The Role of Bone Mineral Density in a Successful Lumbar Interbody Fusion: A Narrative Review

Scientific publication - Journal Article uoadl:3433213 18 Read counter

Unit:
Faculty of Medicine
Title:
The Role of Bone Mineral Density in a Successful Lumbar Interbody Fusion: A Narrative Review
Languages of Item:
English
Abstract:
Background: The incidence of osteoporosis is a prime concern, especially in parts of the world where the
population is aging, such as Europe or the US. Many new therapy strategies have been described to enhance
bone healing. Lumbar interbody fusion (LIF) is a surgical procedure that aims to stabilize the lumbar spine
by fusing two or more vertebrae using an interbody cage. LIF is a standard treatment for various spinal
conditions, such as degenerative disc disease, spinal stenosis, and spondylolisthesis. However, successful
fusion is challenging for patients with osteoporosis due to their reduced bone mineral density (BMD) and
increased risk of cage subsidence, which can lead to implant failure and poor clinical outcomes.
Methods: A comprehensive literature search yielded 220 articles, with 16 ultimately included. Keywords
included BMD, cage subsidence, osteoporosis, teriparatide, and lumbar interbody fusion.
Results: This review examines the relationship between BMD and LIF success, emphasizing the importance
of adequate bone quality for successful fusion. Preoperative assessment methods for BMD and the impact of
low BMD on fusion rates and patient outcomes are discussed. Additionally, techniques to improve fusion
success in patients with weakened bone density, such as biological enhancement and BMD-matched
interbody cages, are explored. However, consensus on the exact BMD threshold for a successful outcome
remains elusive.
Conclusion: While an apparent correlation between BMD and fusion rate in LIF procedures is acknowledged,
conclusive evidence regarding the precise BMD threshold indicative of an increased risk of unfavorable
outcomes remains elusive. Surgeons are advised to exercise caution in surgical planning and follow-up for
patients with lower BMD. Furthermore, future research initiatives, particularly longitudinal studies, are
encouraged
Publication year:
2024
Authors:
Kyriakos Bekas
Christos Zafeiris
Journal:
CUREUS
Publisher:
Springer Science and Business Media LLC
Volume:
16
Number:
2
Pages:
1-9
Keywords:
mineral bone metabolism, osteoporosis treatment, lumbar interbody fusion, s: osteoporosis, cage subsidence, bone mineral density
Main subject category:
Health Sciences
Official URL (Publisher):
DOI:
10.7759/cureus.54727
References:
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007, 22:465-75. 10.1359/jbmr.061113
Zaheer S, LeBoff MS: Osteoporosis: prevention and treatment. Endotext [Internet]. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al. (ed): MDText.com, Inc., South Dartmouth; 2000.
Shepherd JA, Blake GM: T-scores and Z-scores. J Clin Densitom. 2007, 10:349-50. 10.1016/j.jocd.2007.08.006
Cho JH, Hwang CJ, Kim H, Joo YS, Lee DH, Lee CS: Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion. J Orthop Sci. 2018, 23:870-7. 10.1016/j.jos.2018.06.009
DeWald CJ, Stanley T: Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976). 2006, 31:S144-51. 10.1097/01.brs.0000236893.65878.39
Formby PM, Kang DG, Helgeson MD, Wagner SC: Clinical and radiographic outcomes of transforaminal lumbar interbody fusion in patients with osteoporosis. Global Spine J. 2016, 6:660-4. 10.1055/s-0036-1578804
Karikari IO, Jain D, Owens TR, Gottfried O, Hodges TR, Nimjee SM, Bagley CA: Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review. J Spinal Disord Tech. 2014, 27:1-10. 10.1097/BSD.0b013e31825bd26d
Lewandrowski KU, Ransom NA, Yeung A: Subsidence induced recurrent radiculopathy after staged two-level standalone endoscopic lumbar interbody fusion with a threaded cylindrical cage: a case report. J Spine Surg. 2020, 6:S286-93. 10.21037/jss.2019.09.25
Rao PJ, Phan K, Giang G, Maharaj MM, Phan S, Mobbs RJ: Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. J Spine Surg. 2017, 3:168-75. 10.21037/jss.2017.05.03
Xi Z, Mummaneni PV, Wang M, et al.: The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. Neurosurg Focus. 2020, 49:E8. 10.3171/2020.5.FOCUS20169
Bredow J, Boese CK, Werner CM, et al.: Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg. 2016, 136:1063-7. 10.1007/s00402-016-2487-8
Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS, Cook SD: Effects of bone mineral density on pedicle screw fixation. Spine. 1994, 19:2415-20.
