are
similar to each other. The silhouette score is created for each sample from each cluster and ranges
from -1 to +1, with a high number (close to 1) indicating that the object matches its own cluster
well. A value less than 0 indicates that the data from the clusters may not be correct. Negative
values often indicate that a sample has been assigned to the wrong cluster. Similarly, the Davies-
Bouldin index is a validation metric used to determine the best number of clusters. The minimum

value is zero, with lower values indicating better clustering.

C1.2.7. Random Forest

In the context of machine learning, bagging is a technique in which numerous “copies” of the
training data are made (each “copy” being slightly different from the others). Then a weak learner,
such as a “decision tree”, is applied to each copy. In this way, many weak models are generated,
which are then integrated. Random forest is a bagging approach of supervised learning, where a

large number of decorrelated trees are created and then combined by averaging to obtain a more
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accurate and stable prediction of the target variable [111]. To make the model more robust, it is
common to divide the original dataset into two sections, “train” and “test”. The training dataset is
used to train the model and the test dataset is used to evaluate the performance of the model.

In a classification problem (i.e., when the target variable is categorical), the confusion matrix can
be used to evaluate the performance of a model. The confusion matrix is an M x M matrix, where
M is the number of target classes of the target variable. The matrix contrasts the true and expected
classes. This provides a comprehensive view of the overall performance of the categorization
model and the types of errors it makes. The accuracy and misclassification of the predictions can
be calculated to reflect the performance of the classification. By examining the feature
importance, it is also possible to see the contribution of each feature to the prediction of the

target variable when using random forest.

C1.3. Results

C1.3.1. Modeling the kinetics of neutralizing antibodies
To describe the elimination kinetics of NAbs, a population kinetic model was developed. The final
best model obtained from the population study comprised a piecewise function for the

elimination constant, as well as a proportional error model (Table 2).

Table 2. Parameter Estimates for the Final Best Model Describing the Kinetics of NAbs.

Parameter Value Standard Error % Relative Standard Error

Fixed effects

No 96.05 1.690 1.76

kell 0.017 0.001 8.48

beta_kell Age* 0.020 0.002 9.27

kel2 0.111 0.008 7.63

kel3 0.071 0.007 9.16
Standard deviation of random effects

omega_No 0.016 0.002 12.8

omega_kell 1.37 0.099 7.25

omega_kel2 0.98 0.067 6.86

omega_kel3 1.10 0.081 7.36
Correlations

corr_kel2_kell 0.78 0.037 4.68
Error model parameters

b 0.043 0.001 2.79

*Indicates a statistically significant (P = 0.0037 < 0.05) contribution of “age” as a covariate to the first-phase elimination rate

constant.
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b = the proportional error term of the model residual variability; beta_kell_Age = constant for the contribution of “age” on kell;
corr_kel2_kell = the correlation coefficient between kell and kel2; kell = elimination rate constant of the first trimester (zero to
third month); kel2 = elimination rate constant of the second trimester (third to sixth month); kel3 = elimination rate constant of the
third trimester (sixth to ninth month); NAbs = neutralizing antibodies; NO = average initial NAbs value; omega = between-subject
variability estimate for each parameter.

The first elimination constant (kell) was 0.016 NAbs/day (standard error = 0.0014) and
corresponded to the early decay period lasting up to 3 months. Following that, the elimination
constant was calculated to be kel2 = 0.099 NAbs/day (standard error = 0.0076). This result shows
that the NAbs disappear relatively slow at first, but that their removal becomes around 6 times
greater from the third to the sixth month, indicating that they are eliminated much more quickly.
In the period between the sixth and ninth month, the elimination rate constant is 0.071 NAbs/day
(standard error = 0.0065), which is almost 4.5 times higher than in the first trimester and 30% less
than in the third to sixth trimester. This finding indicates a decrease in the elimination capacity of
NAbs, which is a desirable feature, as individuals retain NAbs for a longer period.

According to the findings, age has a significant impact only on the elimination ability of the first
trimester (beta kell = 0.019, P = 0.0037) implying that age does not contribute significantly in the
elimination of NAbs after the third month. This relationship, on the other hand, was statistically
significant (P < 0.001) only during the first phase of the study (up to 3 months). The mathematical
model describing the influence of age on the elimination constant is as following: log(kell) =
log(0.016) + eta_kell, where eta_kell refers to the random effect for intersubject variability of the
elimination constant. Other variables such as gender, BMI were not shown to have a statistically
significant impact on antibody kinetics. Between kell and kel2, it was discovered that there was a
positive association (coefficient = 0.78). No correlation was found between the third elimination
constant and any of kell and kel2.

The goodness of fit and validation plots, of the final model, are depicted in Figure 32. Figure 32A
shows 3 representative individual profiles of NAbs values (% inhibition) versus time. The solid lines
indicate the model’s anticipated values, whereas the circles show the observed NAbs levels. The
close proximity of the model’s predicted line to the actual points demonstrates the model’s high
descriptive ability. In Figure 32B, the individual observed versus predicted NAbs values are
depicted for the 3 age groups, namely, 20 to 40, 40 to 55, and >55-year-old category. The nice
predictive performance can be validated by the fact that the vast majority of values are lying within

the 90% prediction interval (dashed lines in Figure 32B).
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Figure 32. Indicative individual profiles of neutralizing antibodies (% inhibition) over time (A) and predicted vs observed
(B). In plot A, the solid lines refer to the values predicted by the model, while the circles show the experimental values.
The close transition of the model predicted line to the actual points shows the good predictive ability of the model. Plot
B shows the overall fitting results for the 3 age groups, which are indicated as points with different colors. The solid line
represents the optimal prediction performance, while the dotted line represents the 90% prediction interval.

C1.3.2. Simulations and predictions

Aiming to predict NAbs levels at 12, 15, and 18 months following the second vaccination,
simulations were carried out using the final population model, assuming that the removal of NAbs
would be the same as that found in the last trimester (i.e., from sixth to ninth month) after the

second vaccination. The simulation results are depicted in Figure 33.
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Figure 33. Simulated neutralizing antibody levels over a period of 9 months (A), 12 months (B), 15 months (C), and 18
months (D). During the first trimester, a relatively slow elimination of antibodies occurs, whereas the antibody
elimination tends to increase during the next trimester (third to sixth month). In the last trimester of the study (sixth to
ninth month), the elimination ability slows down by 30% compared with the second phase. Predictions for 12, 15, and
18 months assumed a similar elimination ability as the one observed in the last trimester.

Figure 33A shows the simulation prediction for 9 months for which we already have experimental
data. The predicted average value of NAbs is 67.1%, which is quite close to the observed value of
65.7% (Figure 32). This result confirms the predictive ability of the model, at least for time points
close to 9 months. To address the current fundamental global question of whether and when a
third dose should be administered, our simulations were extended to 12, 15, and 18 months.
Presumably, the accuracy of the predictions might decrease with increasing duration, as currently
there is no information about the elimination ability of NAbs from the human body in long term.
Nevertheless, it was worthwhile to make the predictions for longer time periods to gain insight
into what we can expect in the future. In this context, Figure 33B predicts that the average percent
inhibition of NAbs would be 59% 1 year after the second vaccination. This value will further
decrease to 52% after 15 months (Figure 33C) and reach a value of 45% 18 months after the second

vaccination (Figure 33D). These results suggest that at 1 year after full vaccination with BNT162b2,
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a large portion of people (around 41%) would not be highly protected. At 15 and 18 months, the
risk would be even higher, as the percentage of individuals who are not highly protected might be

as high as 48% and 55%, respectively.

C1.3.3. Neutralizing Antibody Levels
Figure 34 shows the mean NAbs values (tstandard deviation) from the day of the first vaccination

to nine months after the second vaccination with the BNT162b2 mRNA vaccine.
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Figure 34. Mean percent inhibition (+standard deviation) of SARS-CoV-2 binding to the human host receptor angiotensin
converting enzyme-2 after vaccination with the BNT162b2 mRNA vaccine in 302 subjects. Neutralizing antibody levels
were measured on day 1 (first vaccination day), 8, 22 (second vaccination day), two weeks later, and one month, three
months, six months, and nine months (i.e., 295 days from the initiation of the study) after the second vaccination.

At D1 and D8, median NAbs titers were low (14.23% and 14.28%, respectively), indicating that
neutralizing antibodies are not formed within the first week after vaccination. Three weeks later,
i.e., on the day of the second vaccination, the median value of inhibition was 54.19%, while two
weeks later the maximum value is reached (97.24%). From this point on, the inhibition decreases

continuously and nine months after the second vaccination the median value of NAbs is 65.43%.
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C1.3.4. Principal Component Analysis and K-Means Clustering

To extract the participants’ information and examine its relationship with NAbs levels, principal
component analysis was performed. Figure 35 shows the results of the PCA analysis superimposed
on those of the k-means cluster analysis. The observations (study participants) are shown as dots
in the plane formed by the two principal components, whereas the lines represent the vectors of
the variables, namely the NAbs levels at D36, M3, and M9, and BMI and age. The different color
of the points refers to the grouping from the k-means cluster analysis. Overlaying PCA and k-means
clustering plots allows simultaneous evaluation and comparison of the results from the two
methods. Scree plots were created to select the optimal number of principal components (Figure
A1A) and clusters (Figure A1B). Separate plots of PCA and k-means clustering can be found in

Figure A2 and Figure A3 in the Appendix A.
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Figure 35. Principal component analysis of the features used in the study. The color of the dots is from the k-means
cluster analysis, which divides the subjects into five groups, each with one distinguishing feature. The coordinates of
the two-dimensional plot refer to the “scores” of the variables in the dimensionality-reduced space (two dimensions
(principal components) are shown in the plot). Key: D36, neutralizing antibody levels two weeks after second
vaccination; M3 neutralizing antibody levels three months after second vaccination; M9, neutralizing antibody levels
nine months after second vaccination; BMI, body mass index.

The first two principal components explain 63.4% of the total variability (39.8% and 23.6% for the
first and second components, respectively). Visual inspection of Figure 35 shows that M3 and M9
are adjacent to each other on the left side of the plot near the first principal component, while

D36 is also close to them, indicating their strong relationship. With respect to the first principal
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component, the loadings of D36, M3, and M9 are -0.44, -0.57, and -0.64, respectively (Table 3).
This means that someone who has high NAbs on M3 will also have high levels at M9. Similarly,
high levels at D36, i.e., at the highest inhibition reached two weeks after the second vaccination,

are likely to result in elevated levels nine months later.

Table 3. Loadings for the two main principal components of the final PCA model.

Principal Component

Variable
1 2
Age 0.26 -0.60
BMI 0.09 -0.75
D36 -0.44 -0.21
M3 -0.57 -0.13
M9 -0.64 -0.09

On the other hand, BMI and age are in the right/lower part of the graph with positive values with
respect to the first principal component (loadings with respect to the first component: 0.26 (age)
and 0.09 (BMI)). This means that BMI and age contribute negatively to the three NAbs levels.
However, the angle between these two characteristics (age or BMI) and the three NAbs vectors is
close to 90°, which means that their influence should be small. As expected, the variables BMI and
age were found to be related, implying that as age increases, BMI also increases.

Correlation between all variables was assessed to exclude variables with strong linear
relationships. Spearman’s correlation coefficients (r) are shown in Figure A4. From this analysis,
NAbs values at M1 (i.e., one month after the second vaccination), M3, M6, and M9 are moderately
or strongly correlated. Also, NAbs values at D1 and D8 are strongly associated with each other
(Spearman’s r = 0.82). Therefore, the NAbs values at D36, M3, and M9 were included in the final
PCA model.

In the same plot with PCA, the k-means cluster analysis yielded five natural groups of individuals
according to their characteristics (age, BMI, sex, height, medical history, medication, etc.), with
each group having a different color (Figure 35). These k-means cluster groups are consistent with
the groups identified by PCA. The estimated silhouette score was 0.45, whereas the Davies-

Bouldin score for the final best model was 0.57; both indices indicate adequate cluster
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discrimination. Several seeds were used for k-means clustering, all of which yielded nearly
identical results, confirming the clustering results.

Within each group, the characteristics of some individuals differ in the sense that one
characteristic (e.g., BMI) is different in a particular group than in the other clusters. In this context,
the five natural groups refer to obese individuals, young individuals, individuals with typical
characteristics (i.e., not elderly or obese, etc.), and participants with low NAbs at D6 or M3/M9

(Table 4).

Table 4. Characteristics of each group formed by k-means cluster analysis. Values refer to the mean estimates for each
category.

Variable *
Group Group Label
D36 M3 M9 Age BMI

1 Low NAbs D36 69.46 79.84 69.39 4750 23.40

2 Low NAbs M3/M9  95.09 76.26 41.13 49.51 24.30

3 Obese 97.21 90.73 58.89 50.03 32.64

4 Young Individuals 97.32 94.03 75.72 3225 22.90

[¢;]

Typical subjects  97.10 93.51 78.65 55.99 24.83

In the first group, the distinguishing feature is mainly the low number of NAbs at D36 (mean =
69.46%) and secondly the low inhibition threshold at M3 (mean 79.84%). Of course, there is
another group of subjects whose salient feature is the relatively low number of NAbs at M3
(76.26%) and M9 (mean = 41.13%). The third group of participants consists of obese subjects
(mean BMI = 32.64). Young individuals with a mean age of 32.25 years form the fourth group,
while the remaining participants with typical values for all five characteristics form the last group.
In addition, the topological properties of the clusters and PCA vectors can be used to determine
the relationship between them (Figure 35). For example, obese subjects tend to have low NAbs,
whereas young subjects or subjects with typical traits have higher inhibitory values. Subjects with

III

“typical” traits have intermediate performance, as they fall between obese and young subjects.
The highest immunological response nine months after vaccination is seen in subjects belonging
to the last group, namely with BMI = 24.83 and age = 55.99 years. The lowest NAbs values at M9
(and M3) are observed in subjects who have a combination of conditions: Age between 47-50

years and BMI close to 24 (i.e., groups 1 and 2 in Table 5).
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C1.3.5. Factor Analysis of Mixed Data

Principal component analysis is useful for reducing the dimensionality of the data set and
identifying patterns in the data. However, information from categorical variables such as sex,
concomitant diseases, medications, and whether the subject has had a previous COVID19 cannot
be used because PCA works only for numeric data. In addition, to investigate the possible influence
of both numeric and categorical variables, a factor analysis of mixed data was performed in this
study. In this case, all available information from the individuals participating in the study was
analyzed. Factor analysis of mixed data was applied several times by including or excluding certain
variables to find the model that explained the most variability in the data.

The biplot, score, and loading plot of the final FAMD model are shown in Figure 36, while the scree
plot, constructed to select the optimal number of principal components, is shown in Figure A1C.
The total percentage of variability explained by the first two principal components is 68.2% (36.4%
and 31.8% for the first and second components, respectively). Visual inspection of the FAMD
results shows that the common aspects are consistent with PCA. Namely, age and BMI contribute
negatively to NAbs values at D36 and M9. Again, the orthogonal arrangement of the vectors BMI
and D36/M9 shows the small contribution of BMI to NAbs values. The angle between the “age”
vector and the two NAbs vectors is obtuse, indicating that “age” certainly makes a negative
contribution to neutralizing antibodies. Young people tend to have higher neutralizing antibody
levels than older people. The fact that the angle (age-0-D36) is larger than (age-0-M9) means that
age affects NAbs levels in D36 more than those in M9 (Figure 36). In other words, the influence of
age is stronger at time points close to the vaccination day, and the role of age seems to decrease

with time.
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Figure 36. Biplot for factor analysis of mixed data. The coordinates of the two-dimensional plot refer to the “scores” of
the variables in the dimensionality-reduced space (two principal components are shown in the plot). The lines represent
the vectors of the variables in the 2D space. Key: D36, neutralizing antibody levels two weeks after second vaccination;
M9, neutralizing antibody levels nine months after second vaccination; BMI, body mass index; MedHist_1, subjects with
autoimmune disorders; MedHist_0, subjects without autoimmune disorders; Sex_M, men; Sex_F, women; PCR+,
subjects with previous COVID-19 infection; PCR-, subjects without previous COVID19 infection.

