Changing representation of curves and surfaces: exact and approximate methods

Διδακτορική Διατριβή uoadl:1309574 625 Αναγνώσεις

Μονάδα:
Κατεύθυνση / ειδίκευση Θεωρητική Πληροφορική (ΘΕΩ)
Βιβλιοθήκη Σχολής Θετικών Επιστημών
Ημερομηνία κατάθεσης:
2013-06-21
Έτος εκπόνησης:
2013
Συγγραφέας:
Kalinka Tatjana
Στοιχεία επταμελούς επιτροπής:
Ιωάννης Εμίρης Καθηγητής
Πρωτότυπος Τίτλος:
Changing representation of curves and surfaces: exact and approximate methods
Γλώσσες διατριβής:
Αγγλικά
Μεταφρασμένος τίτλος:
Εναλλαγές αναπαράστασης καμπυλών και επιφανειών: εγγυημένες και προσεγγιστικές μέθοδοι
Περίληψη:
Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης
γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή.
Υπολογίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές
του πολυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο
υπολογίζεται απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται
από μια πρόσφατη μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος
πρόβλεψης του συνόλου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το
πολύτοπο υπολογίζεται από
το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως
πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του
Newton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο
πυρήνα του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους
συντελεστές των
μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε
συμβολικά είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value
decomposition (SVD). Προτείνουμε τεχνικές για να διαχειριστούμε την περίπτωση
ενός πολυδιάστατου πυρήνα το οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο
στήριξης είναι ένα υπερσύνολο του
πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο
υπολογισμού της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις
κατασκευής του πίνακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας
χρησιμοποιήθηκαν ρητές
καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε
πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών
οποιασδήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με
παραμετροποίηση σεσημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες
μεθόδους αλγεβρικοποίησης.
Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να
αναπαριστώνται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών
παραμετροποιήσεων θα πρέπει να μπορούν να μετασχηματιστούν σε ρητές
συναρτήσεις. Επιπλέον η τεχνική που
προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο
υπολογισμόςτης διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της
απαλοίφουσας ενός συστήματος πολυωνύμων με πολλές μεταβλητές.
Λέξεις-κλειδιά:
Αλγεβρικοποίηση, Παρεμβολή, Newton πολύτοπο, Αραιή απαλοίφουσα, Γραμμική άλγεβρα.
Ευρετήριο:
Ναι
Αρ. σελίδων ευρετηρίου:
15
Εικονογραφημένη:
Όχι
Αρ. βιβλιογραφικών αναφορών:
125
Αριθμός σελίδων:
95