Resources and Power Efficient FPGA Accelerators for Real-Time Image Classification

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3219573 21 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Resources and Power Efficient FPGA Accelerators for Real-Time Image Classification
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
A plethora of image and video-related applications involve complex processes that impose the need for hardware accelerators to achieve real-time performance. Among these, notable applications include the Machine Learning (ML) tasks using Convolutional Neural Networks (CNNs) that detect objects in image frames. Aiming at contributing to the CNN accelerator solutions, the current paper focuses on the design of Field-Programmable Gate Arrays (FPGAs) for CNNs of limited feature space to improve performance, power consumption and resource utilization. The proposed design approach targets the designs that can utilize the logic and memory resources of a single FPGA device and benefit mainly the edge, mobile and on-board satellite (OBC) computing; especially their image-processing-related applications. This work exploits the proposed approach to develop an FPGA accelerator for vessel detection on a Xilinx Virtex 7 XC7VX485T FPGA device (Advanced Micro Devices, Inc, Santa Clara, CA, USA). The resulting architecture operates on RGB images of size 80 × 80 or sliding windows; it is trained for the “Ships in Satellite Imagery” and by achieving frequency 270 MHz, completing the inference in 0.687 ms and consuming 5 watts, it validates the approach. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Έτος δημοσίευσης:
2022
Συγγραφείς:
Kyriakos, A.
Papatheofanous, E.-A.
Bezaitis, C.
Reisis, D.
Περιοδικό:
International Journal of Image and Graphics
Εκδότης:
MDPI
Τόμος:
8
Αριθμός / τεύχος:
4
Επίσημο URL (Εκδότης):
DOI:
10.3390/jimaging8040114
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.