In addition, the FAMD biplot can provide further insight into the role of categorical variables. In
this context, gender does not seem to affect NAbs levels at M9 (mainly), but there seems to be a
weak relationship at D36. In the latter case, it appears that female subjects (sex = 2 in the graph)
are associated with higher neutralizing antibody levels two weeks after the second vaccination,
i.e., at D36. In the FAMD graph, it is noticeable that the performance of the two sexes is exactly
opposite because their vectors are in opposite directions, i.e., their loadings are opposite with
respect to both axes.

Figure 36 also shows that a previous positive PCR test (i.e., individuals infected with SARS-CoV2)
has no effect on titers at M9, but PCR+ is strongly related to inhibition values at D36. As expected,
earlier infection with COVID-19 leads to higher values at D36 (mainly) and nine months later (i.e.,
at M9).

Finally, an important finding regarding the role of comorbidities can be seen in Figure 36. Due to
the limited sample size, subjects were divided into two categories: those with autoimmune

diseases and those without autoimmune diseases, i.e., those who were completely healthy or
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suffered from other diseases such as cardiovascular disease, mental illness, etc. FAMD analysis
revealed that the vector of patients with autoimmune diseases (MedHist_1) is arranged in the
opposite direction to vectors D36 and M9, indicating that subjects with autoimmune diseases have
lower inhibitory levels compared to those without autoimmune problems. This feature is evident
in NAbs levels early after vaccination, e.g., two weeks after the second vaccination, but to a lesser

extent in NAbs titers nine months after full vaccination.

C1.3.6. Random Forest

To quantify the predictive factors for NAbs levels nine months after complete vaccination with
BNT162b2, the random forest technique was used. Figure 37 shows the importance of the
variables included in the analysis, ordered from highest to lowest contribution to M9 values. It is
plausible that NAbs levels at M3 have the highest contribution (score = 34.2%), followed by
inhibition titers at D36 (score = 22.5%). BMI and age, which already had a negative effect on M9
levels in the PCA and FAMD analyzes, also contribute to a lesser but important extent: 18.3% and
17.6% for BMI and age, respectively. Gender has a small effect on M9 values, as significance
estimates were 2.0% for men and 2.0% for women. Medical history, i.e., whether you have an
autoimmune or other disease (or are healthy), has a small effect on M9 levels (value = 1.0%).
Finally, previous infection with SARS-CoV-2 before the first vaccination has a negligible effect on
M9 inhibition titers. It should be mentioned that a 2:1 split (training set: test set) was used. In

addition, multiple replicates of the 2:1 split were used to ensure the validity of the results.
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Figure 37. Importance scores for the feature parameters of the subjects participating in the study with regard to their
contribution in predicting neutralizing antibody levels nine months after the second vaccination. Key: D36, neutralizing
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antibody levels two weeks after second vaccination; M3, neutralizing antibody levels three months after second
vaccination; BMI, body mass index; MedHist_1, subjects with autoimmune disorders; MedHist_0, subjects without
autoimmune disorders; Sex_M, men; Sex_F, women; PCR+, subjects with previous COVID-19 infection; PCR-, subjects
without previous COVID19 infection.

To express how many of the predictions of a random forest classifier were correct and when they
were incorrect (i.e., the RF classifier becomes “confused”), a confusion matrix was created (Figure

38).
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Figure 38. Confusion matrix of the random forest classifier to indicate the percentage of correct or incorrect predictions.
The labels “negative”, “moderate”, “high”, and “very high” refer to neutralizing antibody levels (0-30%), (30-50%), (50—
75%), (>75%).

The rows of the confusion matrix indicate the observed (true) labels, while the columns represent
the predicted (expected) labels. The values within the matrix refer to the percentages of cases
assigned to each case, as this is a normalized confusion matrix. Thus, the diagonal values indicate
the percentage of cases in which the predicted label matches the observed one. The values in the
other cells represent cases where the classifier misidentified an observation. The developed
model RF is able to correctly classify 74.5% of very high NAbs values, 46.5% of medium values,
and 27.8% of high values (Figure 38). No predictions were made for negative values because there
were no subjects belonging to this category.

The prediction of very high values is accurate, but it was less accurate for “medium” and “high”

values. The overall prediction accuracy of the RF classifier was 66.32%. This value could be higher
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if more participants were available for the “negative” group. However, since no data were available
for the negative class and most of the data involved very high inhibitions, perhaps the classes were
unbalanced and there was a tendency to overpredict. Either way, a percentage of 66.7% (=27.8%
+38.9%) high NAbs were predicted to be either high or very high. Similarly, a percentage of 69.3%

(=46.2% + 23.1%) truly moderate cases were predicted to be moderate or high.

C1.4. Discussion

The primal goal of this study was to examine the kinetics of NAbs and anti-S-RBDs against SARS-
CoV-2 in 309 healthy individuals, after full vaccination with the BNT162b2 mRNA vaccine for up to
9 months.

A population kinetic model was developed to describe the elimination kinetics of NAbs. The best
model consists of a compartment (the whole body), linear kinetics, and a piecewise function for
the elimination constant. It is worth noting that 3 different kinetic phases were identified
depending on the time period after vaccination. It appears that after the second vaccination, there
is a relatively slow elimination of antibodies up to 3 months. It should be mentioned that this
apparent slow elimination during the first trimester after vaccination may be due to the fact that
NAbs levels are quite high (>90%) and in some cases may exceed the linear phase of the assay.
Therefore, this part of the analysis may not be absolutely quantitative. From that point on,
elimination increases >6-fold, which means that the NAbs disappear from the body very quickly.
Hopefully, this rapid elimination slows down after 6 months and during the last trimester of the
study (i.e., from month 6 to month 9), the rate of elimination decreased by about 30% compared
with that observed in the second trimester.

To predict NAbs levels at 9, 12, 15, and 18 months after the second vaccine shot, simulations were
conducted using the final population model, assuming that NAbs elimination would be the same
as found in the last trimester (i.e., from the sixth to ninth month) after the second vaccine. In the
future, similar studies involving time points after 9 months (at least one more) would provide a
more accurate assessment of the elimination ability of NAbs. In this study, the simulations
revealed that the average value of percent inhibition of NAbs would be 59% 1 year after the second
vaccination. This value would further decrease to 52% after 15 months and reach a value of 45%
18 months after the second vaccination. These results mean that at 1 year after completion of
vaccination, 41% of individuals would not be highly protected. This percentage would be even

higher and reach 55% at 18 months.
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The significance of our findings stems from the prognostic value of NAbs levels in terms of
immunological protection against symptomatic COVID-19 [95]. As a result, the described NAbs
reduction in time may inform public health policy for the use of booster doses. Despite the fact
that emerging SARS-CoV-2 variants pose a threat to the high rate of immune protection following
vaccination, [99, 102] a booster vaccine dose combined with transmission-reducing behaviors
remains effective in preventing COVID-19 [103, 104]. It should be noted that in our simulations,
we used the identical kinetic parameter values for the extrapolation period after 9 months that
we discovered in the 6- to 9-month interval. This option was chosen because it is considered the
safest for forecasts, as there are no robust observations on kinetics after 9 months in either the
data or the literature. As a result, this option would avoid significant over- or underestimation of
NAbs values.

One limitation of this study is the relatively small sample size which can hamper the investigation
of specific pathophysiological disorders, such as autoimmune illnesses. Therefore, subgroup
analyses should be considered rather exploratory. It should also be mentioned that simulations
use the information provided by the experimental data to make predictions. The more
representative the original data is of the entire population, the more reliable the simulations will
be. A larger sample with more men or patients with several comorbidities would allow for a more
accurate investigation and thus more robust simulations. Furthermore, we did not evaluate the
kinetics of T-cell responses over time. The sustainability of cellular response against SARS-CoV-2
following vaccination may impact both humoral response and protection against COVID-19 [101,
105-107]. Future research could investigate the neutralizing efficacy of anti-SARS-CoV-2 antibodies
against variants of concern as well as the role of anti-S-RBDs toward COVID-19 infection.

The second aim of this study was to use the analytical capabilities of machine learning to
determine the parameters responsible for NAbs levels nine months after BNT162b2 vaccination.
Data from a clinical trial of 302 subjects were analyzed to uncover correlations between subjects’
characteristics that would be difficult or impossible to detect using conventional statistical

methods. Figure 39 shows the general route of analysis used in this study.
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Figure 39. Flowchart presenting the overall route of analysis. The association between neutralizing antibody levels
(NAbs) and demographics/medical history was investigated using four machine learning methods: principal component
analysis, k-means cluster analysis, factor analysis of mixed data, and random forest.

The highest levels of NAbs (median = 97.24%) were observed two weeks after the second
vaccination, whereas thereafter there was a statistically significant decline up to nine months.
Although the ability to neutralize SARS-CoV-2 antibodies decreased over time, it remained
sufficiently high above positive thresholds; a median percent inhibition of 65.43% was observed
after nine months. Other prospective studies using classical statistical methods have shown that
BNT162b2 provides decreasing but significant COVID-19 protection 6 and 9 months after full
vaccination [97, 101,112,113,114]. Data from the field show that protective immunity against the
delta version of SARS-CoV-2 decreases after several months of full immunization with BNT162b2
[99,114]. However, protection against COVID-19, particularly against severe disease, remains

unchanged compared with unvaccinated individuals [99,114].
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Application of PCA (Figure 35) showed the strong relationship between M9 levels and M3 levels
and even earlier time points at D36, where maximum inhibition is observed. K-means clustering
showed the natural grouping of subjects into five categories. Within each group, the
characteristics of some subjects predominate in the sense that one characteristic is distinct from
the other clusters. Young subjects, obese subjects, subjects with typical characteristics (i.e., not
elderly or obese, etc.), and participants with low NAbs at D36 or M3/M9 make up the five natural
groups (Figure 35). The topological characteristics of the groups as well as the PCA vectors can be
used to establish their relationships. For example, obese patients have low NAbs, and
accumulating data suggest that obesity may attenuate the antibody response to COVID-19
vaccination [115]. Young subjects or those with normal characteristics have higher inhibitory
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levels. Participants with “typical” characteristics are in the middle, between fat and young
subjects. Participants in the last group, with a BMI of 24.83 and an age of 55.99 years, have the
best immune response nine months after vaccination.

Factor analysis of the mixed data (Figure 36) showed that younger people have greater amounts
of neutralizing antibodies than older people. Based on the observed angles between vectors, age
was found to influence NAbs levels more at D36 than at M9. In other words, the influence of age
is strongest near the vaccination date, and the role of age appears to decrease with time. This
finding is consistent with previous studies (using typical statistical methods) indicating that older
age is associated with lower humoral response after SARS-CoV-2 infection or immunization [116-
119]. Compared with younger people, the elderly may have a lower capacity to produce antibodies
[120]. According to one study, more than one-third of elderly vaccinated subjects lose NAb activity
against the delta variant of the pathogen six months after complete immunization with BNT162b2,
compared with less than 1% of younger subjects [120]. Although participants’ age has a
statistically significant effect on NAbs production, as shown by NAbs levels two weeks after
vaccination, this effect fades with time.

In addition, FAMD allowed examination of categorical characteristics such as gender,
comorbidities, etc. Gender did not appear to affect NAbs levels at M9 (primarily), but there was a
modest association with D36. In the latter situation, female subjects (sex = 2 in the graph)
appeared to have higher levels of neutralizing antibodies two weeks after the second vaccination.
Regarding comorbidities, subjects were divided into two groups: those with autoimmune diseases
and those without. FAMD analysis revealed that the vector of the patients with autoimmune

diseases was oriented opposite to vectors D36 and M9, meaning that participants with
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autoimmune diseases had lower inhibitory levels than those without autoimmune diseases. These
results are consistent with a previous systematic literature review study that indicated a lower
antibody response after COVID-19 vaccination in individuals with rheumatic diseases compared
with controls [121]. This feature is more evident in NAbs levels early after vaccination and less
evident in NAbs titers nine months after full immunization.

Finally, by using the random forest technique, we were able to quantify the features predicting
neutralizing antibody levels nine months after full immunization with BNT162b2. NAbs levels at
M3 contribute the most, followed by levels at D36. BMI and age were found to have a small
negative impact on M9, while gender had a small impact. Medical history, i.e., whether a person
has an autoimmune or other disease (or is healthy), has a small effect on inhibitory levels nine
months after full vaccination. Finally, prior SARS-CoV-2 infection before the first vaccination has a
small effect on M9 inhibitor levels.

A limitation of this study was the small sample size, which may limit the ability to investigate
specific pathophysiologic conditions. Therefore, the subgroup analyzes performed in this study
should be considered exploratory. Comorbidities are known to decrease predicted
immunogenicity after COVID-19 vaccination; however, this association was small between two
weeks and nine months. A larger number of participants in each group is needed to find further
significant differences in antibody kinetics. It is also worth noting that patients with serious
comorbidities, such as cancer, were excluded from the current study, so the effects of these
conditions could not be examined. The role of concomitant medications also could not be studied
because the number of subjects in the study was limited compared with the large number of
medications that participants were taking. Previous studies have shown that active
immunosuppressive drugs can lead to poor humoral response after COVID-19 vaccination [122-
126]. However, this aspect could not be investigated in this study. Regarding the role of gender, it
should be noted that men and women received unequal sample sizes. The ratio of women to men
is approximately two to one. In general, unequal sample sizes can lead to biased comparisons, but
we assume that this is not a problem in our case, since the imbalance is not excessive but rather
normal (33.8% versus 66.2%). The duration of the study refers to nine months after the second
vaccination, almost 10 months after the first dose. Although this observation period is quite
appropriate for the current time point, since vaccination programs began almost a year ago, future
studies should be conducted with data for a longer period (e.g., 12 months postvaccination) to

examine longer-term immune response outcomes.
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C1.5. Conclusions

In this study it is shown a sustained but declining humoral immunity against SARS-CoV-2 at 9
months postvaccination with BNT162b2 among 309 healthy individuals. This effect may reflect a
declining degree of immune protection against COVID-19 and advocates for the administration of
booster vaccine shots especially in areas with emerging outbreaks.

Furthermore, four common machine learning approaches were applied to identify the parameters
responsible for NAbs levels nine months after BNT162b2 vaccination. Data from a clinical trial of
302 subjects were analyzed using principal component analysis, k-means clustering, factor analysis
of mixed data, and random forest. Application of PCA revealed a strong association of M9 levels
with those of M3 and even two weeks after the second vaccination, i.e., when maximal inhibition
is observed. K-Means clustering showed the natural grouping of subjects into five categories, with
the characteristics of some individuals predominating within each group. These five groupings
refer to young subjects, obese subjects, subjects with typical characteristics, and subjects with low
NAbs at D36 or M3/M9. Complementary to all these characteristics, factor analysis of the mixed
data showed that young subjects had greater amounts of neutralizing antibodies compared with
old subjects. Although age has a statistically significant effect on NAbs production, as shown by
NAbs levels two weeks after vaccination, this effect decreases with time. In addition, participants
with autoimmune diseases were found to have lower inhibitory levels than participants without
autoimmune diseases. Finally, we were able to quantify the importance of person characteristics
in predicting neutralizing antibody levels nine months after full vaccination using the random
forest technique. NAbs levels at M3 contribute the most, followed by levels at D36, whereas BMI
and age were shown to have a small negative impact on M9. Gender, previous SARS-CoV-2
infection, and medical history have also been shown to have a small effect on inhibitory levels nine

months after full vaccination.

