Botspot: Deep learning classification of bot accounts within twitter

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3063376 21 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Botspot: Deep learning classification of bot accounts within twitter
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
The openness feature of Twitter allows programs to generate and control Twitter accounts automatically via the Twitter API. These accounts, which are known as “bots”, can automatically perform actions such as tweeting, re-tweeting, following, unfollowing, or direct messaging other accounts, just like real people. They can also conduct malicious tasks such as spreading of fake news, spams, malicious software and other cyber-crimes. In this paper, we introduce a novel bot detection approach using deep learning, with the Multi-layer Perceptron Neural Networks and nine features of a bot account. A web crawler is developed to automatically collect data from public Twitter accounts and build the testing and training datasets, with 860 samples of human and bot accounts. After the initial training is done, the Multi-layer Perceptron Neural Networks achieved an overall accuracy rate of 92%, which proves the performance of the proposed approach. © Springer Nature Switzerland AG 2020.
Έτος δημοσίευσης:
2020
Συγγραφείς:
Braker, C.
Shiaeles, S.
Bendiab, G.
Savage, N.
Limniotis, K.
Περιοδικό:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Εκδότης:
Springer Science and Business Media Deutschland GmbH
Τόμος:
12525 LNCS
Σελίδες:
165-175
Λέξεις-κλειδιά:
Computer crime; Deep learning; Internet of things; Network layers; Next generation networks; Social networking (online); Web crawler, Bot detections; Cyber-crimes; Multi-layer perceptron neural networks; Overall accuracies; Training data sets, Multilayer neural networks
Επίσημο URL (Εκδότης):
DOI:
10.1007/978-3-030-65726-0_16
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.