A Neural Network Technique for the Derivation of Runge-Kutta Pairs Adjusted for Scalar Autonomous Problems

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3030447 25 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
A Neural Network Technique for the Derivation of Runge-Kutta Pairs
Adjusted for Scalar Autonomous Problems
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
We consider the scalar autonomous initial value problem as solved by an
explicit Runge-Kutta pair of orders 6 and 5. We focus on an efficient
family of such pairs, which were studied extensively in previous
decades. This family comes with 5 coefficients that one is able to
select arbitrarily. We set, as a fitness function, a certain measure,
which is evaluated after running the pair in a couple of relevant
problems. Thus, we may adjust the coefficients of the pair, minimizing
this fitness function using the differential evolution technique. We
conclude with a method (i.e. a Runge-Kutta pair) which outperforms other
pairs of the same two orders in a variety of scalar autonomous problems.
Έτος δημοσίευσης:
2021
Συγγραφείς:
Kovalnogov, Vladislav N.
Fedorov, V, Ruslan
Khakhalev, Yuri A.
and Simos, Theodore E.
Tsitouras, Charalampos
Περιοδικό:
Interdisciplinary Applied Mathematics
Εκδότης:
MDPI
Τόμος:
9
Αριθμός / τεύχος:
16
Λέξεις-κλειδιά:
initial value problem; scalar autonomous; Runge-Kutta; differential
evolution; functionally fitted methods
Επίσημο URL (Εκδότης):
DOI:
10.3390/math9161842
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.