Spectral sequences and their applications on Lie algebra (co-)homology

Postgraduate Thesis uoadl:3362671 70 Read counter

Unit:
Κατεύθυνση Θεωρητικά Μαθηματικά
Library of the School of Science
Deposit date:
2023-10-25
Year:
2023
Author:
Poimenidis Nikolaos
Supervisors info:
Ιωάννης Εμμανουήλ, Καθηγητής, Τμήμα Μαθηματικών, ΕΚΠΑ, (Επιβλέπων)
Κοντογεώργης Αριστείδης, Καθηγητής, Τμήμα Μαθηματικών, ΕΚΠΑ
Ντόκας Ιωάννης, Επίκουρος Καθηγητής, Τμήμα Μαθηματικών, ΕΚΠΑ
Original Title:
Φασματικές ακολουθίες και εφαρμογές τους στην (συν-)ομολογία αλγεβρών Lie
Languages:
Greek
Translated title:
Spectral sequences and their applications on Lie algebra (co-)homology
Summary:
In homological algebra and in algebraic topology spectral sequences are an
important tool for the computation of homology and cohomology groups.
Jean Leray working on problems in algebraic topology defined the notion
of a sheaf and in order to calculate the cohomology of sheafs created a
computational tool now known as the Leray spectral sequence. The math
ematical community soon realized that this techinque was part of a much
broader phenomenon. This realization led to the development of the theory
of spectral sequences. In this dissertation we will introduce some of the
basic notions and results of the theory of spectral sequences. In the final
chapter we will see some applications of spectral sequences namely we will
use the Hochschild-Serre spectral sequence to compute the homology and
cohomology groups of some Lie algebras.
Main subject category:
Science
Keywords:
Homological algebra, spectral sequences, Lie algebra cohomology
Index:
No
Number of index pages:
0
Contains images:
No
Number of references:
3
Number of pages:
41
Διπλωματική_Εργασία (6).pdf (393 KB) Open in new window