Design Challenges on Machine-Learning Enabled Resource Optimization

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3347068 17 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Design Challenges on Machine-Learning Enabled Resource Optimization
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Nowadays, service providers' (SPs) need for efficient resource utilization solutions is more demanding than ever. The optimal use of the physical and virtual infrastructures guarantees that the waste of resources due to overdesign is minimized while the provided services enjoy the required quality of service levels. However, the prediction of the exact amount of the required resources per service at any time of its lifecycle is not an easy process. For this purpose, we propose a solution that handles the infrastructure in a holistic manner introducing a novel architecture that exploits the monitoring data from three layers (hardware, virtualization, and application) and uses them to train machine learning models, which can accurately predict the exact amount of the required resources per service. Its implementation using open-source tools and its performance are also presented. © 1999-2012 IEEE.
Έτος δημοσίευσης:
2022
Συγγραφείς:
Karkazis, P.
Uzunidis, D.
Trakadas, P.
Leligou, H.C.
Περιοδικό:
IT Professional
Εκδότης:
IEEE Computer Society
Τόμος:
24
Αριθμός / τεύχος:
5
Σελίδες:
69-74
Λέξεις-κλειδιά:
Life cycle; Machine learning, Design challenges; Machine-learning; On-machines; Quality-of-service; Resources optimization; Resources utilizations; Service levels; Service provider; Virtual infrastructures; Waste of resources, Quality of service
Επίσημο URL (Εκδότης):
DOI:
10.1109/MITP.2022.3194129
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.