Microorganisms associated with the marine sponge scopalina hapalia: A reservoir of bioactive molecules to slow down the aging process

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3000149 11 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Microorganisms associated with the marine sponge scopalina hapalia: A reservoir of bioactive molecules to slow down the aging process
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Aging research aims at developing therapies that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to slow aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, 30 isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven clinically relevant targets (elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome). These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive compounds. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Έτος δημοσίευσης:
2020
Συγγραφείς:
Hassane, C.S.
Fouillaud, M.
Le Goff, G.
Sklirou, A.D.
Boyer, J.B.
Trougakos, I.P.
Jerabek, M.
Bignon, J.
de Voogd, N.J.
Ouazzani, J.
Gauvin-Bialecki, A.
Dufossé, L.
Περιοδικό:
Microorganisms
Εκδότης:
MDPI AG
Τόμος:
8
Αριθμός / τεύχος:
9
Σελίδες:
1-23
Επίσημο URL (Εκδότης):
DOI:
10.3390/microorganisms8091262
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.