Splice site recognition using transfer learning

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3025065 7 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Splice site recognition using transfer learning
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
In this work, we consider a transfer learning approach based on K-means for splice site recognition. We use different representations for the sequences, based on n-gram graphs. In addition, a novel representation based on the secondary structure of the sequences is proposed. We evaluate our approach on genomic sequence data from model organisms of varying evolutionary distance. The first obtained results indicate that the proposed representations are promising for the problem of splice site recognition. © 2014 Springer International Publishing.
Έτος δημοσίευσης:
2014
Συγγραφείς:
Giannoulis, G.
Krithara, A.
Karatsalos, C.
Paliouras, G.
Περιοδικό:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Εκδότης:
Springer-Verlag
Τόμος:
8445 LNCS
Σελίδες:
341-353
Λέξεις-κλειδιά:
Computer science; Computers, Evolutionary distance; Genomic-sequence data; K-means; Model organisms; Secondary structures; Splice site; Transfer learning, Artificial intelligence
Επίσημο URL (Εκδότης):
DOI:
10.1007/978-3-319-07064-3_27
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.