Approximation of the Tikhonov regularization parameter through Aitken's extrapolation

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3339761 19 Αναγνώσεις

Μονάδα:
Ερευνητικό υλικό ΕΚΠΑ
Τίτλος:
Approximation of the Tikhonov regularization parameter through Aitken's extrapolation
Γλώσσες Τεκμηρίου:
Αγγλικά
Περίληψη:
In the present work, we study the determination of the regularization parameter and the computation of the regularized solution in Tikhonov regularization, by the Aitken's extrapolation method. In particular, this convergence acceleration method is adjusted for the approximation of quadratic forms that appear in regularization methods, such as the generalized cross-validation method, the quasi-optimality criterion, the Gfrerer/Raus method and the Morozov's discrepancy principle. We present several numerical examples to illustrate the effectiveness of the derived estimates for approximating the regularization parameter for several linear discrete ill-posed problems and we compare the described method with further existing methods, for the determination of the regularized solution. © 2023 IMACS
Έτος δημοσίευσης:
2023
Συγγραφείς:
Fika, P.
Περιοδικό:
APPLIED NUMERICAL MATHEMATICS
Εκδότης:
Elsevier B.V.
Τόμος:
190
Σελίδες:
270-282
Λέξεις-κλειδιά:
Acceleration; Extrapolation; Number theory; Parameter estimation; Parameterization, Aitken extrapolation; Extrapolation methods; Generalized cross validation; Gfrerer/rai method; Morozov discrepancy principles; Optimality criteria; Quasi-optimality; Quasi-optimality criteria; Regularization parameters; Tikhonov regularization, Numerical methods
Επίσημο URL (Εκδότης):
DOI:
10.1016/j.apnum.2023.04.008
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.