Game semantics for non-monotonic intensional logic programming

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3063768 6 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Game semantics for non-monotonic intensional logic programming
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Intensional logic programming is an extension of logic programming based on intensional logic, which includes as special cases both temporal and modal logic programming. In [13], M. Orgun and W.W. Wadge provided a general framework for capturing the semantics of intensional logic programming languages. They demonstrated that if the intensional operators of a language obey some simple semantic properties, then the programs of the language are guaranteed to have a minimum model semantics. One key property involved in the construction of [13] is the monotonicity of intensional operators. In this paper we consider intensional logic programming from a game-theoretic perspective. In particular we define a two-person game and demonstrate that it can be used in order to define a model for any given intensional program of the class introduced in [13]. Moreover, this model is shown to be identical to the minimum model constructed in [13]. More importantly, we demonstrate that the game is even applicable to intensional languages with non-monotonic operators. In this way we provide the first (to our knowledge) general framework for capturing the semantics of non-monotonic intensional logic programming. © 2016 Elsevier B.V.
Έτος δημοσίευσης:
2017
Συγγραφείς:
Galanaki, C.
Nomikos, C.
Rondogiannis, P.
Περιοδικό:
Annals of Pure and Applied Logic
Εκδότης:
Elsevier B.V.
Τόμος:
168
Αριθμός / τεύχος:
2
Σελίδες:
234-253
Επίσημο URL (Εκδότης):
DOI:
10.1016/j.apal.2016.10.005
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.