Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3220326 64 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Objective: Electroencephalographic analysis (EEG) has emerged as a powerful tool for brain state interpretation. Studies have shown distinct deviances of patients with schizophrenia in EEG activation at specific frequency bands. Methods: Evidence is presented for the validation of a Convolutional Neural Network (CNN) model using transfer learning for scalp EEGs of patients and controls during the performance of a speeded sensorimotor task and a working memory task. First, we trained a CNN on EEG data of 41 schizophrenia patients (SCZ) and 31 healthy controls (HC). Secondly, we used a pretrained model for training. Both models were tested in an external validation set of 15 SCZ, 16 HC, and 12 first-degree relatives. Results: Using the layer-wise relevance propagation on the classification decision, a heatmap was produced for each subject, specifying the pixel-wise relevance. The CNN model resulted in the first case in a balanced accuracy of 63.7% and 81.5% in the second case, on the external validation test 64.5% and 83.2%, respectively. Conclusions: The theta and alpha frequency bands of the EEG signals had significant relevance to the CNN classification decision and predict the first-degree relatives indicating potential heritable functional deviances. Significance: The proposed methodology results in important advancements for the identification of biomarkers in schizophrenia heritability. © 2022 International Federation of Clinical Neurophysiology
Έτος δημοσίευσης:
2022
Συγγραφείς:
Korda, A.I.
Ventouras, E.
Asvestas, P.
Toumaian, M.
Matsopoulos, G.K.
Smyrnis, N.
Περιοδικό:
Clinical Neurophysiology
Εκδότης:
Elsevier Ireland Ltd
Τόμος:
139
Σελίδες:
90-105
Επίσημο URL (Εκδότης):
DOI:
10.1016/j.clinph.2022.04.010
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.