92



C2. |Introducing Data Augmentation in Clinical Studies Using Variational

Autoencoders

C2.1 Introduction

Sample size estimation is essential in clinical trials to ensure safety and efficacy [53]. A well-sized
sample offers insights into the population but collecting large amounts of data can be challenging
and costly. Clinical trials must be meticulously planned with a protocol that includes objectives,
endpoints, data collection methods, sample selection criteria, data handling procedures, statistical
methods, and a justified sample size [53].

The required sample size depends on the study design, outcome type, and hypothesis test. Key
factors in estimating sample size include the minimal detectable difference, variability in
measurements, desired statistical power, and significance level [54]. Balancing the sample size is
crucial [55]; too small a sample may miss true differences, while too large a sample can be
unethical and wasteful. Justifying sample size is increasingly expected by funding agencies, ethics
committees, and journals. For highly variable drugs, large sample sizes are often necessary as per
regulatory guidelines such as EMA in 2010 and FDA [56,57,58]. Increased variability makes proving
bioequivalence more difficult, necessitating larger samples.

The aim of this study is to introduce a new data augmentation idea in clinical trials by using VAEs
to reduce the required sample size. In order to achieve this task, several forms of VAEs were
explored and used for the generation of virtual populations. The VAE-generated subjects were
appropriately set up in the form of an equivalence study. The first step of this analysis was tuning
the VAE system by selecting the most appropriate hyperparameters. In the next step, the
previously tuned VAE model was used to explore several scenarios between the assessments of

two groups of volunteers (i.e., test (T) vs. reference (R)).

C2.2. Materials and Methods

C2.2.1. Strategy of the Analysis

Classically, in clinical trials, the sample size is explicitly stated in the study protocol and, therefore,
estimated before the initiation of the study. Estimation of the sample size is a complex procedure
that relies on several parameters of the trials, among which the most important are measured

endpoint (or endpoints), measurement scale of the endpoint, variability of the endpoint, nominal
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level of the type | error, maximum anticipated type Il error, acceptance limits, and difference
between the treatments (in the case of interventional studies). However, when the variability of
the endpoint(s) is high, the type | error is set to be very low or we want to increase the statistical
power of the study (i.e., decrease type Il error), there is a need for a large sample size. The latter
leads to the inclusion of many human participants, rather increased costs, a long duration of the
study, a high possibility of dropouts, etc. There is no much we can do to limit the sample size; only
in the case of bioequivalence studies, the scaled average approach has been proposed, where the
acceptance limits scale as a function of the residual variability of the study [56,57,58].
The aim of this work is to introduce a novel idea for reducing the required sample size in clinical
trials. The idea is as follows:

a) Perform the clinical study using a limited number of volunteers

b) Using the results from “a”, apply in the next step a VAE in order to create virtual subjects

and increase the statistical power.
The ideal situation would be one where we could achieve high statistical power without increasing
the false positive rate (type | error). In the following lines, the methodology and results are
presented of such a method where the latter requirements are fulfilled. In order to show that VAE
works efficiently, an experimental method was set up. In brief, the experimental part is outlined
below:
i.  Create N virtual subjects (e.g., N = 100) using Monte Carlo simulations. This is considered

IM

the “original” dataset.

ii. Set the average endpoint value equal to 100 units and conduct sampling assuming log-
normal distribution [56]. Several levels of variability (e.g., 10%, 20%, 40%, etc.) are used
for the random creation of virtual subjects.

iii.  Assume two treatments: Test (T) and Reference (R), as in the case of bioequivalence
studies. Several levels of the T/R ratios are explored.

iv. Use these virtual subjects to form a clinical trial; for the purposes of this work, a parallel
clinical design was used. Half of the subjects are considered to receive one treatment (e.g.,
T) and the other half received the other (e.g., R).

awsn

V. Draw a random sample from the original dataset (steps “i

{ousn
1

and “ii”) to create the sub-
sample.
vi.  Apply VAE to the sub-sample created in the previous step (i.e., “v”). This leads to the

creation of the “generated sample of subjects”.
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vii.  Apply the typical statistics imposed by the regulatory authorities [57,58]. The statistical
analysis compares T vs. R separately for the “original dataset”, “sub-sample”, and “VAE-
generated dataset” (or simply the “generated dataset”).

viii. Record the success or failure of the study separately for the “original dataset”, “sub-
sample”, and “generated dataset”.

“un o i

ix. Repeat steps “i"—“viii” many times (e.g., 500) to obtain robust estimates for the
percentage of acceptance (i.e., % success) of each of the three datasets.
X. Compare the performances obtained in step “ix”.

The set-up, validation, and fine-tuning of the VAE hyperparameters were conducted exhaustively
after step “vi”.

Generally speaking, it would be preferred for the VAE-generated dataset to result in higher
percentages compared to the sub-sampled dataset. It would be almost ideal if the performance
of VAE-generated data were similar to that of the original dataset. Finally, it would be ideal if the
performance of the VAE dataset were even better than the original data. As will be shown later in

this work, the latter exists, namely, the performance of the VAE-generated data was even better

than when using the original data in cases of high variability.

C2.2.2. Variational Autoencoders

Variational autoencoders represent an expansion of conventional AEs [127,128]. In conventional
autoencoders, the encoder acquires a latent representation of the data, which is subsequently
utilized by the decoder to reconstruct the initial input data. The process is executed
deterministically, indicating that identical input will yield identical output. In contrast to other
methods, VAEs aim to establish a mapping between the input data and a probability distribution
across the latent space. Specifically, this distribution is represented by the mean and variance of
a Gaussian distribution, which is typically utilized. The ability to perform random sampling from
the latent space is a valuable technique as it enables the subsequent utilization of this output as
an input for the decoder component, thereby facilitating the generation of new data.

The primary aim of VAEs is to reduce the reconstruction loss, which is similar to that of a
conventional AE. However, VAEs also strive to minimize the KL differences between the acquired
distribution and a prior distribution across the latent space. The KL divergence quantifies the
degree of resemblance between two probability distributions, especially the extent to which

distribution Q provides an adequate approximation of distribution P. Assuming that x refers to the
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input data and z represents the latent variables or the encoded representation of the input data,
the objective in the context of VAE is to approximate the posterior distribution P(z|x), which
facilitates the projection of data into the latent space. Due to the unknown nature of P(z|x), a
simplified estimation of Q(z|x) is utilized. In the process of training a VAE, the encoder module is
trained to minimize the discrepancy between the posterior distribution Q(z|x) and the prior
distribution P(z|x) by optimizing the KL divergence between the two distributions. Consequently,
the objective function of the VAE comprises the divergence of the KL term, necessitating its

minimization.

C2.2.3. Tuning of Hyperparameters

In a neural network, such as a VAE, the most important hyperparameters refer to the number of
hidden layers, number of neurons per hidden layer, number of epochs, activation function,
optimization function, weight initialization, dropout rate, and regularization. In this study, the
optimization of hyperparameters was performed using a grid search. In particular, several sets of
values were predefined, and the performance of the VAE model was exhaustively evaluated
through an iterative process of trial and error [129]. Various values were tested for epochs, such
as 100, 500, 1000, 5000, and 10,000. In relation to the activation function, the experiments were
conducted utilizing both “softplus” and “linear” activation functions for both the hidden and
output layers.

The KL component and the reconstruction component of the loss function were equally weighted,
and the dimension of the latent space was chosen. Finally, with regard to the number of hidden
layers and the number of neurons in each hidden layer, various configurations were explored
consisting of 2, 3, and 4 hidden layers for both the encoder and decoder. The encoder consisted
of 128, 64, 32, and 16 neurons, while the decoder consisted of 16, 32, 64, and 128 neurons,
respectively. Table 5 displays all of the aforementioned factors tested during the development of

the VAE.
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Table 5. Hyperparameter tuning during the development of the variational autoencoders. In all cases, the latent space
dimension was equal to 1.

Number of Neurons

Activation Weights of Loss Number of Hidden S
Function Function Layers in Hidden Layers
Number of y (from Left to Right)
Epochs
Hidden — Output KL KDL el Encoder Decoder Encoder Decoder
Layers Layer Part Part
100 softplus  softplus 1 1 2 2 32-16 16-32
500 linear linear 3 3 64-32-16 16-32-64
128-64- 16-32-
1000 4 4 32-16 64-128
5000
10,000

All possible combinations of the factors listed on the left-hand side of Table 5 were investigated.
The experimental runs detailed in Table 5 utilized the TensorFlow 2.10.0 Python package and

Python version 3.7, with execution taking place within a “Jupyter notebook” environment.

C2.2.4. Monte Carlo Simulations

The methodology used for the generation of subjects was as follows: Initially, a sample of 100
subjects was generated for the reference (i.e., R) group through a random process, utilizing a
normal distribution with a mean of uj (i.e., the average endpoint value) and a standard deviation
of oz. Then, a random subsampling procedure was performed on the original R group, whereby a
proportion (gradually decreasing from 90% to 10% with a step of 10%) of the data, termed
“subsample size”, was selected from the distribution. Subsequently, the subsample was utilized to
train the VAE model, followed by sampling from the inferred latent distribution and generating a
total of 100 virtual subjects for the R group. Similarly, the aforementioned procedure was also
repeated for the test (i.e., T) group of subjects. In the case of the T group, random generation was
based on a mean endpoint value of i and standard deviations a7. The aforementioned procedure

is schematically shown in Figure 40.
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Figure 40. Schematic representation of the analysis strategy in this study. Initially, two randomly generated datasets
were generated for the test (T) and reference (R) groups. Then followed subsampling to draw parts of the original
population. Finally, the variational autoencoder was applied to the subsampled data in order to produce the generated
datasets. The aim of the generated datasets was to exhibit the same properties as the original data. In this study,
comparisons were made among the three datasets (original vs. subsampled vs. generated), as well as between the T
and R groups of all datasets.

Several ratios between the average endpoint values of the T and R groups were explored. In order
to achieve this task, the mean endpoint value for R was set at 100, while for the T group, it was
equal to 1.00x%, 1.10x%, 1.25x%, and 1.50x times that of R. In all cases, the coefficient of variation (CV)
was equal between the T and R groups, and three different CV values were explored: 10% (low
variability), 20% (medium variability), and 40% (high variability).

According to the aforementioned procedure, three different types of samples were utilized in the
simulations: (a) the original dataset, (b) the subsampled group, and (c) the regenerated group by
using the VAE system. To find out how well the VAE approach works, statistical analyses were
conducted to compare the original, subsampled, and made-up data within and between the R and
T groups. In addition, comparisons were made between the T and R groups of each dataset,
namely, the T vs. R of the original dataset, the T vs. R of the sub-sampled dataset, and the T vs. R
of the VAE dataset.

After the generation of the virtual subjects, they were appropriately classified into two groups in
order to construct a parallel clinical design [56]. Ln-transformation (Napierian) was applied to the
generated values before proceeding to the statistical analysis. Since the data obtained from
bioequivalence studies may not follow a normal distribution, the official approach to address this
issue is to apply a natural logarithm transformation to the data before conducting statistical
analyses [57,58]. Thus, regardless of the distribution of the original data, In-transformation is
always applied in the field of bioequivalence before statistical analysis [56,57,58]. After the
analysis is completed, the results are transformed back to the original scale to interpret the

findings in a clinically meaningful way, as we did in our study. The statistical analysis was
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performed using the typical bioequivalence criteria (90% confidence interval), and a decision
regarding equivalence or not was made if the 90% confidence interval fell within the acceptance
limits of 80.00-125.00% [57,58]. The statistical assessment followed the principles of equivalence
testing, namely, the two-one-sided test (TOST) procedure [57,58]. The above-mentioned

procedure was repeated several times (500) to allow for reliable estimates.

C2.3. Results

Initially, an analysis was carried out to ascertain the optimal activation function for the hidden
layers. The effectiveness of the linear and “softplus” activation functions was assessed. The
implementation of the “softplus” activation function yielded faster and superior convergence. The
“softplus” activation function demonstrated a convergence rate of 92%, while the linear activation
function exhibited a convergence rate of 74%. Furthermore, the loss function’s final value was
thrice higher when employing the linear activation function in contrast to the “softplus” activation
function.

The next step of the analysis was the assessment of the activation function employed in the output
layer. The “softplus” and linear functions were evaluated as potential activation functions. The aim
of the study was to assess the degree of similarity between the generated data and the bell-

shaped distribution of the source data. The outcomes are depicted in Figure 41.

(a) softplus activation function (b) linear activation function
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Figure 41. Distribution of the generated data for both R and T groups using the “softplus” (a) and linear (b) activation
functions for the output layer.

As illustrated in Figure 41, the data generated for both R and T groups exhibited a bell-shaped

distribution when a linear activation function was used for the output layer (Figure 3b). It was
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observed that the utilization of a linear activation function for the output layer resulted in a more
optimal distribution as opposed to the “softplus” activation function, which led to a right-skewed
distribution (Figure 3a). Overall, it appears that the utilization of the “softplus” activation function
in the output layer yields an exponential-like distribution for the resultant data, whereas the
adoption of a linear activation function generates data with a bell-shaped distribution.

The process of optimizing the number of epochs for model training was also executed. The values
of 100, 500, 1000, 5000, and 10,000 underwent testing. Each of the variables mentioned above
was used to train a VAE model and, after that, the trained model was used to generate data for
the R and T groups. The results are illustrated in Figure 42.

(a) (b) (c)

epochs = 100 s == R group | epochs = 500 == R group EPOQhS =1000 1 == R group

= Tgroup | 25
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Figure 42. Distribution of the generated data for both the R and T groups using variational autoencoders with 100 (a),
500 (b), 1000 (c), 5000 (d), and 10,000 (e) epochs.

Figure 42 presents a graphical representation that reveals a considerable degree of variance in the
data over 100 epochs (Figure 42a). Moreover, the data were not centered around the actual mean
of both the R and T groups, which was 100. Similarly, this pertained to the situation in which 500
epochs were employed (Figure 42b). On the other hand, it was observed that increasing the
number of epochs beyond 1000 made a significant difference in how well data were centered
around the mean (which was 100) and how well variance was placed within the desired range
(Figure 42c). A similar pattern was further observed when the number of epochs was increased to

5000 and 10,000 (Figure 42d,e, respectively).
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Finally, an investigation was carried out to ascertain the optimal number of hidden layers for both
the encoder and decoder components. The investigation analyzed the values of 2, 3, and 4 as the
number of hidden layers in both the encoder and decoder. As a consequence, overall numbers of
4, 6, and 8 hidden layers were evaluated, correspondingly. The shape and statistical properties of

the generated data were evaluated for both the R and T groups in all cases (Figure 43).

(a) Number of hidden layers: 2 (b) Number of hidden layers: 3 (c) Number of hidden layers: 4
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Figure 43. Distribution of the generated data for both the R and T groups using variational autoencoders with 2 (a), 3
(b), and 4 (c) hidden layers for the encoder and the decoder.

