Καμπυλότητα Ricci για αλυσίδες Markov σε μετρικούς χώρους

Postgraduate Thesis uoadl:2849942 679 Read counter

Unit:
Κατεύθυνση Θεωρητικά Μαθηματικά
Library of the School of Science
Deposit date:
2019-01-31
Year:
2019
Author:
Papadakis Georgios
Supervisors info:
Απόστολος Γιαννόπουλος, Καθηγητής, Τμήματος Μαθηματικών Ε.Κ.Π.Α.
Γατζούρας Δημήτριος, Καθηγητής Τμήματος. Μαθηματικών Ε.Κ.Π.Α.
Χελιώτης Δημήτριος, Αναπληρωτής Καθηγητής Τμήματος Μαθηματικών Ε.Κ.Π.Α.
Original Title:
Καμπυλότητα Ricci για αλυσίδες Markov σε μετρικούς χώρους
Languages:
Greek
Translated title:
Καμπυλότητα Ricci για αλυσίδες Markov σε μετρικούς χώρους
Summary:
We define the coarse Ricci curvature of a metric space, equiped with a Markov chain. The idea behind this definition is based on the following property of a Riemann manifold with positive Ricci curvature: small balls are closer in Wasserstein distance than their centers. On the one hand, this definition is compatible with Riemann manifolds, in which case the coarse Ricci curvature is the same with the Ricci curvature, after a rescaling. On a general setting, it implies a great range of results, such as a spectral gap bound, a Gaussian-type concetration of measure theorem, a version of a logarothmic Sobolev inequality and an exponential concetration theorem.
Main subject category:
Science
Keywords:
Mathematics
Index:
Yes
Number of index pages:
2
Contains images:
No
Number of references:
25
Number of pages:
102
Ricci curvature of Markov chains on a metric space.pdf (952 KB) Open in new window