Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3057991 29 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5. © 2014 Elsevier Ltd.
Έτος δημοσίευσης:
2014
Συγγραφείς:
de Hoogh, K.
Korek, M.
Vienneau, D.
Keuken, M.
Kukkonen, J.
Nieuwenhuijsen, M.J.
Badaloni, C.
Beelen, R.
Bolignano, A.
Cesaroni, G.
Pradas, M.C.
Cyrys, J.
Douros, J.
Eeftens, M.
Forastiere, F.
Forsberg, B.
Fuks, K.
Gehring, U.
Gryparis, A.
Gulliver, J.
Hansell, A.L.
Hoffmann, B.
Johansson, C.
Jonkers, S.
Kangas, L.
Katsouyanni, K.
Künzli, N.
Lanki, T.
Memmesheimer, M.
Moussiopoulos, N.
Modig, L.
Pershagen, G.
Probst-Hensch, N.
Schindler, C.
Schikowski, T.
Sugiri, D.
Teixidó, O.
Tsai, M.-Y.
Yli-Tuomi, T.
Brunekreef, B.
Hoek, G.
Bellander, T.
Περιοδικό:
Environment International
Εκδότης:
Elsevier Ireland Ltd
Τόμος:
73
Σελίδες:
382-392
Λέξεις-κλειδιά:
Atmospheric movements; Dispersions; Housing; Land use; Nitrogen oxides, Air pollution exposures; Annual average concentration; Cohort; Correlation coefficient; Dispersion Modelling; Epidemiological studies; Exposure; Land use regression, Air pollution, nitrogen dioxide; air pollutant, atmospheric pollution; cohort analysis; concentration (composition); correlation; dispersion; land use; particulate matter; pollution exposure; regression analysis; resident population, adult; air monitoring; air pollution; Article; cohort analysis; concentration (parameters); controlled study; correlation coefficient; dispersion modelling; environmental exposure; Europe; exhaust gas; geographic distribution; human; intermethod comparison; land use regression; outdoor air pollution; particulate matter; population exposure; prediction; regression analysis; residential area; rural area; rural population; spatial analysis; statistical model; suburban population; urban area; air pollutant; analysis; comparative study; environmental exposure; epidemiology; female; regression analysis; theoretical model, Europe, Air Pollutants; Air Pollution; Environmental Exposure; Epidemiologic Studies; Female; Humans; Least-Squares Analysis; Models, Theoretical
Επίσημο URL (Εκδότης):
DOI:
10.1016/j.envint.2014.08.011
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.