Stable isomorphism of dual operator spaces

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3064884 8 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Stable isomorphism of dual operator spaces
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
We prove that two dual operator spaces X and Y are stably isomorphic if and only if there exist completely isometric normal representations φsymbol and ψ of X and Y, respectively, and ternary rings of operators M1, M2 such that φsymbol (X) = [M2* ψ (Y) M1]- w* and ψ (Y) = [M2 φsymbol (X) M1*]- w*. We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. Consequently, we obtain that certain complex domains are biholomorphically equivalent if and only if their algebras of bounded analytic functions are Morita equivalent in our sense. Finally, we provide examples motivated by the theory of CSL algebras. © 2009 Elsevier Inc. All rights reserved.
Έτος δημοσίευσης:
2010
Συγγραφείς:
Eleftherakis, G.K.
Paulsen, V.I.
Todorov, I.G.
Περιοδικό:
Journal of Functional Analysis
Τόμος:
258
Αριθμός / τεύχος:
1
Σελίδες:
260-278
Επίσημο URL (Εκδότης):
DOI:
10.1016/j.jfa.2009.06.034
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.