Figure 43 shows that the generated data did not exactly match the normal distribution of the
original data and had a central tendency of about 100, especially when the encoder and decoder
were limited to two hidden layers (Figure 43a). The findings indicate that there was a noteworthy
enhancement in outcomes when the encoder and decoder were equipped with three hidden
layers (Figure 43b). This particular arrangement facilitated a more effective capture of the shape
and mean of the original dataset. This held true in cases where both the encoder and decoder had
four hidden layers (Figure 43c).

In the next step, a statistical analysis was conducted to compare the properties of the generated
datasets, which were obtained from subsamples of different sizes ranging from 10 to 90, with
those of the original dataset. The assessment of equivalence (or non-equivalence) was explored
for this objective. The research included exploration with diverse autoencoder configurations and
data variability. Specifically, coefficient of variation values of 10%, 20%, and 40% were employed.
Furthermore, the investigation examined the effects of distinct activation functions, specifically
“softplus” and linear, on the hidden layer of the convolutional neural networks. The

aforementioned procedure was implemented multiple times utilizing Monte Carlo simulations and
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the percentage of equivalence acceptance (i.e., the probability to reject the null hypothesis) was

counted.

Figure 44 illustrates the probability of accepting equivalence under the TOST hypothesis. The
diagram depicts the diverse subsample levels, alongside the two groups characterized by the three
coefficients of variation values (10%, 20%, and 40%) and the two discrete activation functions

employed for the hidden layers.
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Figure 44. Probability of accepting equivalence between the original and the generated datasets for three levels of
variability (CV): (a) 10%, (b) 20%, and (c) 40%. The results are shown separately for the test and reference groups, as
well as the two types of activation functions (“softplus” and linear) used for the hidden layers.
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Figure 44 demonstrates the trend of equivalence acceptance as the subsample size proportion
increased (from left to right) in the case of CVs 10% and 20% (Figure 44a,b, respectively). On the
contrary, when the CV was equal to 40%, the probability of accepting equivalence rose with an
increase in the subsample size (Figure 44c). This attribute could be observed in both the Rand T
groups. Ultimately, it seems that the probability of rejecting the null hypothesis (namely, declaring
equivalence) is higher for the “softplus” when compared to the linear activation function.

In a subsequent step, T-R group comparisons were carried out. The datasets of the reference
group, including the original, generated, and subsampled datasets, were compared to their
corresponding counterparts in the test group (Figure 45). Several subsample sizes were assessed,
spanning from 10% to 90%, with intervals of 10%. This statistical analysis aimed to investigate
equivalence and was performed across multiple CV levels. It should be mentioned that these
comparisons were exclusively carried out in the case in which the activation function of the hidden

layers was “softplus”.
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Figure 45. Probability of accepting equivalence between the test and reference groups for the original (a), subsampled
(b), and generated (c) datasets Three levels of variability (coefficient of variation, CV) were used: 10%, 20%, and 40%. In
all cases, the “softplus” activation was used for the hidden layers, while both the test and reference groups were
assumed to exhibit identical average performances.

Figure 45 reveals that for low/medium CV values (10% and 20%), the probability of showing
equivalence was quite high for all datasets. Especially for the original data (Figure 45a), where the

probability is 100% since both the T and R groups were assumed to exhibit identical average
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performances at the endpoint. In the case of the subsampled (Figure 45b) and generated (Figure
45c) datasets, the probability of accepting equivalence was found to be low only in the cases using
a very small part of the original dataset (e.g., 10% or 20%), and it increased to almost 100%
acceptance when portions larger than 30% of this original sample size were used. When the high
variability of the data was considered (CV = 40%), the observed performance was as expected. For
the original dataset, the probability of acceptance fell to low values (close to 20%, Figure 45a).
Similarly, the subsampled dataset showed poor performance since, not only for small portions of
the original data but also for large parts, the probability of acceptance remained quite low (Figure
45b). On the contrary, the VAE-generated (Figure 45c) dataset showed superior performance
since, for all portions, the probability of acceptance was much higher than for the original and
subsampled datasets. It is worth mentioning that even for low proportions (e.g., 10% or 20%), the
statistical power of the VAE data was three times higher than that of the original data. For larger
proportions, the probability of acceptance of the VAE-generated data reached rather high values
(close to 80%), which was around four times higher than that of the original data.

In Figure 45, it becomes evident that for highly variable data, the application of the VAE worked
rather efficiently as a data augmentation method. In all cases, the average performance (i.e., the
mean endpoint value) between the two compared groups (T vs. R) was considered to be identical.
In order to investigate additional situations where the two compared groups differed, Figure 46
was constructed. In Figure 46, the mean values for the T group are 100, 110, 125, and 150, while
the mean value for the R group is always 100. This means that the T group is thought to be the
same (T/R = 1) or different by 10%, 25%, or 50% (T/R =1, 1.1, 1.25, and 1.50). Also, the statistical
characteristics of the original, subsampled, and generated data were investigated for a range of
subsample sizes spanning from 10% to 90%. The impact of the CV on the clinical study outcomes
was investigated based on two distinct values, specifically, 10% and 20%. Several iterations were

used for each case, and the probability of accepting equivalence was subsequently calculated.
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Figure 46. Probability of accepting equivalence between the test and reference groups for several ratios (1, 1.10, 1.25,
1.50) of the average test (T)/reference (R) performance. The comparisons were made separately for the original (a),
subsampled (b), and generated datasets by the variational autoencoder (c). In all cases, the “softplus” activation
function was used for the hidden layers and two levels of variability (coefficient of variation, CV) were used: 10% and
20%.

In all cases in Figure 46, a decrease in statistical power can be observed with an increase in the
T/R ratio. For the original data (Figure 46a), a high probability of acceptance (almost 100%) can be
observed when the two groups (T vs. R) do not differ (T/R = 1) or differ a little (T/R = 1.1). As the
discrepancy between T and R gets larger (to 25% or 50%), a dramatic decrease in statistical power

is observed. A similar performance is observed for the subsampled data (Figure 46b). Again, at low
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T/R ratios (e.g., 1 or 1.1), there is a high probability of equivalence acceptance, whereas, as the
discrepancy between T and R becomes higher, the statistical power decreases and reaches almost
zero values. Also, when small portions of the original data are used (around 10% to 30%), the
probability of acceptance is even lower. For the VAE-generated datasets (Figure 46c), the results
obtained for low T/R ratios (1 or 1.1) show a profile similar to the one observed before for the
original and subsampled data. However, a desired performance with much higher statistical power
can be observed when the two groups differ by 25%. For larger discrepancies, namely, when T/R
= 1.50, as expected, the probability of acceptance falls to zero since these high discrepancies in
the average performance are outside the acceptance limits of equivalence. Since the acceptance
limits in equivalence trials are between 80.00 and 125.00, there should be almost no probability
of acceptance for discrepancies higher than 25%, namely, those exceeding the upper limit of
125.00 (or being below the lower limit of 80.00). This is reflected in Figure 46¢c, where the
probability of acceptance is found to be almost zero when the T/R ratio is 1.25. The latter is in full
agreement with the theoretical expectations. In other words, by applying the VAE-generated
methodology, high statistical power is achieved for any variability level of the data, and, in
addition, no false positives are observed when the discrepancy between the two groups exceeds

the acceptance limits.

C2.4. Discussion

The objective of the present study was to examine the process of reducing the required sample
size of a clinical study by generating novel data through the utilization of a variational autoencoder
[129].

In order to accomplish this task, datasets were generated for two groups of volunteers (test vs.
reference) using a normal distribution, while the conditions of an equivalence clinical trial were
simulated. The most important factors affecting the outcome of a clinical trial refer to the mean
difference between the two interventions (i.e., the relationships between the average T and R
values), the variability of the measured endpoint (i.e., the coefficient of variation), and the sample
size (i.e., the proportion of the “subsampled” population with regard to the original dataset). The
impact of all these factors on the efficiency and robustness of the VAE methods was explored using
a wide range of values. The desired situation would be one where the performance of the
generated datasets is better than the one observed from the subsampled population. In other

words, it would be desirable for the generated dataset to show equivalence when this truly exists
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(namely, when it is proven from the analysis of the original dataset) and to show non-equivalence
when this is also shown from the original dataset. Any discrepancy with the original dataset
indicates a deficiency in the analysis dataset. In order to investigate the efficiency of the VAE
method, the performance of the VAE-generated datasets was compared with that of the original
as well as with that of the subsampled dataset. In all cases, the performance of the VAE-generated
data was found to be superior to any subsampled group and similar to the original (large) dataset
(Figure 44, Figure 45 and Figure 46). It is noteworthy that for high variabilities (Figure 44c), the
performance of the VAE method became even better than with the original dataset.

he R group was assumed to have a mean endpoint value of 100, while several endpoint means
were utilized for the T group; the T means were set at 100, 110, 125, and 150 in order to express
identical performance (i.e., 100%) and a 10%, 25%, and 50% discrepancy, respectively. The
aforementioned data were produced using varying coefficients of variation, specifically, 10%, 20%,
and 40%. Subsequently, the data generated through a random process underwent subsampling at
various percentages ranging from 10% to 90% of the original size. The subsampled data were then
utilized to train a VAE, which was ultimately employed to generate novel data.

An initial analysis was conducted to determine the most suitable activation function for the hidden
layers. The utilization of the “softplus” activation function resulted in more rapid and superior
convergence. The initial stage involved conducting a test to determine the superior activation
function between “softplus” and linear for the hidden layers. The findings indicate that the
utilization of “softplus” activation leads to a higher rate of convergence in the neural network.
Additionally, the average value of the loss function was observed to be three times greater when
linear activation was employed as opposed to “softplus” activation. The “softplus” activation
function is a modified version of rectified linear unit (ReLU) non-linearity designed to provide a
continuous and differentiable approximation of the ReLU function. Its primary application is to
ensure that the output of a computational model is always positive, thereby constraining the
model predictions to a specific range [129].

The next step involved conducting a test to explore the performance of the two tested activation
functions for the output layer (linear and “softplus”). In this case, the utilization of the linear
activation function demonstrated a tendency for the produced data to exhibit a greater degree of
centralization around the true mean of the source datasets. Furthermore, it was observed that
the choice of a linear activation function was more effective in representing the distribution shape

of the initial data for both the R and T groups (Figure 41). Subsequently, a determination had to
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be made regarding the appropriate number of epochs used in the VAE. As illustrated in Figure 42,
the most favorable number of epochs was 1000. This was because, for the cases where the
number of epochs was 100 and 500, the generated data did not exhibit a satisfactory level of
centralization around the true mean of 100. Furthermore, while the results for the cases where
the number of epochs was 5000 and 10,000 differed slightly from the case with 1000 epochs, the
differences were not significant. Based on the training time of the model, namely, the significantly
more time needed as the number of epochs increased, it was concluded that utilizing 1000 epochs
was the most effective option.

In addition, various numbers for the hidden layers were explored for both the encoder and the
decoder. In this study, the general idea of deciding on architectural choices was based on the
simplicity of the neural network and a trial-and-error procedure. Using a backward propagation
procedure optimized the biases and weights of the network, which were reflected in the reduction
of cost function values. For example, when utilizing two hidden layers for each, the original data
bell shape was effectively represented. However, the generated data exhibited poor centering
around the true mean (i.e., 100 for the R group). In instances where there were three or four
hidden layers, the dataset typically consisted of approximately 100 observations and exhibited a
well-defined bell shape. In accordance with Occam’s razor principle, it is recommended that the
optimal number of hidden layers for both the encoder and decoder be set at three (Figure 43).
After adjusting the VAE system’s hyperparameters (number of hidden layers, activation functions,
number of neurons, etc.), simulation results showed that the VAE system could successfully
recreate data that were similar to those of the original dataset. For all scenarios studied, it was
shown that the subsampled datasets, as expected, had the worst performance. Because of the
reduced sample size, the subsampled datasets failed to imitate the behavior of the original data
since they did not exhibit the required statistical power to show equivalence whenever this existed
(Figure 45b and Figure 46b). On the contrary, the generated data using the VAE showed increased
statistical power when the data exhibited either low or high variability (Figure 45c and Figure 46c).
It should be underlined that for all low variabilities, the VAE-generated data exhibited a
performance similar to the one observed with the original data, even when only a small portion
of the original data was used. When the variability of the original data was low (i.e., CV = 10% or
20%), the use of one-third of the original sample through the VAE system could lead to statistical
power that was only slightly less than that observed with the original data (Figure 45c). By

increasing the proportion of subjects to around 50-70%, almost the same statistical power could
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be achieved. This attribute became even more evident in the case of highly variable data. In this
situation, the VAE system not only succeeded in showing a similar performance as that for the
original data but also presented even better behavior (Figure 45c). For highly variable data, the
VAE could act as a noise (variability) filter and lead to increased statistical power.

It should be stated that high variability (“noise”) is an issue of paramount importance in the field
of bioequivalence [56]. Highly variable drugs refer to medicines that exhibit substantial variability
in their pharmacokinetic parameters, specifically their absorption, distribution, metabolism, and
elimination processes, when administered to individuals. However, for highly variable drugs,
achieving strict bioequivalence can be challenging due to the inherent variability in their
pharmacokinetics. When conducting bioequivalence studies for such drugs, the variability
between individuals’ responses can lead to wider confidence intervals, making it more difficult to
demonstrate equivalence within the standard regulatory requirements. As a result, regulatory
authorities often have specific guidelines and acceptance criteria for highly variable drugs to
account for the expected variability. These criteria could include widening the acceptable range
for certain pharmacokinetic parameters (e.g., Cmax), using different statistical methods to
evaluate bioequivalence (e.g., scaled equivalence), or increasing the number of samples in the
study [56]. Thus, it is crucial to find methods to decrease this unwanted variability and avoid
increasing the number of study participants, the costs, and the complexity of the study.

The good performance of the VAE-generated data was also shown in cases where the two
comparison groups differed (Figure 46). Again, it was shown that the use of a VAE can mimic the
performance of the original data and, in cases of high variability, result in higher statistical power
(Figure 46c). These results are consistent with the existing literature in the field of highly variable
drugs [56]. The findings indicate that a sufficient level of acceptable probability can be achieved
even for data with high variability by utilizing only 40% of the original data for accepting
equivalence. Conversely, for data with low variability, a very small proportion (i.e., 10%) of the

original data can be adequate (Figure 44).

C2.5. Conclusions

The use of neural networks, particularly variational autoencoders, was introduced, as a tool to
virtually increase the sample size in clinical studies and thereby decrease the required number of
actual participants. Firstly, the most appropriate architecture for the VAE and tuning

hyperparameters was developed, such as the number of hidden layers (for both the encoder and
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the decoder), number of neurons per layer, selection of the activation function, number of epochs,
and weights. The next step involved applying the developed VAE model in simulated Monte Carlo
clinical studies under various scenarios that can occur in practice. These scenarios included several
levels of variability in the measured endpoints, different average performances between
compared groups, and varying sizes of the subsampled group. The efficiency of the VAE-generated
data was then compared with that of the original data and also against that of the subsampled
data. In all cases, using the VAE-generated data resulted in an increase in the statistical power of
the study, especially in cases of high variability. Importantly, the type | error was kept at low values
and remained at the same level as with the original data, while the type Il error of the VAE method
was even lower compared to the original datasets. Overall, the combined use of VAE with Monte
Carlo simulated clinical trials demonstrated the desired performance, leading to less human
exposure in clinical studies and significantly reduced costs and time for trial completion. This study
represents a novel effort to employ autoencoders and neural networks within the realm of clinical

research, specifically aiming to reduce the necessary sample size.
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C3. On the Use of Variational Autoencoders for Generating Virtual Subjects in

Bioequivalence Studies

C3.1. Introduction

Estimating sample size in clinical trials is a crucial step that demands careful attention, as errors in
this calculation can lead to misleading conclusions and jeopardize the trial [53,130]. Sample size
determination is affected by factors such as the study design, type of outcome, statistical
hypotheses, anticipated measurement variability, minimum detectable difference, statistical
power, and significance level [54]. Similar considerations apply to bioequivalence studies,
particularly when comparing a generic pharmaceutical product (Test, T) to a reference product (R).
Two pharmaceutical products are considered bioequivalent if they contain the same active
substance at the same molar dose and demonstrate equivalence through comparative
pharmacokinetic studies, known as bioequivalence trials. Once bioequivalence is confirmed in
these trials, the products can be regarded as therapeutically equivalent [57,58].

