The modified Green function technique for the exterior Dirichlet problem in linear thermoelasticity

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3024483 20 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
The modified Green function technique for the exterior Dirichlet problem in linear thermoelasticity
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
In this work, the modified Green function technique for the exterior Dirichlet problem in linear thermoelasticity is presented. Expressing the solution of the problem as a double-layer potential of an unknown density, we form the associated boundary integral equation that describes the problem. Exploiting that the discrete spectrum of the irregular values of the associated integral equation is identified with the spectrum of eigenvalues of the corresponding interior homogeneous Neumann problem for the transverse part of the elastic displacement field, we introduce a modification of the fundamental solution of the elastic field. We establish the sufficient conditions that the coefficients of the modification must satisfy to overcome the problem of nonuniqueness for the thermoelastic problem. Copyright © 2018 John Wiley & Sons, Ltd.
Έτος δημοσίευσης:
2018
Συγγραφείς:
Argyropoulos, E.
Argyropoulou, E.
Kiriaki, K.
Περιοδικό:
Mathematical Methods in the Applied Sciences
Εκδότης:
John Wiley and Sons Ltd
Τόμος:
41
Αριθμός / τεύχος:
7
Σελίδες:
2811-2826
Λέξεις-κλειδιά:
Boundary integral equations; Boundary value problems; Eigenvalues and eigenfunctions; Elasticity; Thermoelasticity, Dirichlet problem; Discrete spectrum; Double layer potential; Elastic displacements; Elastic fields; Fundamental solutions; Neumann problem; Thermoelastic problems, Integral equations
Επίσημο URL (Εκδότης):
DOI:
10.1002/mma.4783
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.