Operator Limits of Random Matrices

Postgraduate Thesis uoadl:2878038 795 Read counter

Unit:
Κατεύθυνση Θεωρητικά Μαθηματικά
Library of the School of Science
Deposit date:
2019-07-08
Year:
2019
Author:
Rozakis Stavros
Supervisors info:
(επιβλέπων) Δημήτρης Χελιώτης - Επίκουρος Καθηγητής - Τμημα Μαθηματικών ΕΚΠΑ
Απόστολος Γιαννόπουλος - Καθηγητής - Τμήμα Μαθηματικών ΕΚΠΑ
Δημήτριος Θηλυκός - Επίκουρος Καθηγητής ΕΚΠΑ
Original Title:
Όρια Τυχαίων Πινάκων
Languages:
Greek
Translated title:
Operator Limits of Random Matrices
Summary:
The joint probability density function of the Gaussian Invariant Ensembles may be parameterized with a parameter β for the values 1, 2 and 4. In this thesis, we will introduce a Random Matrix ensemble which generalizes this joint probability density function for each positive real β. The way this ensemble converges to a differential operator will also be discussed. This method allows us to extract conclusions regarding the behavior of the eigenvalues in the edge of the spectrum of the aforementioned ensembles.
Main subject category:
Science
Keywords:
Probability, Random Matrices
Index:
Yes
Number of index pages:
1
Contains images:
No
Number of references:
68
Number of pages:
74
Rozakis-OriaTycheonPinakon.pdf (737 KB) Open in new window