In this context, the concept of using generative Al algorithms in clinical trial data augmentation is
introduced. This work investigates the suitability of using VAEs to virtually increase the sample size
in the typical situation of BE studies, namely, the two-period, two-treatment 2 x 2 crossover design
with a washout period [131].

A computational methodology that combines Monte Carlo simulations of 2 x 2 BE trials with deep
learning methods (i.e., VAEs) is developed. Various scenarios, including variability levels, the actual
sample size of the BE study, Al-generated sample size, and the relationship in the average
performance between the T and R pharmaceutical products, were explored. Our ultimate purpose
was to assess the usefulness of VAE as an Al method in bioequivalence studies, aiming to

significantly reduce human exposure, costs, and trial completion time.

C3.2. Materials and methods

To assess the utility of VAE in BE studies, it was crucial to replicate the actual conditions of BE
testing. The main components of the methodology include generating virtual subjects using
Monte Carlo simulations, training/tuning the VAE model to create “synthesized” subjects, applying
typical BE testing conditions imposed by regulatory authorities (such as the appropriate statistical

framework and acceptance limits), and repeating the entire process several (i.e., hundreds) times
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to obtain robust estimates. The aforementioned procedure was applied across various scenarios

(e.g., different T/R ratios, variability, and original sample size).

C3.2.1. Variational autoencoders and tuning of hyperparameters

To accomplish this task, variational autoencoders were leveraged and tuned. We extensively fine-
tuned the hyperparameters, which included searching for the most suitable activation functions
(e.g., softplus, linear, ReLU, sigmoid, etc.), determining the optimal number of hidden layers, and
adjusting the number of epochs. The softplus activation function performed best for hidden layers,
while the linear function was optimal for output layers. Also, the optimal number of hidden layers
and epochs was 3 and 1000, respectively. Similarly, the optimal quantity of neurons for every
hidden layer, from left to right, was found to be 64-32-16 for the encoder and 16-32-64 for the
decoder. Additionally the impact of unequally weighting the two parts of the cost function was
explored and standardizing the input data by removing the mean and scaling to unit variance.

Table 6 summarizes all the combinations of settings that were investigated:

Table 6. Hyperparameter values explored in the tuning process of the VAEs. Across all instances, the latent space
dimension and the number of epochs were fixed at 1 and 1000, respectively. Standardizing the input data was applied
to all cases.

Activation . . Number of Hidden Number of Neurons
. Weights of Loss Function R
Function Layers in Hidden Layers
] Kullback— .
Hidden QLo Leibler RIS I E T Encoder Decoder Encoder Decoder
Layers Layer P Part
art
Softplus Linear 1 1 3 3 64-32-16  16-32-64
2 2
9 9
10 10

C3.2.2. Simulation framework

The simulation of the bioequivalence in the context of 2 x 2 crossover design consisted of
generating subjects for the reference (i.e., R) and the test (i.e., T) groups for both periods, termed
as “original” [56]. Initially, a total of N subjects was generated for the first period, corresponding

to the R product, from a random process with mean pg;and standard deviation og,. For the T
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drug, N subjects, equal to N, were generated, following the same process with mean ur;and
standard deviation op;. Both groups had equal coefficient of variation (CV), referring to the
between-subject variability. For the second period, each of the total N = Np + Ny subjects was
multiplied with a stochastic term, which was generated through a random process, to incorporate
the within-subject variability of the subjects.

The original data were randomly subsampled with varying proportions, referred to as
“subsampled”. These subsampled datasets were used to train the VAE model and, in a next step,
to synthetize the new virtual subjects termed as “generated”. Finally, the “generated” data from
both groups (T and R) and study periods (i.e., periods | and Il of the 2 x 2 crossover design) were
transferred for statistical analysis, using the official statistical framework imposed by regulatory
authorities for bioequivalence [57,58]. This statistical analysis refers to the following steps: In-
transformation of the variables, application of a linear model (ANOVA), calculation of the residual
error, using this error term to construct a 90% confidence interval for the mean difference
between T and R in the In-domain, and, lastly, checking if BE is declared [56,57,58]. This entire
procedure was repeated 500 times and the percentage of bioequivalence acceptance was
measured at the end [56].

The above-mentioned route of analysis can be outlined in the following steps:

l. N individuals are randomly generated for both groups in the case of the first period:

a. Ny individuals for the T group for the first period, with mean p;and standard
deviation .

b. Ng individuals for the R group for the first period, with mean pz;and standard
deviation op;.

c. The T and R groups were set to have equal CVs;

d. The sample sizes of T and R groups were assumed to be equal: Ny = Np.

e. Thus, the sample size of the studyis: N = Np + Np.

II.  The N individuals from the first period are multiplied, with a randomly generated
“stochastic term”, with mean pgr and standard deviation gsr. The stochastic term
coefficient of variation (CVw) represents the “within subject variability” for each
simulated volunteer between the period | and Il of the crossover study [56]. It should be
noted that the CVw is different to the between-subject variability (i.e., CV) discussed in

step “Ic”.
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VI.

VII.

VIIL.

The individuals generated from steps | and Il (termed as “original”) are then randomly
subsampled with proportions 25%, 50%, and 75%. The so-derived groups are termed as
“subsampled”.

Subsampled individuals are fed into an optimized VAE model to generate new individuals,
termed as “generated”. The generated dataset was set to exhibit size equal to or double

IM

the “original” dataset.

The standard statistical criteria mandated by regulatory authorities are utilized to assess
BE among all comparison groups [57,58].

The success (i.e., BE acceptance) or failure (i.e., non-equivalence) of the statistical test is
tracked for all three datasets.

Steps “I-VI” are performed again for 500 repetitions in order to obtain robust values for

the % BE acceptance.

The results attained from step “VII” are evaluated.

A list of factors analyzed in this study, including CVw, the ratio between pur;and pugq, N,

subsampled proportions, and the size of generated data proportionate to the total size N, is

presented in Table 7:

Table 7. List of factors explored in this study. For all cases, the mean of the stochastic term, mentioned in step

u”u

above, was set equal to 1.

Mean

Between- Wwithin- Endpoint Ratio of Original Size of
Subject Subject P Average 9 Subsampled

L= = Value for . Sample . Generated
Variability  Variability the Endpoints Size (N) Proportions Data (xN)

(CV) (CVw) Reference Test/Reference

20% 15% 100 1 12 25% 1x

30% 11 24 50% 2x
1.2 48 75%
72
C3.3. Results

The first exploration in this study, referred to the condition when both the T and R pharmaceutical

products have equal means and a low coefficient of variation at 15%. This scenario was

investigated for various sample and subsample sizes (Figure 47).
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Figure 47. Bioequivalence acceptance rate (%) for the “original”, “subsampled”, and VAE-“generated” datasets when
both the Reference (R) and Test (T) pharmaceutical products exhibit identical average performance. Four different
“original” sample sizes (N) were utilized (12, 24, 48, and 72). The subsample proportions were 25%, 50%, 75%, and
100%.

As illustrated in Figure 47, the BE acceptance rate increases with the rise in the actual sample size.
In addition, the percentage of acceptance for the “subsampled” group is always lower than the
“original”, whereas the acceptance rate of the “VAE-generated” group of subjects is always higher
than the original and, thus, the “subsampled” also. Also, as expected, for all the three datasets
(original, subsampled, and VAE-generated), the acceptance rate tends to decrease when the
subsample proportions decline or when the sample size gets lower. Though, for the original and
the subsampled datasets, this decrease is more extreme than the generated. More specifically, for
the “generated” dataset, the acceptance rate starts from 60% when the sample size and the
subsample proportion are small and increases up to 100% while the sample size and subsample
proportion increase. This trend is similar for the original and subsampled datasets, though the
acceptance rate for the original dataset reaches its lowest (around 40%) for sample size 12, while,
for the subsampled dataset, the lowest is reached even at the sample size of 24 for low subsample

proportions (around 10%).
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Figure 48 illustrates the probability of acceptance for the same sample sizes and proportion rates
between the R and T groups for low CVw (15%) when the mean of the T group is 10% and 20%
higher than the one of the R group (i.e., for T/R ratios of 1.1 and 1.2).
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Figure 48. Bioequivalence acceptance rate (%) for the “original”, “subsampled”, and VAE-“generated” datasets when
there is 10% (A) and 20% (B) difference in the average endpoint value between the Test (T) and Reference (R)
pharmaceutical products. Four different original sample sizes (N) were utilized (12, 24, 48, and 72). The subsample
proportions were 25%, 50%, 75%, and 100%.

Figure 48 illustrates the trend of BE acceptance as both sample size and subsample proportions
increase from left to right. This analysis is conducted with the T/R ratio of the average endpoint
set at 1.1 in the top row and 1.2 in the bottom row. Notably, the acceptance rate of the generated
data is significantly higher than that of the original and subsample data. This difference is
particularly evident when both the sample size and proportion rate are lower, as shown in Figure
3A,B. As expected, a larger difference between the means of R and T groups corresponds to a
lower acceptance rate across all groups. It is essential to emphasize that the acceptance rate of
the generated data consistently exceeds that of the other two datasets.

Figure 48 similarly illustrates the acceptance rates for a 30% within-subject variability of the

measured BE endpoint and several values of the T/R ratio (1.0, 1.1, and 1.2).
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Figure 49. Bioequivalence acceptance rate (%) for the “original”, “subsampled”, and VAE-“generated” datasets for high
variability values (CVw = 30%). The T/R of the Test (T) and Reference (R) products was set at 1.0 (A), 1.1 (B), and 1.2 (C),
while the subsample proportions were 25%, 50%, 75%, and 100%. Four different original sample sizes (N) were utilized
(12, 24, 48, and 72).

In Figure 49, a consistent trend is evident across all scenarios examined. Again, it should be
emphasized that the BE acceptance rate of the generated dataset is consistently higher than that
of both the subsampled and original datasets in all cases. Additionally, as expected, the BE
acceptance rate decreases for all groups with the increase (or decrease) in the T/R values.
Importantly, even in this scenario, the percentage of BE acceptance for the generated data is the
least affected. Figure 51 shows the impact of within-subject variability of CVw on BE acceptance
“gain” between the generated and original datasets (i.e., % BE acceptance generated—original).
The scenarios explored referred to different performances between the two drug products under

comparison, namely, T/R values of 1.0 (Figure 50A), 1.1 (Figure 50B), and 1.2 (Figure 50C).
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Figure 50. Bioequivalence acceptance “gain” of the VAE-“generated” dataset minus the “original” datasets. Three
Test/Reference (T/R) ratios of the average endpoint were considered: 1.0 (A), 1.1 (B), and 1.2 (C). In all cases, a range of
subsample proportions (25%, 50%, 75%, and 100%) was investigated, while the within-subject variability (CVw) was set
at either 15% (typical case) or 30% (highly variable situation).

Figure 50 illustrates that, in all cases, the acceptance rate of bioequivalence between the T and R
groups is significantly higher in the case of the generated dataset. When the T and R groups have
equal means (Figure 50A), this increase is more pronounced for larger within-subject variability
and larger subsample proportions. Similar findings are observed when the T/R ratio is 1.1, with
the increase being even higher (Figure 50B). For more extreme differences between the T and R
groups (T/R = 1.2), an even more substantial increase in the acceptance rate is observed, although
the increase is very similar for both 15% and 30% CVw and for all subsample proportions (Figure
50C).

Finally, Figure 51 investigates the relationship between the generated sample size and the original

dataset. In other words, the aim of this figure is to show how many times larger the generated
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dataset can be compared to the original one. Two typical N values were chosen: N = 12, which
refers to the lowest accepted sample size for a BE study by regulatory authorities [57,58], and N =
24, which is a typical sample size commonly used in BE studies. Two levels of the generated sample
size were tested: 1x and 2x. This means that the generated dataset can be either as large as the
original or twice the original sample size. Thus, by using only part of the original dataset (i.e., 25%,
50%, or 75%), the aim was to evaluate the performance of the reconstructed dataset. In all cases,
two CVw values were utilized (15% for Figure 51A and 30% for Figure 51B) and three levels of the
relationship between the T and R groups (i.e., T/R equal to 1.0, 1.1, and 1.2).
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Figure 51. Bioequivalence acceptance of the VAE-“generated”, “original”, and “subsampled” dataset for within-subject
variability of 15% (A) and 30% (B). Two possibilities of the VAE-“generated” datasets are shown: one with the same
sample size as the “original” dataset and another with twice the “original” sample size. Three Test/Reference (T/R) ratios

of the average endpoint were considered: 1.0, 1.1, and 1.2. In all cases, a range of subsample proportions (25%, 50%,
75%, and 100%) was investigated.

Figure 51 demonstrates that the acceptance rate increases when the sample size of the generated

dataset is twice the original size, compared to cases where the original sample size is equal to the
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generated sample size. In Figure 51A, when CVw is 15% and the original sample size is 24, a slight
increase in the acceptance rate is observed for a subsample proportion of 50% across all T/R ratios.
When the original sample size is 12, there is a modest increase when the generated sample size is
twice the original for a subsample proportion of 100% and a more significant increase when the
subsample proportion is 50%. This pattern is evident for all three T/R ratio values. In Figure 51B,
where CVw is 30%, the results mirror those of Figure 51A. However, since CVw is higher, the
percentage of BE acceptance is lower in all scenarios. The same findings are also observed in the
case of a highly variable drug (Figure 51B). In this instance, the superior performance of the two

VAE-generated datasets is even more evident.