Meredith DS, Schreiber JJ, Taher F, Cammisa FP Jr, Girardi FP: Lower preoperative Hounsfield unit measurements are associated with adjacent segment fracture after spinal fusion. Spine (Phila Pa 1976). 2013, 38:415-8. 10.1097/BRS.0b013e31826ff084
Toyone T, Ozawa T, Kamikawa K, et al.: Subsequent vertebral fractures following spinal fusion surgery for degenerative lumbar disease: a mean ten-year follow-up. Spine (Phila Pa 1976). 2010, 35:1915-8. 10.1097/BRS.0b013e3181dc846c
Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ: Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015, 1:2-18. 10.3978/j.issn.2414-469X.2015.10.05
Oh KW, Lee JH, Lee JH, Lee DY, Shim HJ: The correlation between cage subsidence, bone mineral density, and clinical results in posterior lumbar interbody fusion. Clin Spine Surg. 2017, 30:E683-9. 10.1097/BSD.0000000000000315
Falowski SM, Koga SF, Northcutt T, Garamszegi L, Leasure J, Block JE: Improving the management of patients with osteoporosis undergoing spinal fusion: the need for a bone mineral density-matched interbody cage. Orthop Res Rev. 2021, 13:281-8. 10.2147/ORR.S339222
Au AG, Aiyangar AK, Anderson PA, Ploeg HL: A new bone surrogate model for testing interbody device subsidence. Spine (Phila Pa 1976). 2011, 36:1289-96. 10.1097/BRS.0b013e31820bffe9
Pennington Z, Ehresman J, Lubelski D, et al.: Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J. 2021, 21:321-31. 10.1016/j.spinee.2020.08.020
Reitman CA, Nguyen L, Fogel GR: Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech. 2004, 17:306-11. 10.1097/01.bsd.0000090575.08296.9d
Coe JD, Warden KE, Herzig MA, McAfee PC: Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976). 1990, 15:902-7. 10.1097/00007632-199009000-00012
Bjerke BT, Zarrabian M, Aleem IS, et al.: Incidence of osteoporosis-related complications following posterior lumbar fusion. Global Spine J. 2018, 8:563-9. 10.1177/2192568217743727
Matsukawa K, Abe Y, Yanai Y, Yato Y: Regional Hounsfield unit measurement of screw trajectory for predicting pedicle screw fixation using cortical bone trajectory: a retrospective cohort study. Acta Neurochir (Wien). 2018, 160:405-11. 10.1007/s00701-017-3424-5
Carter DR, Hayes WC: Bone compressive strength: the influence of density and strain rate. Science. 1976, 194:1174-6. 10.1126/science.996549
Marshall D, Johnell O, Wedel H: Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996, 312:1254-9. 10.1136/bmj.312.7041.1254
Au AG, Aiyangar AK, Anderson PA, Ploeg HL: Replicating interbody device subsidence with lumbar vertebraesurrogates. Proc Inst Mech Eng H. 2011, 225:972-85. 10.1177/0954411911415198
Hsu CC: Shape optimization for the subsidence resistance of an interbody device using simulation-based genetic algorithms and experimental validation. J Orthop Res. 2013, 31:1158-63. 10.1002/jor.22317
Choy WJ, Parr WC, Phan K, Walsh WR, Mobbs RJ: 3-dimensional printing for anterior cervical surgery: a review. J Spine Surg. 2018, 4:757-69. 10.21037/jss.2018.12.01
Collino RR, Kiapour A, Begley MR: Subsidence of additively-manufactured cages in foam substrates: effect of contact topology. J Biomech Eng. 2020, 142:10.1115/1.4046584
Ide M, Yamada K, Kaneko K, Sekiya T, Kanai K, Higashi T, Saito T: Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop Traumatol Surg Res. 2018, 104:1043-8. 10.1016/j.otsr.2018.07.015
Tu CW, Huang KF, Hsu HT, Li HY, Yang SS, Chen YC: Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res. 2014, 192:112-6. 10.1016/j.jss.2014.05.034
Soldozy S, Sarathy D, Skaff A, et al.: Pharmacologic considerations in patients with osteoporosis undergoing lumbar interbody fusion: a systematic review. Clin Neurol Neurosurg. 2020, 196:106030. 10.1016/j.clineuro.2020.106030
Ebata S, Takahashi J, Hasegawa T, et al.: Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am. 2017, 99:365-72. 10.2106/JBJS.16.00230
Ushirozako H, Hasegawa T, Ebata S, et al.: Weekly teriparatide administration and preoperative anterior slippage of the cranial vertebra next to fusion segment < 2 mm promote osseous union after posterior lumbar interbody fusion. Spine (Phila Pa 1976). 2019, 44:E288-97. 10.1097/BRS.0000000000002833
Xu Y, Zhou M, Liu H, et al.: [Effect of 1,25-dihydroxyvitamin D3 on posterior transforaminal lumbar interbody fusion in patients with osteoporosis and lumbar disc degenerative disease]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014, 28:969-72.
