Artificial Neural Network Approach of Cosmic Ray Primary Data Processing

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3070416 17 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Artificial Neural Network Approach of Cosmic Ray Primary Data Processing
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
One of the most critical points in the detection of cosmic rays by neutron monitors is the correction of the raw data. The data that a detector measures may be distorted by a variety of reasons and the subtraction of these distortions is a prerequisite for processing them further. The final aim of these corrections is to keep only the fluctuations related to the real cosmic-ray intensity. To achieve this, we analyze data from identical neutron monitor detectors which provide a configuration with the ability to exclude the distortions by comparing the counting rate of each detector. Based on this method, a number of effective algorithms have been developed: Median Editor, Median Editor Plus, and Super Editor are some of the algorithms that are being used in the neutron monitor data processing with satisfactory results. In this work, a new approach for the correction of the neutron monitor primary data with a completely different method, based on the use of artificial neural networks, is proposed. A comparison of this method with the algorithms mentioned previously is also presented. © 2012 Springer Science+Business Media Dordrecht.
Έτος δημοσίευσης:
2013
Συγγραφείς:
Paschalis, P.
Sarlanis, C.
Mavromichalaki, H.
Περιοδικό:
SOLAR PHYSICS
Τόμος:
282
Αριθμός / τεύχος:
1
Σελίδες:
303-318
Επίσημο URL (Εκδότης):
DOI:
10.1007/s11207-012-0125-3
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.