C3.4. Discussion

In this study, the concept of utilizing VAEs in clinical trials is extended to the field of bioequivalence
studies. So, this study aims to explore how the utilization of a VAE-generated dataset can be used
to lower the need of actual human data and substitute them with Al-generated data. To
accomplish this task, we simulated the conditions of 2 x 2 (i.e., two-period, two-treatment)
crossover BE trials. Initially, a group of original data (i.e., study volunteers) was simulated, and
synthesized data were created by taking parts of them (e.g., 25%, 50%, 75%, or all of them, i.e.,
100%) using the VAE model. The entire procedure was repeated multiple times through Monte
Carlo simulations, exploring various conditions (scenarios). These conditions included within-
subject variability, different average endpoint values for the Test and Reference products (i.e., the
T/R ratios), subsampled proportions, and how many times the generated data were larger than
the original (i.e., 1%, 2x the original dataset). These scenarios were selected to explore various
conditions of special interest. For instance, a T/R ratio of 1 corresponds to the case where the two
groups under comparison exhibit identical performance, resulting in a relatively high percentage
of bioequivalence acceptance. In contrast, the case of T/R = 1.1 implies a 10% average difference
between the two groups, leading to reduced BE acceptances. Also, the role of within-subject
variability (i.e., CVw) is crucial in bioequivalence studies, as the statistical assessment relies on
estimating a 90% confidence interval where the variability term used is CVw. Thus, in this study,
two levels of CVw were examined: a moderate value of 15% and a marginal value of 30%, which
is the threshold for a pharmaceutical product to be considered highly variable. It is worth
mentioning that an advantage of using VAE neural networks lies in their inherent ability to reduce

the variability of input data. This is particularly important for BE studies, especially in the case of
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topical pharmaceutical products. In fact, additional scenarios involving highly variable drugs
and/or pharmaceutical products should be studied, but this could be the focus of an entirely new
study. Additionally, this study investigated the robustness of Al-driven generation of virtual
subjects concerning the amount of data used. To address this, subsamples as low as 25% of the
original dataset were examined, demonstrating the desired performance. Thus, after tuning the
VAE hyperparameters, the performance of the VAE system was evaluated in terms of the
percentage acceptance of bioequivalence compared to the original and subsampled datasets.
Given that the BE limits are 0.80-1.25 and the T/R ratios used in this study were narrower (i.e.,
1.0, 1.1, and 1.2), the desired outcome would be a situation where the percentage acceptance of
the generated dataset is higher than that of the original data and certainly much higher than the
subsampled data from which they were created. In all scenarios studied, it was demonstrated that
the VAE system can successfully generate data superior to any subsampled group and exhibit
performance at least equal to the original dataset (Figure 47, Figure 48, Figure 49, Figure 50 and
Figure 51). To clearly emphasize this advantageous performance of the VAE model, Figure 5 was
constructed to illustrate that, in all cases, the VAE-generated data lead to at least equal or better
performance compared to the original data. As expected, the reduced sample dataset (referred to
as “subsample”) exhibited inferior performance compared to the original dataset. The subsampled
data failed to reproduce the characteristics of the original dataset, lacking the necessary statistical
power to establish bioequivalence, particularly when it was present, as a result of the diminished
sample size (Figure 47, Figure 48 and Figure 49). However, what is crucial is that relying on this
“inferior” dataset (i.e., the “subsampled”) and applying the VAE model to it leads to synthesized
data that exhibit performance at least equal to the original whole data. In certain instances, the
efficiency of the data generated by the VAE is notably superior, even compared to the original
data.

For example, with low within-variability (15%) and when the mean endpoints of the reference and
test groups were the same (Figure 50A), the data generated by the VAE exhibited comparable
performance to the original dataset, even when only a small portion of the original data was
utilized (i.e., 25%). In other words, only a few actual human subjects were included in the study.
Generating even more data than the original will lead to an even higher acceptance rate (Figure
51).

The VAE-generated data performed well, even in cases of high variability and when the mean

endpoints between the groups differed by 20%, resulting in an increase in statistical power (Figure
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48 and Figure 49). It was demonstrated that an increase of up to 40% in statistical power can be
achieved when the mean endpoints of the two groups have a 20% difference, even with a 25%
subsample proportion, namely, when only a few actual volunteers will participate in the trial
(Figure 50C). It should be underlined that high variability poses a significant challenge in the field
of BE assessment [56,57,58]. However, achieving strict BE for such drugs can be daunting due to
their inherent pharmacokinetic variability. As a result, regulatory bodies have developed particular
guidelines and criteria for the acceptance of highly variable drugs to address the expected
variability [56,132]. Therefore, employing methods that mitigate unwanted variability without
necessitating an increase in the number of study participants, costs, or study complexity becomes
paramount.

One limitation of this work is the relatively low number of repetitions utilized for each scenario.
Due to computational constraints, completing 500 runs consumed a significant amount of time;
however, the estimates appeared robust and only minimally different compared to 200 or 300
runs, implying that convergence was achieved with 500 runs. Further exploration in this field could
include the assessment of more scenarios such as additional clinical designs (e.g., replicate) and
statistical hypotheses (e.g., noninferiority or superiority). However, it was impossible to investigate

all these possibilities encountered in clinical trials.

C3.5. Conclusions

This study is our second step toward utilizing generative Al algorithms in clinical trials. The typical
conditions of 2 x 2 crossover BE studies were simulated by combining Monte Carlo simulations
with VAEs. Various scenarios, including variability levels, the actual sample size of the BE study,
the Al-generated sample size, and the relationship in the average performance between the T and
R products, were explored. All simulations performed in this study showed that incorporating Al
generative algorithms in clinical trials has many advantages in creating virtual populations. These
advantages include a decrease in human exposure, significantly shorter study completion times,
lower complexity in the clinical trial, reduced workload for physicians and clinics, and significantly
lower costs for sponsors or health agencies. It was shown that less actual human data can be used
to achieve similar, and even better, results in terms of statistical power. Overall, this study suggests
the utilization of Al-driven generative algorithms in clinical research. However, the incorporation

of such new ideas in practice would require regulatory authorities to set specific criteria and
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guidelines on the minimum requirements for the application of Al-generated virtual subjects in

order to avoid possible pitfalls (e.g., hallucinations) and ensure reproducibility.
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C4. Bioequivalence Studies of Highly Variable Drugs with the Use of Variational

Autoencoders

C4.1. Introduction

‘Highly variable drugs’ are those with a within-subject coefficient of variation of 30% or more, due
to either the drug substance or its formulation [56]. In BE studies, this variability refers to the
residual variability that comes from the ANOVA analysis after excluding all other known factors. In
the case of a 2 x 2 crossover design, residual variability is estimated after subtracting from the
total data variability the variability attributed to subjects, periods, sequences, and the
administered pharmaceutical product.

When applying bioequivalence assessment for the comparison of the pharmacokinetic properties
of two drug products, the typical average BE, falls short. This is due to the fact that BE is typically
confirmed, if the 90% confident interval falls within the established range of 80-125% [62,63].
Variability can stem from factors such as drug characteristics or patients’ physiological conditions.
As within-subject variability increases, demonstrating BE becomes more challenging without
increasing the sample size. To address this, various methods have been proposed. Both the EMA
and the U.S. FDA recommend using scaled BE limits, which adjust the BE limits based on the
within-subject variability of the reference product. These reference-scaled procedures,
recommended by the EMA and FDA, require full-replicate or semi-replicate study designs, where
the reference product is administered at least twice to each subject, allowing for accurate

estimation of within-subject variability [62,63].

C4.2. Materials and Methods

C4.2.1. General

The methodology framework of our study relies on two main components: VAEs and Monte Carlo
simulations of BE studies. These components were used to demonstrate the applicability and
advantages of VAEs in the context of BE studies of highly variable drugs. Specifically, BE trials were
simulated under various conditions of within-subject variability, sample size, and differences
between the T and R products [56]. Using Monte Carlo simulations, two populations (termed the
“original” dataset) of subjects were created for both the T and R groups across two periods, which

were then randomly subsampled with different proportions (“subsampled”). Subsequently, the
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subsampled dataset was utilized to train a VAE model, and that trained VAE model was then used
to generate new datasets (“generated”).

The conditions for creating the original data varied in terms of sample size, within-subject
variability, and the mean ratio of the T and R endpoints (T/R). The VAE model generated datasets
of varying sizes relative to the original sample size (1 to 3 times the original sample size).
Additionally, the (unscaled) VAE-generated datasets were compared against the original and the
subsampled datasets with the scaled BE approach in order to achieve a stricter evaluation of the

performance of the VAE method (Figure 52).

Al synthesized datasets

A
[ |

VAE-generated
(1x)
Sampling i 5=
Original ) Subsampled ey VAE-generated
(2x)

Figure 52. A graphical illustration of the general idea for using VAEs as a tool for data augmentation in bioequivalence
studies with high-variability drugs. Instead of requiring a large sample size (termed “original”), only a subgroup of this
(i.e., “subsampled”) is needed. VAE is then applied to the subsampled dataset in order to synthesize the generated
datasets. The latter can exhibit either the same size (1x), double the size (2x), or triple the size (3x) of the original
dataset.

BE assessment was applied to all three datasets (original, subsampled, and generated), adjusting
the acceptance limits appropriately based on within-subject variability as per the guidelines of the
EMA and the FDA [62,63]. This procedure was repeated thousands of times (5000) to ensure

robust estimates. The total of 5000 Monte Carlo trials is based on findings from prior research
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[56]. These studies have demonstrated that conducting this quantity of repetitions ensures the

acquisition of reliable and consistent estimates [56].

C4.2.2. Technical aspects

Training a neural network requires as input a set of hyperparameters. This includes the number of
layers, the activation function, the number of neurons at each layer, and the number of epochs.
Choosing the optimal set of hyperparameters highly affects the performance of the model, and it
vastly depends on the complexity and nature of the problem [133]. The tuning of the
hyperparameters was achieved via trial and error, as well as by using information in the literature.
In this study, we experimented with an extensive number of configurations, which are presented
in Table 8. After testing all these tested combinations, it was found that the activation functions
that worked best for the hidden and output layers were softplus and linear, respectively, while the
optimal number of hidden layers was 3. In addition, the number of neurons that was found to be
the best for each of the hidden layers, from left to right, was 64—32—-16 for the encoder and 16—

32-64 for the decoder. The ratio of the training set to the validation set was 4:1.

Table 8. List of hyperparameters used for training the VAE model. The latent space dimension and the number of epochs
were set to 1 and 1000, respectively.

Number of Hidden

Number of Neurons in the Hidden Layers Layers Activation Function
Encoder Decoder Encoder Decoder Efydefg (I)_l;typeurt
Softplus Softplus
ReLU Softmax
128-64-32-16-8—-4 4-8-16-32—64-128 2-5 2-5 ELU Sigmoid
Linear Linear

Tanh Tanh

The primary goal during this phase is to minimize the cost function. In our specific application, the
cost function was defined as a typical loss function where the Kullback—Leibler loss component

and the reconstruction loss were equally weighted.
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C4.2.3. Simulation of Bioequivalence Studies

In the case of a typical crossover design for BE studies, two treatments were administered: the
reference drug (i.e., R) and the test drug (i.e., T), across two periods [56,62,63]. Half of the subjects
received the R drug in period 1 and the T drug in period 2 (sequence RT), while the other half
received the T drug in period 1 and the R drug in period 2 (sequence TR). After study completion,
a specific statistical framework was applied, and the BE of the two drugs was either accepted or
rejected based on the comparison between the 90% confidence interval and the acceptance
limits. Generally, for highly variable drugs, the acceptance limits for the BE test are scaled
according to the within-subject variability. Various regulatory authorities, such as the EMA and
FDA, permit different acceptance limits for highly variable pharmaceutical products [62,63].

The first step of the framework was the random generation of N subjects for both groups for the
first period—specifically, N and N individuals for the R and T groups, respectively, with mean
MR1 and standard deviation oR1 for the R group and mean uT1 and standard deviation oT1 for the
T group. Both groups had equal CV (i.e., the stochastic term for between-subject variability) and
sample size; thus, N = Ny and N = Ny + Nr. Later, the N individuals were multiplied with a
randomly generated “stochastic term,” with mean 1 and standard deviation ow. This stochastic
term (with coefficient of variation CVw) represented the within-subject variability [56]. It is
important to note that the CVy is different than the between-subject variability (i.e., CV) that was
mentioned before.

Ill

Afterwards, the aforementioned N individuals for both periods that are termed “original” were
subsampled with proportions of 50%, 75%, and 100% (termed “subsampled”). The subsampled
subjects were used to train the hyperparameter-tuned VAE model to generated new subjects,
termed “generated”. Finally, BE testing was conducted between the T and R groups across the
original, subsampled, and generated datasets by utilizing the standard statistical criteria mandated
by the EMA and FDA depending on the value of CVy, and the success or failure of the statistical
test was recorded. This procedure was repeated 5000 times in order to obtain robust estimates
for the % BE acceptance. A list of factors analyzed in the study, including the CVy, the relationship

between ur; and pgpq, N, the subsampled proportions, and the size of the generated datasets

proportionally to the total size N, are listed in Table 9:
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Table 9. Factors relevant to the simulated bioequivalence studies explored in this study. For all cases, the mean of the
stochastic term expressing within-subject variability was set to 1.

Original Within-Subiect Ratio of Average Between- Size of
Sample Size Variabilit (é:V ) Endpoints Subject Generated

(N) y W Test/Reference Variability (CV) Dataset (xN)
12 20% 1 20% 1x

24 40% 1:1 2x

48 60% 3x

72

C4.3. Results

Factors relevant to the simulated bioequivalence studies explored in this study. For all cases, the
mean of the stochastic term expressing within-subject variability was set to 1.

Figure 53 illustrates the BE acceptance rates for different coefficients of variation of 20% (Figure
53A), 40% (Figure 53B), and 60% (Figure 53C). For the highly variable cases (40% and 60%), the
scaled BE limits, imposed by the EMA or FDA, were used in the case of the original and subsampled

datasets in accordance with the regulatory guidelines [56].
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Figure 53. Acceptance rates of the original, subsampled, and generated datasets. In all cases, the average test/reference
ratio is 1 and the within-subject variability equals 20% (A), 40% (B), and 60% (C). Three different original sample sizes
are used (24, 48, and 72), while the sizes of the generated datasets are 1, 2, and 3 times that of the original sample. The
bioequivalence assessment for the original and subsampled dataset is performed using the EMA and FDA scaled
bioequivalence approaches [1,2], while no scaling is applied to the VAE-generated datasets. The subsample proportions
used are 50%, 75%, and 100%.
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No scaling was used for the VAE-generated datasets, in order to be treated more strictly. Aiming
to assess the statistical power achieved, the BE acceptance rates were explored for various sample
and subsample sizes. Figure 53 shows that for all datasets, the acceptance rate decreases as the
coefficient of variation increases, while the power increases for larger original and subsample
sizes. It is shown that the percentage of acceptance of the subsampled set is always lower than
that of the original, whereas the acceptance rate for the generated is always higher than that of
the original dataset. It is important to emphasize that for 40% and 60% variabilities, the
acceptance limits when conducting BE testing for the generated datasets, did not follow the scaled
BE approach, while the original and the subsampled datasets were extended as a function of CVy,
in line with the EMA guidelines.

A similar behavior is observed for the same scenarios under the assumption that the ratio of the
means of the T and R pharmaceutical products is 1:1, which is displayed in Figure 54. There is an
increasing trend of the acceptance rate for all types of datasets when the sample and subsample
size increases for both the FDA and the EMA. The original datasets outperform the subsampled
datasets in all cases, whereas the VAE-generated datasets outperform the original datasets for CV
= 20% (Figure 54A) and CV = 40% (Figure 54B). It is important to underline that for the scenarios
presented in Figure 54, the acceptance limits for the VAE-generated datasets were not extended,

in contrast with the acceptance limits for the original and subsampled cases.
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Figure 54. Acceptance rates of the original, subsampled, and generated datasets. In all cases, the average test/reference
ratio is 1:1 (i.e., 10% mean difference) and the within-subject variability equals 20% (A), 40% (B), and 60% (C). Three
different original sample sizes are used (24, 48, and 72), while the sizes of the generated datasets are 1, 2, and 3 times
that of the original sample. The bioequivalence assessment for the original and subsampled datasets is performed using
the EMA and FDA scaled bioequivalence approaches [1,2], while no scaling is applied to the VAE-generated datasets.
The subsample proportions used are 50%, 75%, and 100%.
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To obtain a clearer comparison between the performance of the VAE approach and the
classic/scaled limits, the percentage of “acceptance gains” of BE were calculated for each scenario
studied. These acceptance gains were defined as the acceptance rate of the VAE-generated
dataset minus the acceptance rate of the original dataset. The acceptance gains were calculated
for all the scenarios listed in Table 9 and are presented in Figure 55 and Figure 56. In Figure 55,
the ratio of the means of the T and R pharmaceutical products is equal to 1, while in Figure 56 the
T/R ratio is 1:1 The scenarios that are not shown in Figure 55 and Figure 56 refer to the cases
where there was no acceptance gain, namely, both the original and the generated datasets

exhibited similar performance in terms of the statistical power.
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Figure 55. Acceptance gains, namely, the difference in the acceptance rate percentages between the VAE-generated and
the original datasets. The acceptance limits for the original datasets are increased according to the EMA (A,B) and FDA
(C) guidelines. In all cases, the average test/reference ratio is 1 and the within-subject variability equals 20%, 40%, and
60%. Three different original sample sizes are used (24, 48, and 72), while the size of the generated datasets is equal
(1x) to that of the original sample. The scenarios where the generated and original datasets perform identically are not
shown due to space restrictions.
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Figure 56. Acceptance gains, namely, the difference in the acceptance rate percentages between the VAE-generated and
the original datasets. The acceptance limits for the original datasets are increased according to the EMA (A—C) and FDA
(D—F) guidelines. In all cases, the average test/reference ratio is 1.1 and the within-subject variability equals 20%, 40%,
and 60%. Three different original sample sizes are used (24, 48, and 72), while the size of the generated datasets is equal
(1x) to that of the original sample. The scenarios where the generated and original datasets perform identically are not
shown due to space restrictions.

