Bayesian inference for transportation origin-destination matrices: The Poisson-inverse Gaussian and other Poisson mixtures

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:2979069 21 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Bayesian inference for transportation origin-destination matrices: The Poisson-inverse Gaussian and other Poisson mixtures
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
Summary: Transportation origin-destination analysis is investigated through the use of Poisson mixtures by introducing covariate-based models which incorporate different transport modelling phases and also allow for direct probabilistic inference on link traffic based on Bayesian predictions. Emphasis is placed on the Poisson-inverse Gaussian model as an alternative to the commonly used Poisson-gamma and Poisson-log-normal models. We present a first full Bayesian formulation and demonstrate that the Poisson-inverse Gaussian model is particularly suited for origin-destination analysis because of its desirable marginal and hierarchical properties. In addition, the integrated nested Laplace approximation is considered as an alternative to Markov chain Monte Carlo sampling and the two methodologies are compared under specific modelling assumptions. The case-study is based on 2001 Belgian census data and focuses on a large, sparsely distributed origin-destination matrix containing trip information for 308 Flemish municipalities. © 2014 Royal Statistical Society.
Έτος δημοσίευσης:
2015
Συγγραφείς:
Perrakis, K.
Karlis, D.
Cools, M.
Janssens, D.
Περιοδικό:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY - SERIES A STATISTICS IN SOCIETY
Εκδότης:
Blackwell Publishing Ltd Oxford, UK
Τόμος:
178
Αριθμός / τεύχος:
1
Σελίδες:
271-296
Επίσημο URL (Εκδότης):
DOI:
10.1111/rssa.12057
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.