Non-extendability of holomorphic functions with bounded or continuously extendable derivatives

Postgraduate Thesis uoadl:1838199 849 Read counter

Unit:
Κατεύθυνση Θεωρητικά Μαθηματικά
Library of the School of Science
Deposit date:
2017-08-30
Year:
2017
Author:
Moschonas Dionysios
Supervisors info:
Γιαννόπουλος Απόστολος, Καθηγητής, Τμήμα Μαθηματικών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Χατζηαφράτης Τηλέμαχος, Καθηγητής, Τμήμα Μαθηματικών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Original Title:
Non-extendability of holomorphic functions with bounded or continuously extendable derivatives
Languages:
English
Translated title:
Non-extendability of holomorphic functions with bounded or continuously extendable derivatives
Summary:
We consider the spaces $H_{F}^{\infty}(\Omega)$ and $\mathcal{A}_{F}(\Omega)$ containing all holomorphic functions $f$ on an open set $\Omega \subseteq \mathbb{C}$, such that all derivatives $f^{(l)}$, $l\in F \subseteq \mathbb{N}_0=\{ 0,1,...\}$, are bounded on $\Omega$, or continuously extendable on $\overline{\Omega}$, respectively. We endow these spaces with their natural topologies and they become Fréchet spaces. We prove that the set $S$ of non-extendable functions in each of these spaces is either void, or dense and $G_\delta$. We give exam- ples where $S=\varnothing$ or not. Furthermore, we examine cases where $F$ can be replaced by $\widetilde{F}=\{ l\in \mathbb{N}_0:\min F \leqslant l \leqslant \sup F\}$, or $\widetilde{F}_0= \{ l\in \mathbb{N}_0:0\leqslant l \leqslant \sup F\}$ and the corresponding spaces stay unchanged.
Main subject category:
Science
Other subject categories:
Mathematics
Keywords:
domain of holomorphy, Baire's theorem, generic property, bounded holomorphic functions, analytic capacity
Index:
No
Number of index pages:
0
Contains images:
No
Number of references:
15
Number of pages:
22
diplwmatikh (1).pdf (439 KB) Open in new window