Figure 55 illustrates that the acceptance gain for the EMA scenarios (Figure 55A and 59B for 24
and 48 subjects, respectively) is achieved when the CV and sample size are equal to 60% and 24,
respectively. For the FDA case (Figure 55C), the acceptance gain ranges from 10% to 15% for the
scenario where the CV equals 20% and the sample size equals 24. For both regulatory authorities,
the acceptance gain increases overall as the subsample size increases.

Figure 56 presents the acceptance gain for the scenario where T/R equals 1:1. Figure 56A, 60B and
60C show the acceptance gain when the limits are extended according to the EMA for sample sizes
of 24, 48, and 72, respectively. Figure 56D—F show the acceptance gain when the limits are
extended according to the FDA for the pre-mentioned sample sizes. In the case of the EMA (Figure
56A—C), the acceptance gain ranges from 5% when the CV and sample size refer to 40% and 48%,
respectively, to 48% for the scenario where the CV equals 20% and the sample size equals 24%.
The acceptance gain range in the FDA cases (Figure 56D—F) is similar to that of the EMA, though
there are more scenarios where no acceptance gain was observed.

Figure 57 and Figure 58 show the percentage of acceptance gain when no scaling is applied to the

original dataset. Therefore, this refers to a condition where both the VAE-generated and the
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original datasets are treated equally. Scenarios for T/R equal to 1 and 1:1 are shown, along with

sample sizes of 24, 48, and 72.
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Figure 57. Acceptance gains between the VAE-generated and the original datasets, when no scaling is applied to either
dataset. Three different original sample sizes are used (24 (A), 48 (B), and 72 (C)), while the size of the generated datasets
is equal (1x) to that of the original sample. In all cases, the average test/reference ratio is 1 and the within-subject
variability equals 20%, 40%, and 60%. The scenarios where the generated and original datasets perform identically are
not shown due to space restrictions.

134



A —
N=24
1
= “ CVw=20% CVw=40% CVw=60%
Q75
@
(%)
S so
-3
g
o 25
R 0
50 75 100 50 75 100 50 75 100
Subsample proportion
B o
N=48 @
=1°° CVw=20% CVw=40% CVw=60% ~
-a g
(U] 75 .
3 e
(%)
c >
8 50 B
2 o
@ (1]
‘.t‘j 25 ]
[
= mAHN e
50 75 100 50 75 100 50 75 100
Subsample proportion
c N=72
100
c CVw=20% CVw=40% CVw=60%
Q75
[}
o
S so
-
Q
g 25
o
v I I
x 0 ? 7% 100 50 75 100 50 75 100
Subsample proportion

Figure 58. Acceptance gains between the VAE-generated and the original datasets when no scaling is applied to either
dataset. Three different original sample sizes are used (24 (A), 48 (B), and 72 (C)), while the size of the generated datasets
is equal (1x) to that of the original sample. In all cases, the average test/reference ratio is 1.1 and the within-subject
variability equals 20%, 40%, and 60%.

From Figure 57, it becomes evident that in most scenarios there is large acceptance gain for the
VAE method, which can reach high levels of up to 75% for CVYW = 60% and a sample size of 24. The
lowest acceptance gain is observed when the CV is 40% and the sample size is 72 (i.e., 5%). There
are also cases where there is no acceptance gain—that is, when the CV equals 20% for sample
sizes of 48 and 72, and that is why these plots are omitted. Overall, the acceptance gain is much
higher when the CVW increases and the sample size decreases.

Figure 58 is similar to Figure 57, with the difference that the T/R now equals 1:1. Overall, the
acceptance gain is higher as the CV increases and the sample size decreases, reaching a plateau at
75-80% when the CV equals 60%. Starting from 5% for a sample size of 72 (Figure 58C) and a 20%

CVW, the acceptance rate goes up to 80% for a sample size equal to 48 and a CV of 70% (Figure
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58B). The acceptance gain is high overall (i.e., more than 30%) in the case where the sample size

is 24 (Figure 58A).

C4.4. Discussion

The aim of this study is to expand the application of a generative Al algorithm (in particular, VAEs)
in the BE testing of highly variable drugs. High variability (“noise”) is a critical issue in the field of
bioequivalence [56,62,63]. Highly variable drugs are medications that demonstrate considerable
variability in their pharmacokinetic parameters, such as absorption, distribution, metabolism, and
elimination processes, upon administration to individuals. Achieving strict bioequivalence for
these drugs can be challenging due to their inherent pharmacokinetic variability.

To demonstrate the utility of VAEs in reducing the need for large sample sizes, Monte Carlo BE
studies were simulated (5000 trials under each scenario) with and without the use of VAEs, and
the statistical power in each case was recorded [56]. The performance of VAEs in the BE of highly
variable drugs was compared against the classic 80-125% acceptance range and the scaled BE
limits proposed by the US FDA and EMA [62,63]. Various scenarios were explored, focusing on
high-variability values of the drugs under comparison. Also, several sample sizes, T/R ratios, and
proportions of actual data used for generating the virtual data were further investigated. The
performance of the VAE-generated dataset was compared with the original dataset and the
subsampled dataset. We performed extensive hyperparameter tuning to enhance the efficiency
of VAEs. In this context, we tested different combinations of parameters to assess the algorithm
thoroughly. Preventing the generation of fake data is crucial, and in our research, we implemented
all necessary steps to guarantee complete reproducibility of the entire process.

In all scenarios investigated in this study, the generated dataset exhibited significantly higher
statistical power compared to the subsampled datasets, even when scaled acceptance limits were
applied to the subsampled sets. It is noteworthy that the VAE-generated datasets consistently
outperformed the much larger original datasets, sometimes by up to twice the statistical power.
This trend persisted even when scaled limits were applied to the original dataset. Overall, the
utilization of the VAE method resulted in performance that was at least equivalent to the much
larger original dataset, and in many cases, it was notably superior. When no scaling was applied to
the original dataset, i.e., when the VAE approach was treated equally to the other datasets, its

superiority was even more pronounced.
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More specifically, under the assumption that the ratio of the mean endpoints of the Tand R groups
was equal to 1 (indicating similar average performance between the two groups) with moderate
within-subject variability (20%), the acceptance rate of the VAE-generated dataset was
consistently above 95%, whereas the acceptance rate for the original dataset dropped to 80% for
low sample sizes and subsampled proportions (Figure 53 and Figure 55). With 40% within-
variability and T/R equal to 1, the VAE-generated dataset exhibited performance comparable to
that of the original dataset, despite the fact that scaling was applied to the original dataset, but
unscaled limits were used in the VAE-synthesized datasets. Additionally, the generated dataset
outperformed the original in the case of CVW = 60%. Under the assumption that T/R equals 1:1,
and CVw is 20% and 40%, the generated dataset performed at least as well as the original for high
sample and subsample sizes but considerably better for low sample sizes. When within-variability
was 60%, the VAE-generated dataset performed as well as the original when sample sizes were
high but significantly better for the EMA case. In all cases, the generated dataset performed
significantly better than the subsampled dataset, highlighting the added value of the VAE model.
As expected, the original dataset showed much better performance than the subsampled dataset
in all scenarios studied. Overall, it is important to note that in all scenarios presented above, no
scaling was applied to the new VAE approach, but either the EMA or FDA scaled BE limits were
applied to the original or subsampled data. Thus, if scaling were further applied to the VAE-
generated dataset, the performance of the VAE would be incomparable to that of the original

dataset and of course against that of the subsampled dataset.

C4.5. Conclusions

This study focuses on the use of VAEs in BE trials of highly variable drugs. In this context, we
simulated various scenarios, including different high variability levels, by appropriately setting the
stochastic terms of the model, the actual sample sizes of the BE study, Al-generated sample sizes,
and the relationship between the average performance of the T and R products. The use of
artificial neural networks, particularly VAEs, to reduce the need for recruiting large numbers of
subjects in BE studies of highly variable drugs offers numerous advantages, including significantly
reduced human exposure, shorter study completion times, simplified trial processes, less
workload for healthcare professionals, considerably lower costs for sponsors, and less complexity
in the statistical analysis since no scaled BE limits will be necessary. Overall, this study advocates

for the integration of Al-driven generative algorithms in clinical research. Implementing these
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innovative concepts in practice would require regulatory authorities to establish specific criteria
and guidelines to ensure the proper application of Al-generated virtual subjects, thereby avoiding

potential issues such as hallucinations and ensuring reproducibility.
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Chapter D: Discussion
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This thesis was designed with the purpose of applying machine learning and neural networks,
which are the state-of-the-art models of deep learning, to improve the processes and results of
clinical trials as well as bioequivalence studies. The goal was to apply these advanced
computational techniques to gain deeper insights and enhance the accuracy and efficiency of the
analyses conducted in these important areas of medical research.

The first goal of this dissertation was to explore and apply machine learning methods in
bioequivalence and clinical studies. In this context, firstly the kinetics of NAbs and anti-S-RBDs
against SARS-CoV-2 in 309 healthy individuals after receiving the BNT162b2 mRNA vaccine over a
9-month period were analyzed. It is shown that BNT162b2 provides decreasing but significant
COVID-19 protection 6 and 9 months after full vaccination [97, 101, 112, 113, 114]. Though, results
showed a gradual decline in both NAbs and anti-S-RBD IgGs. Simulation studies projected that
median NAb levels would decrease from 66% at 9 months to 59% and 45% at 12 and 18 months
post-vaccination, respectively. This suggests an immune protection against COVID-19 which is
weakening, highlighting the need for booster shots, particularly in regions facing new outbreaks.
Moreover, the identification of individual factors that predict the Nabs levels post-vaccination was
performed. Data from 302 subjects were analyzed using machine learning techniques, including
principal component analysis, factor analysis of mixed data, k-means clustering, and random
forest. PCA and FAMD showed that younger individuals had higher NAbs levels compared to older
ones, with the age effect being strongest near the vaccination date and diminishing over time.
Obesity was linked to a lower antibody response [111]. Gender did not affect NAbs at nine months,
though there was a slight association at earlier stages. Participants with autoimmune diseases had
lower inhibitory levels than those without. K-means clustering identified five natural subject
groups with predominant characteristics. Random forest ranked the importance of these
characteristics, showing that older age, higher body mass index, and autoimmune diseases
negatively impacted NAbs development nine months after full vaccination [116, 117, 118, 119].
Nevertheless, the basic idea of this thesis was to introduce the concept of data augmentation in
clinical studies with the use of generative Al algorithms. So, the novel idea of using deep learning
to virtually increase the sample size in clinical and bioequivalence studies was introduced. An
original framework was created to simulate the exact conditions of these studies and neural
networks were utilized to achieve this task.

Sample size estimation is a critical aspect of clinical trials and bioequivalence studies, as it ensures

that the collected data can provide meaningful insights into the population under study [53, 130].
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However, gathering large datasets is both costly and time-intensive. For this purpose, a new
approach to data augmentation in clinical trials was introduced, using variational autoencoders.
By developing and using various forms of VAEs, we were able to generate virtual subjects that
closely mimic real data. The VAE-generated data demonstrated similar performance to the original
data, even when only 30—40% of the original data was used for reconstruction. It is worth noting
that, in scenarios with high variability, the VAE-generated data exhibited higher statistical power,
effectively reducing noise and enhancing the robustness of the results. This suggests that VAEs can
be a valuable tool in clinical trials, potentially decreasing the required sample size and thereby
reducing costs and time, while also addressing ethical concerns related to human participation.
Building on this concept, we explored the application of VAEs in bioequivalence studies. A
computational methodology was developed that combines Monte Carlo simulations of 2 x 2
crossover BE trials with deep learning algorithms, specifically VAEs. Various scenarios were
examined, including different levels of variability, actual sample sizes, VAE-generated sample sizes,
and performance differences between the pharmaceutical products under comparison. The
simulations revealed that incorporating Al generative algorithms to create virtual populations in
BE trials offers numerous advantages. It allows for the use of less actual human data while
achieving similar or even superior results. This approach can significantly reduce human exposure,
costs, and the time required to complete trials.

The study also addressed the bioequivalence for highly variable drugs, which is a significant
challenge in the field of BE assessment [56, 57, 58] and can significantly impact the required
sample size and statistical power. Regulatory agencies like the EMA and FDA recommend using
scaled limits to manage this variability [56, 132]. We propose using VAEs to virtually increase
sample size, thereby reducing the need for actual human subjects in BE studies of highly variable
drugs. Monte Carlo simulations incorporating two levels of stochasticity (between-subject and
within-subject) were used to create virtual populations. The performance of VAE-generated
datasets was compared to traditional methods using constant 80-125% limits or scaled BE limits.
The results showed that VAE-generated datasets outperformed both scaled and unscaled BE
approaches, even with less than half the typically required sample size. This demonstrates the
potential of VAEs to enhance the efficiency of BE studies, aligning with ethical considerations and
regulatory guidelines.

Overall, the study demonstrated that machine learning is incredibly powerful for analyzing and

uncovering patterns in data in the field of clinical trials and supports the idea of leveraging Al in
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healthcare [7, 133, 135, 136, 137, 138]. By using algorithms that can learn from and make
predictions based on data, ML enables the identification of complex patterns and trends that are
difficult to detect otherwise. This capability is particularly useful where it is important to
understand subtle data patterns and improve decision-making. Additionally, ML can handle vast
amounts of data at high speeds, providing insights in real-time and allowing for more dynamic and
responsive systems.

More importantly, this study explored for the first time, the use of VAEs for data augmentation in
clinical and bioequivalence studies. It has shown that the application of VAEs in clinical and BE
studies represents a modern tool that can significantly reduce the need for large numbers of
human subjects, lower costs, and shorten trial completion times, while maintaining or even
improving the quality and reliability of the data.

Itis important, in the future, to test the VAE algorithm on actual clinical data. Integrating real data
into simulations is crucial for improving their accuracy, reliability, and relevance, making them
valuable for understanding real-world phenomena, making predictions, and supporting decision-
making. A comparative analysis of the VAE procedure applied to real clinical data would help
assess its effectiveness and suitability, since although simulated data are consistent and
reproducible [134, 138, 139, 140, 141], they often lack the intricacies and subtleties found in real-
world data. Real data provide a more accurate and trustworthy basis for analysis, ensuring that
the methods proposed are practical and effective in real-life applications. Moreover, real data can
expose unexpected challenges and variables that simulations might miss, leading to more robust
and widely applicable conclusions. Therefore, incorporating real data is essential for transitioning
from theoretical research to practical implementation, ensuring the relevance and impact of the

findings.
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Chapter E: Concluding remarks
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This study focused on the application of machine learning algorithms and deep learning models
in clinical trials and bioequivalence studies. In this context, a novel framework was created, which
combined Monte Carlo simulations with a generative neural network model, namely variational
autoencoders to virtually increase the sample size of clinical studies.