Rodan GA, Fleisch HA: Bisphosphonates: mechanisms of action. J Clin Invest. 1996, 97:2692-6. 10.1172/JCI118722
Miller PD: Anti-resorptives in the management of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008, 22:849-68. 10.1016/j.beem.2008.07.004
Jung A, Bisaz S, Fleisch H: The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res. 1973, 11:269-80. 10.1007/BF02547227
Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y: Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int. 2016, 27:1469-76. 10.1007/s00198-015-3398-1
Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A: Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine. 2011, 14:500-7. 10.3171/2010.11.SPINE10245
Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM: Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta-analysis of comparative Studies. Spine (Phila Pa 1976). 2018, 43:E1014-23. 10.1097/BRS.0000000000002608
Kim SM, Kang KC, Kim JW, Lim SJ, Hahn MH: Current role and application of teriparatide in fracture healing of osteoporotic patients: a systematic review. J Bone Metab. 2017, 24:65-73. 10.11005/jbm.2017.24.1.65
Collinge C, Favela J: Use of teriparatide in osteoporotic fracture patients. Injury. 2016, 47:36-8. 10.1016/S0020-1383(16)30009-2
Dore RK: Long-term safety, efficacy, and patient acceptability of teriparatide in the management of glucocorticoid-induced osteoporosis. Patient Prefer Adherence. 2013, 7:435-46. 10.2147/PPA.S31067
Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM: Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS J. 2009, 5:149-53. 10.1007/s11420-009-9109-8
Drakopoulos P, Flevas DA, Galanopoulos IP, Lepetsos P, Zafeiris C: Off-label use of teriparatide in spine. Cureus. 2021, 13:e16522. 10.7759/cureus.16522
Laird E, Ward M, McSorley E, Strain JJ, Wallace J: Vitamin D and bone health: potential mechanisms. Nutrients. 2010, 2:693-724. 10.3390/nu2070693
Cummings SR, San Martin J, McClung MR, et al.: Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009, 361:756-65. 10.1056/NEJMoa0809493
Miller PD, Pannacciulli N, Brown JP, et al.: Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab. 2016, 101:3163-70. 10.1210/jc.2016-1801
Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ, Li W: Therapeutics for enhancement of spinal fusion: a mini review. J Orthop Translat. 2021, 31:73-9. 10.1016/j.jot.2021.11.001
Makino T, Tsukazaki H, Ukon Y, Tateiwa D, Yoshikawa H, Kaito T: The biological enhancement of spinal fusion for spinal degenerative disease. Int J Mol Sci. 2018, 19:10.3390/ijms19082430
McClung MR, Grauer A, Boonen S, et al.: Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014, 370:412-20. 10.1056/NEJMoa1305224
Padhi D, Jang G, Stouch B, Fang L, Posvar E: Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011, 26:19-26. 10.1002/jbmr.173
Cosman F, Crittenden DB, Adachi JD, et al.: Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016, 375:1532-43. 10.1056/NEJMoa1607948
Weng Y, Di M, Wu T, Ma X, Yang Q, Lu WW: Endplate volumetric bone mineral density biomechanically matched interbody cage. Front Bioeng Biotechnol. 2022, 10:1075574. 10.3389/fbioe.2022.1075574
Kivell TL: A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?. J Anat. 2016, 228:569-94. 10.1111/joa.12446
Wang Y, Bi W: The truss structure of cancellous bone. Morphological basis of the function of load transmission of the synovial joint. Chin Med J (Engl). 1995, 108:20-3. 10.5555/cmj.0366-6999.108.01.p20.01
Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF: Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001, 22:1241-51. 10.1016/S0142-9612(00)00274-X
Liu Y, Rath B, Tingart M, Eschweiler J: Role of implants surface modification in osseointegration: a systematic review. J Biomed Mater Res A. 2020, 108:470-84. 10.1002/jbm.a.36829
Murr LE, Gaytan SM, Medina F, et al.: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci. 2010, 368:1999-2032. 10.1098/rsta.2010.0010
Rezvani M, Veisi S, Sourani A, Ahmadian H, Foroughi M, Mahdavi SB, Nik Khah R: Spondylodiscitis instrumented fusion, a prospective case series on a standardized neurosurgical protocol with long term follow up. Injury. 2024, 55:111164. 10.1016/j.injury.2023.111164
Tabarestani TQ, Lewis NE, Kelly-Hedrick M, et al.: Surgical considerations to improve recovery in acute spinal cord injury. Neurospine. 2022, 19:689-702. 10.14245/ns.2244616.308
Mahmoodkhani M, Babadi NN, Rezvani M, et al.: Thoracolumbar junction fracture and long instrumented fusion, a trial on a standardized surgical technique with long term clinical outcomes. Interdiscip Neurosurg. 2024, 36:10.1016/j.inat.2023.101928
Mo GY, Guo HZ, Guo DQ, et al.: Augmented pedicle trajectory applied on the osteoporotic spine with lumbar degenerative disease: mid-term outcome. J Orthop Surg Res. 2019, 14:170. 10.1186/s13018-019-1213-y
Tavares WM, de França SA, Paiva WS, Teixeira MJ: A systematic review and meta-analysis of fusion rate enhancements and bone graft options for spine surgery. Sci Rep. 2022, 12:7546. 10.1038/s41598-022-11551-8
The Role of BMD in a Successful LIF - A Narrative Review.pdf (274 KB) Open in new window