Τίτλος:
Impact of LED nonlinearity on discrete multitone modulation
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
In the context of communications based on light-emitting diodes (LEDs), spectrally efficient modulation has been considered for overcoming their limited bandwidth, and one scheme under investigation is quadrature-amplitude modulation on discrete multitones. The dependence of the output optical power on the driving current of practical LEDs is nonlinear, which distorts the transmitted signal. We investigate the impact of the nonlinear LED transfer function, i.e., the dependence of the emitted optical power on the driving current, on discrete multitone modulation. The effect incurred by this distortion was analyzed by using detailed numerical simulations addressing the impact of clipping, individual subcarriers, signal-to-noise ratio, and bit-error ratio. The approach was generalized to describe the impact of the nonlinearity of arbitrary LEDs and laser diodes, resulting in a powerful tool for assessing the impact of the nonlinearity on the link performance. This approach was applied to three types of LED, showing anything from a minuscule effect to the case in which error-free data transmission is made impossible by the transfer-function nonlinearity. © 2009 Optical Society of America.
Συγγραφείς:
Inan, B.
Lee, S.C.J.
Randel, S.
Neokosmidis, I.
Koonen, A.M.J.
Walewski, J.W.
Περιοδικό:
IEEE/OSA Journal of Optical Communications and Networking
Λέξεις-κλειδιά:
Bit error ratios; Discrete multitone modulation; Driving current; Error-free data; Laser diodes; Limited bandwidth; Link performance; Non-Linearity; Numerical simulation; Optical power; Optical wireless communications; Orthogonal frequency-domain multiplexing; Sub-carriers; Transmitted signal, Communication; Computer simulation; Computer system recovery; Current density; Diodes; Distortion (waves); Frequency domain analysis; Light emission; Light emitting diodes; Modulation; Multiplexing; Nonlinear distortion; Photonics; Signal to noise ratio; Telecommunication systems, Optical communication
DOI:
10.1364/JOCN.1.000439