It is evident that machine learning has strong analytical power that can help discover relationships
and patterns in the clinical trial domain, which would be impossible to achieve with the use of
classical statistical approaches. In this case, grouping the individuals from a clinical trial into five
distinct groups and identifying the parameters responsible for NAbs levels nine months after
BNT162b2 vaccination.

Generative neural networks like variational autoencoders were utilized to virtually increase the
sample size of clinical trials and bioequivalence studies. Firstly, the most appropriate architecture
for the VAE was investigated by tuning the respective hyperparameters. Later the optimized neural
networked was used to create synthetic data, based on real data under different simulated
scenarios. These scenarios included various levels of variability in the measured endpoints,
differing average performances between the comparison groups, a range of subsampled and
actual group sizes between the T and R products, in the context of clinical trials and bioequivalence
studies.

The simulations carried out in this study highlighted several advantages of incorporating Al
generative algorithms into clinical trials and bioequivalence studies for creating virtual
populations. These advantages include reduced human exposure, significantly shorter study
durations, simplified trial processes, decreased workload for physicians and clinics, and notably
lower costs for sponsors or health agencies. The results showed that less actual human data can
be used to achieve similar or even better outcomes in terms of statistical power. Overall, this study

supports the use of Al-driven generative algorithms in clinical research.
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components or clusters, while the y-axis corresponds to eigenvalues (for A,C) and the Within-Cluster Sum of Square

=

3 4

5

6

Principal component

(WCSS) (for plot B).

160

o




1.0 1
e 957 .
e
c
o
c
=]
o ®
£ 001 =
8 m3 M=
© D36
2
e
e -0.5
o

10 B

-1.0 -05 0.0 0.5 1.0

Principal component 1

Figure A2. Principal component analysis of percent inhibition of SARS-CoV-2 binding at day 36 and at the third and
ninth months after vaccination. The coordinates of the two-dimensional plot refer to the “scores” of the variables in
the dimensionality reduced space (two principal components are shown). Key: D36, neutralizing antibody levels two

weeks after second vaccination; M3 neutralizing antibody levels three months after second vaccination; M9,
neutralizing antibody levels nine months after second vaccination; BMI, body mass index.
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Figure A3. K-means cluster analysis plot of all features used in the study (neutralizing antibody levels and
demographics). The two axes are labelled as x[,1] and x[,2]. In each cluster, shown with different color, a feature
predominates.
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ABSTRACT

The sustainabilty of coronasines 19 (COVID-19) vaccine-induced immunity against severs acute respiratony syndrome coronavinus 2
[BARS-Col-2) is critical to be determined to inform public hesith decisions on vaccnation programs and prevention measures against
COWID-19. The aim of the presant study was to prospectively evaluate the kinetics of neutralizing antibodies (MAbs) and anti-S-receptor
binding domain (RED lgGs) against SARS-Cov-2 after full waccination with the BNT 16202 mRMA vaccine for up to 8 manths in healty
individuals (MCTO474:3388). The assessments were performed at the following time points after the second vaccination: 2 wesks, 1
maonth, 3 months, & months, and 9 months. The measurements wens performed with the GanSconpt’s cPassTh SARS-CoV-2 MAbs
Detection MR (GenScript, Inc.; Piscataway, NJ) and the Elecsys Anti-SARS-Co-2 S assay (Roche Diagnostics GmbH: Mannhaim,
Gemary). Three hundred nine participants with a median age of 48 years were included. A gradual dedline in both MAbs and anti-S-
RED lgGs bacame evidant from 2 weeks to 9 months postvaccination. Both MAbs and anti-S-RBD IgGs levels were significantly lower
at 9 months compared with the presious timepoints. Interestingly, age was found to exert a statistcally significant efiact on MAbs elim-
ination only during the first-imeaster anation, as older age was associated with a more rapid dearance of MAbs. Furthesmore,
simulztion studies predicted that the median MAbL value would fall from 66% at 9 months to 59% and 45% at 12 and 18 months post-
vaccination, respectively. This finding may reflect a declining degres of immune protection against COMD-19 and advocates for the

administration of booster vacdne shots especially in areas with emenging outbresks.

INTRODUCTION

The new coronavirus severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has cosed a worldwide pandemic and
becomes a serious public health problem on a global scale '
There are 4 different primary structural proteins encoded by the
coronavirus genome, referred to as spike (5], envelope, membrane,
and nucleocapsid. Angiotensin-converting enzyme 2 receplors are
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found primarily on oral mucosal epithelal cells and alveolar lung
cells 11 but also in other human tssues, The vins enters the body
via the viral 5 protem and attaches to the angiotensm-converting
enzyme 2 receptors.” Coronavirus 19 (COVID-19) is a systemic
disease with short- and long-term symptoms. ™ The vast majority
af patients experience mild or moderare symprons, with up o
5% w0 10% having a severe or life-threatening course of disease
according vo the liverarure. Research and development of effective
and safe vaccines and drugs, as well a5 imnovative diagnostics and
therapeutics, has become a global pricoay.”

The BMNT162b2 vaccmne provides protection againss COVID-19
infection ™ Healthy individuals exhibit signaficant levels of
leGc amtibodies and neutralizing annbodies (MAbs] directed
against the SARS-CoV-2 spike-receptor binding domain (anti-
SARS-CoV-2 S-receptor hinding domam [RBED] or anti-5-RED),
as well as a prolonged B-cell response in the germinal center
after immunization. ™" It is importane g sote that NAbs lev-
els are associated with chnscally relevant immune protection
againsg COVID-19.%Y However, even 1 month afrer the second
BMT162B2 injection, a shght decrease in antbody titers was
abserved, while the time elapsed since the second vaccine dose
was associated with lower MNAD activity agamnst SARS-CoV-2
variants and anenuated protection against COVID-19""" The
fundamental question now 18 whether and when a third dose
should be administered.
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Abstract: Vaccination against SARS-CoV-2 with BNT162b2 mRNA vaccine plays a critical role in
COVID-19 prevention. Although BNT162b2 is highly effective against COVID-19, a time-dependent
decrease in neutralizing antibodies (NAbs) is observed. The aim of this study was to identify the
individual features that may predict NAbs levels after vaccination. Machine learning techniques
were applied to data from 302 subjects. Principal component analysis (PCA), factor analysis of mixed
data (FAMD), k-means clustering, and random forest were used. PCA and FAMD showed that
vounger subjects had higher levels of neutralizing antibodies than older subjects. The effect of age is
strongest near the vacci date and appears to decrease with time. Obesity was associated with
lower antibody response. Gender had no effect on NAbs at nine months, but there was a modest
association at earlier time points. Participants with autoimmune disease had lower inhibitory levels
than participants without autoimmune disease. K-Means clustering showed the natural grouping of
subjects into five categories in which the characteristics of some individuals predominated. Random
forest allowed the characteristics to be ordered by importance. Older age, higher body mass index,
and the p e of autoi di had tive effects on the development of NAbs against
SARS-CoV-2, nine months after full vaccination.

B!

Keywords: SARS-CoV-2; COVID-19; neutralizing antibodies; machine learning; princpal comp t
analysis; factor analysis of mixed data; k-means clustering; random forest

1. Introduction

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has
caused a worldwide epidemic and has become a serious global public health threat [1,2].
The coronavirus genome encodes four different major structural proteins: spike, envelope,
membrane, and nucleocapsid. ACE2 receptors are typically found on epithelial cells of the
oral mucosa and alveolar lung cells I but can also be found in other human organs [3].
The virus enters the body via the viral S protein and binds to ACE2 receptors [3]. COVID-19
is a systemic disease that causes both short- and long-term symptoms [4-6]. According to
the literature, the vast majority of affected individuals have mild to moderate symptoms,
with 5% to 10% having a severe or life-threatening course of disease. Worldwide, the
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Featured Application: Variational autoencoders, which are a type of neural network, are intro-
duced in this study as a means to virtually increase the sample size of clinical studies and reduce
costs, time, dropouts, and ethical concerns. The efficiency of variational aut ders in data
augmentation is p through simulations of several scenarios.

Abstract: Sample size estimation is critical in clinical trials. A sample of adequate size can provide
insights into a given population, but the collection of substantial amounts of data is costly and
time-intensive. The aim of this study was to introduce a novel data augmentation approach in the
field of clinical trials by employing variational autoencoders (VAESs). Several forms of VAEs were
developed and used for the generation of virtual subjects. Various types of VAEs were explored and
employed in the production of virtual individuals, and several different scenarios were investigated.
The VAE-g; ted data exhibited similar performance to the original data, even in cases where
a small proportion of them (e.g., 30—40%) was used for the reconstruction of the generated data.
Additionally, the generated data showed even higher statistical power than the original data in cases
of high variability. This represents an additional advantage for the use of VAEs in situations of high
variability, as they can act as noise reduction. The application of VAEs in clinical trials can be a useful
tool for decreasing the required sample size and, consequently, reducing the costs and time involved.
Furthermore, it aligns with ethical concerns surrounding human participation in trials.

Keywords: variational autoencoders; dinical trials; data augmentation; sample size

L. Introduction

Sample size estimation is a crucial component of clinical trials since the latter serves as
the comerstone for ensuring safety and efficacy [1]. A representative sample of an adequate
size can provide insights into a given population. However, the collection of substantial
amounts of data may prove challenging, costly, and time-intensive. It is imperative that
each clinical trial be carefully organized through the development of a protocol that outlines
the study’s objectives, primary and secondary endpoints, data collection methodology,
sample selection criteria, data handling procedures, statistical methods and assumptions,
and, on top of that, a scientifically justified sample size [1].

The determination of sample size can vary significantly based on the study design,
outcome type, and hypothesis test specified by the investigator [2]. The estimation of ap-
propriate sample size is based on the given statistical hypotheses and several study design
parameters. The aforementioned factors encompass the minimal detectable difference that
holds meaning, estimated variability in measurement, desired level of statistical power,
and level of significance [2]. Achieving an optimal balance between an insufficient or exces-
sive number of participants in the sample is imperative [3]. Insufficient statistical power
resulting from a small sample size may lead to a failure to detect a true difference, thereby

Appl. Sci. 2023, 13, 8793. https:/ /doi.ong/10.3390/ app1 3156793
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Abstract: Sample size is a key factor In bivequivalence and clinical trials. An appropriately large
sample is necessary to gain valuable insights into a designated population. However, large sample
sizes lead to increased human exposure, costs, and a longer time for completion. In a previous study,
we introduced the idea of using variational autoencoders (VAEs), a type of artificial neural network,
to symthetically create in clindcal studies. In this work, we further elabosate on this idea and expand it
in the feld of bioequivalence (BE) studies. A computational methodology was developed, combining
Monte Carlo simulations of 2 » 2 crossover BE trials with deep leaming algorithms, specifically
VAEs. Various scenarios, including variability levels, the actual sample size, the VAE-generated
sample size, and the difference in performance between the two pharmaceutical products under
comparison, were explored. All simulations showed that incorporating Al generative algorithms
for creating virtual populations in BE trials has many advantages, as less actual human data can
be used to achieve similar, and even better, results. Owverall, this work shows how the application
of generative Al algorithms, like VAEs, in clinical /boequivalence studies can be a modern tool to
significantly reduce human exposure, costs, and trial completion time.

Keywords: varlational autcencoders; bioequivalence studies; artificial neural networks; sample slze;
clinkcal trials

1. Introduction

Sample size estimation in clinical trials is a critical step which requires special atten-
tion, since any negligence in its calculation may result into misleading conclusions and
can compromise the safety and the efficacy of the clinical trial [1,2]. A sufficiently large
representative sample allows the derivation of robust insights for a given population. Al-
though, collecting substantial amounts of data can be difficult, expensive, and long-lasting.
Muoreover, it is mandatory that a protocol is developed, which is followed by the clinical
trial, in which the objectives, the primary and secondary endpoints, and all other aspects of
the trial are clearly defined [1].

Sample size determination depends on the design of the study, the type of outcome,
the statistical hypotheses, the expected variability in the measurement, the minimum
detectable difference, the statistical power, and the level of significance [3]. Insufficient
sample size in clinical trials could lead to an increase in type I error (false negatives),
thus being unable to detect a true difference among groups and label the difference as
statistically insignificant. In contrast, unnecessary sample size may be considered unethical
or unfeasible due to high costs. Furthermore, all governmental and regulatory agencies
worldwide require justification of the number of volunteers enrolled in the study.

As with any clinical trial, similar concerns apply to bicequivalence (BE) studies,
especially in cases where a generic pharmaceutical product (i.e., Test, T) is compared against
the reference product (R) [4,5]. Two pharmaceutical products are deemed biocequivalent if

Appl. 5. 2004, T4, 2970. hetps:/ fdoi.org, 103350/ appl 4072970
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Featured Application: Featured Application: Bioequival studies of highly variable drugs

require the utilization of large numbers of volunteers. The EMA and FDA propose the utilization
of scaled limits. In this study, we introduce the use of artificial neural networks, along with the
typical 80-125% limits, as a tool for virtually increasing sample size and thus reducing the actual
human exposure.

Abstract: The bicequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical
industry. The impact of this variability can significantly affect the required sample size and statistical
power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This
study suggests the use of g tive artificial intelligence (Al) algorithms, particularly variational
autoencoders (VAEs), to virtually increase sample size and therefore reduce the need for actual human
subjects in the BE studies of highly variable drugs. The primary aim of this study was to show the
capability of using VAEs with constant acceptance limits (80-125%) and small sample sizes to achieve
high statistical power. Monte Carlo simulations, incorporating two levels of stochasticity (between-
subject and within-subject), were used to synthesize the virtual population. Various scenarios focusing
on high variabilities were simulated. The performance of the VAE-g, d datasets was ¢ d
to the official approaches imposed by the FDA and EMA, using either the constant 80-125% limits or
scaled BE limits. To demonstrate the ability of Al generative algorithms to create virtual populations,
no scaling was applied to the VAE-generated datasets, only to the actual data of the comparators.
Across all scenarios, the VAE-generated datasets demonstrated superior performance compared to
scaled or unscaled BE approaches, even with less than half of the typically required sample size.
Overall, this study proposes the use of VAEs as a method to reduce the necessity of recruiting large
numbers of subjects in BE studies.

Keywords: bicequivalence; highly variable drugs; artificial neural networks; variational autoencoders;
stochasticity; Monte Carlo simulations

1. Introduction

Bioequivalence (BE) testing aims to determine whether two drug products containing
the same active ingredient are equivalent when administered in vivo [1,2]. Specifically, it
compares a test drug (T) to an innovator’s formulation, known as the reference product
(R). The core of BE assessment lies in comparing the pharmacokinetic properties of the two
drug products. This involves a detailed statistical analysis, including calculating a 90%
confidence interval (CI). BE is typically declared if this 90% Cl falls within the established
range of 80-125% [1,2].

While this standard method, known as average BE, is widely accepted, it is not suitable
for highly variable drugs or drug products. The expression “highly variable drugs” refers

Appl. Sci. 2024, 14, 5279. https:/ /doi.org /103390 / app14125279
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