Το διχοτομικό θεώρημα του T.Gowers για χώρους Banach
Author
Academic unit
Library
Supervisors info
Φαρμάκη Βασιλική Καθηγήτρια (Επιβλέπουσα), Παπαναστασίου Νικόλαος Επίκουρος καθηγητής, Τσαρπαλιάς Αθανάσιος Αναπληρωτής καθηγητής
Deposit date
7/4/2011
Year
2011
Original Title
Το διχοτομικό θεώρημα του T.Gowers για χώρους Banach
Languages
Summary
In this Master Thesis we present Gowers' dichotomy theorem for Banach spaces. According to this theorem, a Banach space X has a subspace Y which either has unconditional basis or is hereditarily indecomposable. We present the proof of this basic theorem in three different ways. We start with the proof from Gowers' paper through a combinatorial Ramsey partition theorem for Banach spaces defining the Gowers' game for Banach spaces. Then we refer an equivalent game defined by Bagaria and Abad. Also, we give a direct proof of the basic dichotomy theorem by Maurey. Finally, we present an extension of Gowers' dichotomy theorem proved by Farmaki through a Ramsey partition theorem for Banach spaces for every countable ordinal.
Number of pages
XIV,66
Index
Number of index pages
0
Contains images
Number of references
Last modified
Persistent Url
https://pergamos.lib.uoa.gr/uoa/dl/object/1320421
License
Creative Commons Attribution-NonCommercial 4.0 (CC-BY-NC)
Export Citation
RIS